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Abstract
Large Language Models (LLMs) excel in diverse
areas, yet struggle with complex scientific reason-
ing, especially in the field of chemistry. Different
from the simple chemistry tasks (e.g., molecule
classification) addressed in previous studies, com-
plex chemistry problems require not only vast
knowledge and precise calculation, but also com-
positional reasoning about rich dynamic inter-
actions of different concepts (e.g., temperature
changes). Our study shows that even advanced
LLMs, like GPT-4, can fail easily in different
ways. Interestingly, the errors often stem not
from a lack of domain knowledge within the
LLMs, but rather from the absence of an effec-
tive reasoning structure that guides the LLMs to
elicit the right knowledge, incorporate the knowl-
edge in step-by-step reasoning, and iteratively
refine results for further improved quality. On
this basis, we introduce STRUCTCHEM, a sim-
ple yet effective prompting strategy that offers
the desired guidance and substantially boosts the
LLMs’ chemical reasoning capability. Testing
across four chemistry areas—quantum chemistry,
mechanics, physical chemistry, and kinetics—
STRUCTCHEM substantially enhances GPT-4’s
performance, with up to 30% peak improvement.
Our analysis also underscores the unique diffi-
culties of precise grounded reasoning in science
with LLMs, highlighting a need for more re-
search in this area. Code is available at https:
//github.com/ozyyshr/StructChem.

1. Introduction
Artificial intelligence (AI) holds the promise of transform-
ing the field of chemistry (Baum et al., 2021), impacting
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Figure 1. Proportions (%) of four error types ( #errors / #all-cases)
for GPT-4 and STRUCTCHEM. STRUCTCHEM substantially re-
duces the reasoning error.

various sectors including industrial production (Öztürk et al.,
2020), pharmaceuticals (Singhal et al., 2023), and educa-
tion (Graulich et al., 2022). Recent studies have shown
promising results of large language models (LLMs) solving
simple chemistry problems (Figure 2(a)), such as molecule
classification (Edwards et al., 2022) and property predic-
tion (Yang et al., 2019; Feinberg et al., 2018).

On the other hand, however, more complex chemistry rea-
soning problems still pose significant challenges to frontier
LLMs like GPT-4. As shown in Figure 2(b), a complex
problem requires not only understanding individual con-
cepts (e.g., molecule property) as in previous tasks, but
rather their rich dynamic interactions in different contexts,
involving extensive domain knowledge (e.g., chemical for-
mulae1), precise scientific computing, and compositional
step-by-step reasoning. As a result, LLMs are prone to dif-
ferent forms of errors when solving these problems, such
as applying incorrect knowledge, making miscalculations,
or following flawed reasoning processes, as illustrated in
Figure 2(c).

Interestingly, as shown in Figure 1 and discussed in Sec-
tion 5, LLMs oftentimes have encoded necessary knowledge
for a given chemistry problem. The key shortfall, however,
lies in the absence of a sophisticated reasoning structure
that helps elicit the relevant knowledge from the LLMs, and
guides them to perform precise step-by-step reasoning with
the knowledge.

Motivated by this, we introduce STRUCTCHEM, a sim-

1“Formulae” and “formulas” are both correct plurals of “for-
mula”, with “formulae” being preferred in scientific writing, per
Garner’s Modern English Usage.
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Figure 2. The illustration of (a) simple chemistry problem, (b) complex chemistry problem sampled from SciBench (Wang et al., 2023a),
and (c) the zero-shot response from GPT-4 with chain-of-thought (CoT) (Wei et al., 2022) for the complex chemistry problem. The error
types are illustrated corresponding to the definition in Figure 1: (I) irrelevant knowledge, (II) incorrect knowledge, (III) reasoning error,
(IV) calculation error. We randomly select 100 error cases of GPT-4 (CoT) in SciBench.

ple yet effective reasoning strategy providing structured
guidance for LLMs to solve complex chemistry problems.
STRUCTCHEM explicitly decomposes the reasoning into
three phases: In the first phase, the LLM focuses on gener-
ating essential chemical formulae needed for the problem.
The formulae knowledge provides a solid basis for the LLM
to do grounded reasoning in subsequent phases. The second
phase involves the LLM conducting a detailed, step-by-
step reasoning based on the identified formulae, leading
to a preliminary answer to the problem. The third phase
then performs confidence-based review-and-refinement for
the final answer. Crucially, the refinement process differs
from recent self-verification methods (Madaan et al., 2023;
Weng et al., 2022) which rely solely on prompting and can
sometimes yield unreliable results (Section 5). Instead, our
approach explicitly estimates a confidence score for each re-
vision, and iteratively enhances the confidence level towards
a final high-quality answer.

We conduct extensive experiments on four datasets of com-
plex chemistry problems from different subfields, namely,
quantum chemistry, quantum mechanics, physical chem-
istry, and chemistry kinetics. Experiments show that
STRUCTCHEM greatly reduces the reasoning errors (Fig-
ure 1). It boosts the chemistry reasoning capability of ad-
vanced LLMs, including GPT-3.5 and GPT-4, leading to an
average improvement of 8% and a 30% absolute improve-
ment at maximum. In addition, using the generated reason-
ing from our approach with GPT-4, we finetune smaller LMs
(Llama-2-13B and Vicuna-13B) and obtain strong improve-

ment. This further validates STRUCTCHEM enables LLMs
to generate high-quality chemistry reasoning. Our analysis
studies the error patterns of LLMs on chemistry reasoning,
which reveals the unique challenges in scientific problems
and motivates future research towards more grounded and
precise reasoning.

