
Faster Algorithms for Structured John Ellipsoid
Computation

Yang Cao
Wyoming Seminary

ycao4@wyomingseminary.org

Xiaoyu Li
University of New South Wales
7.xiaoyu.li@gmail.com

Zhao Song
University of California, Berkeley
magic.linuxkde@gmail.com

Xin Yang
The University of Washington
yangxin199207@gmail.com

Tianyi Zhou
University of Southern California

tzhou029@usc.edu

Abstract

The famous theorem of Fritz John states that any convex body has a unique
maximal volume inscribed ellipsoid, known as the John Ellipsoid. Computing the
John Ellipsoid is a fundamental problem in convex optimization. In this paper,
we focus on approximating the John Ellipsoid inscribed in a convex and centrally
symmetric polytope defined by P := {x ∈ Rd : −1n ≤ Ax ≤ 1n}, where
A ∈ Rn×d is a rank-d matrix and 1n ∈ Rn is the all-ones vector. We develop two
efficient algorithms for approximating the John Ellipsoid. The first is a sketching-
based algorithm that runs in nearly input-sparsity time Õ(nnz(A) + dω), where
nnz(A) denotes the number of nonzero entries in the matrix A and ω ≈ 2.37 is the
current matrix multiplication exponent. The second is a treewidth-based algorithm
that runs in time Õ(nτ2), where τ is the treewidth of the dual graph of the matrix
A. Our algorithms significantly improve upon the state-of-the-art running time of
Õ(nd2) achieved by [Cohen, Cousins, Lee, and Yang, COLT 2019].

1 Introduction

The concept of the John Ellipsoid, introduced in the seminal work of [Joh48], plays a fundamental
role in convex optimization and convex geometry [Bal91, Bal01, LYZ05, Tod16]. John’s theorem
states that every compact convex set with a nonempty interior has a unique maximum-volume in-
scribed ellipsoid, known as the John Ellipsoid [Joh48]. The John Ellipsoid has numerous significant
applications, including high-dimensional sampling [Vem05, CDWY18, GN23], linear program-
ming [LS14], online learning [BCBK12, HK16], differential privacy [NTZ13], and uncertainty
quantification [TLY24]. Moreover, it is known that computing the John Ellipsoid is equivalent to the
D-optimal design problem in statistics [Puk06, Tod16], which has a lot of applications in machine
learning [AZLSW17, WYS17, LFN18].

In this paper, we study the problem of computing the John ellipsoid Q of a convex and centrally
symmetric polytope P := {x ∈ Rd : −1n ≤ Ax ≤ 1n}, where A ∈ Rn×d is a rank-d matrix
and 1n is the all-ones vector. The John Ellipsoid E is the unique solution to the optimization
problem maxQ⊆Ed vol(Q) s.t. Q ⊆ P , where Ed is the set of all ellipsoids in Rd and vol(Q) denotes
the volume of Q. Since this geometric optimization problem can be formulated as a constrained

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

convex optimization problem, the John Ellipsoid can be computed in polynomial time using convex
optimization solvers, such as first-order methods [Kha96, KY05] and second-order interior-point
methods [NN94, SF04]. The most efficient algorithm using convex optimization solvers takes O(nd3)
time, as demonstrated by [KY05, TY07].

Recently, [CCLY19] proposed a simple and fast fixed-point iteration (Algorithm 1) to compute the
John Ellipsoid in Õ(nd2) time by reducing the problem to the computation of ℓ∞ Lewis weights
of the matrix A. The ℓ∞ Lewis weights of A is a vector w ∈ Rn which can be seen as a weighted
version of the leverage scores of A.

Algorithm 1 Approximating John Ellipsoid inside symmetric polytopes, Algorithm 1 [CCLY19]

1: procedure APPROXJE(A ∈ Rn×d)
2: w1 ← (d/n) · 1n

3: for k = 1, · · · , T − 1 do
4: for i = 1→ n do
5: wk+1,i = wk,i · a⊤i (A⊤ diag(wk)A)−1ai
6: end for
7: end for
8: for i = 1→ n do
9: vi =

1
T

∑T
k=1 wk,i

10: end for
11: U ← diag(u)
12: return A⊤UA
13: end procedure

This iterative approach plays a crucial role in simplifying the computation of the John Ellipsoid for
convex symmetric polytopes defined by a set of inequalities. Delving deeper into the algorithmic
intricacies of [CCLY19], it becomes evident that a primary computational hurdle lies in calculating
the quadratic forms, denoted as a⊤B−1a, where B is a weighted version of A⊤A and a is a row
vector in A. The algorithm in [CCLY19] employs the standard linear algebraic approach, which
involves computing the Cholesky decomposition and subsequently solving linear systems. However, a
significant drawback of this method is its time complexity Õ(nd2). In many computational scenarios,
this can be excessively time-consuming.

To address this challenge, we develop a new sketching-based algorithm that offers an improved
running time compared to [CCLY19]. Furthermore, we also provide an algorithm that exploit certain
special structures to achieve speedups.

1.1 Algorithm in Nearly Input-Sparsity Time

Our first contribution is an algorithm that computes the John Ellipsoid in nearly input-sparsity time.

Theorem 1.1 (Main result I, input-sparsity time). Given a matrix A ∈ Rn×d, let a symmetric convex
polytope be defined as P := {x ∈ Rd : −1n ≤ Ax ≤ 1n}. For any ϵ, δ ∈ (0, 0.1), where δ denotes
the failure probability, there exists a randomized algorithm (Algorithm 2) that with probability at
least 1− δ outputs an ellipsoid Q satisfying

1√
1 + ϵ

·Q ⊆ P ⊆
√
d ·Q.

Moreover, it runs within O(ϵ−1 log(n/d)) iterations and each iteration takes Õ(ϵ−1 nnz(A)+ϵ−2dω)
time, where nnz(A) is the number of non-zero entries of A and ω ≈ 2.37 denotes the current matrix
multiplication exponent [ADW+24], and the Õ hides the log(d/δ) factor.

Compared to [CCLY19], we have significantly improved the per-iteration cost, reducing it from
O(nd2) to Õ(ϵ−1nnz(A)+ϵ−2dω). Here, the Õ-notation hides the log(d/δ) factor. When the matrix
A is sparse, our algorithm significantly outperforms [CCLY19]. Note that when the matrix A is dense,
i.e., nnz(A) = Θ(nd), our per-iteration cost becomes Õ(ϵ−1nd + ϵ−2dω). In the regime where
n > dω and d > ϵ−1, our algorithm is also better than [CCLY19] even when the matrix A is dense.

2

Table 1: Comparison of our algorithms with the previous state-of-the-art presented in [CCLY19].
Given the input matrix A ∈ Rn×d and the approximation error ϵ ∈ (0, 0.1), our algorithms achieve
less per-iteration cost while maintaining the same number of iterations. We ignore the Õ-notation in
the table.

References #Iters. Cost per iter.
[CCLY19] ϵ−1 log(n/d) nd2

Theorem 1.1 ϵ−1 log(n/d) ϵ−1 nnz(A) + ϵ−2dω

Theorem 1.2 ϵ−1 log(n/d) nτ2

The technical improvements stem from two key factors: First, to achieve an input-sparsity running
time, we introduce an additional subsampling procedure alongside the sketching approach used by
[CCLY19]. This sampling step utilizes an approximation of leverage scores, significantly accelerating
the computation of matrix inverses, which is the main bottleneck in the per-iteration complexity of
[CCLY19]. Second, our approach requires a more detailed analysis to manage the accumulation
of errors from both sampling and sketching within each iteration, thereby reducing the explicit
dimension dependency in running time from n to log(n).

1.2 Algorithm for Small Treewidth

Our second algorithm is a treewidth-based algorithm to compute the John Ellipsoid, which is
extremely faster when the matrix A has small treewidth. Informally speaking, treewidth is a property
that measures how “tree-like” a graph is, and it originates from the structural graph theory [BGHK95,
Dav06, LMS13]. For a matrix A, the concept of treewidth is associated with the dual graph GA that
is constructed from the matrix A. We defer the formal definitions to Section 2.3. We state our second
main result as follows.

Theorem 1.2 (Main result II, small treewidth). Given a matrix A ∈ Rn×d whose dual graph GA

has treewidth τ , let a symmetric convex polytope be defined as P := {x ∈ Rd : −1n ≤ Ax ≤ 1n}.
For any ϵ, δ ∈ (0, 0.1), where δ denotes the failure probability, there exists a deterministic algorithm
(Algorithm 3) that outputs an ellipsoid Q satisfying

1√
1 + ϵ

·Q ⊆ P ⊆
√
d ·Q.

Moreover, it runs within O(ϵ−1 log(n/d)) iterations and each iteration takes O(nτ2) time.

Our treewidth-based algorithm is extremely useful when the input matrix A has small treewidth. In
many real world datasets, the input matrix A typically can have large dimension on n and d, but it
often exhibits small treewidth. For example, in the Netlib dataset, most LP instances have sublinear
treewidth, typically in the range [d1/2, d3/4] [BDGR95]. In MATPOWER dataset used for power
system analysis, the maximum problem size is n = 20467, d = 12659 while the maximum treewidth
τ = 35 [ZMST10, ZL21]. For a detailed experimental analysis of treewidth in real-world datasets,
we refer the reader to [MSJ19].

It is also worth noting that having a small treewidth is a stricter condition compared to input sparsity
since it places additional restrictions on the connectivity pattern of the matrix, which may not be
captured solely by input sparsity.

Roadmap. The rest of the paper is organized as follows. In Section 2, we provide some preliminaries
for treewidth and John Ellipsoid. In Section 3, we give the formal definition for the John Ellipsoid.
In Section 4, we present the technique overview for this paper. In Section 5, we present our main
algorithm (Algorithm 2) for approximating John Ellipsoid inside symmetric polytopes and show
the running time for the algorithm. In addition, we prove the correctness of our implementation.
In Section 6, we present our algorithm (Algorithm 3) for small treewidth setting. In Section 7, we
provide the conclusion for our paper.

3

2 Preliminaries

We first define some notations in Section 2.1. Then we introduce the definition of leverage score and
its useful properties in Section 2.2. Next, we provides the necessary backgrounds of treewidth in
Section 2.3. Then, in Section 2.4, we give the definition for Cholesky factorization. Finally, we state
a matrix concentration bound in Section 2.5.

2.1 Notations

We use N (µ, σ2) to denote the normal distribution with mean µ and variance σ2. Given two vectors
x and y ∈ Rd, we use ⟨x, y⟩ to denote the inner product between x and y, i.e., ⟨x, y⟩ =

∑d
i=1 xiyi.

