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Abstract

We first raise and tackle a “time synchronization” issue between the agent and
the environment in non-stationary reinforcement learning (RL), a crucial factor
hindering its real-world applications. In reality, environmental changes occur over
wall-clock time (t) rather than episode progress (k), where wall-clock time signifies
the actual elapsed time within the fixed duration t ∈ [0, T ]. In existing works, at
episode k, the agent rolls a trajectory and trains a policy before transitioning to
episode k+1. In the context of the time-desynchronized environment, however, the
agent at time tk allocates ∆t for trajectory generation and training, subsequently
moves to the next episode at tk+1 = tk + ∆t. Despite a fixed total number of
episodes (K), the agent accumulates different trajectories influenced by the choice
of interaction times (t1, t2, ..., tK), significantly impacting the suboptimality gap
of the policy. We propose a Proactively Synchronizing Tempo (ProST) framework
that computes a suboptimal sequence {t1, t2, ..., tK}(= {t}1∶K) by minimizing
an upper bound on its performance measure, i.e., the dynamic regret. Our main
contribution is that we show that a suboptimal {t}1∶K trades-off between the policy
training time (agent tempo) and how fast the environment changes (environment
tempo). Theoretically, this work develops a suboptimal {t}1∶K as a function of
the degree of the environment’s non-stationarity while also achieving a sublinear
dynamic regret. Our experimental evaluation on various high-dimensional non-
stationary environments shows that the ProST framework achieves a higher online
return at suboptimal {t}1∶K than the existing methods.

1 Introduction

The prevailing reinforcement learning (RL) paradigm gathers past data, trains models in the present,
and deploys them in the future. This approach has proven successful for stationary Markov decision
processes (MDPs), where the reward and transition functions remain constant [1–3]. However,
challenges arise when the environments undergo significant changes, particularly when the reward
and transition functions are dependent on time or latent factors [4–6], in non-stationary MDPs.
Managing non-stationarity in environments is crucial for real-world RL applications. Thus, adapting
to changing environments is pivotal in non-stationary RL.

This paper addresses a practical concern that has inadvertently been overlooked within traditional non-
stationary RL environments, namely, the time synchronization between the agent and the environment.
We raise the impracticality of utilizing episode-varying environments in existing non-stationary RL
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Figure 1: (a) 2D goal reacher in a time-desynchronized environment for one policy update, where the
agent learns an inaccurate policy on an accurate model; (b) For three policy updates, the agent learns
a near-optimal policy on an inaccurate model; (c) Rewards per episode in 2D goal reacher with four
model-free baselines, where ProST-T∗ is one of our proposed methods.

research, as such environments do not align with the real-world scenario where changes occur
regardless of the agent’s behavior. In an episode-varying environment, the agent has complete
control over determining the time to execute the episode k, the duration of policy training between
the episodes k and k + 1, and the transition time to the episode k + 1. The issue stems from the
premise that the environment undergoes dynamic changes throughout the course of each episode,
with the rate of non-stationarity contingent upon the behavior exhibited by the agent. However, an
independent wall-clock time (t) exists in a real-world environment, thereby the above three events are
now recognized as wall-clock time tk, training time ∆t, and tk+1. The selection of interaction times
(tk, tk+1) has a notable impact on the collected trajectories, while the interval tk+1 − tk establishes an
upper limit on the duration of training (∆t). This interval profoundly influences the suboptimality
gap of the policy. In the context of a time-desynchronized environment, achieving an optimal policy
requires addressing a previously unexplored question: the determination of the optimal time sequence
{t1, t2, .., .tK}(= {t}1∶K) at which the agent should interact with the environment.

We elucidate the significance of the aforementioned research question through an example. Consider
a robot with the goal of reaching inside a gray-shaded non-fixed target box, known as the goal reacher
(Appendix A.1). Note that the reward changes as the position of the box changes over time (Figure
1-(a)). We begin by considering a scenario in which the wall-clock time and episode are synchronized,
wherein the environment evolves alongside the episode. During each episode k, the agent rollouts
a trajectory and iteratively updates the policy N times, with the assumption that one policy update
requires one second, and then the agent transitions to the subsequent episode k + 1. In conventional
non-stationary RL environments, it is evident that a larger value of N provides an advantage in terms
of a faster adaptation to achieve a near-optimal policy. However, regardless of the chosen value of N ,
the agent will consistently encounter the same environment in the subsequent episode. Now, consider
a scenario in which the wall-clock time and episode are desynchronized. In this context, given a fixed
wall-clock time duration t ∈ [0,10], the agent is faced with the additional task of determining both
the total number of interactions (denoted as the total episode K) and the specific time instances for
these interactions {t}1∶K , where tk ∈ [0,10], tk−1 < tk for ∀k ∈ [K]. Figure 1(a) shows an agent that
interacts with the environment ten times, that is, {t}1∶K = {1,2, ...,10}, and spends the time interval
(tk, tk+1) to train the policy, which consumes one second (K = 10,N = 1). The high frequency of
interaction (K = 10) provides adequate data for precise future box position learning (t = 11), yet a
single policy update (N = 1) may not approximate the optimal policy. Now, if the agent interacts
with the environment four times, i.e. {t}1∶K = {1,4,7,10} (see Figure 1(b)), it becomes feasible to
train the policy over a duration of three seconds (K = 4,N = 3). A longer period of policy training
(N = 3) helps the agent in obtaining a near-optimal policy. However, limited observation data
(K = 4) and large time intervals (t ∈ {11,12,13}) may lead to less accurate box predictions. This
example underscores the practical importance of aligning the interaction time of the agent with the
environment in non-stationary RL. Determining the optimal sequence {t}1∶K involves a trade-off
between achieving an optimal model and an optimal policy.

