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ABSTRACT

In the visual generative area, discrete diffusion models are gaining traction for
their efficiency and compatibility. However, pioneered attempts still fall behind
their continuous counterparts, which we attribute to noise (absorbing state) design
and sampling heuristics. In this study, we propose a rehashing noise approach for
discrete diffusion transformer (termed ReDDiT), with the aim to extend absorbing
states and improve expressive capacity of discrete diffusion models. ReDDiT
enriches the potential paths that latent variables traverse during training with
randomized multi-index corruption. The derived rehash sampler, which reverses the
randomized absorbing paths, guarantees high diversity and low discrepancy of the
generation process. These reformulations lead to more consistent and competitive
generation quality, mitigating the need for heavily tuned randomness. Experiments
show that ReDDiT significantly outperforms the baseline model (reducing gFID
from 6.18 to 1.61) and is on par with the continuous counterparts. The code and
models will be publicly available.

1 INTRODUCTION

Diffusion has been a competitive approach for generative workloads (Dhariwal & Nichol, 2021;
Rombach et al., 2022b; Li et al., 2024), offering strong bidirectional perception and well-structured
mechanisms Zhang et al. (2023) for global control over content. Within the continuous domain,
diffusion transformers (DiTs) Peebles & Xie (2023), which progressively refine image latents from
Gaussian noise, have achieved impressive and scalable results. Recently, the community shows a
growing interest in discrete diffusion models (Hu & Ommer, 2024; Swerdlow et al., 2025), which
is based on their practical advantages, e.g., compatibility with language models for the indexable
codebook, and efficiency for predicting multiple tokens at each inference. Early endeavors Chang
et al. (2022; 2023); Gu et al. (2022) pursue efficiency through integrating visual tokenizers and
BERT-style [mask] tokens Devlin et al. (2019). Recent studies Bai et al. (2025); Yang et al. (2025)
improved the generation quality, demonstrating great potential of discrete diffusion.

Despite the progress, the performance of discrete diffusion methods remains lagging behind their con-
tinuous counterparts. Representative approaches, e.g., masked visual token models (MVTMs) Chang
et al. (2022); Yu et al. (2023), are puzzled by the mask design and confidence-based re-mask sam-
pler (Hur et al., 2024), which restricts model’s expressive capacity and makes prediction sensitive
to adaptions given extensive training, Fig. 1(upper). Moreover, when paired with large-vocabulary
codebooks from high-fidelity modern tokenizers, they encounter challenges such as slower sampling
speeds and numerical inaccuracy (Zheng et al., 2024).

To address these limitations, we first propose two hypotheses. First, while discrete methods learn
to recover plausible tokens from a monotonous [mask] canvas, the used noise design may not
be well-suited for discrete visual generation. In continuous diffusion, Gaussian noise is used to
progressively degrade the input to learn a smooth distribution shift (Ho et al., 2020; Lu et al., 2022).
Discrete masking mimics this paradigm by collapsing all masked tokens to a single absorbing state,
which, however, lacks the variability of Gaussian noise, in terms of both vocabulary richness and
latent diversity. Consequently, the discrete process offers a far coarser signal, which limits its ability
to represent diverse data distributions (Santos et al., 2023; Austin et al., 2021). Moreover, while
continuous diffusion models introduce stochasticity at every inference step through noise injection,
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Figure 1: Comparison the baseline discrete model (MVTM) with ReDDiT. MVTMs rely on
score-based remasking strategies with Gumbel-max to sample from logits, which leads to lower
token diversity and suboptimal token selection. In contrast, ReDDiT introduces a systematic, low-
discrepancy rehashing mechanism that leverages softmax-based probabilities, enabling diverse,
high-quality sampling through a learned distribution. (This figure is best viewed in color)

discrete unmasking is inherently binary: tokens are either masked or deterministically decoded,
Fig. 1(upper). This rigid mechanism constrains the flexibility of sample refinement during generation.

Second, the confidence-based re-mask sampler of MVTMs introduces a form of handcrafted random-
ness, which is implemented through Gumbel-max, to approximate sampling diversity. Unfortunately,
this sampler compromises the probabilistic fidelity of generation, and the need to carefully balance
token numbers decoded per step (for mitigating accumulation errors) leads to redundant sampling
passes. As a result, Gumbel-max has evolved to a heavily tuned time variant trick with unstable
performance, particularly when scaled to large-vocabulary codebooks. The above factors, rather than
quantization alone, induce the performance gap between discrete and continuous models.

In this study, we propose a discrete diffusion model with an elaborate rehashing noise design,
Fig. 1(lower). Our approach, termed ReDDiT, addresses the limitations of the uni-mask design by
redefining absorbing states towards larger representational capacity, through enriching the potential
paths that latent variables can traverse during diffusion. Specifically, we expand the masks to multiple
indices along with the codebook and randomize them during data corruption. A rehash sampler is
also derived with principled discrete diffusion theories to reverse the diffusion path for generation,
guaranteeing high diversity and low discrepancy of the sampling process. We demonstrate that
this rehashed noise facilitates learning a superior and regularized expressiveness, while eliminating
reliance to hyper-parameterized randomness during sampling.

We further revisit the commonly used discrete diffusion objective and update it with empirical modifi-
cations. By adopting an improved ELBO Sahoo et al. (2024); Shi et al. (2024) with representation
alignment (RepA) Yu et al. (2025) loss, we optimize the training efficiency and substantially improve
the generation quality of discrete generative models. Moreover, ReDDiT aligns with recent advances
in discrete flow matching Gat et al. (2024); Shaul et al. (2024), enabling token refreshment during
sampling without training post-correction models (Lezama et al., 2022).

2 METHODOLOGY

For self-containment, we first review the DDM theory in Sec. 2.1. We then reformulate its diffusion
dynamics and introduce rehashing noise for ReDDiT in Sec. 2.2. We finally discuss connection and
comparison with other discrete diffusion models in Sec. 2.3.
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2.1 PRELIMINARY: DISCRETE DIFFUSION MODEL

DDM defines a forward process over discrete variables by gradually corrupting the image tokens to
absorbing states (masks) through a continuous-time Markov process. Assume that the data consists
of tokens from a finite vocabulary V . x ∈ VL is a sequence of tokens (e.g., an image tokenized into
indices) with length L. We denote the clean data as xt=0 (x0 for short), and noise it gradually as
t→ 1. DDM defines an absorbing token m ∈ V , such that once a token is noised to m it remains
unchanged. At the terminal time t = 1, xt fully transits to mL, which means xi=1∼L

1 = m.