We use 1n to denote an all-1 vector with dimension n. For any matrix A ∈ Rd×d, we say A ⪰ 0

(positive semi-definite) if for all x ∈ Rd we have x⊤Ax ≥ 0. For a function f , we use Õ(f) to denote
f · poly(log f). For a matrix A, we use A⊤ to denote the transpose of matrix A. We use ω ≈ 2.371
to denote the current matrix mulitpilcation exponent [ADW+24]. For a matrix A, we use nnz(A)
to denote the number of non-zero entries in A. For a square and full rank matrix A, we use A−1 to
denote the inverse of matrix A. For a positive integer, we use [n] to denote the set {1, 2, · · · , n}. For
a vector x, we use ∥x∥2 to denote the entry-wise ℓ2 norm of x, i.e., ∥x∥2 := (

∑n
i=1 x

2
i)

1/2. We say
a vector is τ -sparse if it has at most τ non-zero entries. For a random variable X , we use E[X] to
denote its expectation. We use Pr[·] to denote the probability.

2.2 Leverage Score

We assume A ∈ Rn×d has rank d. The leverage scores can be defined in several equivalent ways as
follows.
Definition 2.1 (Leverage score). Given a matrix A ∈ Rn×d, let U ∈ Rn×d be an orthonormal
basis for the column space of A. For any i ∈ [n], the leverage score of the i-th row of A can
be defined equivalently as: Part 1. σi(A) = ∥ui∥2. Part 2. σi(A) = a⊤i (A

⊤A)−1ai. Part 3.
σi(A) = maxx∈Rd(a⊤i x)

2/∥Ax∥22.

The last definition offers an intuitive understanding of leverage scores. A row ai has a higher leverage
score when it is more influential, meaning there exists a vector x for which the inner product with ai
is significantly larger than its average inner product (i.e., ∥Ax∥22) with the other rows of the matrix.
This concept forms the basis of leverage score sampling, a widely used technique in which rows with
higher leverage scores are sampled with greater probability.

Next, we state a well-known folklore property of leverage scores (see [SS11, CCLY19] for example).
Lemma 2.2 (Folklore). Given a matrix A ∈ Rn×d, for any i ∈ [n], it holds that 0 ≤ σi(A) ≤ 1.
Moreover, we have

∑n
i=1 σi(A) = d.

We state a useful tool for leverage score from [DSW22], which proved a stronger version that
computes the leverage score for the matrix in the form of A(I − V ⊤V). We only compute the
leverage score for matrix A here.
Lemma 2.3 (Leverage score computation, Lemma 4.3 in [DSW22]). Given a matrix A ∈ Rn×d, we
can compute a vector σ̃ ∈ Rn in Õ(ϵ−2

σ (nnz(A) + dω)) time, so that, σ̃ is an approximation of the
leverage score of matrix A, i.e., σ̃ ∈ (1± ϵσ) · σ(A), with probability at least 1− δσ. The Õ hides
the log(d/δσ) factor.

2.3 Treewidth

We first define the tree decomposition and treewidth of a given graph, see figure 3 for a concrete
example.
Definition 2.4 (Tree decomposition and tree width of a graph [BGHK95, Dav06, LMS13]). A tree
decomposition is a mapping of graphs into trees. For graph G, the tree decomposition is defined as
pair (M,T), where T is a tree, and M : V (T)→ 2V (G) is a family of subsets of V (G) called bags
labelling the vertices of T , satisfies that:

• The vertices maintained by all bags is the same as those of graph G: ∪t∈V (T)M(t) = V (G).

4

• For every vertex v ∈ V (G), the nodes t ∈ V (T) satisfying v ∈ M(t) induce a connected
subgraph of T .

• For every edge e = (u, v) ∈ E(G), there exist a node t ∈ V (T) so that u, v ∈M(t).

where V (·) denotes the vertex set of a graph.

The width of a tree decomposition (M,T) is max{|M(t)| − 1 : t ∈ T}. The treewidth τ of G is the
minimum width over all tree decompositions of G.

Given a matrix A, we generalize the definition of treewidth as the treewidth of its associated dual
graph. Though the treewidth of a graph is NP-hard to compute [FLS+18, ACP87], it is possible to
find a width-O(τ log3 n) tree decomposition within O(mpoly logn), where m denotes the number
of edges, n denotes the number of vertices and τ denotes the treewidth of graph G [BGS21].
Definition 2.5 (Dual graph). Given a matrix A ∈ Rn×d, we can optionally partition its rows into m
blocks of sizes n1, . . . , nm where n =

∑m
i=1 ni. When no explicit block structure is given, we simply

treat each row as its own block (i.e., m = n and ni = 1 for all i). The dual graph GA of the matrix
A is the graph GA = (V,E) with vertex set V = {1, · · · , d} (corresponding to the columns of A).
We say an edge (i, j) ∈ E if and only if there exists some row block r ∈ [m] such that both Ar,i ̸= 0
and Ar,j ̸= 0, where Ar,i denotes the submatrix of A containing column i and all rows in block r.
The treewidth of the matrix A is defined as the treewidth of its dual graph GA.

2.4 Cholesky Factorization

Next, we give the definition for Cholesky factorization.
Definition 2.6 (Cholesky factorization). Given a positive-definite matrix P , there exists a unique
Cholesky factorization P = LL⊤ ∈ Rd×d, where L ∈ Rd×d is a lower-triangular matrix with real
and positive diagonal entries.

We then introduce a result based on the Cholesky factorization of a given matrix with treewidth τ :
Lemma 2.7 (Fast Cholesky factorization [BGHK95, Dav06]). For any positive diagonal matrix
H ∈ Rn×n, for any matrix A⊤ ∈ Rd×n with treewidth τ , we can compute the Cholesky factorization
A⊤HA = LL⊤ ∈ Rd×d in O(nτ2) time, where L ∈ Rd×d is a lower-triangular matrix with real
and positive entries. L satisfies the property that every row is τ -sparse.

Remark 2.8. When only an O(log3 n)-approximation τ̃ to the treewidth τ is known (which can be
computed in O(mpoly logn) time [BGS21]), the runtime becomes O(nτ̃2) = O(nτ2 log6 n), which
remains efficient for small τ .

2.5 Matrix Concentration

We need the following matrix concentration bound as a tool to analyze the performance of our
algorithm.
Lemma 2.9 (Matrix Chernoff Bound [Tro11]). Let X1, . . . , Xs be i.i.d. symmetric random matrices
with E[X1] = 0, ∥X1∥ ≤ γ almost surely and ∥E[X⊤

1 X1]∥ ≤ σ2. Let C = 1
s

∑
i∈[s] Xi. For any

ϵ ∈ (0, 1), it holds that Pr[∥C∥ ≥ ϵ] ≤ 2d · exp
(
− sϵ2

σ2+γϵ/3

)
.

3 Problem Formulation

In this section, we give the formal definition for the John Ellipsoid of a symmetric polytope. We first
give a characterization of any symmetric polytope.
Definition 3.1 (Symmetric convex polytope). We define a symmetric convex polytope as

P := {x ∈ Rd : |⟨ai, x⟩| ≤ 1, ∀i ∈ [n]}.

We define matrix A ∈ Rn×d associated with the above polytope P ⊂ Rd as a collection of column
vectors, i.e., A = (a1, a2, · · · , an)⊤, and we assume A is full rank. Note that since P is symmetric,
the John Ellipsoid of it must be centered at the origin. Since any origin-centered ellipsoid is of

5

the form {x : x⊤G−2x ≤ 1} for a positive definite matrix G, we can search over the optimal
ellipsoid by searching over the possible matrix G. Note that for such an ellipsoid, the volume is
proportional to det(G−1)1/2 = det(G)−1/2, so maximizing the volume is equivalent to maximizing
log(det(G))2 = 2 log(det(G)):

Maximize log(det(G))2, subject to: G ⪰ 0 ∥Gai∥2 ≤ 1,∀i ∈ [n] (1)
In [CCLY19], it is shown that the optimal G must satisfy G−2 = A⊤ diag(w)A, for the matrix A
and vector w ∈ Rn

≥0. Thus, optimizing over w, we have the following optimization program:

Minimize
n∑

i=1

wi − log det(

n∑
i=1

wiaia
⊤
i)− d, subject to: wi ≥ 0, ∀i ∈ [n]. (2)

For any weight vector w ∈ Rn
≥0, we define the associated matrix

Q :=

n∑
i=1

wiaia
⊤
i ∈ Rd×d. (3)

Additionally, the optimality condition for this w has been studied in [Tod16]:
Lemma 3.2 (Optimality criteria, Proposition 2.5 in [Tod16]). A weight w ∈ Rn is optimal for
program (Eq. (2)) if and only if

n∑
i=1

wi = d, a⊤j Q
−1aj = 1, if wj ̸= 0 a⊤j Q

−1aj < 1, if wj = 0.

where Q is defined as in Eq. (3).

Besides finding the exact John Ellipsoid, we can also find an (1 + ϵ)-approximate John Ellipsoid:
Definition 3.3 ((1 + ϵ)-approximate John Ellipsoid). For ϵ > 0, we say w ∈ Rn

≥0 is a (1 + ϵ)-
approximation of program (Eq. (2)) if w satisfies

∑n
i=1 wi = d, a⊤j Q

−1aj ≤ 1 + ϵ, ∀j ∈ [n]
where Q is defined as in Eq. (3).

Lemma 3.4 gives a geometric interpretation of the approximation factor in Definition 3.3. Note that
for the exact John Ellipsoid Q∗ of the same polytope, Q∗ ⊆ P ⊆

√
d ·Q∗.

Lemma 3.4 ((1 + ϵ)-approximation is good rounding, Lemma 2.3 in [CCLY19]). Let P be defined
as Definition 3.1. Let w ∈ Rn be a (1 + ϵ)-approximation of Eq. (2), and let Q be the associated
matrix defined in Eq. (3). We define the ellipsoid E := {x ∈ Rd : x⊤Qx ≤ 1}. Then the following
property holds: 1√

1+ϵ
· E ⊆ P ⊆

√
d · E . Moreover, vol(1√

1+ϵ
E) ≥ exp(−dϵ/2) · vol(E∗) where E∗

is the exact John Ellipsoid of P .

4 Technical Overview

In Section 4.1, we provide a comprehensive overview of the framework from [CCLY19] upon which
our work builds. In Section 4.2, we present our techniques for achieving nearly input-sparsity runtime.
In Section 4.3, we describe our algorithm tailored for small treewidth.

4.1 Overview of Previous Work

The algorithm from [CCLY19] solves the John Ellipsoid problem via a fixed-point iteration scheme.
Given the optimization program in Eq. (2), the optimal weight vector w∗ satisfies the fixed-point
condition: for all i ∈ [n], wk+1,i = wk,i · σi(wk), where σi(w) := a⊤i (A

⊤ diag(w)A)−1ai.
Starting from an initial weight w1 = (d/n) · 1n, the algorithm iteratively updates the weights for
T = O(ϵ−1 log(n/d)) iterations until convergence to an (1 + ϵ)-approximate solution.