Based on the previous example, our key insight is that, in non-stationary environments, the new
factor tempo emerges. Informally, tempo refers to the pace of processes occurring in a non-stationary
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environment. We define environment tempo as how fast the environment changes and agent tempo
as how frequently it updates the policy. Despite the importance of considering the tempo to find the
optimal {t}1∶K , the existing formulations and methods for non-stationarity RL are insufficient. None
of the existing works has adequately addressed this crucial aspect.

Our framework, ProST, provides a solution to finding the optimal {t}1∶K by computing a minimum
solution to an upper bound on its performance measure. It proactively optimizes the time sequence
by leveraging the agent tempo and the environment tempo. The ProST framework is divided into two
components: future policy optimizer (OPTπ) and time optimizer (OPTt), and is characterized by three
key features: 1) it is proactive in nature as it forecasts the future MDP model; 2) it is model-based as
it optimizes the policy in the created MDP; and 3) it is a synchronizing tempo framework as it finds a
suboptimal training time by adjusting how many times the agent needs to update the policy (agent
tempo) relative to how fast the environment changes (environment tempo). Our framework is general
in the sense that it can be equipped with any common algorithm for policy update. Compared to the
existing works [7–9], our approach achieves higher rewards and a more stable performance over time
(see Figure 1(c) and Section 5).

We analyze the statistical and computational properties of ProST in a tabular MDP, which is named
ProST-T. Our framework learns in a novel MDP, namely elapsed time-varying MDP, and quantifies
its non-stationarity with a novel metric, namely time-elapsing variation budget, where both consider
wall-clock time taken. We analyze the dynamic regret of ProST-T (Theorem 1) into two components:
dynamic regret of OPTπ that learns a future MDP model (Proposition 1) and dynamic regret of OPTt
that computes a near-optimal policy in that model (Theorem 2, Proposition 2). We show that both
regrets satisfy a sublinear rate with respect to the total number of episodes regardless of the agent
tempo. More importantly, we obtain suboptimal training time by minimizing an objective that strikes
a balance between the upper bounds of those two dynamic regrets, which reflect the tempos of
the agent and the environment (Theorem 3). We find an interesting property that the future MDP
model error of OPTπ serves as a common factor on both regrets and show that the upper bound on
the dynamic regret of ProST-T can be improved by a joint optimization problem of learning both
different weights on observed data and a model (Theorem 4, Remark 1).

Finally, we introduce ProST-G, which is an adaptable learning algorithm for high-dimensional tasks
achieved through a practical approximation of ProST. Empirically, ProST-G provides solid evidence
on different reward returns depending on policy training time and the significance of learning the
future MDP model. ProST-G also consistently finds a near-optimal policy, outperforming four
popular RL baselines that are used in non-stationary environments on three different Mujoco tasks.

Notation

The sets of natural, real, and non-negative real numbers are denoted by N,R, and R+, respectively. For
a finite set Z, the notation ∣Z ∣ denotes its cardinality and the notation ∆(Z) denotes the probability
simplex over Z. For X ∈ N, we define [X]∶={1,2, ..,X}. For a variable X , we denote X̂ as a
forecasted (or predicted) variable at the current time, and X̃ as the observed value in the past. Also,
for any time variable t > 0 and k ∈ N, we denote the time sequence {t1, t2, .., tk} as {t}1∶k , and
variable X at time tk as Xtk . We use the shorthand notation X(k)(or X(k)) for Xtk (or Xtk ). We use
the notation {x}a∶b to denote a sequence of variables {xa, xa+1, ..., xb}, and {x}(a∶b) to represent a
sequence of variables {xta , xta+1 , ..., xtb}. Given two variables x and y, let x ∨ y denote max(x, y),
and x ∧ y denote min(x, y). Given two complex numbers z1 and z2, we write z2 = W (z1) if
z2e

z2 = z1, where W is the Lambert function. Given a variable x, the notation a = O(b(x)) means
that a ≤ C ⋅ b(x) for some constant C > 0 that is independent of x, and the notation a = Ω(b(x))
means that a ≥ C ⋅ b(x) for some constant C > 0 that is independent of x. We have described the
specific details in Appendix C.1.

