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Abstract

We extend decision tree and random forest al-
gorithms to product space manifolds: Cartesian
products of Euclidean, hyperspherical, and hy-
perbolic manifolds. Such spaces have extremely
expressive geometries capable of representing
many arrangements of distances with low met-
ric distortion. To date, all classifiers for product
spaces fit a single linear decision boundary, and
no regressor has been described. Our method
enables a simple, expressive method for clas-
sification and regression in product manifolds.
We demonstrate the superior accuracy of our
tool compared to Euclidean methods operating
in the ambient space or the tangent plane of the
manifold across a range of constant-curvature
and product manifolds. Code for our implemen-
tation and experiments is available at https:
//github.com/pchlenski/embedders.

1. Introduction
While much of machine learning focuses on data that is
well-suited to Euclidean space, in certain situations non-
Euclidean representations can better represent the underly-
ing structure of the data. Typically, work on non-Euclidean
representations tends to assume that data comes from a
single manifold of constant curvature, such as a hyperspher-
ical or hyperbolic space. However, even constant-curvature
manifolds can fail to model certain kinds of structure.

As an alternative, Gu et al. (2018) proposed product space
manifolds: a general, flexible, and expressive class of man-
ifolds capable of capturing even more complex patterns
in pairwise distances with much lower distortion than sin-
gle manifolds achieve. Product spaces are simply Carte-
sian products of one or more constant-curvature compo-
nent manifolds, with operations such as distance compu-
tation neatly factorizing across component manifolds. In
the single-component case, product manifolds recover the
geometry of their component manifold.
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Product manifolds have found applications in diverse fields
such as biology (McNeela et al., 2024) and knowledge graph
representation (Wang et al., 2021).

However, the uptake of product manifold embeddings has
been limited. This is partially due to a lack of tools for
downstream inference tasks such as classification and re-
gression on the basis of product manifold coordinates. To
our knowledge, only Tabaghi et al. (2021) have ever de-
scribed a product space classifier so far. As their classifier
relies on a single linear decision boundary, it lacks the ex-
pressiveness of tools like decision trees and random forests.

Decision trees’ inductive bias favors partitioning the space
into convex decision regions using boundaries equidistant
to the pair of points they separate. Since Euclidean decision
trees violate convexity for some manifolds, we must modify
them to suit these manifolds better. We propose such a
method that works for all component manifolds, modify it
further to work on product space manifolds, and benchmark
both methods’ effectiveness. For efficiency, we would also
like to learn the entire tree in O(ndt) time, where n is the
number of points, d is the number of dimensions, and t is
the maximum depth of the tree.

Our contributions. Concretely, we contribute:

1. A generalized algorithm for fitting decision trees to
constant-curvature manifolds,

2. A novel algorithm for fitting decision trees on product
space manifolds,

3. A generalized technique for sampling Gaussian mix-
tures in product space manifolds, and

4. A preliminary benchmark demonstrating the effective-
ness of our component- and product-space trees over
classical decision trees for synthetic datasets.

2. Preliminaries
2.1. Riemannian manifolds

We will begin by reviewing key details of hyperspheres, hy-
perboloids, and Euclidean spaces. For more details, readers
can consult Do Carmo (1992).

Each space described is a Riemannian manifold, mean-
ing that it is locally isomorphic to Euclidean space and
equipped with a distance metric. The shortest paths be-
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tween two points u and v on a manifold are referred to
as geodesics. As all three spaces we consider have con-
stant Gaussian curvature, we define simple closed-forms for
geodesic distances in each of the following subsections in
lieu of a more general discussion of geodesic distances in
arbitrary Riemannian manifolds.

Any constant-curvature manifoldM is parameterized by a
dimensionality D and a curvature K. They can also all be
considered embedded in an ambient space RD+1.

Finally, for each point x ∈ M, we can define the tangent
plane at x as TxM. The tangent plane at x is the space of
all tangent vectors at x.