The main computational bottleneck in the naive fixed-point iteration is computing σi(wk) for all
i ∈ [n] at each iteration, which requires O(nd2) time using standard matrix inversion. To accelerate
this, [CCLY19] applies a random Gaussian sketching matrix S ∈ Rs×d (with s = O(ϵ−1)) to
approximate the quadratic form:

σi(wk) = ∥(A⊤ diag(wk)A)−1/2√wk,iai∥22 ≈ ∥S(A⊤ diag(wk)A)−1/2√wk,iai∥22.
Despite using sketching, [CCLY19] still computes the matrix inverse (A⊤ diag(wk)A)−1/2 exactly,
resulting in an O(nd2) per-iteration cost.

6

4.2 Algorithm in Nearly Input-Sparsity Time

Fixed Point Iteration. Following [CCLY19], by the observation that the optimal solution w∗ to
the program (2) satisfies w∗

i · (1− σi(w
∗)) = 0 for all i ∈ [n], where σi(·) denote the leverage score

based on the constraint matrix A, i.e., σi(w) := a⊤i (A
⊤ diag(w)A)−1ai, where ai denote the i-th

row vector of matrix A, we use the fixed point iteration method to find the John Ellipsoid. Ideally, the
algorithm updates the vector w by the fixed point iteration defined as:

wk+1,i = a⊤i
√
wk,i(A

⊤ diag(wk)A)−1√wk,iai

= a⊤i
√
wk,i(A

⊤ diag(wk)A)−1/2 · (A⊤ diag(wk)A)−1/2√wk,iai

= ∥(A⊤ diag(wk)A)−1/2√wk,iai∥22 (4)
If we want to calculate this quantity exactly, then [CCLY19] already stated that the per iteration
running time must have a dependence on quadratic dependency on d. Instead, we only require an
approximate version, which comes at the cost of approximation guarantees and a failure probability.
The sketching-based algorithm in [CCLY19] use a random Gaussian matrix1 S ∈ Rs×d alone for
speedup, and the resulting update becomes

ŵk+1,i := ∥S(A⊤ diag(wk)A)−1/2√wk,iai∥22.
This update mitigate the running time dependency on d, but still suffers a nd2 running time as they
calculate the inverse term exactly.

Leverage Score Sampling. Note that if we denote Bk :=
√

diag(wk) · A, and b⊤k,i is the i-th
row of matrix Bk, then for k ∈ [T − 1], we can write wk+1,i = b⊤k,i((Bk)

⊤Bk)
−1bk,i. In this light,

wk+1,i is precisely the leverage score of the i-th row of matrix Bk.

To compute these leverage scores efficiently, we use leverage score sampling with oversam-
pling [CLM+15, DLS23]. Specifically, if we sample rows of Bk with probabilities proportional to
an overestimate of their leverage scores (by a factor of κ), then with high probability, the sampled
matrix provides a (1± ϵ0) approximation to B⊤

k Bk = A⊤ diag(wk)A.

Formally, the sampling process is defined as follows.
Definition 4.1 (Sampling process). For any w ∈ Rn

+, let H(w) = A⊤WA, where W = diag(w).
Let pi ≥ β · σi(

√
WA)/d, suppose we sample with replacement independently for s rows of matrix√

WA, with probability pi of sampling row i for some β ≥ 1. Let i(j) denote the index of the row
sampled in the j-th trial. Define the generated sampling matrix as

H̃(w) :=
1

s

s∑
j=1

1

pi(j)
wi(j)ai(j)a

⊤
i(j).

The following lemma provides the guarantee of the above sampling process.
Lemma 4.2 (Sampling using Matrix Chernoff, informal version of Lemma F.4). Let ϵ0, δ0 ∈ (0, 1)

be the precision and failure probability parameters, respectively. Suppose H̃(w) is generated as in
Definition 4.1, then with probability at least 1−δ0, we have (1−ϵ0)·H(w) ⪯ H̃(w) ⪯ (1+ϵ0)·H(w).
Moreover, the number of rows sampled is s = Θ(β · ϵ−2

0 d log(d/δ0)).

Sketching. In order to further speed up the algorithm, we apply sketching techniques at line 16 in
Algorithm 2. For each iteration, we use a random Gaussian matrix of dimension s× d to speed up
the calculation while maintaining enough accuracy.

Following all the tools above, we are able to prove the following conclusion. As shown in Algorithm 2,
the algorithm first computes the iteration-averaged vector u and then normalizes it to obtain the final
output v.
Lemma 4.3 (Approximation error, informal version of Lemma E.3). Let u ∈ Rn denote the iteration-
averaged vector computed in Algorithm 2, where ui =

1
T

∑T
k=1 wk,i. Fix the number of iterations

executed in the algorithm as T = O(ϵ−1 log(n/d)) and s = 1000/ϵ. Let ϕi(u) := log σi(u). Then
for i ∈ [n]: ϕi(u) ≤ 1

T log(nd) + ϵ/250 + ϵ0 holds with probability 1− δ − δ0.

1each entry draws i.i.d from a standard normal distribution N (0, 1)

7

This conclusion says that, by adding the steps (line 11 to line 19 in Alg. 2) to approximate the leverage
score of Bk, we only introduce some extra manageable failure probability and additive error terms.

Algorithm 2 Faster Algorithm for approximating John Ellipsoid inside symmetric polytopes

1: procedure FASTAPPROXGENERAL(A ∈ Rn×d) ▷ Theorem 1.1
2: s← Θ(ϵ−1)
3: T ← ϵ−1 log(n/d)
4: ϵ0 ← Θ(ϵ)
5: N ← Θ(ϵ−2

0 d log(nd/δ))
6: w1 ← (d/n) · 1n

7: for k = 1, · · · , T − 1 do
8: Wk ← diag(wk).
9: Bk ←

√
WkA ▷ Ideally we want to compute wk+1,i = ∥(B⊤

k Bk)
−1/2(

√
wk,iai)∥22 by

Eq. (4).
10: Let Sk ∈ Rs×d be a random matrix where each entry is chosen i.i.d from N (0, 1)

11: Computing the O(1)-approximation to the leverage score of Bk ▷ Õ(ϵ−2
σ (nnz(A) + dω))

12: Generate a diagonal sampling matrix Dk ∈ Rn×n according to the leverage score
13: ▷ Via matrix Chernoff, (1− ϵ0) ·B⊤

k Bk ⪯ B⊤
k DkBk ⪯ (1 + ϵ0) ·B⊤

k Bk

14: Compute H̃k ← (B⊤
k DkBk)

−1/2 ▷ Lemma 4.2, ∥Dk∥0 = N , O(ϵ−2
0 dω log(n/δ))

15: ▷ For proof purpose, Hk := (B⊤
k Bk)

−1/2

16: Compute Q̃k ← SkH̃k ▷ Q̃k ∈ Rs×d, O(ϵ−1d2)
17: for i = 1→ n do ▷ O(ϵ−1 nnz(A))

18: ŵk+1,i ← 1
s∥Q̃k

√
wk,iai∥22 ▷ ŵk+1,i approximates the ideal update wk+1,i

19: end for
20: wk+1 ← ŵk+1

21: end for
22: for i = 1→ n do
23: ui =

1
T

∑T
k=1 wk,i ▷ Lemma 4.3

24: end for
25: for i = 1→ n do
26: vi =

d∑n
j=1 uj

ui ▷ Lemma 5.3
27: end for
28: V ← diag(v) ▷ V is a diagonal matrix with the entries of v
29: return V and A⊤V A
30: end procedure

4.3 Algorithm for Small Treewidth

Now let’s move to the technical overview for the treewidth setting. The treewidth setting is an
interesting research problem, and has been studied in many works such as [BGS21, LSZ+20, SZ23].
When the constraint matrix A is an incidence matrix for a graph, it is natural to parameterize the
graph in terms of its treewidth τ .

In our second algorithm (Algorithm 3), we leverage the fact that for matrix A with small treewidth
τ , there exist a permutation P of A such that the Cholesky factorization PA⊤WAP⊤ = LL⊤

is τ -sparse during the iterative algorithm, i.e., L ∈ Rn×n has column sparsity τ . Thus, instead
of computing BkB

⊤
k directly, we first decompose BkB

⊤
k by LkL

⊤
k in O(nτ2) time. By using

the sparsity of Lk, we then complete the follow-up computation of σ(w) with O(nτ2) time. In
conclusion, we provide an implementation that takes O((nτ2) · T) to find the (1 + ϵ)-approximation
of John Ellipsoid.

5 Analysis of Input-Sparsity Algorithm

In Section 5.1, we present the running time needed for our algorithm (Algorithm 2). In Section 5.2, we
provide a novel telescoping lemma. In Section 5.3, we show the correctness of our implementation.

8

Algorithm 3 Faster Algorithm for approximating John Ellipsoid (under tree width setting)

1: procedure FASTAPPROXTW(A ∈ Rn×d) ▷ Theorem 1.2
2: s← Θ(ϵ−1)
3: T ← Θ(ϵ−1 log(n/d))
4: w1 ← (d/n) · 1n

5: for k = 1, · · · , T − 1 do
6: Wk = diag(wk).
7: Bk =

√
WkA

8: Lk ← Cholesky decomposition matrix for B⊤
k Bk i.e., LkL

⊤
k = B⊤

k Bk ▷ O(nτ2)
9: for i = 1→ n do

10: wk+1,i ← b⊤k,i(LkL
⊤
k)

−1bk,i ▷ O(τ2)
11: end for
12: end for
13: for i = 1→ n do
14: ui =

1
T

∑T
k=1 wk,i

15: end for
16: U = diag(u). ▷ U is a diagonal matrix with the entries of u
17: return U and A⊤UA ▷ Approximate John Ellipsoid inside the polytope
18: end procedure

For our discussions, especially in the context of proofs, we’ve also introduced some new notation to as-
sist in comprehension and clarity. We define Qk := SkHk ∈ Rs×d and w̃k+1,i :=

1
s∥Qk

√
wk,iai∥22.

5.1 Running Time of Input-Sparsity Algorithm

Next, we show the running time of Theorem 1.1.
Lemma 5.1 (Running time of Algorithm 2, informal version of Lemma D.1). Given a symmetric
convex polytope, for all ϵ ∈ (0, 1), Algorithm 2 can find a (1 + ϵ)2-approximation of John Ellipsoid
inside this polytope with ϵ0 = Θ(ϵ) and T = Θ(ϵ−1 log(n/d)) in time Õ((ϵ−1 nnz(A)+ ϵ−2dω)T).