2. Related Work
2.1. Large Language Models for Chemistry

The emergence of LLMs has provided new possibilities in
scientific domains (Ouyang et al., 2023), where a bunch of
new benchmarks (Lu et al., 2022; Chen et al., 2023b) have
emerged. As an important and challenging branch of sci-
entific domains, chemistry-related research serges with the
utilization of LLMs (Fang et al., 2023). Specifically, Chem-
Crow (Bran et al., 2023) is a general model that integrates
multiple existing tools with LLMs to solve various down-
stream tasks. LLMs are also used to better the performance
of specific chemistry applications, such as reaction predic-
tion (Zhong et al., 2023; 2024), drug discovery (Edwards
et al., 2023), and SMILES identification (Edwards et al.,
2021). However, most previous works often target problems
that require a single-hop retrieval of domain knowledge,
without complex reasoning steps inherent. For example, find
and list all the chemical entities in a given sentence. While
the previous models excel in these approximate knowledge
retrieval tasks, improving the abilities of LLMs to solve
complex chemistry problems is still in a nascent stage, with
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Figure 3. An in-depth illustration of the STRUCTCHEM framework. When tackling a chemistry problem, we first utilize a structured
instruction approach, resulting in “formulae generation” F0 and “step-by-step reasoning”R0. These generated segments are then fed to a
thorough “confidence-based review-and-refinement” as initial input. The process is repeated n times til getting reviewed formulae Fn and
reasoningRn. Each iteration is guided by incorporating confidence scores Ci. → in “iterative review and refinement” denote the choice
made for each iteration. Full instructions can be found in Figure 14.

SciBench (Wang et al., 2023a) being the initial benchmark.

2.2. Large Language Models for Reasoning

Engaging LLMs in a step-by-step thinking process has
demonstrated enhanced performance in intricate reasoning
tasks compared to the conventional single-step answer pre-
diction. A typical step-by-step prompting approach is called
chain-of-thought (CoT) (Wei et al., 2022). CoT directs the
model to articulate the step-by-step thinking process as ra-
tionales prior to producing the final answer. Following this
line, several optimized endeavors are made towards making
LLMs better task solvers for more complicated problems.
These efforts encompass automated demonstration construc-
tion (Zhang et al., 2023), improving self-consistency (Wang
et al., 2023b), utilizing the structure of prompts (Yao et al.,
2023; Besta et al., 2024), adopting iterative prompting (Zhou
et al., 2023; Wang et al., 2022), and ensembling (Sun et al.,
2023; Fu et al., 2023). The original focus of CoT approaches
has primarily centered around arithmetic, commonsense,
and logical reasoning problems (Wei et al., 2022; Kojima
et al., 2022; Zhang et al., 2023). Recent investigations have
sought to broaden the application of CoT in scientific do-
mains (Lu et al., 2022; Wang et al., 2023a). Closely related
to ours are works in the research line of modular prompt-
ing (Khot et al., 2023; Patel et al., 2022), which decomposes
a complex task into several sub-tasks. The micro-level

decomposition varies from task to task. Different from
them, we identified two fundamental components for solv-
ing complex chemistry problems as a general paradigm at
a macro level. Another related line is the feedback mech-
anism (Madaan et al., 2023) that leverages feedback from
LLMs before the final output. In contrast, we design a
confidence-based review-and-refinement strategy and em-
ployed another LLM to provide feedback for multi-model
collaboration. Notably, this approach will greatly allevi-
ate the drawbacks of previous feedback frameworks, where
correct answers risk being swayed by unfaithful feedback.

3. STRUCTCHEM Reasoning
Solving complex chemistry problems not only necessitates
recognizing domain knowledge, such as formulae and cal-
culations but also demands the ability to construct a careful
step-by-step reasoning process based on the relevant knowl-
edge. Existing popular reasoning methods, such as CoT
and self-consistency, though exhibit notable strengths, of-
ten fall short in accurately identifying the related chemistry
formulae and are susceptible to errors in reasoning steps, as
expounded in Section 1.

To address the challenges above, we propose STRUCTCHEM.
On a high level, STRUCTCHEM consists of three stages: (i)
formulae generation that offers the basis for subsequent
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grounded reasoning; (ii) step-by-step reasoning that makes
multi-step derivations with the identified formulae for a
preliminary answer; and (iii) confidence-based review-and-
refinement that steers LLMs to progressively revise the pre-
vious phases for increasing confidence, leading to the final
high-confidence answer. Figure 3 the overall framework.

3.1. Formulae Generation

Formulae serve as organized and abstracted representations
of chemistry knowledge (Lachmy et al., 2022). When hu-
mans tackle intricate problems, the initial phase often in-
volves seeking relevant knowledge as a foundation, espe-
cially for the field of chemistry (Taskin & Bernholt, 2014).
Therefore, rather than directly starting to address the ques-
tion, we seek formulae to solve the problem first. Given
the fact that LLMs have indeed encoded much chemistry
knowledge, it is often effective to elicit the knowledge from
the parametric storage (Petroni et al., 2019). Therefore,
STRUCTCHEM first instructs the LLM to articulate relevant
formulae for task resolution, exemplified by formulae like
“equilibrium constant” in Figure 4. To enhance the utility
of these formulae in subsequent reasoning processes, we
instruct the LLM not only to recite them but also to provide
explanations for the variables they contain. For instance, as
illustrated in Figure 2, the LLM needs to elucidate symbol
[∗] as the molar concentrations.

3.2. Step-by-step Reasoning

Grounded on the generated formulae, the LLMs can then
reason about the solution to the original question. To induce
LLMs for more precise reasoning and calculation processes,
we adopt program-of-thoughts (PoT) (Chen et al., 2023a) as
demonstrated in Figure 5. The detailed calculation process is
translated into Python codes, accompanied by the annotation
lines for reasoning. Concretely, we feed the problem and the
structured instruction into an LLM M as shown in the top of
Figure 3. The generated results of this stage are formalized
as S0 = ({F0, C

f
0 }, {R0, C

r
0}) where F0 = {f1, ..., fn}

denotes the formulae collected from Sec 3.1. fn is the n-th
formula that is related. Similarly, R0 denotes the reasoning
process. The output samples of F0 and R0 could be found
in Figure 4 and Figure 5. Cf

0 and Cr
0 are the confidence

scores for each part that is going to be mentioned Sec 3.3.