2 Problem statement: Desynchronizing timelines

2.1 Time-elapsing Markov Decision Process

In this paper, we study a non-stationary Markov Decision Process (MDP) for which the transition
probability and the reward change over time. We begin by clarifying that the term episode is agent-
centric, not environment-centric. Prior solutions for episode-varying (or step-varying) MDPs operate
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under the assumption that the timing of MDP changes aligns with the agent commencing a new
episode (or step). We introduce the new concept of time-elapsing MDP. It starts from the wall-clock
time t = 0 to t = T , where T is fixed. The time-elapsing MDP at time t ∈ [0, T ] is defined as
Mt ∶= ⟨S,A,H,Pt,Rt, γ⟩, where S is the state space, A is the action space, H is the number of
steps, Pt ∶ S×A×S →∆(S) is the transition probability , Rt ∶ S×A→ R is the reward function, and
γ is a discounting factor. Prior to executing the first episode, the agent determines the total number
of interactions with the environment (denoted as the number of total episode K) and subsequently
computes the sequence of interaction times {t}1∶K through an optimization problem. We denote tk
as the wall-clock time of the environment when the agent starts the episode k. Similar to the existing
non-stationary RL framework, the agent’s objective is to learn a policy πtk ∶ S →∆(A) for all k. This
is achieved through engaging in a total of K episode interactions, namely {Mt1 ,Mt1 , ...,MtK},
where the agent dedicates the time interval (tk, tk+1) for policy training and then obtains a sequence
of suboptimal policies {πt1 , πt2 , ..., πtK} to maximize a non-stationary policy evaluation metric,
dynamic regret.

Dealing with time-elapsing MDP instead of conventional MDP raises an important question that
should be addressed: within the time duration [0, T ], what time sequence {t}1∶K yields favorable
trajectory samples to obtain an optimal policy? This question is also related to the following: what is
optimal value of K, i.e. the total number of episode that encompasses a satisfactory balance between
the amount of observed trajectories and the accuracy of policy training? These interwined questions
are concerned with an important aspect of RL, which is the computation of the optimal policy for
a given tk. In Section 4, we propose the ProST framework that computes a suboptimal K∗ and its
corresponding suboptimal time sequence {t∗}1∶K∗ based on the information of the environment’s
rate of change. In Section 3, we compute a near-optimal policy for {t∗}1∶K∗ . Before proceeding with
the above results, we introduce a new metric quantifying the environment’s pace of change, referred
to as time-elapsing variation budget.

2.2 Time-elapsing variation budget

Variation budget [10–12] is a metric to quantify the speed with which the environment changes.
Driven by our motivations, we introduce a new metric imbued with real-time considerations, named
time-elapsing variation budget B(∆t). Unlike the existing variation budget, which quantifies
the environment’s non-stationarity across episodes {1,2, ..,K}, our definition accesses it across
{t1, t2, ..., tK}, where the interval ∆t = tk+1 − tk remains constant regardless of k ∈ [K − 1]. For
further analysis, we define two time-elapsing variation budgets, one for transition probability and
another for reward function.
Definition 1 (Time-elapsing variation budgets). For a given sequence {t1, t2, .., tK}, assume that the
interval ∆t is equal to the policy training time ∆π. We define two time-elapsing variation budgets
Bp(∆π) and Br(∆π) as

Bp(∆π) ∶=
K−1
∑
k=1

sup
s,a
∣∣Ptk+1(⋅ ∣s, a) − Ptk(⋅ ∣s, a)∣∣1, Br(∆π) ∶=

K−1
∑
k=1

sup
s,a
∣Rtk+1(s, a) −Rtk(s, a)∣.

To enhance the representation of a real-world system using the time-elapsing variation budgets, we
make the following assumption.
Assumption 1 (Drifting constants). There exist constants c > 1 and αr, αp ≥ 0 such that
Bp(c∆π)≤cαpBp(∆π) and Br(c∆π)≤cαrBr(∆π). We call αp and αr the drifting constants.

2.3 Suboptimal training time

Aside from the formal MDP framework, the agent can be informed of varying time-elapsing variation
budgets based on the training time ∆π ∈ (0, T ) even within the same time-elapsing MDP. Intuitively,
a short time ∆π is inadequate to obtain a near-optimal policy, yet it facilitates frequent interactions
with the environment, leading to a reduction in empirical model error due to a larger volume of data.
On the contrary, a long time ∆π may ensure obtaining a near-optimal policy but also introduces
greater uncertainty in learning the environment. This motivates us to find a suboptimal training time
∆∗π ∈ (0, T ) that strikes a balance between the sub-optimal gap of the policy and the empirical model
error. If it exists, then ∆∗π provides a suboptimal K∗ = ⌊T /∆∗π⌋, and a suboptimal time sequence
where t∗k = t1 +∆∗π ⋅ (k − 1) for all k ∈ [K∗]. Our ProST framework computes the parameter ∆∗π,
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then sets {t∗}1∶K∗ , and finally finds a future near-optimal policy for time t∗k+1 at time t∗k. In the next
section, we first study how to approximate the one-episode-ahead suboptimal policy π∗,tk+1 at time
tk when {t}1∶K is given.