5.2 Telescoping Lemma

We introduce an innovative telescoping lemma. This stands in contrast to Lemma C.4 as mentioned
in [CCLY19]. The distinction between the two is crucial: the prior telescoping lemma was restricted
to sketching processes. In contrast, the lemma we are about to discuss encompasses both sketching
and sampling.

At each iteration k of Algorithm 2, we compute approximate weights w̃k,i using sketching or
sampling, introducing errors relative to exact weights wk,i. Our telescoping analysis bounds how
these errors accumulate over T iterations by decomposing the final approximation quality σi(u) into
two terms: an initial condition term 1

T log n
d and an average per-iteration error 1

T

∑T
k=1 log

w̃k,i

wk,i
.

This directly motivates our choice T = O(ϵ−1 log(n/d)) to ensure both terms are O(ϵ), yielding
(1 + ϵ)-approximation.
Lemma 5.2 (Telescoping, Algorithm 2, informal version of Lemma E.2). Let u ∈ Rn denote
the iteration-averaged vector computed in Algorithm 2, where ui = 1

T

∑T
k=1 wk,i. Fix T as

the number of main loops executed in Algorithm 2. Let ϕi(u) := log σi(u). Then for i ∈ [n],
ϕi(u) ≤ 1

T log n
d + 1

T

∑T
k=1 log

w̃k,i

wk,i
+ ϵ0 holds with probability 1− δ0.

5.3 Correctness of Input-Sparsity Algorithm

In terms of Definition 3.3, to show Algorithm 2 provides a reasonable approximation of the John
Ellipsoid, it is necessary to prove that for the output v ∈ Rn of Algorithm 2, σi(v) ≤ 1 + O(ϵ),
∀i ∈ [n]. Our main result is shown below.
Theorem 5.3 (Correctness, informal version of Theorem E.4). Let ϵ0 = ϵ

1000 . Let v ∈ Rn be
the output of Algorithm 2. For all ϵ ∈ (0, 1), when T = O(ϵ−1 log(n/d)), we have Pr

[
σi(v) ≤

9

(1 + ϵ)2, ∀i ∈ [n]
]
≥ 1− δ − δ0 Moreover,

∑n
i=1 vi = d. Therefore, Algorithm 2 provides (1 + ϵ)2-

approximation to program Eq. (2).

Next, we show our final result.

Theorem 5.4 (Correctness part of Theorem 1.1). Given a matrix A ∈ Rn×d, we define a centrally
symmetric polytope P as follows: {x ∈ Rd : −1n ≤ Ax ≤ 1n}. Then, given ϵ ∈ (0, 1), Algorithm 2
that outputs an ellipsoid Q satisfies: 1√

1+ϵ
·Q ⊆ P ⊆

√
d ·Q.

Proof. By combining Theorem 5.3 and Lemma 3.4, we can complete the proof.

6 Analysis of Small Treewidth Algorithm

In this section, we analyze the algorithm (Algorithm. 3) for constraint matrix with small treewidth
(Definition 2.5). Further details are provided in Appendix G.

Theorem 6.1 (Running time of Algorithm 3, informal version of Theorem G.4). For all ϵ ∈ (0, 1),
we can find a (1 + ϵ)-approximation of John Ellipsoid defined by matrix A with treewidth τ inside a
symmetric convex polytope in time O((nτ2) · T) where T = ϵ−1 log(n/d).

Proof sketch. For matrices like A with a small treewidth τ , there exists a permutation P allowing the
Cholesky factorization, PA⊤WAP⊤ = LL⊤, to be τ -sparse throughout the iterative algorithm. In
essence, the matrix L has a column sparsity of τ . Instead of directly calculating BkB

⊤
k , we first break

down BkB
⊤
k into LkL

⊤
k , which takes O(nτ2) time. Utilizing the sparsity of Lk, the computation of

σ(w) is also achieved in O(nτ2) time.

Next, we propose the theorem that shows the correctness of our algorithm.

Theorem 6.2 (Correctness of Algorithm 3, informal version of Theorem G.2). Let u be the output
of Algorithm 3. For all ϵ ∈ (0, 1), when T = O(ϵ−1 log(n/d)), we have σi(u) ≤ (1 + ϵ) and∑n

i=1 ui = d.

Proof sketch. We set T := 1000ϵ−1 log(n/d) By using Corollary G.1 and the fact that for small
ϵ, ϵ/50 ≤ log(1 + ϵ), we have for i ∈ [n], log σi(u) ≤ log(1 + ϵ) In conclusion, σi(u) ≤ 1 + ϵ.
Additionally, since for k ∈ [T], each row of wk,i is a leverage score of i-th row of matrix Bk =√
WkA, according to Lemma 2.2, we have:

∑n
i=1 ui =

∑n
i=1

1
T

∑T
k=1 wk,i =

1
T

∑T
k=1 d = d

Thus, we complete the proof.

7 Conclusion

Our paper studies the problem of approximating John Ellipsoid inside a symmetric polytope, where
the state-of-the-art approach [CCLY19] had a running time of O(nd2) per iteration. We proposed
two fast algorithms based on different sparsity notions (i.e., number of nonzeros and treewidth) of
the constraint matrix. Our first algorithm combines leverage-score-based sampling with sketching.
This has allowed us to optimize the per iteration running time to Õ(ϵ−1 nnz(A) + ϵ−2dω) with high
probability, achieving logarithmic dependency on n. Furthermore, our second algorithm targets
scenarios where the constraint matrix has a low treewidth τ . By Cholesky factorization, this algorithm
achieves a time complexity of O(nτ2) per iteration.

Acknowledgment

We thank anonymous NeurIPS reviewers for their constructive comments.

10

References
[ACP87] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding

embeddings in ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284,
1987.

[ADW+24] Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and
Renfei Zhou. More asymmetry yields faster matrix multiplication. arXiv preprint
arXiv:2404.16349, 2024.

[Ans02] Kurt M Anstreicher. Improved complexity for maximum volume inscribed ellipsoids.
SIAM Journal on Optimization, 13(2):309–320, 2002.

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster
matrix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 522–539. SIAM, 2021.

[AZLSW17] Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal design
of experiments via regret minimization. In International Conference on Machine
Learning, pages 126–135. PMLR, 2017.

[Bal91] Keith Ball. Volume ratios and a reverse isoperimetric inequality. Journal of the London
Mathematical Society, 2(2):351–359, 1991.

[Bal01] Keith Ball. Convex geometry and functional analysis. In Handbook of the geometry of
Banach spaces, volume 1, pages 161–194. Elsevier, 2001.

[BCBK12] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax
policies for online linear optimization with bandit feedback. In Conference on Learning
Theory, pages 41–1. JMLR Workshop and Conference Proceedings, 2012.

[BDGR95] Shirley Browne, Jack Dongarra, Eric Grosse, and Tom Rowan. The netlib mathematical
software repository. Technical report, 1995.

[BGdMT23] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan Thomassé.
Twin-width v: Linear minors, modular counting, and matrix multiplication. In 40th
International Symposium on Theoretical Aspects of Computer Science, 2023.

[BGHK95] Hans L Bodlaender, John R Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. Ap-
proximating treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of
Algorithms, 18(2):238–255, 1995.

[BGS21] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deter-
ministic decremental sssp and approximate min-cost flow in almost-linear time. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 1000–1008. IEEE, 2021.

[BLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense
linear programs in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 775–788, 2020.

[BPSW21] Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (over-
parametrized) neural networks in near-linear time. In ITCS, 2021.

[BSS12] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers.
SIAM Journal on Computing, 41(6):1704–1721, 2012.

[BWZ16] Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal component
analysis in distributed and streaming models. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pages 236–249, 2016.

[CCLY19] Michael B Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal algorithm
for approximating the john ellipsoid. In Conference on Learning Theory, pages 849–
873. PMLR, 2019.

11

[CDWY18] Yuansi Chen, Raaz Dwivedi, Martin J Wainwright, and Bin Yu. Fast mcmc sampling
algorithms on polytopes. Journal of Machine Learning Research, 19(55):1–86, 2018.

[CLM+15] Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng,
and Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science, pages 181–190,
2015.

[CLS19] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current
matrix multiplication time. In STOC, 2019.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Symposium on Theory of Computing Conference (STOC),
pages 81–90, 2013.

[Dav06] Timothy A Davis. Direct methods for sparse linear systems. SIAM, 2006.

[DLS23] Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax
regression. arXiv preprint arXiv:2304.10411, 2023.

[DSW22] Yichuan Deng, Zhao Song, and Omri Weinstein. Discrepancy minimization in input-
sparsity time. arXiv preprint arXiv:2210.12468, 2022.

[DWZ22] Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric
hashing. arXiv preprint arXiv:2210.10173, 2022.

[FLS+18] Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, Michał Pilipczuk, and Marcin
Wrochna. Fully polynomial-time parameterized computations for graphs and matrices
of low treewidth. ACM Transactions on Algorithms (TALG), 14(3):1–45, 2018.

[GN23] Adam Gustafson and Hariharan Narayanan. John’s walk. Advances in Applied Proba-
bility, 55(2):473–491, 2023.

[GS22] Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint
arXiv:2211.06033, 2022.

[GSY23] Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic
functions regression. arXiv preprint arXiv:2305.00660, 2023.

[GSZ23] Yuzhou Gu, Zhao Song, and Lichen Zhang. A nearly-linear time algorithm for struc-
tured support vector machines. arXiv preprint arXiv:2307.07735, 2023.

[HJS+22] Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving
sdp faster: A robust ipm framework and efficient implementation. In 2022 IEEE 63rd
Annual Symposium on Foundations of Computer Science (FOCS), pages 233–244.
IEEE, 2022.

[HK16] Elad Hazan and Zohar Karnin. Volumetric spanners: an efficient exploration basis for
learning. Journal of Machine Learning Research, 2016.

[HSWZ22] Hang Hu, Zhao Song, Omri Weinstein, and Danyang Zhuo. Training overparametrized
neural networks in sublinear time. In arXiv preprint arXiv: 2208.04508, 2022.

[JKL+20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A
faster interior point method for semidefinite programming. In 2020 IEEE 61st annual
symposium on foundations of computer science (FOCS), pages 910–918. IEEE, 2020.

[Joh48] Fritz John. Extremum problems with inequalities as subsidiary conditions. In Studies
and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pages
187–204. Interscience Publishers, Inc., New York, N. Y., 1948.

[JSWZ21] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. A faster algorithm
for solving general lps. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2021, page 823–832, New York, NY, USA, 2021.
Association for Computing Machinery.

12

[Kha96] Leonid G Khachiyan. Rounding of polytopes in the real number model of computation.
Mathematics of Operations Research, 21(2):307–320, 1996.