3.3. Confidence-based Review-and-Refinement

The generated formulae and step-by-step reasoning are not
always error-free. The cumulative errors in the formulae
generation or step-by-step reasoning process can amplify
and propagate throughout the entire generation, leading
to wrong answers. Inspired by recent works of iterative
prompting (Wang et al., 2022) and multi-model collabo-
ration (Zheng et al., 2023), we employ the same LLM to
conduct iteratively review-and-refine the previous iterations

Figure 4. Instruction for formulae generation (part of the structured
instruction in Figure 3) and the output for problem in Figure 2.

Figure 5. Instruction for reasoning process (part of the structured
instruction in Figure 3) and the output for problem in Figure 2.

of generation. In each iteration, the LLM is instructed to
revise the formulae and reasoning steps from the previous
iteration.

During the review process, we found that there are chances
when correct answers are swayed by incorrect ones af-
ter revision. This phenomenon echoes the recent find-
ings (Stechly et al., 2023; Huang et al., 2024) question-
ing the correction ability of LLMs existing in prevalent
works such as self-consistency (Wang et al., 2023b) and
self-verification (Weng et al., 2022). To fix this, we estimate
a confidence score Ci on the revision process. Only a high-
confidence revision is accepted for further refinement in
the next iteration. The confidence assessment ensures each
iteration makes meaningful progress towards final answers.

Specifically, we prompt the LLM to provide confidence
scores Ci on a scale of [0, 1] for the i-th iteration. The review
process starts with the generated formulae {F0, C

f
0 }, where

Cf
0 is the initial score for formulae generation. During

the iterative review process, we leverage the same LLM to
judge whether the collected formulae are correct with the
confidence score Cf

i of its own prediction. Formulae with
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Algorithm 1 Confidence-based Review-and-Refinement
Input: S0 = (F0,R0), initial confidence score Cf

0 and Cr
0 ,

LLMM, prompts {prev, pgen}, maximum iteration number n
Output: Final answer to the problem P
F0 = {f1, ..., fn},R0 = R0

// initialize maximum confidence scores
for iteration

maxf ← Cf
0 , maxr ← Cr

0

// review for collected formulae
for i in 1, ..., n do

(Fi, C
f
i )←M(prev||Fi−1)

if Cf
i < maxf then continue

F = Fi, maxf ← Cf
i

end for
// review for reasoning process
for i in 1, ..., n do
(Ri, C

r
i )←M(prev||F||Ri−1)

if Cr
i < maxr then continue

R = Ri, maxr ← Cr
i

end for
returnM(pgen||F||R)

the highest confidence score are kept. We then repeat it
for the reasoning process so that we get the most faithful
generations for both parts. In this way, LLMs can select
the most aligned combination of problem, formulae, and
the reasoning process. The elements above are finally input
into the same LLM to get the final answer. The overall
pipeline of this stage is shown in Algorithm 1, where the
prompts {prev, pgen} denote the instruction for “review”
and “generation” with refined results.

4. Experiments
4.1. Setup

In our experiments, we use four datasets taken from
SciBench (Wang et al., 2023a). The datasets cover a wide
range of subfields including quantum chemistry, physical
chemistry, kinetics, and matter, etc. The detailed distribu-
tion of subfields is shown in Figure 9. The four datasets are
manually collected from college-level chemistry textbooks,
and are selected to be more challenging with free-response
answers. Each of the datasets is divided into two parts, Pw

and Ps. Here Pw contains the majority number of prob-
lems that without solutions. Meanwhile, problems in Ps are
coupled with solutions. The complexity of these datasets
could also be proved by the average number of formulae
entailed (around 2) and the average reasoning steps (around
5) generated by STRUCTCHEM needed to solve the prob-
lems. (Detailed distribution information could be found in
Appendix B.)

Experiments are conducted under both zero-shot and few-
shot settings. For the few-shot setting, the demonstrations
are constructed with 3 examples randomly sampled from

Ps. We leverage GPT-3.5 (gpt-3.5-turbo) and GPT-4 (gpt-
4-0315) as our backbone models. For each setting, we
consider four baselines following the evaluation paradigm
in SciBench (Full instructions are provided in Appendix A):

(i) Direct reasoning refers to directly feeding the problem
into the model without any other instructions;

(ii) System instruction is originally developed by Wang
et al. (2023a) which is tailored to the task and describes the
types and categories of questions, along with instructions;

(iii) CoT follows the “step-by-step” prompting strategy that
requires the model to output the “thinking process” first;

(iv) CoT-SC is an improved version of CoT with self-
consistency (Wang et al., 2023b). It adds more rounds of
CoT reasoning and outputs the most consistent results.

(v) ToT instructs the LLM to strategically explore (Yao
et al., 2023), considering multiple different reasoning paths
in a tree structure.

(vi) PoT leverages the idea of Program-of-Thoughts
(PoT) (Chen et al., 2023a) which translates the solution into
Python codes to improve the understanding and calculation
ability of LLMs.

4.2. Implementation Details

We access the two LLMs, GPT-3.5 and GPT-4, with the
OpenAI API. During our experiments, the temperature for
generation is kept at 0 to ensure reproducibility and reduce
potential variances. For baseline implementations, we fol-
low the default settings in the corresponding papers. Specif-
ically for CoT-SC, we set the temperature to 0.7, and the
batch size of rationale to 20. For ToT, we set the temperature
to 1.0, with “n generate samples” and “n eavluate samples”
setting to 5. When doing the evaluation, we follow the pre-
vious work (Wang et al., 2023a) and compare the model
outputs with the correct answers, allowing an absolute devia-
tion of 0.1 for answers greater than 1 and a relative tolerance
of 0.05 for answers less than 1. This guarantees a fair com-
parison with previous baseline models.