Let αt be the noise scheduler (a monotonically decreasing survival function that satisfies α0 =
1, α1 = 0 ). For 0 ≤ s < t ≤ 1, the forward corruption process is governed by a continuous-time
transition kernel q(xi

t|xi
s) at the i-th element, as

q(xi
t|xi

s) =


1− αt|s, if xi

t = m, xi
s ̸= m

αt|s, if xi
t = xi

s, x
i
s ̸= m

1, if xi
t = xi

s, x
i
s = m

0, otherwise

, αt|s =
αt

αs
. (1)

Denoting q as the transition kernel and Cat(·;π) the categorical distribution determined by probability
π, the corrupted data distribution at time t is written as

xt ∼ q(xt|x0), q(xt|x0) = Cat(xt;αtx0 + (1− αt)m
L). (2)

The generative model learns the reverse process pθ(xs|xt), which denoises sample xt at arbitrary
time t ∈ (0, 1] to a less noised state xs at time s < t. Denoting δ(xi

t,m) as the indicator function that
only computes on masked tokens, and α′t =

dαt

dt , the learning objective is derived Shi et al. (2024) as

LDDM = −Ex0, xt

∫ t=1

t=0

[
α′t

1− αt

L∑
i=1

δ(xi
t,m) log pθ(x

i
0|xt)]dt . (3)

For a linear scheduler, Eq. 3 is simplified via variable substitution Sahoo et al. (2024) to an equivalent
form, as

LDDM-linear = −Et, x0, xt
[
1

t

L∑
i=1

δ(xi
t,m) log pθ(x

i
0|xt)] . (4)

For conditional generation, class information c (e.g., labels or text prompts) is introduced to the
denoising model as additional input. Following classifier-free guidance Ho & Salimans (2022), the
model is trained with a random drop of labels, and the prediction is interpolated at inference, as

p̂θ(xt, c) = pθ(xt,∅) + w · ( pθ(xt, c)− pθ(xt,∅)), (5)

where ∅ is the dropped label and w ≥ 0 controls the guidance strength.

2.2 DISCRETE DIFFUSION WITH REHASHING NOISE

The ordinal structure inherent in discrete data provides a valuable inductive bias for designing
transition kernels in diffusion dynamics. Prior studies Austin et al. (2021); Campbell et al. (2022)
show that assigning higher transition probabilities to neighboring pixel values—forming a discrete
Gaussian-like noise—outperforms the single absorbing state approach on pixel-level datasets like
CIFAR-10. However, when using visual tokenizers, the structure of discretized latents is learned
rather than pre-defined, making such ordinal assumptions inapplicable. This insight motivates us
to extend conventional mask tokens to a set of indices, and reverse the diffusion path with noise
rehashing. This design allows the model to optimize its embedding space during training, enhancing
its ability to model flexible and data-driven noise structures. We visualize the learned distributions in
Fig. 2 (right).

Reformulation. Given d categories, let ei ∈ Rd be its one-hot vector where the i-th value is 1. We
denote E = {ei ∈ Rd | i = 1, . . . , d} as the basis of a categorical distribution (known as d-simplex),
and a basis for absorbing states with capacity m:M = {mj ∈ Rm | j = 1, . . . ,m}. With subscript
i, j = 0 for pure visual or mask space, the sum of E andM can be denoted as

V(d,m) ≜

{
v(i,j) ∈ Rd+m

∣∣∣∣v(i,j) =

{
ei ⊕ 0m, for i = 1, . . . , d, j = 0

0d ⊕mj , for j = 1, . . . ,m, i = 0

}
. (6)
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m=1 m=16 m=128 m=1024

: Visual Vocabulary          : Discrete Rehashing NoiseLearned Latent Space (Ours):Space with Ordinal Structure:

Discrete gaussian 
noise distributionPixel (RGB) space

Figure 2: Visualization of pixel and latent spaces. m denotes the number of enriched noise indices.
Note that the 3D t-SNE plot (right) is used solely for clustering with no isotropic features.

We further denote the subspace Ed, Mm ∈ V(d,m) which contain either valid or mask tokens, as

Ed =
{
v(i,0) ∈ V(d,m)

∣∣ i = 1, . . . , d
}
, Mm =

{
v(0,j) ∈ V(d,m)

∣∣ j = 1, . . . ,m
}
. (7)

To exploit visits across all the possible paths, we rewrite the transition kernel defined by Eq. 1 as

q(xi
t|xi

s) =


1− αt|s, if xi

t ∈Mm, xi
s /∈Mm

αt|s, if xi
t = xi

s, x
i
s /∈Mm

1/m, if xi
t ∈Mm, xi

s ∈Mm

0, otherwise.

(8)

With above definitions, we reformulate the diffusion process of x as a transition from Ed to
Mm. We train the model by feeding it with corrupted data, of which the distribution is inferred as
xt ∼ Cat(xt;αtx0 + (1− αt)U(ML

m)), where U(ML
m) is the uniform distribution uponML

m.

Rehash Sampling. To generate a sequence of length L, the reverse process starts with x1 ∼
U(ML

m). The subsequent latents xt are generated by discretizing the reverse timeline T to K steps.
We denote this schedule as T 1:K+1 such that T 1 = 1 and TK+1 = ε, with ε being an arbitrarily
small positive constant. Let δi indicate the i-th token’s value, the reverse process is deduced as

qis|t = q(xi
s|xt) =


1, if xi

s = xi
t, x

i
t /∈Mm

1−αs

m(1−αt)
, if xi

s ∈Mm, xi
t ∈Mm

αs−αt

1−αt
δipθ(xt), if xi

s /∈Mm, xi
t ∈Mm

0, otherwise.