[KKMR22] Jonathan A Kelner, Frederic Koehler, Raghu Meka, and Dhruv Rohatgi. On the power
of preconditioning in sparse linear regression. In 2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science (FOCS), pages 550–561. IEEE, 2022.

[KT93] LG Khachiyan and MJ Todd. On the complexity of approximating the maximal
inscribed ellipsoid for a polytope. Mathematical Programming, 61(1-3):137–159,
1993.

[KY05] Piyush Kumar and E Alper Yildirim. Minimum-volume enclosing ellipsoids and core
sets. Journal of Optimization Theory and Applications, 126(1):1–21, 2005.

[LFN18] Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex opti-
mization by first-order methods, and applications. SIAM Journal on Optimization,
28(1):333–354, 2018.

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings
of the 39th international symposium on symbolic and algebraic computation, pages
296–303, 2014.

[LMS13] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
exponential time hypothesis. Bulletin of EATCS, 3(105), 2013.

[LS14] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in O(

√
rank) iterations and faster algorithms for maximum flow. In

Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on,
pages 424–433. IEEE, 2014.

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in
the current matrix multiplication time. In Conference on Learning Theory, pages
2140–2157. PMLR, 2019.

[LSZ+20] S Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou. Space-efficient
interior point method, with applications to linear programming and maximum weight
bipartite matching. arXiv e-prints, pages arXiv–2009, 2020.

[LSZ23] Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh
regression problems. arXiv preprint arXiv:2303.15725, 2023.

[LYZ05] Erwin Lutwak, Deane Yang, and Gaoyong Zhang. John ellipsoids. Proceedings of the
London Mathematical Society, 90(2):497–520, 2005.

[MMO22] Yury Makarychev, Naren Sarayu Manoj, and Max Ovsiankin. Streaming algorithms
for ellipsoidal approximation of convex polytopes. In Conference on Learning Theory,
pages 3070–3093. PMLR, 2022.

[MSJ19] Silviu Maniu, Pierre Senellart, and Suraj Jog. An experimental study of the treewidth
of real-world graph data. In ICDT 2019–22nd International Conference on Database
Theory, page 18, 2019.

[Nem99] Arkadi Nemirovski. On self-concordant convex–concave functions. Optimization
Methods and Software, 11(1-4):303–384, 1999.

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in
convex programming, volume 13. Siam, 1994.

[NN13] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2013.

[NTZ13] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy:
the sparse and approximate cases. In Proceedings of the forty-fifth annual ACM
symposium on Theory of computing, pages 351–360. ACM, 2013.

13

[Puk06] Friedrich Pukelsheim. Optimal design of experiments. SIAM, 2006.

[QSZZ23] Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified
algorithm for projection matrix vector multiplication with application to empirical risk
minimization. In International Conference on Artificial Intelligence and Statistics,
pages 101–156. PMLR, 2023.

[RSW16] Ilya Razenshteyn, Zhao Song, and David P. Woodruff. Weighted low rank approxi-
mations with provable guarantees. In Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing, STOC ’16, page 250–263, 2016.

[SF04] Peng Sun and Robert M Freund. Computation of minimum-volume covering ellipsoids.
Operations Research, 52(5):690–706, 2004.

[SS11] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011.

[SWYZ21] Zhao Song, David P. Woodruff, Zheng Yu, and Lichen Zhang. Fast sketching of
polynomial kernels of polynomial degree. In International Conference on Machine
Learning (ICML), pages 9812–9823. PMLR, 2021.

[SWZ17] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with
entrywise ℓ1-norm error. In Proceedings of the 49th Annual Symposium on the Theory
of Computing (STOC), 2017.

[SWZ19] Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank
approximation. In SODA. arXiv preprint arXiv:1704.08246, 2019.

[SXYZ22] Zhao Song, Zhaozhuo Xu, Yuanyuan Yang, and Lichen Zhang. Accelerating frank-
wolfe algorithm using low-dimensional and adaptive data structures. arXiv preprint
arXiv:2207.09002, 2022.

[SXZ22] Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification with inner
product search data structures. 2022.

[SY21] Zhao Song and Zheng Yu. Oblivious sketching-based central path method for linear
programming. In International Conference on Machine Learning, pages 9835–9847.
PMLR, 2021.

[SYYZ23] Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential
privacy: Fast algorithm for dynamic kronecker projection maintenance. In ICML, 2023.

[SZ23] Zhao Song and Tianyi Zhou. Faster sinkhorn’s algorithm with small treewidth. arXiv
preprint arXiv:2301.06741, 2023.

[TLY24] Yukai Tang, Jean-Bernard Lasserre, and Heng Yang. Uncertainty quantification of set-
membership estimation in control and perception: Revisiting the minimum enclosing
ellipsoid. In 6th Annual Learning for Dynamics & Control Conference, pages 286–298.
PMLR, 2024.

[Tod16] Michael J Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

[Tro11] Joel A Tropp. Improved analysis of the subsampled randomized hadamard transform.
Advances in Adaptive Data Analysis, 3:115–126, 2011.

[TY07] Michael J Todd and E Alper Yildirim. On khachiyan’s algorithm for the computation of
minimum-volume enclosing ellipsoids. Discrete Applied Mathematics, 155(13):1731–
1744, 2007.

[Vem05] Santosh Vempala. Geometric random walks: a survey. In Combinatorial and computa-
tional geometry, volume 52 of Math. Sci. Res. Inst. Publ., pages 577–616. Cambridge
Univ. Press, Cambridge, 2005.

14

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd.
In Proceedings of the forty-fourth annual ACM symposium on Theory of computing
(STOC), pages 887–898. ACM, 2012.

[WYS17] Yining Wang, Adams Wei Yu, and Aarti Singh. On computationally tractable selection
of experiments in measurement-constrained regression models. Journal of Machine
Learning Research, 18(143):1–41, 2017.

[XZZ18] Chang Xiao, Peilin Zhong, and Changxi Zheng. Bourgan: generative networks with
metric embeddings. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (NeurIPS), pages 2275–2286, 2018.

[Zha22] Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample
and maintenance. Master’s thesis, Carnegie Mellon University, 2022.

[Zha23] Richard Y Zhang. Parameterized complexity of chordal conversion for sparse semidefi-
nite programs with small treewidth. arXiv preprint arXiv:2306.15288, 2023.

[ZL21] Richard Y Zhang and Javad Lavaei. Sparse semidefinite programs with guaranteed near-
linear time complexity via dualized clique tree conversion. Mathematical programming,
188:351–393, 2021.

[ZMST10] Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sánchez, and Robert John Thomas.
Matpower: Steady-state operations, planning, and analysis tools for power systems
research and education. IEEE Transactions on power systems, 26(1):12–19, 2010.

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include the limitation discussion in Section H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

16

Justification: All assumptions of this work are made within the statement of theorems or
lemmas. For each theoretical result:

• The formal version of Lemma 4.2 is Lemma F.4, where the proof is in Section F.
• The formal version of Lemma 4.3 is Lemma E.3, where the proof is in Section E.
• The formal version of Lemma 5.1 is Lemma D.1, where the proof is in Section D.
• The formal version of Lemma 5.2 is Lemma E.2, where the proof is in Section E.
• The formal version of Theorem 5.3 is Theorem E.4, where the proof is in Section E.
• The proof of Theorem 5.4 is in Section 5.
• The formal version of Theorem 6.1 is Theorem G.4, where the proof is in Section G.
• The formal version of Theorem 6.2 is Theorem G.2, where the proof is in Section G.

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

17

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All authors have reviewed and confirmed that the research conducted in the
paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include the broader impacts discussion in Section I.

19

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not include experiments and poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

20

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

21

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

Appendix
Roadmap. In Section A, in list some related work. In Section B, we provide some simple algebra
fact. In Section C, we introduce some tools from previous work. In Section D, we give the remaining
detailed proof of running time in Theorem 5.1. In Section E, we give a lemma that helps the
correctness proof. In Section G, we present a faster algorithm to solve the John Ellipsoid problem
with small treewidth setting. In Section F, we provide the sparsification tool used in analysis of
Algorithm 2.

A Related Works

Fast John Ellipsoid Computation There is a rich body of research on efficient algorithms for
computing the John Ellipsoid. The interior point algorithm by [NN94] computes the John Ellipsoid
in O((n3.5 + n2.5d2) log(n/ϵ)) time. [KT93] improved this to O(n3.5 log(n/ϵ) log(d/ϵ)). Subse-
quently, [Nem99, Ans02] developed algorithms with a time complexity of O(n3.5 log(n/ϵ)). The best
algorithm based on convex optimization solvers, developed by [KY05, TY07], runs in O(ϵ−1nd3)
time. More recently, the fixed-point iteration method by [CCLY19] achieves a time complexity
of Õ(ϵ−1nd2). For a comprehensive survey of John Ellipsoid computation, we refer readers to
see [Tod16].

Leverage score sampling Applying a sampling matrix for efficiency is a quite standard way in the
field of numerical linear algebra (see [CW13, BWZ16, RSW16, SWZ17, SWZ19, CLS19, BLSS20,
DSW22, DLS23, LSZ23, GSY23]). In our paper, we use leverage score sampling as a non-oblivious
dimension reduction technique, similarly as in [SS11, BSS12, SXZ22, Zha22].

Sketching Sketching is a powerful technique used in many other fundamental problems such as
linear programming [JSWZ21, SY21], empirical risk minimization [LSZ19, QSZZ23], semi-definite
programming [JKL+20, HJS+22, SYYZ23]. Moreover, it is a popular technique in randomized linear
algebra and has been widely applied in a lot of linear algebra tasks [CW13, NN13, BWZ16, RSW16,
SWZ17, XZZ18, SWZ19, LSZ19, JSWZ21, SY21, BPSW21, HSWZ22, SXYZ22, GS22, SWYZ21].
Sketching is widely applied in an oblivious way as a dimension reduction technique [CW13, NN13].
For approximate John-Ellipsoid methods, prior work [CCLY19] uses the sketching method alone,
providing the potential for further optimization. [MMO22] also studied ellipsoidal approximation
given a convex polytope characterized in the form of a data stream. Their problem is more challenging,
and their solution is not optimal in our setting.

Treewidth Setting Since the introduction of treewidth as a concept, extensive work has optimized
various problems based on it. More recently, [KKMR22, GS22, GSZ23, Zha23, BGdMT23] associate
treewidth with linear program solvers and enhance the efficiency of the optimization beyond matrix
sparsity.

B Basic Tools

We provide a basic algebra claim that is used in our paper.
Fact B.1. Given vector w, it holds that A⊤ diag(w)A =

∑n
i=1 wiaia

⊤
i , where ai is the i-th column

of A.

Proof. We have,

A⊤ diag(w) = [w1a1, w2a2, · · ·wnan]

Then the x, y element for A⊤ diag(w)A is
∑n

i=1 wiaiyaix. Hence, A⊤ diag(w)A =
∑n

i=1 wiaia
⊤
i .