4.3. Results

Table 1 and 4 present the performance of all methods on
the test set of the four datasets. We report the model per-
formance in terms of accuracy scores. The best results are
bolded. Based on the results, we have the following key
observations:

(i) STRUCTCHEM achieves superior performance on al-
most all the datasets in both zero-shot and few-shot
settings. Specifically, STRUCTCHEM achieves an abso-
lute improvement of +13.77 and +7.71 in terms of the
average score on few-shot settings, respectively, which is
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Table 1. Results on the test sets for the four datasets, quan, chemmc, atkins, matter. We compare with baselines from two different settings,
a zero-shot setting with no demonstrations and a few-shot setting with 3 demonstrations. We compute the accuracy scores with the
approximation detailed in Section 4.3. The best results for each setting are highlighted in bold and the second-best results are underlined.

Methods GPT-3.5 Avg. GPT-4 Avg.
quan chemmc atkins matter quan chemmc atkins matter

Zero-shot setting
Direct Reasoning 5.88 28.21 8.41 4.08 11.65 8.82 25.64 14.95 18.37 16.95
System Instruction 8.82 20.51 4.67 2.04 9.01 14.71 23.08 27.10 22.45 21.84
CoT 2.94 23.08 6.54 10.20 10.69 14.71 43.59 28.04 20.41 26.69
PoT 0.0 7.69 0.0 2.04 2.43 11.76 20.51 25.23 16.33 18.46
STRUCTCHEM 5.88 15.38 9.35 12.24 10.71 20.59 38.46 31.78 24.49 30.11

Few-shot setting
Direct Reasoning 5.88 23.08 9.35 8.16 11.62 14.71 28.21 20.69 14.29 19.48
System Instruction 11.76 15.38 5.61 4.08 9.21 17.65 30.77 15.87 12.24 19.13
CoT 8.82 20.51 8.41 6.12 10.97 17.65 46.15 21.05 26.53 27.85
CoT-SC 14.71 25.64 15.89 16.33 18.14 29.41 51.28 50.47 28.57 39.93
ToT 11.76 17.95 11.21 14.29 13.80 23.53 43.59 32.71 20.41 30.06
PoT 8.82 33.33 13.08 16.33 17.89 38.24 41.03 21.05 28.57 32.22
STRUCTCHEM 32.35 43.59 26.17 24.49 31.66 41.18 58.97 59.81 30.61 47.64

Table 2. Detailed statistics and information of the four datasets
we experiment with. #Pw and #Ps refer to the number of data
samples with and without solutions. “# F” means the average
number of formulae entailed in the problem, and “# RS” denotes
the average reasoning steps for each problem.

Datasets Subfields/Topics # Pw(Ps) # F # RS

quan Quantum chemistry 34 (8) 1.93 3.94
chemmc Quantum mechanics 39 (9) 1.88 3.95
atkins Physical chemistry 107 (16) 1.65 4.33
matter Chemistry kinetics 49 (10) 1.89 4.43

43.49%, and 19.31% of relative improvement. The notable
improvement demonstrates the effectiveness of our model in
adapting to various scenarios by inducing chemistry knowl-
edge and performing precise reasoning. The improvement
brought by few-shot learning is also larger than the zero-shot
setting. Compared with the best general prompt strategies,
CoT-SC and ToT, STRUCTCHEM is still the best. Notably,
ToT does not meet expectations, as it excels at solving prob-
lems requiring many reasoning steps but struggles with ones
of this complexity.

(ii) STRUCTCHEM has shown effectiveness generally
across different backbones. In addition, using GPT-
4 as backbone models consistently outperforms GPT-3.5
backbones for all methods experimented by a large mar-
gin. Specifically, we found that STRUCTCHEM achieves
more pronounced performance improvement with GPT-4
under the zero-shot setting, with +3.42 of accuracy im-
provement. However, when it comes to the few-shot set-
ting, STRUCTCHEM works better with GPT-3.5. Given the
fact that GPT-4 is a more powerful model than GPT-3.5,
this result actually indicates a nuanced balance in terms
of instruction-following ability and demonstrations. When

there is no demonstration available, the performance is more
dependent on the inherent power of LLMs, where GPT-4
prevails. With enough demonstrations and detailed prompts,
even weaker LLMs as GPT-3.5 could be powerful with
STRUCTCHEM.

(iii) STRUCTCHEM delivers greater performance im-
provements on four datasets in few-shot settings com-
pared to zero-shot settings. With GPT-4, the performance
improvement brought by STRUCTCHEM is +12.0 more than
the zero-shot setting. The reason could be twofold. One
is the complexity of these datasets, because it is hard to
directly output answers or solutions without any demonstra-
tions as references. Another factor could be the format of
solutions offered by STRUCTCHEM, which disentangles the
solution with structured instructions. This format is hard to
learn with no examples. Contrastively, we do not observe
obvious differences in performance improvement brought
by baselines for few-shot and zero-shot settings. This further
shows STRUCTCHEM’s ability to learn by analogy.

(iv) STRUCTCHEM achieves substantial performance
gains in complex problems with extensive reasoning
steps. Specifically, we found the performance on datasets
chemmc and atkins is better than quan and matter with GPT-
4 in few-shot setting. STRUCTCHEM performs particularly
well on atkins dataset, with the accuracy scores doubling in
almost all settings. We attribute the reason to the number
of formulae in atkins. As shown in Table 2, atkins has the
smallest average number of formulae, making it easier for
formulae collection. However, it has a larger number of av-
erage reasoning steps. This verifies STRUCTCHEM’s ability
to deal with complicated reasoning processes.

(v) STRUCTCHEM is well instantiated with open-source
LLMs. We also tested STRUCTCHEM with open-source
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Table 3. Ablation studies for different components in STRUCTCHEM in both zero-shot and few-shot settings with the backbone model
GPT-4. The accuracy scores are reported with all four datasets.