3 Future policy optimizer

Figure 2: ProST framework

For given tk and tk+1, the future policy optimizer (OPTπ), as a module of the ProST framework
(Figure 2), computes a near-optimal policy for the future time tk+1 at time tk via two procedures: (i)
it first forecasts the future MDP model of time tk+1 at time tk utilizing the MDP forecaster function,
(ii) it then utilizes an arbitrary policy optimization algorithm within the forecasted MDP model OPTπ
to obtain a future near-optimal policy π∗.tk+1 .

3.1 MDP forecaster

Our ProST framework is applicable in an environment that meets the following assumption.

Assumption 2 (Observable non-stationary set O). Assume that the non-stationarity ofMtk is fully
characterized by a non-stationary parameter otk ∈ O. Assume also that the agent observes a noisy
non-stationary parameter õtk at the end of episode k ∈ [K] (at time tk).

It is worth noting that Assumption 2 is mild, as prior research in non-stationary RL has proposed
techniques to estimate o(k) through latent factor identification methods [4, 13–16], and our framework
accommodates the incorporation of those works for the estimation of o(k). Based on Assumption 2,
we define the MDP forecaster function g ○ f below.

Definition 2 (MDP forecaster g ○ f ). Consider two function classes F and G such that F ∶ Ow → O
and G ∶ S ×A ×O → R ×∆(S), where w ∈ N. Then, for f(k) ∈ F and g(k) ∈ G, we define MDP
forecaster at time tk as (g ○ f)(k) ∶ Ow × S ×A→ R ×∆(S).

The function f(k), acting as a non-stationarity forecaster, predicts a non-stationary parameter
ô(k+1) at time tk+1 based on the last w observations given by the set {õ}(k−w+1∶k), i.e., ô(k+1) =
f({õ}(k−w+1,k)). The agent can determine the number of used historical observations, denoted as
w, by leveraging information from the environment (Section 4). Then, the function g(k), acting as a
model predictor, predicts a reward R̂(k+1)(s, a) and a transition probability P̂(k+1)(⋅∣s, a) for time
tk+1, i.e., (R̂(k+1), P̂(k+1)) = g(k)(s, a, ôk+1). Finally, the OPTπ generates the estimated future MDP
M̂(k+1) = ⟨S,A,H, P̂(k+1), R̂(k+1), γ⟩ associated with time tk+1.

3.2 Finding future optimal policy

Now, consider an arbitrary RL algorithm provided by the user to obtain an optimal policy from the
model M̂(k+1). For a given time sequence {t}1∶K , the OPTπ finds a near-optimal future policy as
follows: (1) observe and forecast, (2) optimize using the future MDP model.

(1) Observe and forecast. At time tk, the agent executes an episode k in the environmentM(k),
completes its trajectory τ(k), and observes the noisy non-stationary parameter ô(k) (Assumption
2). The algorithm then updates the function f(k) based on the last w observed parameters, and the
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function g(k) with input from all previous trajectories. Following these updates, the MDP forecaster
at time tk predicts P̂(k+1) and R̂(k+1), thus creating the MDP model M̂(k+1) for time tk+1.

(2) Optimize using the future MDP model. Up until time tk+1, the agent continually updates the
policy within the estimated future MDP M̂(k+1) for a given duration ∆π. Specifically, the agent
rollouts synthetic trajectories τ̂(k+1) in M̂(k+1), and utilizes any policy update algorithm to obtain a
policy π̂(k+1). Following the duration ∆π , the agent stops the training by the time tk+1 and moves to
the next episodeM(k+1) with policy π̂(k+1).

We elaborate on the above procedure in Algorithm 1 given in Appendix F.1.

4 Time optimizer

4.1 Theoretical analysis

We now present our main theoretical contribution, which is regarding the time optimizer (OPTt):
computing a suboptimal policy training time ∆∗π (the agent tempo). Our theoretical analysis starts
with specifying the components of the OPTπ optimizer, which we refer to as ProST-T (note that
-T stands for an instance in the tabular setting). We employ the Natural Policy Gradient (NPG)
with entropy regularization [17] as a policy update algorithm in OPTπ. We denote the entropy
regularization coefficient as τ , the learning rate as η, the policy evaluation approximation gap
arising due to finite samples as δ, and the past reference length for forecaster f as w. Without loss
of generality, we assume that each policy iteration takes one second. The theoretical analysis is
conducted within a tabular environment, allowing us to relax Assumption 2, which means that one can
estimate non-stationary parameters by counting visitation of state and action pairs at time tk, denoted
as n(k)(s, a), rather than observing them. Additionally, we incorporate the exploration bonus term at
time tk into R̂(k+1), denoted as Γ(k)w (s, a), which is proportional to ∑k

τ=k−w+1(n(τ)(s, a))−1/2 and
aims to promote the exploration of states and actions that are visited infrequently.