2.1.1. EUCLIDEAN SPACE

A Euclidean space is equivalent RD:

ED = RD (1)

First, we define the inner product (the dot product) used in
Euclidean space:

⟨u,v⟩ = u0v0 + u1v1 + . . .+ u2v2 (2)

Additionally, we use ∥u∥ =
√
⟨u,u⟩. Then, we can define

the Euclidean distance function (the ℓ2 norm):

δE(u,v) = ∥u− v∥ (3)

2.1.2. HYPERSPHERICAL SPACE

We will describe hyperspherical space in terms of its coordi-
nates in the ambient space. Hyperspherical space uses the
same inner products as Euclidean space. The hypersphere
is the set of points of constant Euclidean norm:

SD,K = {x ∈ RD : ∥x∥ = 1/K} (4)

We use the hyperspherical distance function:

δS(u,v) = cos−1(K2⟨u,v⟩)/K. (5)

2.1.3. HYPERBOLIC SPACE

We will describe the hyperbolic space from the perspective
of the hyperboloid model. First, we need to define the
ambient Minkowski space. This is a vector space equipped
with the Minkowski inner product:

⟨u,v⟩L = −u0v0 + u1v1 + . . .+ unvn (6)

Analogous to the Euclidean case, we let ∥u∥L =
√
⟨u,u⟩L.

The hyperboloid of dimension D and curvature K < 0,
written HD,K , is a set of points with constant Minkowski
norm:

HD,K = {x ∈ RD : ∥x∥L = 1/K, x0 > 0}, (7)

Finally, this space uses a hyperbolic distance function:

δH(u,v) = − cosh−1(K2⟨u,v⟩L)/K (8)

2.1.4. MIXED-CURVATURE PRODUCT SPACES

We reiterate the definition of product space manifolds, most
of which comes from Gu et al. (2018). Following the con-
vention of using

∏
i Xi to refer to the iterated Cartesian

product over sets, we define a product space manifold as

P =

n∏
i=1

Ssi,Ki ×
m∏
j=1

Hhj ,K
′
j × Ed (9)

The total number of dimensions is
∑

i si +
∑

j hj + d.
Each individual manifold is called a component manifold.
The decomposition of the product space into component
manifolds is called the signature. Informally, the signature
can be thought of as a list of dimensionalities and curvatures
for each component manifold.

Distances in product manifolds decompose as the ℓ2 norm
of the distances in each of the component manifolds:

δP(u,v) =

√ ∑
M∈P

δM(uM,vM)2, (10)

where uM and vM denotes the restriction of u and v to
their components inM and δM refers the distance function
appropriate toM.

For x ∈ P , the tangent plane at x TxP is simply the con-
catenation of all component tangent planes:

TxP =
∏

M∈P
TxMM. (11)

We additionally define the origin of P , µ0, as the concatena-
tion of the origins of each respective manifold. The origin
is (1/|K|, 0, . . .) for HK and SK , and (0, 0, . . .) for E.

2.2. Decision trees

The Classification and Regression Trees
(CART) (Breiman, 2017) algorithm fits decision trees to a
set of labels y. Specifically, it greedily selects a split at each
set to partition the dataset in such a way as to maximize the
information gain:

IG(y) = C(y)− |y
+|
|y|

C(y+)− |y
−|
|y|

C(y−) (12)

In this case, C(·) is some sort of impurity function (in
this paper, Gini impurity for classification, and variance
for regression). Some splitting function S(·) is used to
partition the labels y into two classes, y+ and y−; however,
S(·) also partitions the input space (corresponding to some
X that does not appear in Eq. 12) into decision regions.
Classically, S(·) is a thresholding function and thus breaks
the input space into box-like regions.
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This algorithm is applied recursively to each of the decision
regions until some stopping condition is met (for instance,
information gain fails to hit some minimum threshold). The
result is a fitted decision tree, T , which can be used for infer-
ence. During inference, an unseen point x is passed through
the decision tree until it reaches a leaf node corresponding
to some decision region. For classification, the point is then
assigned the majority label inside that region; for regression,
it is assigned the mean value inside that region.

Finally, a random forest is an ensemble of decision trees
that is typically trained on a subsample of the points and
features in X (Breiman, 2001).

3. Mixed-curvature decision trees
For each component manifold, we adapt the method, first
described in Chlenski et al. (2024), to fit decision trees using
homogenous hyperplanes, i.e. hyperplanes that contain the
origin of the ambient space. Such hyperplanes intersect any
component manifold at geodesic submanifolds, meaning
that if we let P be a plane, thenM∩ P contains all shortest
paths between its own elements according to δM.

For any decision tree, we must transform the input X into
a set of candidate hyperplanes. We consider a restricted
set of homogenous hyperplanes whose normal vectors are
nonzero in at most two dimensions: one dimension d, which
varies, and one dimension (always the first dimension in
our component manifolds, which we denote using index 0)
called the special dimension. The special dimension is used
in every decision boundary fitting.