(9)

Comparing with MVTM sampler in Alg. 1, our rehash sampler is shown in Alg. 2. Our algorithm
shares the similar idea as MDLM Sahoo et al. (2024), but applies torch.multinomial (Multnm.
in step 10) for low-discrepancy1 categorical sampling.

Algorithm 1 MVTM Sampling

1: Inputs: label c, scheduler αt, length L,
2: Settings: number of steps K, G(t), G
3: Initialize: x1 ←ML

1 , t← 1.
4: for k = 1 to K do
5: t← K−k+1

K , s← K−k
K

6: logits← fθ(xt, c)
7: pscore ← logits +G(t) · G
8: xpred ← argmax(pscore) ▷ Predict-all
9: xs ← where(xt = [m], xpred, xt)

10: pconf ← pscore +G(t) · G
11: mre ← argsort(pconf)[1 : L · (1− αs)]
12: xs ← where(mre, [m], xs) ▷ Re-mask
13: end for
14: Return: fully unmasked sequence x0

Algorithm 2 Rehash Sampling (Ours)

1: Inputs: label c, scheduler αt, length L.
2: Settings: number of steps K.
3: Initialize: x1 ∼ U(ML

m), t← 1, T 1:K .
4: for k = 1 to K do
5: t← T k, s← T k+1

# the rehash operation:
6: xt ← where(xt ∈Mm,U(ML

m), xt)
7: logits← fθ(xt, c)
8: p← Softmax(logits)
9: qs|t ← αs−αt

1−αt
· p+ δm[0] · 1−αs

1−αt

10: xpred ← Multnm.(qs|t) ▷ w/ masks
11: xs ← where(xt ∈Mm, xpred, xt)
12: end for
13: Return: fully unmasked sequence x0

1MDLM uses gumbel-max for sampling, which may incur inaccuracy (Zheng et al., 2024). Besides, we
deliberately merge the probabilities at step 9 to keep an overall noise sampling probability, as small values might
be truncated, which also worsens sampling accuracy.
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The random nature of absorbing states inspires a rehash operation: we shuffle these tokens at the
beginning of each step by xt ← where(xt ∈ Mm,U(ML

m), xt). Proof to Eq.9 is included in
Appendix. B.

2.3 DISCUSSION

Gumbel-max w/ temperature control [ vocab=8192 ] Multinomial sampling [ vocab=8192 ]

Gumbel-max sampling [ vocab=1024 ] Gumbel-max sampling [ vocab=8192 ]

gFID

Evaluation results at vocab=16384

X-axis:   Vocabulary index.             Y-axis:             probability distribution sample statistics (with 256 samples)

oursMVTM

Fails to reflect true 
distribution under 
large vocabulary

Trades 
accuracy for 

diversity

Captures 
better 

distribution

ReDDiT (1.87)

MVTM (3.65)

𝑮𝑮 𝒕𝒕 = 𝟒𝟒.𝟓𝟓𝟓𝟓 + 𝟎𝟎.𝟐𝟐

a

b

c Free of schedule

MVTM MVTM

Figure 3: Sampler comparison. Left: Gumbel-max is theoretically equivalent to our method, yet
it struggles to reflect the true distribution under limited sample passes. The multinomial approach
captures the distribution more accurately. Right: our model achieves lower gFID across different
sampling steps without tuning Gumbel-max, indicating more efficient and faithful sampling. a, b, c
refer to three uniformly sampled G(t) set for MVTM sampling. See supplementary for experimental
codes. (This figure is best viewed in color)

Comparison with MVTM. Masked visual token models (MVTMs) borrow the objective

LMVTM = −Et, x0, xt

L∑
i=1

δ(xi
t,m) log pθ(x

i
0 | xt), (10)

from masked language models Devlin et al. (2019) and predict on masked tokens with a maximum
likelihood. Besides the reformulated corruption (Eq. 8) and reverse process (Eq. 9), ReDDiT differs
in the following aspects: (i) the training objective (Eq. 4), which is derived from DDM, providing
better theoretical and empirical results. (ii) it can easily sample with a arbitrarily discretized timeline,
while MVTM couples training and inference, restricting its sampling flexibility; (iii) the rehash
sampler (Alg. 2) includes absorbing states in categorical sampling with lower discrepancy, different
from MVTM’s predict-remask sampler with time variant intensity G(t) over Gumbel noise G (Alg. 1)
2. Gumbel-max suffers from numerical inaccuracy (Zheng et al., 2024) and we noitice that it becomes
worse on large vocabulary (Fig. 1, 3 with our reproduced results), which limits MVTM’s potential.

Relationship to DFM. Discrete flow matching (DFM) Gat et al. (2024) introduces a transition
process based on masked tokens. Its training objective was initially designed as the masked token
loss ( 10), and evolved to a time-weighted cross-entropy loss (Shaul et al., 2024) for generalized
diffusion paths, which is similar to ours. The similarity enables a direct comparison between the DFM
sampler and our rehash sampler using the same trained model weights. We notice that it generally
requires more steps to reach optimal results, as the DFM sampler offers a refinement mechanism via
token-wise updates. Since the gradual decoding method is shared, we can integrate certain DFM steps
into our sampling procedure for refinement. This leads to ∼ 0.1 gFID improvement on ImageNet-1K.
Refer to Appendix D for details.

2The logits corresponding to previously restored tokens’ indices are manually set to infinity for both methods,
so that they will not be noised again in the following steps. This leads to an implementation of any-order
auto-regressive model (Ou et al., 2024) if DDM’s decoded tokens per step is limited to 1.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3 EXPERIMENT

3.1 IMPLEMENTATION

Datasets. The experiments are conducted on ImageNet-1K Deng et al. (2009), which consists of
1000 categories, 1281167 images and are cropped to resolution 256×256 for training. The generation
quality is evaluated using Fréchet Inception Distance (FID) Heusel et al. (2017) and the Inception
Score (IS) Salimans et al. (2017). FID measures the distance between the distributions of generated
and real images in the feature space of a pre-trained Inception network, while IS evaluates both the
confidence and diversity of generated images by analyzing predicted label distribution. We compute
generation FID (gFID↓)3 and IS↑ on 50k generated samples.