We compute ∆∗π by minimizing an upper bound on the ProST-T’s dynamic regret. The dynamic
regret of ProST-T is characterized by the model prediction error that measures the MDP forecaster’s
error by defining the difference between M̂(k+1) andM(k+1) through a Bellman equation.

Definition 3 (Model prediction error). At time tk, the MDP forecaster predicts a model M̂(k+1)
and then we obtain a near-optimal policy π̂(k+1) based on M̂(k+1). For each pair (s, a), we denote
the state value function and the state action value function of π̂(k+1) in M̂(k+1) at step h ∈ [H] as

V̂
(k+1)
h (s) and Q̂(k+1)h (s, a), respectively. We also denote the model prediction error associated with

time tk+1 calculated at time tk as ι(k+1)h (s, a), which is defined as

ι
(k+1)
h (s, a)∶ = (R(k+1) + γP(k+1)V̂ (k+1)h+1 − Q̂(k+1)h ) (s, a).

We now derive an upper bound on the ProST-T dynamic regret. We expect the upper bound to be
likely controlled by two factors: the error of the MDP forecaster’s prediction of the future MDP model
and the error of the NPG algorithm due to approximating the optimal policy within an estimated
future MDP model. This insight is clearly articulated in the next theorem.

Theorem 1 (ProST-T dynamic regret R). Let ιKH = ∑
K−1
k=1 ∑H−1

h=0 ι
(k+1)
h (s(k+1)h , a

(k+1)
h ) and ῑK∞ ∶=

∑K−1
k=1 ∣∣ῑk+1∞ ∣∣∞, where ιKH is a data-dependent error. For a given p ∈ (0,1), the dynamic regret of the

forecasted policies {π̂(k+1)}1∶K−1 of ProST-T is upper bounded with probability at least 1 − p/2 as
follows:

R ({π̂(k+1)}1∶K−1,K)) ≤RI +RII

where RI = ῑK∞/(1 − γ) − ιKH+Cp ⋅
√
K − 1, RII = CII[∆π] ⋅ (K − 1), and Cp,CII[∆π] are some

functions of p, ∆π , respectively.

Specifically, the upper bound is composed of two terms: RI that originates from the MDP forecaster
error between M(k+1) and M̂(k+1), and RII that arises due to the suboptimality gap between
π∗,(k+1) and π̂(k+1). Theorem 1 clearly demonstrates that a prudent construction of the MDP
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forecaster that controls the model prediction errors and the selection of the agent tempo ∆π is
significant in guaranteeing sublinear rates for RI and RII . To understand the role of the environment
tempo in RI , we observe that the MDP forecaster utilizes w previous observations, which inherently
encapsulates the environment tempo. We expect the model prediction errors, at least in part, to be
controlled by the environment tempo B(∆π), so that a trade-off between two tempos can be framed
as the trade-off between RI and RII . Hence, it is desirable to somehow minimize the upper bound
with respect to ∆π to obtain a solution, denoted as ∆∗π , which strikes a balance between RI and
RII .

4.1.1 Analysis of RII

A direct analysis of the upper bound RI +RII is difficult since its dependence on K is not explicit.
To address this issue, we recall that an optimal ∆∗π should be a natural number that guarantees the
sublinearity of both RI and RII with respect to the total number of episodes K. We first compute
a set NII ⊂ N that includes those values of ∆π that guarantee the sublinearity of RII , and then
compute a set NI ⊂ N that guarantees the sublinearity of RI . Finally, we solve for ∆∗π in the common
set NI ∩NII .
Proposition 1 (∆π bounds for sublinear RII ). A total step H is given by MDP. For a number ϵ > 0
such that H = Ω (log ((r̂max ∨ rmax)/ϵ)), we choose δ, τ, η to satisfy δ = O (ϵ) , τ = Ω (ϵ/ log ∣A∣)
and η ≤ (1 − γ) /τ , where r̂max and rmax are the maximum reward of the forecasted model and the
maximum reward of the environment, respectively. Define NII ∶={n ∣ n > 1

ητ
log (C1(γ+2)

ϵ
) , n ∈ N},

where C1 is a constant. Then RII ≤ 4ϵ(K − 1) for all ∆π ∈ NII .

As a by-product of Proposition 1, the sublinearity of RII can be realized by choosing ϵ = O((K −
1)α−1) for any α ∈ [0,1), which suggests that a tighter upper bound on RII requires a smaller ϵ and
subsequently a larger ∆π ∈ NII . The hyperparameter conditions in Proposition 1 can be found in
Lemma 1 and 2 in Appendix D.3.