Given a dimension d and a manifoldM, we first character-
ize each point as an angle:

θ(x, d) = tan−1(x0/xd) (13)

Note that, in our implementation, we use the PyTorch
arctan2 function to ensure that we can recover the full
range of angles in [0, 2π). This is essential for properly
specifying decision boundaries in hyperspherical cases.

Once all angles are computed, we must compute angular
midpoints such that we can find a hyperplane that intersects
M in a location that is geodesically equidistant to both of the
points considered. We provide angular midpoint formulas
for each component manifold in the following sections.

Given a set of angular midpoints, we fit a decision tree using
the usual dot-product reformulation of decision boundaries
by greedily maximizing the information gain (as defined in
Eq. 12) at each decision split until the maximum depth is
reached, or other stopping criteria are met. The exact split
function for a single point x, a dimension index d, and an
angle θ, is given as

S(x, d, θ) = sign(sin(θ)xd − cos(θ)x0). (14)

The rest of the algorithm exactly follows the description in
Section 2.2.

3.1. Euclidean decision trees

While homogenous hyperplanes in RD trivially intersect
ED at geodesic submanifolds, these lack the expressiveness
of an ambient-space formulation. Instead, we embed ED in
RD+1 by applying a trivial lift:

ϕ : ED → RD+1, ϕ(u) = (1,u). (15)

For two points u,v ∈ ED, the midpoint angles in ED are

mE(u,v) = tan−1(2/(ud + vd)). (16)

While this presentation of Euclidean decision trees is uncon-
ventional, it is completely equivalent to thresholding in the
basis dimensions. See Appendix C for the proof.

3.2. Hyperbolic decision trees

For two points u,v ∈ HD,K , we compute θu and θv accord-
ing to Eq 13 and follow Chlenski et al. (2024) in computing
the hyperbolic midpoint angle in HD,K as:

V :=
sin(2θu − 2θv)

2 sin(θu + θv) sin(θv − θu)
(17)

mH(u,v) =

{
cot−1(V −

√
V 2 − 1) if θu + θv < π

cot−1(V +
√
V 2 − 1) otherwise

(18)

3.3. Hyperspherical decision trees

The hyperspherical case is quite simple, except that unlike
hyperbolic space and the “lifted” Euclidean space after ap-
plying Eq 15, we lack a natural choice of special dimension.
We follow the convention of using the first dimension of the
embedding space as the special dimension, which intuitively
corresponds to fixing a “north pole” in the first dimension.

Given u,v ∈ SD,K , the hyperspherical midpoint angle is
the arithmetic mean of θu and θv (computed using Eq 13):

mS(u,v) = (θu + θv)/2 (19)

3.4. Product space algorithm

Intuitively, the only modification of a decision tree in a
single component manifold is that we now iterate over all
(non-special) dimensions of P and keep track of which
special dimension must be used when computing angles
for candidate hyperplanes. Complete pseudocode for this
algorithm is in Appendix B.

Allowing for a single decision tree to span all components—
rather than, for instance, an ensemble of decision trees each
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Figure 1. Benchmark comparison of decision trees (top) and random forests (bottom). We report micro-averaged F1 scores on a synthetic
data classification task involving mixtures of 10 Gaussians in manifolds of varying constant curvatures K. We compare our method (blue),
a Euclidean decision tree operating the latent space (orange), and a Euclidean decision tree operating in Tµ0P (green). Differences
in performance increase with |K|. Notably, all methods are identical (not just comparable) for decision trees when K = 0. Statistical
significance (p < 0.05) is marked with an asterisk.

operating in a single component—allows the model to dis-
cover which component manifolds are most relevant to a
given task, and to allocate more capacity to those.

The regression and random forest variants in Section 2.2
can be applied unmodified to product space decision trees.

4. Benchmarks
4.1. Sampling Gaussian mixtures in P

We extend the method developed by Nagano et al. (2019)
for Gaussians in H to sample Gaussian mixtures in P . Fol-
lowing Chlenski et al. (2024), we define Gaussian mixtures
in H by sampling a set of means in Tµ0

P and projecting
them directly onto P via the exponential map. We add three
further modifications:

1. We use the Wishart distribution (Wishart, 1928) to gen-
erate covariance matrices for Gaussian mixtures (Chat-
field & Collins, 1980);

2. We rescale the covariance matrix according to the cur-
vature to ensure the distribution of distances to the
mean stays consistent across all submanifolds; and

3. To generate mixtures of gaussians inP , we concatenate
together embeddings from each componentM.

Full details of our sampling method are in Appendix A.