Pre-processing. Following the setting in LlamaGen Sun et al. (2024), we apply the ten-crop
augmentation on images, and use pre-trained tokenizers to convert them to discrete tokens. We
pick IBQ-f16 Shi et al. (2025) tokenizer as default for its scalable and promising performance in
generation tasks, which uses a 16 × 16 downsampling ratio and converts a 256 × 256 image into
256 discrete tokens. The tokenizer has a codebook with 16384 entries. The LlamaGen-f16 (used in
Tab. 2) and LlamaGen-f8 tokenizer Sun et al. (2024) (used in Tab. 1) are also used for comparison
with recent discrete generation methods. All tokenizers are used out-of-the-box without modification.

Representation Alignment. Recent study Yu et al. (2025) has shown that the alignment of in-
termediate representations between diffusion transformers and vision encoders accelerates training
convergence of diffusion models. Accordingly, the alignment is designed as a regularization term
with λ = 0.5. We extract diffusion transformer’s 8-th layer intermediate feature h[n](xt) and align it
with the original image’s dinov2-b Oquab et al. (2023) encoded features fenc(x

ori
0 ). The intermediate

features are projected by a small trainable MLP hφ. The sim(·, ·) computes the mean of element-wise
cosine similarity between embeddings, as

Ltotal = LDDM-linear + λLRepA, LRepA = −Ex, t[ sim(fenc(x
ori
0 ), hφ(h[n](xt))) ] . (11)

This alignment was proposed for continuous diffusion models, and we firstly validate that it’s also
suitable for training discrete models. However, from our observation, as a training acceleration
technique, RepA does not provide relative performance gain if training sufficiently for discrete
latents. We only use RepA to improve training efficiency and probe the inner dynamics through
training as in Fig. 4. See Appendix F for a detailed discussion.

Training and Evaluation. The proposed model is based on DiT Peebles & Xie (2023) architecture,
with reference to its discrete prediction version Sahoo et al. (2024). 2D-RoPE Su et al. (2024) and
min-SNR Zhang & Sennrich (2019) are applied for training efficiency. The model is optimized
using the AdamW optimizer with a cosine decay. Class-conditional training is enabled using class
embeddings and a drop-rate of 0.1 for generation with CFG. Details are provided in Appendix E.

3.2 PERFORMANCE AND COMPARISON

We compare the proposed ReDDiT model with other generative models on the ImageNet-1K 256×256
in Tab. 1. The IBQ tokenizer is used for the default L and XL models. We also utilize LlamaGen-f8
with 128 noise capacity to evaluate its high-resolution potentials (noted as ReDDiT-XLf8). We use a
linear increasing guidance following the common practice of Gao et al. (2023).

Generation Quality. As shown in Tab. 1, ReDDiT achieves the best performance among the
compared discrete models. It outperforms the baseline (MaskGIT Chang et al. (2022)) with signif-
icant margins (gFID: 2.13 vs 6.18 and IS: 294.7 vs. 182.1). It also outperforms the recent DDM
method Hu & Ommer (2024) and TiTok-S-128 Yu et al. (2024), which is extensively fine-tuned on
quantized latents. Compared with continuous diffusion models, ReDDiT exhibits on-par efficiency
and performance, showing great potential for discrete generation.

3The gFID is used as the quality metric for generative models’ performance, while rFID refers to the
reconstruction quality of a visual tokenizer.
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Table 1: Performance comparison on class-conditional ImageNet 256×256. Look-up free quan-
tizers are beyond the scope of this paper. ft.(in gray) indicates that the decoder is fine-tuned for
quantized latents. Wall-clock inference time relative to ReDDiT-XL is reported.

Type Model Tokenizer Generator

#tokens codebook gFID↓ IS↑ #Params #Steps Time

Diff.

LDM-4 Rombach et al. (2022a) 4096×3 - 3.60 247.7 400M 250 –
DiT-XL/2 Peebles & Xie (2023) 1024×4 - 2.27 278.2 675M 250 18
MDTv2 Gao et al. (2023) 1024×14 - 1.58 314.7 676M 256 18
SiT-XL Ma et al. (2024) 1024×4 - 2.42 238.5 675M 30 2
SiT-XL w/ Solver Wang et al. (2025) 1024×4 - 2.24 244.1 730M 15 1.2

AR

Taming-VQGAN Esser et al. (2021) 256 1024 15.78 74.3 1.4B 256 8
RQ-Transformer Huang et al. (2023) 256 16384 7.55 134.0 3.8B 64 8.5
ViT-VQGAN Yu et al. (2022) 1024 8192 4.17 175.1 1.7B 1024 >10
LlamaGen-3B Sun et al. (2024) 576 16384 2.18 263.3 3.1B 576 20
RandAR-XXL Pang et al. (2024) 512 16384 2.15 322.0 1.4B 88 4
VAR-d30 Tian et al. (2024) 680 4096 1.97 334.7 2.0B 10 0.5

MVTM MaskGIT Chang et al. (2022) 256 1024 6.18 182.1 227M 8 0.2
MaskGIL-XXL Xin et al. (2025) 256 16384 3.71 303.4 1.4B 8 0.8
TiTok-S-128ft. Yu et al. (2024) 128 4096 1.97 281.8 287M 64 1.6

DDM

ITM Hu & Ommer (2024) 1024 16384 5.30 183.0 546M 100 3
ReDDiT-L (ours) 256 16384 2.13 294.7 346M 20 0.5
ReDDiT-XL (ours) 256 16384 1.74 313.6 675M 32 1
ReDDiT-XLf8 (ours) 1024 16384 1.61 318.5 675M 64 2

Table 2: Comparison of models with the same tokenizer. Reconstruction FID (rFID) indicates the
tokenizer’s reconstruction quality from its quantized codes. Dim denotes codebook dimension.