4.1.2 Analysis of RI

We now relate RI to the environment tempo B(∆π) using the well-established non-stationary
adaptation technique of Sliding Window regularized Least-Squares Estimator (SW-LSE) as the MDP
forecaster [18–20]. The tractability of the SW-LSE algorithm allows to upper-bound the model
predictions errors ιKH and ῑK∞ by the environment tempo extracted from the pastw observed trajectories,
leading to a sublinear RI as demonstrated in the following theorem.
Theorem 2 (Dynamic regret RI with f = SW-LSE). For a given p ∈ (0,1), if the exploration bonus
constant β and regularization parameter λ satisfy β = Ω(∣S ∣H

√
log (H/p)) and λ ≥ 1, then RI is

bounded with probability at least 1 − p as follows:

RI ≤ CI[B(∆π)] ⋅w +Ck ⋅
√

1

w
log (1 + H

λ
w) +Cp ⋅

√
K − 1

where CI[B(∆π)] = (1/(1 − γ) +H) ⋅ Br(∆π) + (1 +Hr̂max)γ/(1 − γ) ⋅ Bp(∆π), and Ck is a
constant on the order of O(K).

For a brief sketch of how SW-LSE makes the environment tempo appear in the upper bound, we
outline that the model prediction errors are upper-bounded by two forecaster errors, namely P(k+1) -
P̂(k+1) and R(k+1) − R̂(k+1), along with the visitation count n(k)(s, a). Then, the SW-LSE algorithm
provides a solution (P̂(k+1), R̂(k+1)) as a closed form of linear combinations of past w estimated
values {P̃ , R̃}(k−w+1∶w). Finally, employing the Cauchy inequality and triangle inequality, we derive
two forecasting errors that are upper-bounded by the environment tempo. For the final step before
obtaining a suboptimal ∆∗π , we compute NI that guarantees the sublinearity of RI .
Proposition 2 (∆π bounds for sublinear RI ). Denote B(1) as the environment tempo when
∆π = 1, which is a summation over all time steps. Assume that the environment satisfies
Br(1) + Bp(1)r̂max/(1 − γ) = o(K) and we choose w = O((K − 1)2/3/(CI[B(∆π)])2/3).
Define the set NI to be {n ∣ n < K, n ∈ N}. Then RI is upper-bounded as RI =
O (CI[B(∆π)]1/3 (K − 1)2/3

√
log ((K − 1)/CI[B(∆π)])) and also satisfies a sublinear upper

bound, provided that ∆π ∈ NI .
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The upper bound on the environment tempo B(1) in proposition 2 is aligned with our expectation
that dedicating an excessively long time to a single iteration may not allow for an effective policy
approximation, thereby hindering the achievement of a sublinear dynamic regret. Furthermore,
our insight that a larger environment tempo prompts the MDP forecaster to consider a shorter past
reference length, aiming to mitigate forecasting uncertainty, is consistent with the condition involving
w stated in Proposition 2.

4.1.3 Suboptimal tempo ∆∗π

So far, we have shown that an upper bound on the ProST dynamic regret is composed of two terms
RI and RII , which are characterized by the environment tempo and the agent tempo, respectively.
Now, we claim that a suboptimal tempo that minimizes ProST’s dynamic regret could be obtained
by the optimal solution ∆∗π = argmin∆π∈NI∩NII

(Rmax
I +Rmax

II ), where Rmax
I and Rmax

II denote the
upper bounds on RI and RII . We show that ∆∗π strikes a balance between the environment tempo
and the agent tempo since Rmax

I is a non-decreasing function of ∆π and Rmax
II is a non-increasing

function of ∆π . Theorem 3 shows that the optimal tempo ∆∗π depends on the environment’s drifting
constants introduced in Assumption 1.

Theorem 3 (Suboptimal tempo ∆∗π). Let kEnv = (αr ∨ αp)2CI[B(1)], kAgent =
log (1/(1 − ητ))C1(K − 1)(γ + 2). Consider three cases: case1: αr ∨ αp = 0, case2: αr ∨ αp = 1,
case3: 0 < αr ∨ αp < 1 or αr ∨ αp > 1. Then ∆∗π depends on the environment’s drifting constants as
follows:

• Case1: ∆∗π = T .

• Case2: ∆∗π = log1−ηγ (kEnv/kAgent) + 1.

• Case3: ∆∗π = exp (−W [−
log (1−ητ)

max (αr,αp)−1]), provided that the parameters are chosen so that
kAgent = (1 − ητ)kEnv.