Methods Zero-shot Avg. Few-shot Avg.
quan chemmc atkins matter quan chemmc atkins matter

structured instruction 23.53 35.90 39.25 18.37 29.26 32.35 51.28 53.27 28.57 41.37
+ review for F 26.47 38.46 40.19 18.37 30.87 32.35 48.71 54.55 30.61 41.56
+ review forR 23.53 41.03 41.12 22.45 32.03 35.29 51.28 54.55 30.61 42.93
+ confidence score 29.41 41.03 46.34 23.08 34.97 38.24 53.85 56.07 32.65 45.20
+ PoT 20.59 38.46 31.78 24.49 30.11 41.18 58.97 59.81 30.61 47.64

Table 4. Results of STRUCTCHEM with open-source LLMs, in-
cluding Llama-2-7B and Llama-2-70B under the few-shot setting.

Methods quan chemmc atkins matter Avg.

w/ Llama-2-7B
CoT 2.94 5.13 1.87 0.00 2.49
PoT 0.00 2.56 0.93 0.00 0.87
STRUCTCHEM 2.94 7.69 8.41 2.04 5.27

w/ Llama-2-70B
CoT 14.71 12.83 13.10 4.08 11.18
PoT 2.94 7.69 0.93 0.00 2.89
STRUCTCHEM 17.65 17.95 18.69 6.12 15.10

LLMs, specifically the Llama-2 series (Touvron et al., 2023),
with results shown in Table 4. We found that STRUCTCHEM
still outperforms strong baselines with both model scales.
However, STRUCTCHEM does not perform that well with
LLMs in smaller sizes such as Llama-2-7B. Potential rea-
sons include the relatively weak instruction-following ability
of these models and the complexity of the task itself.

5. Analysis
Intuitively, we want to validate the quality of produced
chemistry reasoning processes. We first fine-tune smaller
models using generated reasoning outputs. We then conduct
a thorough ablation study of STRUCTCHEM’ various com-
ponents to gain a deeper understanding of its effectiveness.
Additionally, an error analysis further offers insights about
how to make STRUCTCHEM even better in the future.

5.1. Validating the Reasoning Quality

Our method STRUCTCHEM has shown strong improvement
in accuracy over baselines. Here we further validate that
STRUCTCHEM generates high-quality intermediate reason-
ing steps that increase answer accuracy. Specifically, we
fine-tune smaller language models, Llama-2-13B-chat (Tou-
vron et al., 2023) and Vicuna-13B (Chiang et al., 2023), on
the reasoning steps generated by STRUCTCHEM and CoT,
respectively. The rationale is that while a smaller model
may already be equipped with some domain knowledge,
it typically lacks the capability for step-by-step reasoning
in complex chemistry problems—a skill that emerges pre-

dominantly in larger-scale models. By fine-tuning smaller
models with the generated reasoning steps, we essentially
teach them to perform this advanced reasoning. Intuitively,
using higher-quality fine-tuning data would lead to better
performance in the small models.

To collect fine-tuning data, we first instruct GPT-4 to gener-
ate another 1, 000 problems with 3 problems sampled from
SciBench as demonstrations. To encourage diversity, we set
the generation temperature as 1.0 and filter out problems
that have 5-gram or larger overlapping with existing gener-
ated problems. Then, we use STRUCTCHEM for providing
the solutions to all 1, 000 problems as the paired training
data. Additionally, we compare two other baselines: (i)
Fine-tuning model on the original data, which only consists
of the original problem statement and the direct answer, for-
matted as “[problem] The answer is therefore [answer]”; (ii)
Pure zero-shot inference, where given the problem as input,
the model outputs a direct answer without any fine-tuning.

The fine-tuning process is based on LoRA (Hu et al., 2022),
a parameter-efficient fine-tuning method. For details on
training and problem generation, please refer to Appendix C.

Results are shown in Table 5. The vanilla version falls short
in solving such complex chemistry problems, as shown by
their zero-shot performance on four datasets. Training only
on the original problem and answer pairs does not bring
much improvement compared with direct inference. Fine-
tuning with data generated by STRUCTCHEM, on the other
hand, brings more than 20% absolute improvement. Fine-
tuning based on STRUCTCHEM is superior to fine-tuning
with CoT, demonstrating that STRUCTCHEM can produce
detailed reasoning at a higher quality.

5.2. Ablation Study

To understand why STRUCTCHEM works particularly well,
we ablate STRUCTCHEM with add-ons from different com-
ponents. Table 3 summarizes the experimental results.

Firstly, both “structured instruction” and “iterative review
and refinement” are significant in contributing to the perfor-
mance of STRUCTCHEM for zero-shot and few-shot settings.
Specifically, removing the confidence score and iterative re-
view resulted in a decrease of 2.27 and 3.83, respectively.
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Table 5. Fine-tuning results with generations from STRUCTCHEM as training data on two open-source models. The accuracy scores are
reported with all four datasets.

Methods Llama-2-13B-chat Avg. Vicuna-13B Avg.
quan chemmc atkins matter quan chemmc atkins matter

Zero-shot inference 0.0 0.0 0.0 2.04 0.51 5.88 2.56 3.74 0.0 3.05

Original 0.0 5.13 0.0 0.0 1.28 8.82 5.13 2.80 2.04 4.70
CoT 8.82 17.95 9.35 8.16 11.07 11.76 15.38 8.41 6.12 10.42
STRUCTCHEM 14.71 30.77 20.56 20.41 21.61 17.65 33.33 18.69 20.41 22.52

Figure 6. Error analysis of four error categories across all datasets
(y-axis) in terms of error proportions (x-axis). The results are for
STRUCTCHEM w/o PoT to exclude the influence of external tools.