Model VQ Tokenizer Info. Generator

Identity rFID dim #Params gFID↓
LlamaGen-LAR Sun et al. (2024)

LlamaGen-f16 Sun et al. (2024) 2.19 8
343M 3.80

RandAR-LAR Pang et al. (2024) 343M 2.55
OursDDM(ReDDiT−L) 346M 2.41

IBQ-BAR Shi et al. (2025) IBQ-tokenizer Shi et al. (2025) 1.37 256 343M 2.88
OursDDM(ReDDiT−L) 346M 2.13

Efficiency. ReDDiT is born with the high-efficiency advantage of discrete diffusion models, com-
paring with AR models. As shown in Tab. 1, the inference time of ReDDiT is slightly longer
than MaskGIT, while the performance is overwhelming. Without acceleration techniques, ReDDiT
achieves a competitive performance which AR and traditional diffusion models use more than 250
steps to achieve. Notably, when armed with recent efforts that tailored KV-Cache Liu et al. (2025) for
discrete diffusion models, ReDDiT’s inference can be further boosted (not included in the main paper
for fair comparison). See Appendix G for details.

Besides the major comparison, we also conduct an experiment that utilizes the identical tokenizer
in previous AR models and validate our method’s effectiveness. As can be seen in Tab. 2, ReDDiT
outperforms AR methods in generation tasks across different tokenizers.

3.3 DETERMINING NOISE CAPACITY

The reformulated discrete diffusion dynamics defines transitioning from Ed to Mm. Under this
setting, it is necessary to empirically determine the optimal value of m for a fixed tokenizer with
vocabulary size d, as the latent representations learned by VAEs are variant. We keep the training
setup fixed and conduct experiments w.r.t. the noise capacity m. We also visualize LRepA, which
captures the degree of representation alignment Yu et al. (2025) within the transformer.

The alignment loss visualization shows that increasing the number of absorbing states introduces
greater randomness, initially making predictions more difficult due to confusion with valid tokens.
However, this gap narrows as training progresses, and the model converges to a similar alignment
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a) Performance with different noise capacities. b) A zoom-in of representation alignment loss (0-4k steps.)

m=1024
m=128
m=16
m=1

m=1024
m=128
m=16
m=1
MVTM baseline

0 500 1000 1500 2000 2500 3000 3500 4000

Step

Figure 4: Comparison of noise capacities. We re-implemented training with the same training
recipe. The generation quality and representation alignment trends are visualized.

lower bound, suggesting effective representation learning across different configurations. As shown
in Fig. 4 (left), generation quality improves with increasing noise capacity initially. The LlamaGen-
f16 tokenizer achieves peak performance at m = 128, while the IBQ tokenizer performs best at
m = 1024. We attribute this to the codebook design: the lower dimensional LlamaGen-f16 codebook
produces more compact latents, which also determines its smaller noise endurance.

3.4 ABLATION STUDY

Unless specified, all the models are trained on ImageNet 256 × 256 under the default settings for
100k iterations. We use a constant guidance scale of 2.0 and 20 steps for generation, and report gFID
↓ computed on 50K samples. Precision (Prec.↑) and Recall (Rec.↑) are also reported.

𝑥𝑥1 𝑥𝑥0
Denoise process

𝑇𝑇𝑘𝑘 = (
𝐾𝐾 − 𝑘𝑘 + 1

𝐾𝐾
)2

𝑇𝑇𝑘𝑘 = 𝐾𝐾−𝑘𝑘+1
𝐾𝐾

𝑇𝑇𝑘𝑘 = cos(
𝜋𝜋(𝑘𝑘 − 1)

2𝐾𝐾
)

Square:

Linear:

Cosine:
𝑇𝑇𝑘𝑘 =

2
𝜋𝜋

arccos(
𝑘𝑘 − 1
𝐾𝐾

)Arccos:

Figure 5: Illustration of discretized timeline
with K = 7. The slow-to-fast sampling works
better than linear schedules.

Sampling Timeline. Recovering complete informa-
tion from noise remains critical to diffusion-based mod-
els (Lu et al., 2022; Wu et al., 2024). Recent work
shows MVTM’s non-linear scheduler for training is
less critical when using high-capacity tokenizers. Ev-
idence of time-invariance in DDMs (Sahoo et al., 2024;
Shi et al., 2024) further supports decoupling training
from sampling. In our experiments, a linear scheduler
with constant signal-to-noise ratio decay, yields optimal
training dynamics. Among the timeline discretization
tested, Fig. 5, the cosine schedule is employed for our
ReDDiT model for best performance in Tab. 3.

Table 3: Ablated Design Choices. ReDDiT-L is trained for 100k iters. Final setting denoted in gray.

(a) General model design

Train Config Sample Config gFID Prec. Rec.

MVTM + RepA loss MVTM sampler 6.83 0.75 0.39
Switch to objective (11) MVTM sampler 6.23 0.77 0.41

same as above Rehash sampler 5.75 0.78 0.45
+ 2D-RoPE + min-SNR Rehash sampler 5.51 0.79 0.45
same as above + DFM refine 5.40 0.81 0.52

(b) Sampling timeline

Steps Timeline gFID

20 linear 7.18
32 linear 6.43
20 arccos 5.04
20 square 7.39
20 cosine 4.91

General Design. We ablate the general choices of ReDDiT, which starts with a re-trained MVTM
baseline methods (with LlamaGen-f16 and RepA for faster convergence as default) in Tab. 3. The
applied techniques like 2D-RoPE are also ablated with re-training. As shown, through the revised
objective and our proposed sampler, ReDDiT alone improves FID by ∼ 1.0 compared to the baseline
model. When combined with modern modification on transformers, it can further improve the
performance, showing its complementaryness with main-stream efforts.
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Impact of Rehash Operation. To validate the rehash
operation for encouraging path diversity by resampling
noise tokens, we compare noise capacities m = 1 and
m = 128. As shown in Table 4, increasing capacity with a
fixed absorbing state actually degrades performance com-
pared to the baseline. While enabling random initialization
improves gFID, the full rehash mechanism is essential to
unlock the model’s capacity, confirming that active resam-
pling is required to prevent overly deterministic sampling.

Table 4: Ablation on Rehashing.

Setting gFID

m = 1 (Baseline) 4.13
m = 128 (Fixed State) 4.25
m = 128 (No Rehash) 4.07
m = 128 (Full Rehash) 3.92

3.5 QUALITATIVE RESULT

Class-conditional Generation. Figure 6 presents representative class-conditional samples gener-
ated by the proposed ReDDiT model. The outputs across diverse image classes consistently exhibit
high fidelity and diversity. Please refer to Appendix H for more samples.