We introduce some facts that are useful to our proof.
Fact B.2. For any real numbers a ≥ 1 and b ≥ 2, we have

log(ab) ≤ 2a · log b

23

Proof. We have
log(ab) ≤ log a+ log b

≤ a+ log b

≤ a log b+ log b

≤ a log b+ a log b

≤ 2a log b.

where the third step follows from log b ≥ 1, the forth step follows from a ≥ 1.

Thus, we complete the proof.

Fact B.3. For any a ≥ 1 and b ≥ 2, we have
a+ log(ab) ≤ 3a log b

Proof. Using Fact B.2, we have
log(ab) ≤ 2a log b

Then we have
a+ log(ab) ≤ a+ 2a log b ≤ 3a log b

where the last step follows from a ≤ a log b.

Fact B.4. For any n, d such that 2 ≤ d ≤ n ≤ poly(d). For any δ ∈ (0, 0.1), we have
log(d log(n/d)/δ) = O(log(d/δ))

Proof. Let c > 1 denote some constant value such that n ≤ dc.

Then we can write
d log(n/d) ≤ d log(dc−1)

= (c− 1)d log d

≤ cd log d

≤ cd2

where the first step follows from n ≤ dc, and the last step follows from log d ≤ d.

Thus
log(d log(n/d)/δ) ≤ log(cd2/δ)

≤ 2c log(d2/δ)

≤ 2c log(d2/δ2)

= 4c log(d/δ)

= O(log(d/δ)).

where the second step follows from Fact B.2, the third step follows from δ ∈ (0, 1).

C Tools From Previous Works

We provide a bounding expectation in Section C.1 and show the convexity in Section C.2.

C.1 Bounding expectation

Lemma C.1 (Implicitly in Lemma C.5 and Lemma C.6 in arXiv2 version of [CCLY19]). If s is even,
define λi(wk) = log

w̃k,i

wk,i
then we have

E[λi(wk)] =
2

s

E[(exp(λi(wk)))
α] ≤(n

d
)

α
T · (1 + 2α

sT − 2α
)T .

where the randomness is taken over the sketching matrices {S(k)}T−1
k=1 .

2https://arxiv.org/pdf/1905.11580.pdf

24

https://arxiv.org/pdf/1905.11580.pdf

C.2 Convexity

Here, we show the convexity of ϕi.
Lemma C.2 (Convexity, Lemma 3.4 in arXiv [CCLY19]). For i = 1, · · · , n, let ϕi : Rn → R be the
function defined as

ϕi(v) = log σi(v) = log(a⊤i (
n∑

j=1

vjaja
⊤
j)

−1ai).

Then ϕi is convex.

D Proofs of Running Time of Input-Sparsity Algorithm

P

1√
1+ϵ

Q

√
d · Q

Figure 1: The geometric interpretation of the output ellipsoid. Let P be a given input polytope. We
can find an ellipsoid Q so that 1√

1+ϵ
Q ⊆ P ⊆

√
d ·Q.

Lemma D.1 (Performance of Algorithm 2, formal version of Lemma 5.1). Given a symmetric convex
polytope, for all ϵ ∈ (0, 1), Algorithm 2 can find a (1 + ϵ)2-approximation of John Ellipsoid inside
this polytope with ϵ0 = Θ(ϵ) and T = O(ϵ−1 log(n/d)) in time

O((ϵ−1 log(d/δ) · nnz(A) + ϵ−2 log(n/δ) · dω)T),
where ω ≈ 2.37 denote the current matrix multiplication exponent [Wil12, LG14, AW21, DWZ22,
ADW+24].

Proof. At first, initializing the vector w ∈ Rn takes O(n) time. In the main loop, the per iteration
running time can be decomposed as follows:

• Calculating matrix Bk ∈ Rn×d takes O(nnz(A)) time. Due to the structure of matrix Wk,
we only need to multiply the non-zero entries of i-th row by wk,i to get matrix Bk. The total
non-zero entries here is nnz(A).

• Initializing matrix Sk ∈ Rs×d, where s = Θ(ϵ−1), takes O(ϵ−1n) time.

• Generating diagonal matrix Dk ∈ Rn×n takes Õ(ϵ−2
σ (nnz(A)+dω)) time by using Lemma

2.3.

• Computing matrix H̃k = (B⊤
k DkBk)

−1/2 contains three steps.

– We first compute B⊤
k DkBk ∈ Rd×d, where Dk is a diagonal matrix with N non-zero

entries and N = Θ(ϵ−2
0 d log(nd/δ)). It takes O(ϵ−2

0 dω log(nd/δ)) time by using fast
matrix multiplication. As n = poly(d), we can simplify it as

O(ϵ−2
0 dω log(n/δ)).

– Second, we compute the inverse of the result in the first step, which takes O(dω) time
– Third, we take the square root of the result in second step. To take square root of

a matrix T ∈ Rd×d, we can first decompose T as UΣV ⊤ using SVD, which takes
O(dω). Then we take the square root of the diagonal matrix Σ, which takes O(d).
Then, we multiply them back together to get T 1/2, which takes O(dω). Hence, the
time needed for the final step is

O(dω) +O(d) +O(dω) = O(dω)

25

As O(dω) is less than O(ϵ−2
0 dω log(n/δ)), the total running time for computing H̃k is

O(ϵ−2
0 dω log(n/δ)).

• Computing matrix Q̃k takes O(ϵ−1d2) time.

• Updating vector wk+1 takes O(ϵ−1 nnz(A)) time. We need O(ϵ−1 nnz(ai)) time for each
iteration to compute 1

s∥Q̃k
√
wk,iai∥22. Hence to update vector wk+1, we need

n∑
i=1

O(ϵ−1 nnz(ai)) = O(ϵ−1 nnz(A))

time.

In summary, the overall per iteration running time for the main loop is
O(ϵ−1 log(d/δ) · nnz(A) + ϵ−2 log(n/δ) · dω)

where

ϵσ = Θ(1) and δσ =
δ

T
=

δϵ

log(n/d)

Hence, with ϵσ = Θ(1) and δσ = δ
T = δϵ

log(n/d) , the overall per iteration running time for the main
loop is

O(nnz(A)) +O(ϵ−1n) + Õ(ϵ−2
σ (nnz(A) + dω)) +O(ϵ−2

0 dω log(n/δ)) +O(ϵ−1d2) +O(ϵ−1 nnz(A))

= Õ(ϵ−2
σ (nnz(A) + dω)) +O(ϵ−2

0 dω log(n/δ)) +O(ϵ−1d2) +O(ϵ−1 nnz(A))

= O(ϵ−2
σ (nnz(A) + dω) log(d/δσ) + ϵ−2

0 dω log(n/δ) + ϵ−1d2 + ϵ−1 nnz(A))

= O((ϵ−2
σ log(d/δσ) + ϵ−1) nnz(A) + (ϵ−2

σ log(d/δσ) + ϵ−2
0 log(n/δ))dω + ϵ−1d2)

= O((log(d/δσ) + ϵ−1) nnz(A) + (log(d/δσ) + ϵ−2
0 log(n/δ))dω + ϵ−1d2)

where the first step comes from nnz(A) > n and nnz(A) > d, the second step follows from the
definition of Õ, the third step follows from reorganization, the fourth step follows from ϵσ = Θ(1).

Note that without loss of generality, we can assume 2 ≤ d ≤ n ≤ poly(d). For convenient of the
simplifying complexity related to logs, we can assume n ≥ 2d and δ ∈ (0, 0.1) and ϵ ∈ (0, 0.1).

We can try to further simplify log(d/δσ) + ϵ−1, using the definition of δσ = δ
T = δϵ

log(n/d) , then we
can have

log(d/δσ) + ϵ−1 = log(
d log(n/d)

δϵ
) + ϵ−1

= O(ϵ−1 log(
d log(n/d)

δ
))

= O(ϵ−1 log(d/δ))

where the first step follows from definition of δσ , the second step follows from Fact B.3 and the last
step follows from Fact B.4.

Hence yields the total running time for the main loop as

O((ϵ−1 log(d/δ) · nnz(A) + (log(d/(δϵ)) + ϵ−2
0 log(n/δ)) · dω + ϵ−1 · d2)T).

Then, computing the average of vector w from time 1 to T , and computing the vector vi takes O(nT)
time. Finally, note that we don’t have to output A⊤V A. Instead, we can just output A and vector v,
which takes O(n) time.

Therefore, by calculation, the running time of Algorithm 2 is:

O((ϵ−1 log(d/δ) · nnz(A) + (log(d/(δϵ)) + ϵ−2
0 log(n/δ)) · dω + ϵ−1 · d2)T)

= O((ϵ−1 log(d/δ) · nnz(A) + (log(d/(δϵ)) + ϵ−2 log(n/δ)) · dω)T)
= O((ϵ−1 log(d/δ) · nnz(A) + ϵ−2 log(n/δ) · dω)T)

where the first step comes from ϵ0 = Θ(ϵ) and ω ≥ 2, and the last step follows from n > d and
ϵ ∈ (0, 1). Note that ω denotes the exponent of matrix multiplication [Wil12, LG14, AW21].

26

E Proofs Of Correctness of Input-Sparsity Algorithm

In Section E.2, we provide the bound of λi. In Section E.3, we provide the formal version of
telescoping. In Section E.4, we give the upper bound of ϕi In Section E.1, we show that Algorithm 2
gives a reasonable approximation of the John Ellipsoid.

E.1 Main Result

1 2 3 4 5 6 7 8 9 10 11

3

4

5

6

7

8

9

10

11

12

13

1

2.373

a: the exponent of number of constraints

b
:
th
e
ex
p
on

en
t
of

to
ta
l
ti
m
e
co
m
p
le
x
it
y CCLY19

OURS

Figure 2: Time complexity comparison between CCLY19 (denotes [CCLY19]) and ours, assuming
n = da, ϵ = Θ(1), and ignoring the log factors. The x-axis is corresponding to a and y-axis is
corresponding to b. The nb is the total running time.

E.2 High Probability Bound of λi

We provide a high probability bound of λi as follows.

Lemma E.1 (High probability Argument on λi(w)). Let λi(w) = log
w̃k,i

wk,i
. Then we have

Pr[exp(λi(w)) ≥ 1 + ϵ] ≤
(nd)

α
T e

4α
s

(1 + ϵ)α
.