It is worth noting that while iterative refinement indeed
contributes to the performance, our strategy of structured
instruction is strong enough and demonstrates compara-
tive performance with strong baselines such as CoT. When
removing iterative review for formulae F alone, the per-
formance drops by a large margin, which is comparable to
removing the whole iterative review process. This shows
the effectiveness of iterative review for formulae collection
and the importance of domain knowledge when solving.

Also, though PoT helps with precise calculation and im-
proves performance, STRUCTCHEM without PoT still out-
performs the strongest baselines. We also note that in the
zero-shot setting, STRUCTCHEM without PoT achieves even
stronger performance. Although PoT indeed helps with the
accuracy of calculations, it does not make up for the dis-
advantage of instruction-following ability in the zero-shot
setting. By adding a few demonstrations for few-shot PoT,
this disadvantage was made up for.

5.3. Error Analysis

We conduct a manual analysis of all the 113 error cases for
STRUCTCHEM without PoT with GPT-4 as the backbone
for few-shot setting across four datasets. Error types are
defined as corresponding to the two processes of “formulae
generation” and “step-by-step reasoning”. The analysis is
done by 3 Ph.D. students with a chemistry background.

For “formulae generation”, we define two types of errors
that are related to this process. Irrelevant knowledge in-
dicates that the formulae collected are not relevant to solv-
ing the problem. For example, solving a problem requires
Broglie formula but LLM collects Wavelength formula. In-
correct knowledge refers to the incorrectness inherent in
the formula itself. Kc =

[N2O]
[N2]×[O2]

in Figure 2 is one such
example. For “step-by-step reasoning”, we also have two
error cases as follows. Reasoning error refers to the errors
made during the intermediate reasoning steps. For example,
in Figure 2, the model fails to reason the correct relations
of different gases during the reaction O2 + N2 → N2O.
Calculation error means the mathematical computation
mistakes made when doing the reasoning process.

The results are shown in Figure 6, where we plot the pro-
portion for every error type of each dataset. We have the
following key observations:

(i) STRUCTCHEM are more likely to generate irrelevant
formulae than inaccurate ones. On average, only 13.7%
of the total errors are caused by incorrect forms of formu-
lae compared with an average of 25.9% of irrelevant ones.
The irrelevance rate is slightly higher than that of GPT-4
(CoT) as shown in Figure 1. A potential reason is that
STRUCTCHEM could focus on the irrelevant formulae col-
lected in the first phase. For the entire formulae collection
process, although STRUCTCHEM sometimes retrieve irrele-
vant formulae for solving a problem, the formulae are less
likely to be incorrect themselves.

(ii) Formulae being relevant probably is more important
than being correct. We observed that the “Irrelevance” rate
is relatively low for atkins and chemmc datasets, although
they may have higher “incorrectness” rate. This is poten-
tially another explanation of why performance in Table 1
is particularly high for these two datasets compared with
the rest two datasets, since the formulae collection process
serves as a necessary condition for conducting correct rea-
soning processes further.

(iii) Complex reasoning ability is still the bottleneck of
LLMs. Although STRUCTCHEM drastically decreases the
reasoning error as shown in Figure 1, “reasoning error” still
takes up to around 35.0% of all error cases. For chemistry
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Figure 7. Cost-effectiveness analysis. The size of each dot is pro-
portional to the average number of inferences by each method. The
y-axis denotes the average accuracy across four datasets.

problems that entail multiple elements interacting in a com-
plex environment, the ability to reason out the relations
among objects becomes crucial.

(iv) Preciseness is important for solving complex chem-
istry problems. Without PoT, the case of “calculation error”
still occupies a large portion of around a quarter. Even a
single step of calculation error could lead to wrong answers
in chemistry reasoning problems.

5.4. Cost-Effectiveness Analysis

By introducing STRUCTCHEM, we manage to reduce the
costs associated with complex chemistry problems while
achieving comparable or even superior performance. We
conduct experiments in the few-shot setting with GPT-4
as the backbone. We define cost as the sum of tokens for
instruction, demonstrations, and output. Based on results
illustrated in Figure 7, we can see that the performance in-
crease brought by STRUCTCHEM is actually a little larger
compared to CoT and PoT considering the ratio of tokens
consumption. CoT-SC, while achieving the most compet-
itive results among baselines, actually consumes more to-
kens and requires around twice the amount of function calls.
STRUCTCHEM’s substantial improvement does not rely on
the consumption of tokens.

6. Conclusion and Discussion
This paper introduces STRUCTCHEM, a new reasoning struc-
ture that guides LLMs to solve complex chemistry problems.
STRUCTCHEM explicitly decomposes the reasoning into
three critical phrases, including formulae generation by
LLMs that offers the basis for grounded reasoning, step-by-
step reasoning that makes derivations with the identified
formulae for a preliminary answer, and confidence-based
review-and-refinement that steers LLMs to progressively re-

vise the previous phases, leading to the final high-confidence
answer. Extensive experiments on four datasets of complex
chemistry problems from different subfields of chemistry
show that STRUCTCHEM significantly boosts the chemistry
reasoning capability of different LLMs. In addition, we fine-
tune smaller LMs (e.g., Vicuna-13B) using the generated
reasoning from our approach with GPT-4 and obtain strong
improvement. Future work could continue to investigate
incorporating external, up-to-date knowledge sources and
performing retrieval to ensure the quality of the formulae
generation. Or designing strategies to transfer and distill
chemistry reasoning knowledge from LLMs to smaller LMs.
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A. Prompts used for baseline methods in
Section 4.

In this section, we provide the detailed prompts used for
experiments.

Figure 8. Distribution of four datasets in terms of the reasoning
steps.

System Prompt Please provide a clear and step-by-step
solution for a scientific problem in the category of Chem-
istry. The problem will specify the unit of measurement,
which should not be included in the answer. Express the
final answer as a decimal number with three digits after the
decimal point. Conclude the answer by stating “The answer
is therefore [ANSWER].”