Image Editing. We further demonstrate ReDDiT’s editing capability in Figure 6, highlighting its
bi-directional perceptual competence. Following MaskGIT Chang et al. (2022), we replace a region
of the input image with noise tokens and employ the same generation pipeline to inpaint the missing
content, conditioned on a class label c.

4 RELATED WORK

Diffusion Models. Diffusion models Ho et al. (2020); Song et al. (2020) have emerged as a powerful
class of generative methods that learn data distributions by reversing a gradual noising process over
time. These models are primarily designed for continuous domains such as images Dhariwal & Nichol
(2021); Gao et al. (2023); Peebles & Xie (2023), defining a forward process that transforms data x0

into noise x1: xt ∼ N (
√
αtx0; (1 − αt)I) where αt controls the noise schedule. The generative

(reverse) process learns a denoising model pθ(xs | xt), often parameterized via a neural network θ to
predict either noise or clean data.

Discrete Diffusion Models. Discrete diffusion has been previously governed by masked visual
token models (MVTMs) Chang et al. (2022; 2023); Gu et al. (2022); Yu et al. (2023; 2024); Hur et al.
(2024). This model leverages a BERT-style [mask] token to corrupt the tokenized image sequence
and trained the network with a simple cross-entropy loss on masked tokens, resulting in a score-based
prediction. It generates tokens in a non-autoregressive fashion, by remasking the tokens with least
scores at each inference as depicted in Alg. 1.

Recent studies unlocked the principled discrete diffusion model (DDM) Sahoo et al. (2024); Shi et al.
(2024) and discrete flow-matching (DFM) Gat et al. (2024); Shaul et al. (2024), which adapt the
Markov chain theory, enabling generation over text Ou et al. (2024); Nie et al. (2025), moleculesShaul
et al. (2024), and other discrete representations Austin et al. (2021); Nisonoff et al. (2024). Unlike
MVTMs, the principled DDM and DFM mostly derive a time-weighted cross-entropy loss to supervise
the training procedure and apply a gradual unmasking method based on probabilities.

5 CONCLUSION

We proposed ReDDiT, a discrete visual generative model built upon a discrete diffusion architecture
with novel noise designs and efficient sampling strategies. Our key contribution lies in the integra-
tion of rehashing noise with samplers, which together ensure both diversity and low discrepancy
throughout the generative process. By introducing rehashing noise, ReDDiT enriches the potential
paths that latent variables can traverse during training, regularize training dynamics and enhances
model’s representational capacity. Extensive experiments demonstrate that discrete generative models
can achieve performance on par with their continuous counterparts while offering top-tier efficiency.
This study paves a promising way for discrete generative modeling and offers fresh insights toward
unifying visual and language generation—a path we leave for future exploration.
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Image in-painting

Bulldog
(label 245)

Tabby cat
(label 281)

Figure 6: Class-conditional generation and in-painting samples of ReDDiT on ImageNet 256× 256.

Reproducibility statement We provide key algorithms in the main text. Further details are available
in the code implementation in the supplementary materials. The dataset used is publicly available,
while the experiment process is carried out following the common practice of generative models.
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B DISCRETE DIFFUSION WITH REHASHING NOISE

Complete Definition and Deduction. We provide a full theoretical discussion on the corrupted
distribution and reverse process defined in the main paper.

Given d categories, let ei ∈ Rd be its one-hot vector where the i-th value is 1. We denote E = {ei ∈
Rd | i = 1, . . . , d} as the basis of a categorical distribution, and a basis for absorbing states with
capacity m:M = {mj ∈ Rm | j = 1, . . . ,m}. The sum of E andM can be denoted as

V(d,m) ≜

{
v(i,j) ∈ Rd+m

∣∣∣∣v(i,j) =

{
ei ⊕ 0m, for i = 1, . . . , d, j = 0

0d ⊕mj , for j = 1, . . . ,m, i = 0

}
. (12)

We further denote the subspace Ed, Mm ∈ V(d,m) which contain either valid or mask tokens, as

Ed =
{
v(i,0) ∈ V(d,m)

∣∣ i = 1, . . . , d
}
, Mm =

{
v(0,j) ∈ V(d,m)

∣∣ j = 1, . . . ,m
}
. (13)

To exploit visits across all the possible paths, for 0 ≤ s < t ≤ 1, we write the transition kernel as4

q(xi
t | xi

s) =


1− α←t|s, if xi

t ∈Mm, xi
s /∈Mm,

α←t|s, if xi
t = xi

s, x
i
s /∈Mm,

1/m, if xi
t ∈Mm, xi

s ∈Mm,

0, otherwise.

(14)

Proof of the Corrupted Distribution. The presentation in the main paper simplifies the theory
without specifying the transition matrix Qt due to page limitation. We make a detailed version with
important yet basic matrix calculation in this section.

Let I(d,m), M(d,m) and π(d,m) be matrices in R(d+m)×(d+m), defined as

I(d,m) =

[
Id 0
0 0

]
, M(d,m) =

[
0 1

m1d×m
0 0

]
, π(d,m) =

[
0 0
0 1

m1m1⊤m

]
(15)

where Id is the d× d identity matrix, and 1m ∈ Rm is a vector of ones.

The transition matrix Qt|s ∈ R(d+m)×(d+m) is defined as:
Qt|s = α←t|sI(d,m) + (1− α←t|s)M(d,m) + π(d,m) (16)

which can be demonstrated intuitively:

Qt|s =



α←t|s 0 · · · 0
1−α←t|s

m

1−α←t|s
m · · · 1−α←t|s

m

0 α←t|s · · · 0
1−α←t|s

m

1−α←t|s
m · · · 1−α←t|s

m
...

...
. . .

...
...

...
. . .