4.2 Improving MDP forecaster

Determining a suboptimal tempo by minimizing an upper bound on RI +RII can be improved by
using a tighter upper bound. In Proposition 1, we focused on the Q approximation gap δ to provide a
justifiable upper bound on RI +RII . It is important to note that the factor δ arises not only from the
finite sample trajectories as discussed in [21], but also from the forecasting error betweenM(k+1)
and M̂(k+1). It is clear that the MDP forecaster establishes a lower bound on δ denoted as δmin,
which in turn sets a lower bound on ϵ and consequently on RI . This inspection highlights that the
MDP forecaster serves as a common factor that controls both RI and RII , and a further investigation
to improve the accuracy of the forecaster is necessary for a better bounding on RI +RII .

Our approach to devising a precise MDP forecaster is that, instead of selecting the past reference
length w as indicated in Proposition 2, we set w = k, implying the utilization of all past obser-
vations. However, we address this by solving an additional optimization problem, resulting in
a tighter bound on RI . We propose a method that adaptively assigns different weights q ∈ Rk

+
to the previously observed non-stationary parameters up to time tk, which reduces the burden of
choosing w. Hence, we further analyze RI through the utilization of the Weighted regularized
Least-Squares Estimator (W-LSE) [22]. Unlike SW-LSE, W-LSE does not necessitate a predefined
selection of w, but it instead engages in a joint optimization procedure involving the data weights q
and the future model (P̂(k+1), R̂(k+1)). To this end, we define the forecasting reward model error
as ∆r

k(s, a) = ∣(R(k+1) − R̂(k+1)) (s, a)∣ and the forecasting transition probability model error as
∆p

k(s, a) = ∣∣(P(k+1) − P̂(k+1)) (⋅ ∣ s, a)∣∣1.

Theorem 4 (RI upper bound with f=W-LSE). By setting the exploration bonus Γ(k)(s, a) =
1
2
∆r

k(s, a) +
γr̃max
2(1−γ)∆

p
k(s, a), it holds that

RI ≤ (4H +
2γ ∣S ∣
1 − γ (

1

1 − γ +H))(
1

2

K−1
∑
k=1

∆r
k(s, a) +

γr̃max

2(1 − γ)
K−1
∑
k=1

∆p
k(s, a)) .
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Remark 1 (Tighter RI upper bound with f = W-LSE). If the optimization problem of W-LSE is
feasible, then the optimal data weight q∗ provides tighter bounds for ∆r

k and ∆p
k in comparison to

SW-LSE, consequently leading to a tighter upper bound for RI . We prove in Lemmas 4 and 6 in
Appendix D.3 that ῑK∞ and −ιKH are upper-bounded in terms of ∆r

k and ∆p
k.

4.3 ProST-G

The theoretical analysis outlined above serves as a motivation to empirically investigate two key
points: firstly, the existence of an optimal training time; secondly, the role of the MDP forecaster’s
contribution to the ProST framework’s overall performance. To address these questions, we propose
a practical instance, named ProST-G, which particularly extends the investigation in Section 4.2.
ProST-G optimizes a policy with the soft actor-critic (SAC) algorithm [23], utilizes the integrated
autoregressive integrated moving average (ARIMA) model for the proactive forecaster f , and uses a
bootstrap ensemble of dynamic models where each model is a probabilistic neural network for the
model predictor g. We further discuss specific details of ProST-G in Appendix F.3 and in Algorithm
3.

5 Experiments

We evaluate ProST-G with four baselines in three Mujoco environments each with five different
non-stationary speeds and two non-stationary datasets.

(1) Environments: Non-stationary desired posture. We make the rewards in the three environments
non-stationary by altering the agent’s desired directions. The forward reward Rf

t changes as Rf
t =

ot ⋅ sRf
t , where sRf is the original reward from the Mujoco environment. The non-stationary parameter

ok is generated from the sine function with five different speeds and from the real data A and B.
We then measure the time-elapsing variation budget by ∑K−1

k=1 ∣ok+1 − ok ∣. Further details of the
environment settings can be found in Appendix D.1.1.

(2) Benchmark methods. Four baselines are chosen to empirically support our second question:
the significance of the forecaster. MBPO is the state-of-the-art model-based policy optimization
[24]. Pro-OLS is a policy gradient algorithm that predicts the future performance and optimizes
the predicted performance of the future episode [7]. ONPG is an adaptive algorithm that performs
a purely online optimization by fine-tuning the existing policy using only the trajectory observed
online [8]. FTRL is an adaptive algorithm that performs follow-the-regularized-leader optimization
by maximizing the performance on all previous trajectories [9].

6 Discussions

6.1 Performance compare

The outcomes of the experimental results are presented in Table 1. The table summarizes the average
return over the last 10 episodes during the training procedure. We have illustrated the complete
training results in Appendix E.3. In most cases, ProST-G outperforms MBPO in terms of rewards,
highlighting the adaptability of the ProST framework to dynamic environments. Furthermore, except
for data A and B, ProST-G consistently outperforms the other three baselines. This supports our
motivation of using the proactive model-based method for a higher adaptability in non-stationary
environments compared to state-of-the-art model-free algorithms (Pro-OLS, ONPG, FTRL). We
elaborate on the training details in Appendix E.2.