Program-of-Thought Prompt Please provide a clear and
step-by-step solution for a scientific problem in the category
of Chemistry. The problem will specify the unit of mea-
surement. Please translate the solution steps into Python
code and encase the Python code within triple backticks for
clarity.

Template-guided Prompt The full prompt for “formu-
lae generation” and “step-by-step reasoning” is composed
of four stages, general instruction, output format, demon-
strations, and trigger. The complete view of the prompt is
shown in Figure 14.

B. Distribution of datasets
The detailed distribution of four datasets in terms of reason-
ing steps is shown in Fig 8. We can see that the majority
of the samples have reasoning steps spanning [3, 5]. Some
samples even have reasoning steps of 8, which demonstrate
the complexity of these datasets.

C. Details for Section 5.3
Instruction for problem generation Please help me to
generate complex and difficult chemistry problems that in-
clude but are not limited to the fields of physical chemistry,

atkins 

quan 

matter 

chemmc 

therm
odynam

ics

solid-state chem

parti
cle

Figure 9. Quantum chemistry (quan) (Hair et al., 2009) pro-
vides an exploration of equilibrium, structure, and reactions.
Chemistry kinetics (matter) (Atkins et al., 2014) combines

physics and mathematics, spanning through quantum mechanics
and atomic structure. Quantum mechanics (chemmc) (McQuar-
rie, 2008) covers quantum mechanics and the applications in chem-
ical bonding. Physical chemistry (atkins) (Atkins et al., 2023)
provides explorations of equilibrium, structure, and reactions. We
leverage GPT-4 to annotate each data sample in these datasets for
the specific subfields.

quantum chemistry, thermodynamics, atomic chemistry,
molecular, etc. To help you better understand, I provide
the following examples: [demonstrations]. Following the
above examples, please help me with this task and generate
three problems that satisfy my requirements. Make sure the
generated problems are reasonable and complex for solving.

Training details We use LLaMA-2-13B-chat (Touvron
et al., 2023) and Vicuna-13B-v1.3 (Chiang et al., 2023)
as backbone models and finetune them with the LoRA ap-
proach (Hu et al., 2022). During training, we configure the
batch size to 8 and the maximum learning rate to 1e-4 with
a 0.03 warmup ratio. For all the experiments, the LoRA r is
set to 8, and we apply a dropout rate of 0.05. We keep these
hyperparameters the same for a fair comparison. We train
the models with 10 epochs and it takes around 1 hour to
train on a single NVIDIA A6000 GPU. During the inference
process, we also adhere to the same set of parameters: a
temperature of 0.1, top p of 0.75, top k of 40, 4 beams, and
a maximum generation length of 2,048.

D. Examples of error type in Section 5.2
To help better understand the error category listed in Sec-
tion 5.3, we provide one example for each category in Fig-
ure 12, Figure 13.
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Structured Chemistry Reasoning with Large Language Models

Formula retrieval:
[Formula 1] 𝐸 = 2𝐵(𝐽 + 1), where 𝐵 is the rotational constant,…
[Formula 2] 𝐸 = ℎ𝑣, where ℎ is the Planck’s constant,…
Reasoning:
[Step 1] Calculate the energy difference for transition from 2 to 3.

[Step 2] Calculate the rotational constant B. Using energy difference and initial 
rotational quantum number Δ𝐸!→# = 2𝐵 2 + 1 , ℎ𝑒𝑛𝑐𝑒	𝐵 = $%!→#

&
[Step 3] Calculate the energy difference for transition from 5 to 6 Δ𝐸'→& =
2𝐵 5 + 1
[Step 4] …

The 𝐽 = 2 → 3	rotational transition in a certain diatomic molecule occurs at 
126.4	𝐺𝐻𝑧, where 1	𝐺𝐻𝑧 = 10(	𝐻𝑧. Find the frequency of the 𝐽 = 5 →
6absorption in this molecule.

Problem

Answer

Correct 252.8 V

Figure 10. An example of a reasoning error. The red highlighted expression is deduced from the given formula. Instead of solving for
difference, it directly plug the value for calculating energy. The correct expression for the first one should be ∆E2→3 = 2B(3 + 1)−
2B(2 + 1).

Formula retrieval:
[Formula 1]	𝜇 = ( !"

#$
− 𝑏)/𝐶%,', given formula for a van der …

[Formula 2] Δ𝐻' = ∫ 𝜇𝑑𝑃, general formula for calculating change in enthalpy 
with
[Formula 3] …
Reasoning:
[Step 1] …

Take nitrogen to be a van der Waals gas with a = 1.352	𝑑𝑚(	𝑎𝑡𝑚	𝑚𝑜𝑙)! and 
𝑏 = 0.0387	𝑑𝑚*	𝑚𝑜𝑙)+, and calculate Δ𝐻' when the pressure on the gas is 
decreased from 500	𝑎𝑡𝑚 to 1.00	𝑎𝑡𝑚 at 300	𝐾 . For a van der Waals gas, 𝜇 =
( !"
#$

− 𝑏)/𝐶%,'. Assume 𝐶%,' = ,
!
𝑅.

Problem

Answer

Correct +3.59 KJ/mol

Figure 11. An example of a factual error. The red highlighted expression is the wrong form to calculate. The correct formulae should be∫ p′

p
dHm, which could be further converted to Hmqx = Hm(v′ − d).

14



Structured Chemistry Reasoning with Large Language Models

Formula retrieval:
[Formula 1] 𝜆 = ℎ/𝑝, where 𝜆 is the de Broglie wavelength,…
[Formula 2] 𝐾 = 𝑞𝑉, where 𝑘 is the kinetic energy,…
[Formula 3] 𝐾 = 1/2𝑚𝑣!, where 𝑚 is the mass of the particle,…
Reasoning:
[Step 1] Calculate the momentum of the proton using the de Broglie wavelength 
formula. 𝑝 = "

#
= 6.626×10$%&×1.0×10$'( = 6.626×10$!&	𝑘𝑔	𝑚	𝑠$'

[Step 2] Calculate the kinetic energy of the proton using its momentum. 𝐾 =
)!