...
0 0 · · · α←t|s

1−α←t|s
m

1−α←t|s
m · · · 1−α←t|s

m

0 0 · · · 0 1
m

1
m · · · 1

m
0 0 · · · 0 1

m
1
m · · · 1

m
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 1

m
1
m · · · 1

m


︸ ︷︷ ︸

×d
︸ ︷︷ ︸

×m

The corrupted data distribution is a direct derivative of Eq. 16 by setting s = 0:
xt = x0Qt|0

= αtx0I(d,m) + (1− αt)x0M(d,m) + x0π(d,m)

= αtx0 + (1− αt)x0M(d,m)

∼ αtx0 + (1− αt)U(ML
m) (17)

where U(ML
m) is the uniform distribution onML

m.
4To maintain simplicity, we use α←t|s = αt

αs
and α→t|s = 1−αs

1−αt
to denote transition rate for the corruption and

reverse process, respectively.
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Proof of the Reverse Process. To generate a sequence of length L, the reverse process starts with
x1 ∼ U(ML

m). Let a⊙ b denote the Hadamard product between two vectors a and b, the reverse
process is inferred as:

q(xs | xt) =
Qt|sxt ⊙Q⊤s|0x0

x⊤t Q
⊤
t|0x0

(D3PM deduction)

=
[α←t|sI(d,m)xt + (1− α←t|s)M(d,m)xt + π(d,m)xt]⊙ [αsx0 + (1− αs)M

⊤
(d,m)x0]

x⊤t [αtx0 + (1− αt)M⊤(d,m)x0 + π⊤(d,m)x0]

=
[α←t|sI(d,m)xt + (1− α←t|s)M(d,m)xt + π(d,m)xt]⊙ [αsx0 + (1− αs)M

⊤
(d,m)x0]

αtx⊤t x0 + (1− αt)x⊤t M
⊤
(d,m)x0

(18)

We consider the separate cases: xi
t = xi

0 and xi
t ∈Mm.

Case 1. For xi
t = xi

0, Eq. 18 is simplified as

q(xi
s | xi

t = xi
0) =

α←t|sx
i
0 ⊙ αsx

i
0

αtxi ⊤
0 xi

0

= 1 (19)

Case 2. For xi
t ∈Mm, we have

q(xi
s | xi

t ∈Mm) =
[(1− α←t|s)M(d,m)x

i
t + π(d,m)x

i
t]⊙ [αsx0 + (1− αs)M

⊤
(d,m)x0]

(1− αt)xi ⊤
t M⊤(d,m)x0

=
[(1− α←t|s)αsM(d,m)x

i
t ⊙ x0 + π(d,m)(1− αs)x

i
t ⊙M⊤(d,m)x0]

(1− αt)xi ⊤
t M⊤(d,m)x0

=
(αs − αt)M(d,m)x

i
t ⊙ x0 + (1− αs)π(d,m)x

i
t ⊙M⊤(d,m)x0

(1− αt)xi ⊤
t M⊤(d,m)x0

(20)

Notice that α→t|s =
1−αs

1−αt
, and we have

q(xi
s ∈Mm | xi

t ∈Mm) =
1− αs

m(1− αt)
=

α→t|s

m
(21)

q(xi
s /∈Mm | xi

t ∈Mm) =
αs − αt

1− αt
= 1− α→t|s (22)

Combining case 1 with case 2, we have

q(xi
s | xi

t) =


1, if xi

s = xi
t, x

i
t /∈Mm,

α→t|s/m, if xi
s ∈Mm, xi

t ∈Mm,

1− α→t|s, if xi
s /∈Mm, xi

t ∈Mm,

0, otherwise.

(23)

Following MDLM’s deduction, assume that the denoising network can reconstruct x0 perfectly, we
use pθ(xt) to approximate this reverse process for complex sequences, and get

q(xi
s|xt) =


1, if xi

s = xi
t, x

i
t /∈Mm,

α→t|s/m, if xi
s ∈Mm, xi

t ∈Mm,

(1− α→t|s)p
i
θ(xt), if xi

s /∈Mm, xi
t ∈Mm,

0, otherwise.

(24)
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C COMPLEXITY AND LIMITATIONS

Our rehash sampler follows DDM-theoretic principles and is implemented using torch.multinomial,
which internally relies on Gumbel-max (Zheng et al., 2024). As a result, its asymptotic computational
complexity is comparable to that of the original MaskGIT sampler. Practical efficiency gains,
however, stem from two key factors. First, discrete visual tokens exhibit high correlation and
redundancy, allowing multiple tokens to be predicted simultaneously and reducing the number of
required operations compared with fully autoregressive or diffusion-based approaches. Second, DDM
decouples the scheduler during training and sampling (Sahoo et al., 2024), enabling high-quality
reconstruction from noise using arbitrarily defined timesteps. Using a cosine scheduler, ReDDiT
achieves improved sample quality within fewer steps, as validated empirically.

Despite its effectiveness, the rehash sampler has limitations that motivate future work. The current
rehashing strategy is applied at every step, but the impact on diversity and convergence is not fully
characterized, suggesting that optimized rehash frequency or intensity could improve performance.
Additionally, integrating ReDDiT with dynamic token-update mechanisms in DFM frameworks
may further enhance sample quality and diversity, particularly for complex multimodal generation
tasks. These considerations highlight potential directions for extending and refining discrete diffusion
sampling methods.

D SAMPLING FROM LEARNED NETWORKS

10 15 20 25 30 35 40 45 50
Sample Steps

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

gF
ID

Vanilla DFM
Rehash (ours)
Hybrid (ours)

Figure 7: Generation quality comparison with DFM methods. The experiments are conducted on
ReDDiT-L with a constant classifier-free guidance (cfg = 2.0).

We present a detailed version of discrete flow matching (DFM) sampler 3, and discuss the integration
of it with ours. Fig. 7 presents a quantitative comparison of the vanilla DFM sampler, our proposed
rehash sampler, and a hybrid strategy that combines both approaches by incorporating selected DFM
steps into the rehash trajectory. All methods are evaluated using identical model weights, as the
training objectives are compatible due to their shared time-weighted loss formulation.