Moreover, with our choice of s, T , with large enough n and d, we have:

Pr[exp(λi(w)) ≥ 1 + ϵ] ≤ δ

n

Proof. In the proof, we pick α = 2
ϵ log

n
δ . By the choice of α, we have that:

α ≥ log(n/δ)

log 1+ϵ
1+ϵ/4

(5)

sT ≥ 4α (6)

Then, for i ∈ [n], by Markov Inequality on the α moment of exp(λi(w)), we have that:

Pr[exp(λi(w)) ≥ 1 + ϵ] = Pr[exp(λi(w))
α ≥ (1 + ϵ)α]

≤ E[exp(λi(w))
α]

(1 + ϵ)α

≤
(nd)

α
T · (1 + 2α

sT−2α)
T

(1 + ϵ)α

27

≤
(nd)

α
T · (1 + 2α

sT/2)
T

(1 + ϵ)α

≤
n
d

α
T e

4α
s

(1 + ϵ)α

where the first step comes from calculation, the second step comes from Markov Inequality, the third
step comes from applying Lemma C.1, the fourth step comes from the choice of α that sT ≥ 4α, and
the final step comes from 1 + x ≤ ex.

Moreover, for large enough n and d, we have that:

(
n

d
)

1
T = (

n

d
)

ϵ/10
log(nδ) ≤ 1 + ϵ/10 (7)

Also, we have:

e
4
s = e

ϵ
20 ≤ 1 + ϵ/10 (8)

Hence,

Pr[exp(λi(w)) ≥ 1 + ϵ] ≤ (
(1 + ϵ/10)2

1 + ϵ
)α

≤ (
1 + ϵ/4

1 + ϵ
)α

≤ δ

n

where the first step comes from applying Eq (7) and Eq. (8), the second step comes from calculation,
and the last step comes from Eq. (5).

E.3 Proof of Lemma 5.2

Lemma E.2 (Telescoping, Algorithm 2, restatement of Lemma 5.2). Fix T as the number of main
loops executed in Algorithm 2. Let u ∈ Rn denote the iteration-averaged vector computed in
Algorithm 2, where ui =

1
T

∑T
k=1 wk,i. Then for i ∈ [n], with probability 1− δ0,

ϕi(u) ≤
1

T
log

n

d
+

1

T

T∑
k=1

log
w̃k,i

wk,i
+ ϵ0

Proof. We define

u := (u1, u2, · · · , un) ∈ Rn.

For k = 1, · · · , T − 1, we define

wk := (wk,1, · · · , wk,n) ∈ Rn

and

ŵk+1 := (wk,1 · σ1(wk), · · · , wk,n · σn(wk)).

By the convexity of ϕi (Lemma C.2)

ϕi(u) = ϕi(
1

T

T∑
k=1

wk)

≤ 1

T

T∑
k=1

ϕi(wk)

=
1

T

T∑
k=1

log σi(wk)

28

=
1

T

T∑
k=1

log
ŵk+1,i

wk,i

=
1

T

T∑
k=1

log
ŵk+1,i · ŵk,i · w̃k,i

ŵk,i · w̃k,i · wk,i

=
1

T
(

T∑
k=1

log
ŵk+1,i

ŵk,i
+

T∑
k=1

log
ŵk,i

w̃k,i
+

T∑
k=1

log
w̃k,i

wk,i
)

=
1

T
log

ŵT+1,i

ŵ1,i
+

1

T

T∑
k=1

log(
ŵk,i

w̃k,i
) +

1

T

T∑
k=1

log
w̃k,i

wk,i

=
1

T
log

nŵT+1,i

d
+

1

T

T∑
k=1

log(
ŵk,i

w̃k,i
) +

1

T

T∑
k=1

log
w̃k,i

wk,i

≤ 1

T
log

n

d
+

1

T

T∑
k=1

log(
ŵk,i

w̃k,i
) +

1

T

T∑
k=1

log
w̃k,i

wk,i

≤ 1

T
log

n

d
+ log(1 + ϵ0) +

1

T

T∑
k=1

log
w̃k,i

wk,i

≤ 1

T
log

n

d
+ ϵ0 +

1

T

T∑
k=1

log
w̃k,i

wk,i

where the first step uses the definition of u, the second step uses the convexity of ϕi, the third step uses
the definition of ϕi, the fourth step uses the definition of σi, the fifth step comes from reorganization,
the sixth step comes from reorganization, the seventh step comes from reorganization, the eighth step
uses our initialization on w1, the ninth step comes from Lemma 2.2, the tenth step uses Corollary F.5,
and the final step comes from the fact log(1 + ϵ0) ≤ ϵ0.

Note that, the tenth step only holds with probability 1 − δ0, which gives us the high probability
argument in the lemma statement.

E.4 Upper Bound of ϕi

Then, we show the upper bound of ϕi.
Lemma E.3 (ϕi, formal version of Lemma 4.3). Let u be the vector generated during the Algorithm 2,
fix the number of iterations executed in the algorithm as T and s = 1000/ϵ, with 1− δ− δ0, we have

ϕi(u) ≤
1

T
log(

n

d
) + ϵ/250 + ϵ0 ∀i ∈ [n].

Proof. To begin with, by Lemma 5.2, we have that, with probability 1− δ0,

ϕi(u) ≤
1

T
log

n

d
+

1

T

T∑
k=1

log
w̃k,i

wk,i
+ ϵ0

=
1

T
log

n

d
+

1

T

T∑
k=1

λi(wk) + ϵ0

We have with probability 1− δ − δ0, for all i ∈ [n]:

ϕi(u) ≤
1

T
log

n

d
+ ϵ/1000 + ϵ0

≤ 1

T
log

n

d
+

ϵ

250
+ ϵ0

where the first step follows from Lemma E.1.

29

Theorem E.4 (Correctness, restatement of Theorem 5.3). Let ϵ0 = ϵ
1000 . Let v ∈ Rn be the output

of Algorithm 2. For all ϵ ∈ (0, 1), when T = O(ϵ−1 log(n/d)), we have

Pr
[
σi(v) ≤ (1 + ϵ)2, ∀i ∈ [n]

]
≥ 1− δ − δ0

Moreover,
n∑

i=1

vi = d.

Therefore, Algorithm 2 provides (1 + ϵ)2-approximation to program Eq. (2)

Proof. We set

T = 1000ϵ−1 log(n/d) and ϵ0 = ϵ/1000,

By Lemma E.3, we know the succeed probability is 1− δ − δ0. Then, we have for i ∈ [n],

log σi(u) = ϕi(u)

≤ 1

T
log(n/d) + ϵ/250 + ϵ0

≤ ϵ

50
≤ log(1 + ϵ)

where the first step uses the definition of σi, the second step uses Lemma 4.3, the third step comes
from calculation, and the last step comes from the fact that when 0 < ϵ < 1, ϵ

50 ≤ log(1 + ϵ).

In conclusion, σi(u) ≤ 1 + ϵ.

Because, we choose vi =
d∑n

j=1 uj
ui, then

∑n
i=1 vi = d.

Next, we have

σi(v) = a⊤i (A
⊤V A)−1ai

= a⊤i (
d∑n

i=1 ui
A⊤UA)−1ai

=

∑n
i=1 ui

d
σi(u)

≤ (1 + ϵ) · σi(u)

≤ (1 + ϵ) · (1 + ϵ)

where the first step uses the definition of σi(v), the second step uses the definition of V , the third step
uses the definition of σi(u), the fourth step comes from ui is at most (1 + ϵ) true leverage score, and
the summation of true leverage scores is d (by Lemma 2.2), the last step comes from σi(u) ≤ (1+ ϵ).

Thus, we complete the proof.

F Sampling

In this section, we provide the sparsification tool used in Line 11 of Algorithm 2. Especially, we show
how to approximate the matrix that has pattern A⊤WA, where W is some non-negative diagonal
matrix, by using sample matrix D.
Lemma F.1 (Matrix Chernoff Bound [Tro11]). Let X1, . . . , Xs be i.i.d. symmetric random matrices
with E[X1] = 0, ∥X1∥ ≤ γ almost surely and ∥E[X⊤

1 X1]∥ ≤ σ2. Let C = 1
s

∑
i∈[s] Xi. For any

ϵ ∈ (0, 1), it holds that

Pr[∥C∥ ≥ ϵ] ≤ 2d · exp
(
− sϵ2

σ2 + γϵ/3

)
.

30

To better monitor the whole process, it is useful to write H(w) as A⊤WA, where A ∈ Rn×d is the
constraint matrix and W is a diagonal matrix with W = diag(w). The sparsification process is then
sample the rows from the matrix

√
WA.

We define the leverage score as follows:
Definition F.2. Let B ∈ Rn×d be a full rank matrix. We define the leverage score of the i-th row of
B as

σi(B) := b⊤i (B
⊤B)−1bi,

where bi is the i-th row of B.

Next we define our sampling process as follows:

Definition F.3 (Sampling process). For any w ∈ K, let H(w) = A⊤WA. Let pi ≥ β · σi(
√
WA)/d,

suppose we sample with replacement independently for s rows of matrix
√
WA, with probability

pi of sampling row i for some β ≥ 1. Let i(j) denote the index of the row sampled in the j-th trial.
Define the generated sampling matrix as

H̃(w) :=
1

s

s∑
j=1

1

pi(j)
wi(j)ai(j)a

⊤
i(j).

For our sampling process defined as Definition F.3, we can have the following guarantees:
Lemma F.4 (Sampling using Matrix Chernoff, formal version of Lemma 4.2). Let ϵ0, δ0 ∈ (0, 1)

be the precision and failure probability parameters, respectively. Suppose H̃(w) is generated as in
Definition F.3, then with probability at least 1− δ0, we have

(1− ϵ0) ·H(w) ⪯ H̃(w) ⪯ (1 + ϵ0) ·H(w).

Moreover, the number of rows sampled is

s = Θ(β · ϵ−2
0 d log(d/δ0)).

Proof. The proof follows from the high level idea of Lemma 5.2 in [DSW22] by designing the family
of random matrices X . Let

yi = (A⊤WA)−1/2
√
W i,i · ai

be the i-th sampled row and set Yi =
1
pi
yiy

⊤
i .

Using H(w) = A⊤WA, we can write

yi = (H(w))−1/2
√
W i,i · ai.

Let Xi = Yi − Id . Note that
n∑

i=1

yiy
⊤
i

=

n∑
i=1

H(w)−1/2Wi,i · aia⊤i H(w)−1/2

= H(w)−1/2(

n∑
i=1

Wi,iaia
⊤
i)H(w)−1/2

= H(w)−1/2(A⊤WA)H(w)−1/2

= Id. (9)

where the first step uses the definition of yi, the second step comes from reorganization, the third step
comes from Fact B.1, and the last step uses the definition of H(w).

Also, the norm of yi connects directly to the leverage score:

31

∥yi∥22 =
√
W i,ia

⊤
i (A

⊤WA)−1
√
W i,iai

= σi(
√
WA). (10)

We use i(j) to denote the index of row that has been sampled during j-th trial.