4.2. Baselines and parameters

We use scikit-learn (Pedregosa et al., 2011) decision trees
and random forests as Euclidean classifiers operating in
both the ambient space RD+1 and the tangent plane Tµ0

P
as baselines. Ambient space models use coordinates directly
as features. These models have more degrees of freedom
than product space or tangent plane models do because they
can fit boundaries in any ambient dimension. For tangent
plane models, we apply the logarithmic map at µ0 to project
points from P to Tµ0

P , then feed the resulting coordinates
into our models.

All benchmarks were run on 1,000 points using an 80:20
train/test split. Decision trees use a maximum depth of 3,
and random forests all consist of 12 decision trees trained
on subsampled data.
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Table 1. Benchmark results. We report 95% confidence intervals for classification accuracies on mixtures of four Gaussians over a
representative sample of product manifolds. Each manifold has 10 total dimensions. Superscripts indicate statistical significance
(p < 0.05): ∗ for beating product spaces, † for beating Euclidean classifiers, and ‡ for beating tangent space classifiers.

Signature Product DT Euclidean DT Tangent DT Product RF Euclidean RF Tangent RF
(H5)2 97.6± 1.0†‡ 92.8± 2.3 96.1± 1.4† 98.0± 1.0† 94.0± 1.9 97.3± 1.2†

(S5)2 61.9± 3.5 60.9± 3.9 62.5± 3.5 64.1± 3.6 64.6± 3.4 64.3± 3.6
H5 × S5 97.6± 1.0†‡ 92.8± 2.2 96.2± 1.3† 98.0± 1.0†‡ 92.4± 2.2 96.7± 1.2†

(H2)5 80.9± 4.5 79.8± 4.3 80.3± 4.4 82.0± 4.1 81.2± 4.1 82.6± 4.2†

(S2)5 59.5± 4.6 58.9± 4.6 57.9± 4.5 61.2± 4.2 62.2± 4.7 60.8± 4.5
(H2)2 × E2 × (S2)2 82.0± 4.1† 80.8± 4.3 81.8± 3.9 82.7± 4.0† 81.3± 4.2 82.1± 4.1

4.3. Component manifold benchmarks

In Figure 1, we compare our classifier and baselines on the
task of classifying Gaussian mixtures on a single compo-
nent manifoldM with K ranging from -4 to 4. For each
curvature, we sampled 20 mixtures of 10 Gaussians.

The negative-curvature results extend earlier findings
by Chlenski et al. (2024) to the full range of negative cur-
vatures; the positive-curvature results are novel. All three
decision trees perform identically for curvature 0, corrob-
orating their equivalence in the Euclidean case. A formal
proof of this equivalence can be found in Appendix C.

4.4. Product manifold benchmarks

In Table 1, we compare our method to baseline models
across multiple signatures. For each signature, we sampled
10 mixtures of four Gaussians. We follow Gu et al. (2018)
in our choice of the six signatures tested, but opt to use a
Gaussian mixture rather than a graph embedding for our
benchmark. In most cases, our method beats the baselines.

5. Discussion
5.1. Contributions

We present strong preliminary evidence in favor of mixed-
curvature decision trees and random forests. In particular,
we motivate and describe our entire algorithm and demon-
strate its effectiveness for classifying Gaussian mixtures in
both constant- and mixed-curvature manifolds.

5.2. Limitations

Distance functions must change during the transition from
negative to zero to positive curvature, creating an inele-
gant discontinuity. Moreover, though the limit of the ra-
dius as K approaches∞ is also∞, we arbitrarily lift our
Euclidean embeddings to x0 = 1 instead. A continuous
unification—such as the projective geometry approach de-
scribed in Skopek et al. (2020)—as well as more thorough
benchmarks would substantially improve this work.

5.3. Related work

Machine learning in product spaces. In product spaces,
Tabaghi et al. (2021) describe linear classifiers, includ-
ing perceptron and support vector machines; Tabaghi et al.
(2024) adapt principal component analysis; and Cho et al.
(2023) generalize Transformer architectures.

Learning with product space-derived features. Tsagkra-
soulis & Montana (2017) train random forest classifiers
on distance matrices from arbitrary manifolds, e.g. prod-
uct spaces. Both Sun et al. (2021) and Borde et al. (2023)
use product manifold manifolds to compute rich similarity
measures, which are fed into a classifier as features.