The rehash sampler exhibits stronger overall performance than DFM, especially in the 15–32 step
range, where it achieves low and stable gFID scores. This suggests that our modification enables
more efficient decoding trajectories without sacrificing sample quality. The hybrid variant, which
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Algorithm 3 DFM Sampling Stepwise Pseudo Code

Require: xt, labels, timestep t, step size ∆t
1: Compute jump probabilities: jt ← 1− αt, js ← 1− αt−∆t

2: Determine guidance scale ω from schedule
3: Obtain logits logitscond, logitsuncond via forward pass
4: logitsx0

← logitsuncond + ω · (logitscond − logitsuncond)
5: px0 ← softmax(logitsx0

)
6: Sample x̂0 ∼ px0 using categorical sampling
7: Construct one-hot encodings: δx0 , δxt

8: corrective← js
jt
· δxt

9: u← jt−js
jt
· δx0

10: Overwrite u in masked range with corrective terms
11: Mask entries already present in xt from u
12: Compute total transition intensity: λ←

∑
u, elementwise

13: Draw Bernoulli mask: M ∼ Bernoulli(1− exp(−λ))
14: For each masked position in M , sample from categorical u to obtain updated xs

15: return xs

integrates only the middle and final steps of the DFM update into the rehash schedule, also delivers
consistent gains over the vanilla DFM, suggesting that partial refinement from DFM is beneficial
even when the majority of the trajectory is governed by our rehash dynamics.

By leveraging shared gradual decoding infrastructure, the hybrid approach enables practical integra-
tion of DFM refinement into the ReDDiT framework with minimal overhead. As noted in the main
paper, this leads to a ∼0.1 improvement in gFID on ImageNet-1K, reinforcing the complementary
strengths of the two samplers. We leave the comprehensive study on the optimal integration of
different samplers for future exploration.

E EXPERIMENT DETAILS

We provide detailed training and generation configurations for ReDDiT in Table 5. Our method
incorporates DINOv2-B for representation alignment, which requires computing image features
during the forward pass (only activated during training). This introduces an overhead, making
training roughly 1.2× slower than solely on discrete tokens. However, this additional cost is offset by
faster convergence and improved stability, particularly in early training stages.

The use of quantized latents allows for larger batch sizes under limited GPU memory, making
our approach more accessible for low-resource settings. Additionally, aligning discrete codes with
semantic features improves the quality and diversity of learned representations. Overall, our design
balances computational efficiency with model performance, making it a practical choice for both
research and deployment.

F DISCUSSION ON REPRESENTATION ALIGNMENT

Representation Alignment (RepA) introduces a similarity-based auxiliary loss that aligns intermediate
features of the diffusion model with pretrained DINOv2 embeddings. Although originally proposed
for continuous diffusion, its effectiveness naturally extends to the discrete setting. In ReDDiT, discrete
tokens are first mapped into a continuous embedding space, after which the architecture is identical to
transformer-based continuous diffusion models (e.g., DiT). This means that the absence of continuous
input does not fundamentally alter the structure of the model’s internal representations. However,
discrete tokenizers restrict direct gradient flow from pixels to the codebook, making it more difficult
for the model to organize high-level semantics during early training.

RepA provides an external semantic scaffold that compensates for this difficulty. By encouraging the
network to match DINOv2’s robust visual features, RepA helps establish meaningful structure in the
latent representations before the denoising objective becomes sufficiently informative. Empirically,
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Table 5: Experiment details for ReDDiT on ImageNet-1K. Vari. refers to a time-variant growing
guidance scale following MDTv2, which is a common practice for diffusion models.

Setting ReDDiT-L (Ablation) ReDDiT-L ReDDiT-XL ReDDiT-XLf8

Hidden Size 1024 1024 1280 1280
Transformer Block 24 24 28 28
Attention Head 16 16 20 20
Image Tokenizer LlamaGen-f16 IBQ-f16 IBQ-f16 LlamaGen-f8
Codebook Size 16384 16384 16384 16384
Noise Capacity 128 1024 1024 128
Sequence Length 256 256 256 1024
RepA Latent Size 16×16 16×16 16×16 32×32
Batch Size 64 64 32 16
Global Batch Size 1024 1024 1024 1024
LR scheduler Cosine Decay Cosine Decay Cosine Decay Cosine Decay
Learning Rate 3e-4 3e-4 3e-4 4e-4
Minimal LR 1e-5 1e-5 1e-5 1e-5
Warmup Steps 2k 2k 2k 2k
Training Steps 500k 500k 500k 500k
Training Time ∼1 day ∼1 day ∼2 days ∼3 days
Generation CFG (Vari.) 1.0-5.0 1.0-6.5 1.0-6.5 1.0-5.5

Table 6: Acceleration of ReDDiT using response cache Kr.

Model Config Performance

Steps Kr Relative Speed gFID↓
ReDDiT-L 32 2 ×1.33 2.28 (∆ = 0.15)
ReDDiT-XL ×1.52 1.88 (∆ = 0.14)

ReDDiT-XL 64 4 ×2.17 1.83 (∆ = 0.09)
ReDDiT-XLf8 ×2.56 1.71 (∆ = 0.10)

we observe that removing RepA leads to an early training plateau, whereas with RepA the alignment
loss rapidly decreases and stabilizes, indicating improved organization of semantic information. This
behavior mirrors observations in continuous diffusion models and supports the view that RepA offers
a general mechanism for accelerating convergence, independent of whether the base diffusion process
is discrete or continuous.

G ACCELERATING REDDIT

Recent efforts on scaling and accelerating discrete diffusion models are making this generative
paradigm more practical than theoretical attempts. We adapt the dLLM-Cache Liu et al. (2025) design
into our framework, which efficiently reuses intermediate computations without compromising model
performance. Since the condition is modulated using AdaLN and introduces minimal calculation,
we do not activate Kp (cache for prompt). As the decoding of visual sequence varies with time
more quickly than language decoding, we implement the cache for response with small values like
Kr = 2 or 4, which means the K and V of transformer layer is updated every 2 or 4 decoding steps
instead of per step. As shown in Tab. 6, the inference speed is boosted up to 2 times with minimal
performance drop, which makes our largest model ReDDiT-XLf8 comparable to diffusion models
with accelerated solvers.

H QUALITATIVE RESULTS

We provide more samples of ReDDiT’s generation in Fig. 8.
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Figure 8: Class-conditional generation samples of ReDDiT on ImageNet 256× 256.
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