We first show that E[X] = 0. Note that
E[X] = E[Y]− Id

= (

n∑
i=1

pi ·
1

pi
yiy

⊤
i)− Id

= 0.

where the first step uses the definition of X , the second step uses the definition of Y and the definition
of expectation, and the last step uses Eq. (9).

Now, to bound ∥X∥, we provide a bound for any ∥Xi∥ as follows
∥Xi∥ = ∥Yi − Id∥

≤ 1 + ∥Yi∥

= 1 +
∥yiy⊤i ∥

pi

≤ 1 +
d · ∥yi∥22

β · σi(
√
WA)

= 1 +
d

β
.

where the first step uses the definition of Xi, the second step uses triangle inequality and the definition
of Id, the third step uses the definition of Yi, the fourth step comes from pi ≥ β · σi(

√
WA)/d and

the definition of ℓ2 norm and the last step comes from Eq. (10).

Then we bound ∥E[X⊤X]∥ as follows.

E[X⊤X]

= E[I2d] + E[Y ⊤Y]− 2E[Y]

= Id +

n∑
i=1

pi
y⊤i yiyiy

⊤
i

p2i
− 2

n∑
i=1

pi
yiy

⊤
i

pi

= Id + (

n∑
i=1

σi(
√
WA)

pi
yiy

⊤
i)− 2Id

≤
n∑

i=1

d

β
yiy

⊤
i − Id

= (
d

β
− 1)Id,

where the first step uses definition of X , the second step uses the definition of Y and the definition
of expectation, the third step follows from Eq. (9), Eq. (10) and the definition of expectation, the
third step comes from pi ≥ β · σi(

√
WA)/d, and the last step comes from Eq. (9) and distributive

property.

The spectral norm is then

∥E[X⊤X]∥ ≤ d

β
− 1.

Putting everything together, we choose

γ = 1 +
d

β
, σ2 =

d

β
− 1

32

and then we apply Matrix Chernoff Bound as in Lemma F.1:

Pr[∥C∥ ≥ ϵ0]

≤ 2d · exp
(
− sϵ20
d/β − 1 + (1 + d/β)ϵ0/3

)
= 2d · exp(−sϵ20 ·Θ(β/d))

≤ δ0

where we choose s = Θ(β · ϵ−2
0 d log(d/δ0)).

Finally, we can show that

C =
1

s
(

s∑
j=1

1

pi(j)
yi(j)y

⊤
i(j) − Id)

= H(w)−1/2(
1

s

s∑
j=1

1

pi(j)
wi(j)ai(j)a

⊤
i(j))H(w)−1/2 − Id

= H(w)−1/2H̃(w)H(w)−1/2 − Id.

where the first step uses the definition of C, the second step uses the definition of yi(j), and the last
step uses the definition of H̃(w).

Therefore, we can conclude the desired result via ∥C∥ ≥ ϵ0.

Corollary F.5. Let ϵ0 denote the parameter defined as Algorithm 2. Then we have with probability
1− δ0

(1− ϵ0) · w̃i ≤ ŵi ≤ (1 + ϵ0)w̃i,

for all i ∈ [n].

Proof. Since if

(1− ϵ0)A ⪯ B ⪯ (1 + ϵ0)A,

then for all x, we know

(1− ϵ0) · x⊤Ax ≤ x⊤Bx ≤ (1 + ϵ0) · x⊤Ax.

Thus, using lemma (Lemma F.4) implies the weights guarantees.

G Small Treewidth Setting

In this section, we provide an algorithm (Algorithm 3) that approximate the John Ellipsoid in
O(ϵ−1 · (nτ2) · log(n/d)) time with small treewidth setting. In Section G.1, we prove the correctness
of our implementation. In Section G.2, we show the running time of it.

G.1 Correctness

Note that for Algorithm 3, we compute the exact leverage score of each row, the randomness of
sketching matrix S and diagonal sampling D doesn’t play a role in our analysis. It immediately
follows that the following corollary holds:
Corollary G.1 (Telescoping, Algorithm 3). Fix T as the number of main loops executed in Al-
gorithm 3. Let u ∈ Rn denote the iteration-averaged vector computed in Algorithm 3, where
ui =

1
T

∑T
k=1 wk,i. Then for i ∈ [n],

ϕi(u) ≤
1

T
log

n

d

Next, we prove the correctness of our implementation with small treewidth setting.

33

a

b

c

d

e

f

g

h

i

(a)

a,b,c

c,f ,e

c,d,f

e,h

f ,i,g

1

2

3

4

5

(b)

Figure 3: (a) A graph G(V,E) (b) The tree decomposition for graph G. We can see that the union of
the vertices in all bags are nodes a, · · · , i, which is the same as V (G). For every edge u, v ∈ V (G),
we can find at least one bag containing u and v. For example, for edge (c, b) in graph G, bag 1
contains both c and b. Furthermore, the bags containing any one node in (a) is a subgraph of tree (b).
For example, the bags containing node c are bags 1, 2, 3, which is a subgraph of the tree. Similarly,
we can see that the bags containing node f is bags 3, 5, which is also a subgraph of the tree. For edge
(c, f), bag 2 and 3 both contain vertices c and f . For edge (i, g), bag 5 contains vertices i and g.

Theorem G.2 (Correctness of Algorithm 3, formal version of Theorem 6.2). Let u be the output of
Algorithm 3. For all ϵ ∈ (0, 1), when T = O(ϵ−1 log(n/d)), we have:

σi(u) ≤ (1 + ϵ)
n∑

i=1

ui = d

Proof. We set

T = 1000ϵ−1 log(n/d)

We also have for i ∈ [n],

log σi(u) = ϕi(u)

≤ 1

T
log(n/d)

≤ ϵ

50
≤ log(1 + ϵ)

where the first step uses the definition of σi(u), the second step follows from Corollary G.1, the third
step follows from calculation, and the last step follows from the fact that for small ϵ, ϵ/50 ≤ log(1+ϵ).
In conclusion, σi(u) ≤ 1 + ϵ.

Additionally, since for k ∈ [T], each row of wk,i is a leverage score of some matrix, according to
Lemma 2.2, we have:

n∑
i=1

ui =

n∑
i=1

1

T

T∑
k=1

wk,i

=
1

T

T∑
k=1

n∑
i=1

wk,i

=
1

T

T∑
k=1

d

=
1

T
Td

= d

where the first line uses the definition of u, the second step follows from reorganization, the third step
follows from Lemma 2.2, the fourth and the final step comes from calculation.

Thus, we complete the proof.

34

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

(a)
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

(b)

10

9

8 7

6

5

4

3

2

1

(c)

Figure 4: (a) A 10× 10 positive definite matrix P = AA⊤, where the blue dot represent the non-zero
elements in P . (b) The Cholesky factor L of AA⊤. (c) The corresponding elimination tree for matrix
P , where each node represent one column in the Cholesky factor. We can see that, as the row index
of the first subdiagonal nonzero entry of the 6-th column is 8, the parent of node 6 is 8. Furthermore,
the non-zero pattern of this coloumn is {6, 8, 10}, which is a subset of vertices on the path from node
6 to the root in the elimination tree.

G.2 Running Time

The rest of this section is to prove the running time of Algorithm 3. We first show the time needed to
compute the leverage score with small treewidth setting.
Lemma G.3. Given the Cholesky factorization LL⊤. Let a⊤i denote the i-th row of A, for each i ∈ [n].
Let B =

√
HA ∈ Rn×d where H is a nonnegative diagonal matrix. Let σi = b⊤i (B

⊤B)−1bi. We
can compute σ ∈ Rn in O(nτ2) time.

Proof. Let LL⊤ = B⊤B be Cholesky factorization decomposition. Then, we have

b⊤i (B
⊤B)−1bi = b⊤i L

−⊤L−1bi

= (L−1bi)
⊤(L−1bi).

Using the property of elimination tree, we have each row of B has sparsity τ and they lie on a path
of elimination tree T . In this light, we are able to output L−1bi in O(τ2) time, and then compute a
solution of sparsity O(τ).

Therefore, we can compute the score for a single column in O(τ2). In total, it takes O(nτ2).

Next, we show our main result.
Theorem G.4 (Performance of Algorithm 3, formal version of Theorem 6.1). For all ϵ ∈ (0, 1), we
can find a (1 + ϵ)-approximation of John Ellipsoid defined by matrix A with treewidth τ inside a
symmetric convex polytope in time O((nτ2) · T) where T = ϵ−1 log(n/d).

Proof. At first, initializing the vector w takes O(n) time. In the main loop, the per iteration running
time can be decomposed as follows:

• Using Lemma 2.7, calculating the Cholesky decomposition for B⊤
k Bk takes O(nτ2) time.

• Using Lemma G.3, computing wk+1 takes O(nτ2) time.

Hence, the overall per iteration running time for the main loop is O(nτ2) time, hence yields the total
running time for the main loop as O((nτ2)T).

Then, computing the average of vector w from time 1 to T , and computing the vector vi takes O(nT)
time. Finally, note that we don’t have to output A⊤V A. Instead, we can just output A and vector v,
which takes O(n) time.

Therefore, by calculation, the running time of Algorithm 3 is: O((nτ2)T). Thus, we complete the
proof.

35

H Limitations

While our findings primarily revolve around algorithmic advancements, we also see potential in
exploring a matching lower bound for this problem in future research.

I Impact Statement

Our paper introduces research aimed at advancing the area of Machine Learning and Optimization.
While there are numerous societal implications associated with our research, we believe none require
particular emphasis in this context. We propose two algorithms that solve the John Ellipsoid problem
more efficiently. We hope our work can inspire effective algorithm design and promote a better
understanding of John Ellipsoid problem and the D-optimal design problem. Since this is a theoretical
paper, we do not foresee any potential negative societal impact.

36

	Introduction
	Algorithm in Nearly Input-Sparsity Time
	Algorithm for Small Treewidth

	Preliminaries
	Notations
	Leverage Score
	Treewidth
	Cholesky Factorization
	Matrix Concentration

	Problem Formulation
	Technical Overview
	Overview of Previous Work
	Algorithm in Nearly Input-Sparsity Time
	Algorithm for Small Treewidth

	Analysis of Input-Sparsity Algorithm
	Running Time of Input-Sparsity Algorithm
	Telescoping Lemma
	Correctness of Input-Sparsity Algorithm

	Analysis of Small Treewidth Algorithm
	Conclusion
	Related Works
	Basic Tools
	Tools From Previous Works
	Bounding expectation
	Convexity

	Proofs of Running Time of Input-Sparsity Algorithm
	Proofs Of Correctness of Input-Sparsity Algorithm
	Main Result
	High Probability Bound of
	Proof of Lemma 5.2
	Upper Bound of

	Sampling
	Small Treewidth Setting
	Correctness
	Running Time

	Limitations
	Impact Statement