Table 1: Average reward returns
Speed B(G) Swimmer-v2 Halfcheetah-v2 Hopper-v2

Pro-OLS ONPG FTML MBPO ProST-G Pro-OLS ONPG FTML MBPO ProST-G Pro-OLS ONPG FTML MBPO ProST-G

1 16.14 -0.40 -0.26 -0.08 -0.08 0.57 -83.79 -85.33 -85.17 -24.89 -19.69 98.38 95.39 97.18 92.88 92.77
2 32.15 0.20 -0.12 0.14 -0.01 1.04 -83.79 -85.63 -86.46 -22.19 -20.21 98.78 97.34 99.02 96.55 98.13
3 47.86 -0.13 0.05 -0.15 -0.64 1.52 -83.27 -85.97 -86.26 -21.65 -21.04 97.70 98.18 98.60 95.08 100.42
4 63.14 -0.22 -0.09 -0.11 -0.04 2.01 -82.92 -84.37 -85.11 -21.40 -19.55 98.89 97.43 97.94 97.86 100.68
5 77.88 -0.23 -0.42 -0.27 0.10 2.81 -84.73 -85.42 -87.02 -20.50 -20.52 97.63 99.64 99.40 96.86 102.48
A 8.34 1.46 2.10 2.37 -0.08 0.57 -76.67 -85.38 -83.83 -40.67 83.74 104.72 118.97 115.21 100.29 111.36
B 4.68 1.79 -0.72 -1.20 0.19 0.20 -80.46 -86.96 -85.59 -29.28 76.56 80.83 131.23 110.09 100.29 127.74
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6.2 Ablation study

An ablation study was conducted on the two aforementioned questions. The following results support
our inspection of Section 4.2 and provide strong grounds for Theorem 3.

Figure 3: (a) Optimal ∆∗π; (b) Different forecaster f (ARIMA, SA); (c) The Mean squared Error
(MSE) model loss of ProST-G with four different forecasters (ARIMA and three SA) and the MBPO.
The x-axis in each figure shows the episodes.

Suboptimal ∆∗π. The experiments are performed over five different policy training times ∆π ∈
{1,2,3,4,5}, aligned with SAC’s number of gradient steps G ∈ {38,76,114,152,190}, under a
fixed environment speed. Different from our theoretical analysis, we set ∆t = 1 with G = 38. We
generate ok = sin(2π∆πk/37), which satisfies Assumption 1 (see Appendix E.1). The shaded areas
of Figures 3 (a), (b) and (c) are 95 % confidence area among three different noise bounds of 0.01,0.02
and 0.03 in ok. Figure 3(a) shows ∆t = 4 is close to the optimal G∗ among five different choices.

Functions f, g. We investigate the effect of the forecaster f ’s accuracy on the framework using two
distinct functions: ARIMA and a simple average (SA) model, each tested with three different the
values of w. Figure 3(b) shows the average rewards of the SA model with w ∈ {3,5,7} and ARIMA
model (four solid lines). The shaded area is 95 % the confidence area among 4 different speeds
{1,2,3,4}. Figure 3(c) shows the corresponding model error. Also, we investigate the effect of the
different model predictor g by comparing MBPO (reactive-model) and ProST-G with f =ARIMA
(proactive-model) in Figure 3(c). The high returns from ProST-G with f = ARIMA, compared to
those from MBPO, empirically support that the forecasting component of the ProST framework can
provide a satisfactory adaptability to the baseline algorithm that is equipped with. Also, Figures 3(b)
and 3(c) provide empirical evidence that the accuracy of f is contingent on the sliding window size,
thereby impacting the model accuracy and subsequently influencing the agent’s performance.

7 Conclusion

This work offers the first study on the important issue of time synchronization for non-stationary RL.
To this end, we introduce the concept of the tempo of adaptation in a non-stationary RL, and obtain
a suboptimal training time. We propose a Proactively Synchronizing Tempo (ProST) framework,
together with two specific instances ProST-T and ProST-G. The proposed method adjusts an agent’s
tempo to match the tempo of the environment to handle non-stationarity through both theoretical
analysis and empirical evidence. The ProST framework provides a new avenue to implement
reinforcement learning in the real world by incorporating the concept of adaptation tempo.

As a future work, it is important to generalize the proposed framework to learn a safe guarantee policy
in a non-stationary RL by considering the adaptation tempo of constraint violations [25, 26]. Another
generalization is to introduce an alternative dynamic regret metric, enabling a fair performance
comparison among agents, even when they have varying numbers of total episodes. Another future
work is to find an optimal tempo of the distribution correction in offline non-stationary RL, specifically
how to adjust the relabeling function to offline data in a time-varying environment that is dependent
on the tempo of the environment [27, 28].
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