!*
= +.+!+×'("#$

!

! '.+.%×'("!%
= 1.381×10$'.	𝐽

[Step 3] Calculate the potential difference using the kinetic energy formula. 𝑉 =
/
0
= 1.381× '("&%

'.+(!
×10$'1 = 86.2	𝑉

Through what potential must a proton initially at rest fall so that its de Broglie 
wavelength is 1.0×10$'(m ?Problem

Answer

Correct 0.082 V

Figure 12. An example of a calculation error. The red highlighted expression is wrongly calculated. If calculated correctly, we will get
K = 1.312× 10−20, which yields the correct answer.

Formula retrieval:
[Formula 1]𝐸! = 𝐷" 𝐻# − 𝐷" 𝐻#$ , where 𝐸! is the first ionization energy,…
Reasoning:
[Step 1] Substitute the given values into the formulae and calculate the first 
ionization energy 𝐸! = 1.827	𝑒𝑉

Problem

Answer

Correct 15.43 eV

Use the 𝐷" value of 𝐻# 4.478𝑒𝑉 and the 𝐷" value of 𝐻#$ 2.651𝑒𝑉 to calculate 
the first ionization energy of 𝐻# (that is, the energy needed to remove an electron 
from 𝐻#). The unit is 𝑒𝑉.

Figure 13. An example of a principle error. The red highlighted expression is wrongly collected. The correct formulae should be
E1 = D0(H2)−D0(H

+
2 ) + I(H).
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Please provide a clear and step-by-step solution for a scientific problem in the categories of Chemistry, Physics, or Mathematics. The problem will 
specify the unit of measurement, which should not be included in the answer. Express the final answer as a decimal number with three digits after the 
decimal point. Conclude the answer by stating “The answer is therefore \\boxed{[ANSWER]}.

For each instance, you need to three things. Firstly, for "formulae retrieval", you need to identify the formulae explicitly and implicitly entailed in the 
problem context. Then there is a "reasoning/calculation process" where you are required to reason step by step based on the identified formulae and 
problem context. Finally, conclude the answer. For each problem, the output format should incorporate the following components in the corresponding 
format:

In
st

ru
ct

io
n

To clearly explain the task, we provide the following example:

Problem:
Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated. Calculate the change in chemical potential of a perfect gas 
when its pressure is increased isothermally from $1.8 \\mathrm{~atm}$ to $29.5 \\mathrm{~atm}$ at $40^{\\circ} \\mathrm{C}$. The unit of the 
answer is $\\mathrm{kJ} \\mathrm{mol}^{-1}$.

Response:
In order to solve this problem, we will use the formula for the change in chemical potential \( \Delta \mu \) of a perfect gas due to a change in pressure. 
Given that the temperature is constant (isothermal), the chemical potential of a perfect gas is given by:

**Formula retrieval:**
\[ \text{[Formula 1]} \quad \Delta \mu = RT \ln\left(\frac{P_2}{P_1}\right) \]
where:
- \( \Delta \mu \) is the change in chemical potential,
- \( R \) is the universal gas constant (\( 8.314 \, \text{J} \, \text{mol}^{-1} \, \text{K}^{-1} \)),
- \( T \) is the absolute temperature in Kelvin,
- \( P_1 \) is the initial pressure,
- \( P_2 \) is the final pressure.

**Reasoning/calculation process:**
[step 1] Convert the temperature from Celsius to Kelvin. To convert from Celsius to Kelvin, we add 273.15 to the Celsius temperature.
\[ T = 40^{\circ} \text{C} + 273.15 \, \text{K} \]
\[ T = 313.15 \, \text{K} \]

[step 2] Substitute the given values into the formula.
\[ P_1 = 1.8 \, \text{atm} \]
\[ P_2 = 29.5 \, \text{atm} \]

\[ \Delta \mu = 8.314 \, \text{J} \, \text{mol}^{-1} \, \text{K}^{-1} \cdot 313.15 \, \text{K} \cdot \ln\left(\frac{29.5 \, \text{atm}}{1.8 \, 
\text{atm}}\right) \]

[step 3] Calculate the natural logarithm and proceed with the calculation.
\[ \Delta \mu = 8.314 \, \text{J} \, \text{mol}^{-1} \, \text{K}^{-1} \cdot 313.15 \, \text{K} \cdot \ln(16.389) \]
\[ \Delta \mu = 8.314 \, \text{J} \, \text{mol}^{-1} \, \text{K}^{-1} \cdot 313.15 \, \text{K} \cdot 2.799 \]
\[ \Delta \mu = 7293.269 \, \text{J} \, \text{mol}^{-1} \]

[step 4] Convert the result from Joules per mole to kilojoules per mole (1 kJ = 1000 J).
\[ \Delta \mu = 7.293 \, \text{kJ} \, \text{mol}^{-1} \]

**Answer conclusion:**
\[ \text{answer] The answer is therefore } \boxed{7.293} \, \text{kJ} \, \text{mol}^{-1}. \]

**Formulae retrieval: **
[Formula 1] (the formula required to solve the problem)
[Formula 2] (the second formula required to solve the problem, if any)
...
[Formula n] (the n-th formula required to solve the problem, if any)

**Reasoning/calculation process:**
[step 1] (the first step for solving this problem)
.....
[step n] (the n-th step for solving the problem, if any)

**Answer conclusion:**
[answer] The answer is therefore \\boxed{[ANSWER]}.
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Following the above examples, please help me solve the following problem. 
Remember to strictly follow the output format. T

ri
gg

er

Figure 14. Full prompt used for generation.
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