Hyperbolic random forests. Our method is inspired by
recent work by Chlenski et al. (2024) and Doorenbos et al.
(2023) extending decision tree and random forest algorithms
to hyperbolic space. In particular, the use of homogeneous
hyperplanes as decision boundaries is a synthesis of the
ideas in Chlenski et al. (2024) and Tabaghi et al. (2021).

Applications of product spaces. Product space manifolds
are popular for embedding knowledge graphs (Wang et al.,
2021; Li et al., 2024; Nguyen-Van et al., 2023). In biology,
they have been used to represent pathway graphs (McNeela
et al., 2024), cryo-EM images (Zhang et al., 2021), and
single-cell transcriptomic profiles (Tabaghi et al., 2021).

5.4. Future work

Future work will prioritize more thorough benchmarking
of our methods: we will compare our method to the prod-
uct space perceptron and SVM in Tabaghi et al. (2021),
and we will classify real data embedded using the methods
described in Gu et al. (2018) (pairwise graph distances)
and Skopek et al. (2020). We are especially interested in
high-quality regression benchmarks and applications to com-
plex biological data such as spatial transcriptomics.
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A. Gaussian mixture details
A.1. Overall structure

The structure of our sampling algorithm is as follows. Note that, rather than lettingM be a manifold of arbitrary curvature,
we force its curvature to be one of {−1, 0, 1} for implementation reasons. This necessitates rescaling steps, which take place
in Equations 26, 30, and 36. The result is equivalent to performing the equivalent steps, without rescaling, on a manifold of
the proper curvature.

1. Generate c, a vector that divides m samples into n clusters:

praw = ⟨p0, p1, . . . , pn−1⟩ (20)
pi ∼ Uniform(0, 1) (21)

pnorm =
praw∑n−1
i=0 pi

(22)

c = ⟨c0, c1, . . . cm−1⟩ (23)
ci ∼ Categorical(n,pnorm) (24)

2. Sample Meuc, an n×D matrix of n class means:

Meuc = ⟨m0,m1, . . . ,mn−1⟩T (25)

mi ∼ N (0,
√
KI). (26)

3. Move Meuc into T0M, the tangent plane at the origin ofM, by applying ψ : x→ (0,x) per-row to Meuc:

Mtan = ⟨ψ(m0), ψ(m1), . . . ψ(mn−1)⟩T , (27)

ψ : RD → RD+1, x→ ⟨0,x⟩. (28)

4. Project Mtan ontoM using the exponential map from T0M to Mtan:

M = exp0(Mtan). (29)

5. For 0 ≤ i < n, sample a corresponding covariance matrix. Here, σ is a variance scale parameter than can be set:

Σi ∼Wishart(σ
√
KI, D) (30)

6. For 0 ≤ j < m, sample Xeuc, a matrix of m points according to their clusters’ covariance matrices:

Xeuc = ⟨x0,x1, . . .xm−1⟩T (31)
xj ∼ N (0,Σcj

). (32)

7. Apply ψ(·) from Eq 28 to each xj to move it into T0M:

Xtan = ⟨ψ(x0), ψ(x1), . . . ψ(xm−1)⟩T . (33)

8. For each row in Xtan, apply parallel transport from T0M to its class mean:

XPT = ⟨x0,µ,x1,µ, . . . ,xm−1,µ⟩ (34)
xj,µ = PT0→mcj

(xj) (35)

9. Use the exponential map at TµM to move the points onto the manifold:

XM = ⟨x0,M,x1,M, . . . ,xm−1,M⟩ (36)

xj,M =
expmcj

(xj,µ)
√
K

(37)

10. Repeat steps 2–9 for as many manifolds as desired; produce a final embedding by concatenating all component
embeddings column-wise:

X = ⟨XM0 ,XM1 , . . .XMp⟩ (38)
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A.2. Equations for manifold operations

First, we provide the forms of the parallel transport operation in hyperbolic, hyperspherical, and Euclidean spaces:

PTH
ν→µ(v) = v +

⟨µ− αν, ν⟩L
α+ 1

(ν + µ) (39)

α = −⟨ν, µ⟩L (40)

PT S
ν→µ(v) = v cos(d) +

sin(d)

d
(µ− cos(d)ν) (41)

d = cos−1(ν · µ) (42)

PTE
ν→µ(v) = v + µ− ν. (43)

The exponential map is defined as follows in each of the three spaces:

expµ(u) = cosh(∥u∥L)µ+ sinh(∥u∥L)
u

∥u∥L
(44)

expµ(u) = cos(∥u∥)µ+ sin(∥u∥) u

∥u∥
(45)

expµ(u) = u. (46)

A.3. Relationship to other work

Nagano et al. (2019) developed the overall technique used for a single cluster and a single manifold, i.e. steps 6–9. Chlenski
et al. (2024) modified this method to work for mixtures of Gaussians in Hd,1, and deployed it for d ∈ 2, 4, 8, 16. This
corresponds to steps 1–5 of our procedure (although note that our covariance matrices are sampled differently in step 5).
Thus, our contribution is simply to add step 10, modify step 5 to use the Wishart distribution, and to add curvature-related
scaling factors in Equations 26, 30, and 36.

Additionally, to the best of our knowledge we are the first to apply this to hyperspherical manifolds, for which the von
Mises-Fisher (VMF) distribution is typically preferred. We do not argue for the superiority of our approach over the
VMF distribution in general; however, we prefer to use ours for these benchmarks, as it allows us to draw simpler parallels
between manifolds of different curvatures.
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B. Product space decision tree pseudocode

Algorithm 1 Product Space Decision Tree
1: Procedure FIT:
2: P (signature of) product manifold
3: X data points
4: y target labels
5: Initialize:
6: T an empty tree
7: return FITTREE(X,y, 0)
8:
9: Procedure FITTREE:

10: X data points
11: y target labels
12: t current depth of the tree.
13: Initialize:
14: dbest dimension of best split,
15: θbest angle of best split,
16: IGbest information gain of best split.
17: for each d ∈ D′ do
18: M← component manifold for dimension d
19: Θ← GETCANDIDATES(M,X, d)
20: for each candidate θ ∈ Θ do
21: Partition X,y into X+,X−,y+,y− via Eq. 14.
22: Apply Eq. 12 on y+,y− to compute IGcurrent
23: if IGcurrent > IGbest then
24: dbest, θbest, IGbest ← d, θ, IGcurrent
25: end if
26: end for
27: end for
28: if no valid split was found then
29: return N , a new leaf node with y probabilities.
30: else
31: Create N , a decision node with dbest and θbest
32: NL ← FITTREE(X−, y−, t+ 1)
33: NR ← FITTREE(X+, y+, t+ 1)
34: return N with left child NL and right child NR

35: end if
36:
37: Procedure GETCANDIDATES:
38: M A component manifold
39: X A dataset of points inM
40: d A dimension index
41: if d is the special dimension then
42: return empty array []
43: end if
44: Θ← Angles of X via Eq. 13
45: Θ← sort and deduplicate Θ
46: return [θm for θi, θi+1 ∈ Θ via Eq. 16, 17, or 19] (depending on curvature ofM).
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C. Proof of equivalence for Euclidean case
A classical CART tree splits data points according to whether their value in a given dimension is greater than or less than
some threshold value t. Midpoints are simple arithmetic means. This can be written as:

S′(x, d, t) =

{
1 if xd > t,

0 otherwise.
(47)

mDT (u,v) =
ud + vd

2
. (48)

In our transformed decision tree, we lift the data points by applying ϕ : x → (1,x) and then check which side of an
axis-inclined hyperplane they fall on. The splitting function is based on the angle θ of inclination with respect to the (0, d)
plane, i.e., ⟨1, xd⟩. Our midpoints are computed to ensure equidistance in the original manifold:

S(x, d, θ) = sign(sin(θ)xd − cos(θ)x0) (49)

mE(u,v) = tan−1

(
2

ud + vd

)
(50)

To demonstrate the equivalence of the classical decision tree formulation to our transformed algorithm in E, we will show
that Equation 47 is equivalent to Equation 49 and Equation 48 is equivalent to Equation 50 under

θ = cot−1(t). (51)

C.1. Equivalence of Splits

First, we show that Equations 47 and 49 are equivalent, assuming t ̸= 0:

S(x, d, θ) = sign(sin(θ)xd − cos(θ)x0) = 1 (52)
⇐⇒ sin(θ)xd − cos(θ) > 0 (53)

⇐⇒ sin(θ)

cos(θ)
xd = tan(θ)xd > 1 (54)

⇐⇒ xd/t > 1 (55)
⇐⇒ xd > t (56)
⇐⇒ S′(x, d, t) = 1 (57)

C.2. Equivalence of midpoints

Now, we show that Equations 48 and 50 are equivalent:

cot−1(mDT (u,v)) = cot−1

(
ud + vd

2

)
(58)

= tan−1

(
2

ud − vd

)
(59)

= mE(u,v) (60)
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