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Abstract

We propose the attention-inspired numerical
solver (AttNS), a concise method that helps the
generalization and robustness issues faced by the
AI-Hybrid numerical solver in solving differen-
tial equations due to limited data. AttNS is in-
spired by the effectiveness of attention modules
in Residual Neural Networks (ResNet) in enhanc-
ing model generalization and robustness for con-
ventional deep learning tasks. Drawing from
the dynamical system perspective of ResNet, We
seamlessly incorporate attention mechanisms into
the design of numerical methods tailored for the
characteristics of solving differential equations.
Our results on benchmarks, ranging from high-
dimensional problems to chaotic systems, show-
case AttNS consistently enhancing various numer-
ical solvers without any intricate model crafting.
Finally, we analyze AttNS experimentally and
theoretically, demonstrating its ability to achieve
strong generalization and robustness while ensur-
ing the convergence of the solver. This includes
requiring less data compared to other advanced
methods to achieve comparable generalization
errors and better prevention of numerical explo-
sion issues when solving differential equations.
https://github.com/dedekinds/NeurVec.

1. Introduction
The AI-Hybrid numerical solvers (AHS) are emerging meth-
ods (Mishra, 2018; San & Maulik, 2018; Bar-Sinai et al.,
2019; Kochkov et al., 2021; Subel et al., 2021; Bruno et al.,
2022; List et al., 2022; Dresdner et al., 2022; Frezat et al.,
2022; Huang et al., 2023b; Xu et al., 2023) for solving
differential equations, designed to integrate classical nu-
merical techniques with deep learning technology. These
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approaches leverage high-resolution data to learn correc-
tions (Um et al., 2020) for low-resolution numerical solu-
tions. They aim to combine the strengths of both techniques
– the reliability of classical numerical methods and the ex-
pressive power of neural networks – to mitigate the inherent
speed-accuracy trade-off in solving differential equations.
For example, for an ordinary differential equation (ODE)

du(t)/dt = f [u(t)],u(0) = c0, (1)

where u(t) is a time-dependent d-dimensional state and the
c0 ∈ Rd is initial condition. The forward AHS of Eq. (1)
can usually (Dresdner et al., 2022) be written as

un+1 = un + S(f ,un,∆tc)∆tc︸ ︷︷ ︸
Low-resolution term

+Net(un|ϕ,Df )︸ ︷︷ ︸
Correction term

, (2)

where Net(·) is a neural network with learnable parame-
ters ϕ, S(·) is a numerical integration scheme Df denotes
the high-resolution data, i.e., the data with high-precision
generated by fine step size ∆tf . A coarse step size, ∆tc, ac-
celerates computation, and the associated decrease in accu-
racy is compensated by the correction term Net(un|ϕ,Df )
trained by Df , achieving a good balance between speed and
accuracy in solving differential equations.

However, the performance of current AHS is heavily reliant
on the quantity of high-quality training data due to the data-
driven deep learning approach adopted by the correction
term, and the obtaining of sufficient training data is very
expensive. For instance, if we use data with ∆tf = 0.001
to train the correction term for ∆tc = 0.1, generating a
single trajectory of data would require over 100× additional
computations, which are hard to be accelerated by paral-
lelization due to the iterative nature of Eq.(2). Besides,
the high demand for data imposed by complex equations
(Huang et al., 2023b) further exacerbates the acquisition
cost. Given these challenges, we ask a critical question:

Can we improve the AHS for effective computations even in
limited data scenarios?

To answer this question, in this paper, we conduct a com-
prehensive analysis using the ODE shown in Eq. (1) as
examples. First, we present the specific challenges for AHS
in limited data scenarios in Section 2.3. In addition to the
inherent generalization issues of neural networks due to lim-
ited data, robustness issues (Liang et al., 2022) related to
chaos in solving differential equations need to be carefully
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Figure 1: The correspondence of (a) ResNet and (c) forward numerical solver. (d) is a numerical solver with the attention
mechanism (ours) inspired by the structure of (b) ResNet with attention. ⊙ is element-wise multiplication and ⊕ is the
addition operator. The use of ⊕ is tailored for solving differential equations and see Section 3 for details.

considered. In response to these challenges, we note that
the attention mechanism module in Residual Neural Net-
work (ResNet) has been widely validated to effectively en-
hance the model’s generalization and robustness (Hu et al.,
2018; Huang et al., 2020; Woo et al., 2018; Wang et al.,
2020; Liang et al., 2020; Zhong et al., 2023) in conventional
deep learning tasks (see Section 2.4). Also, considering
the correspondence between ResNet and numerical solvers
established in the dynamical system perspective of ResNet
(see Section 2.2 and Fig.1), we follow the characteristics
of differential equation solving and seamlessly integrate
the attention mechanism module into the numerical solver,
proposing a simple yet effective Attention-Inspired Numeri-
cal Solver (AttNS) in Section 3.

Through experiments with several standard benchmarks of
high-dimensional or chaotic systems, including the spring-
mass system, the elastic pendulum, and the K-link pendu-
lum, the results in Section 4 show that AttNS consistently
outperforms existing state-of-the-art AHS in limited data
scenarios, without the need for intricate model crafting.
Next, in Section 5, we conduct experimental and theoret-
ical analyses of AttNS, proving its strong generalization
and robustness abilities akin to the attention mechanism in
conventional deep learning tasks, while ensuring solver con-
vergence. This includes achieving equivalent generalization
errors with less data compared to other advanced methods
and better preventing numerical explosion issues in solving
differential equations. Finally, we discuss the limitations of
AttNS. We summarize our contributions as follows:

• For effective AHS in limited data scenarios, we incor-
porate the attention mechanism into AHS and proposed
a simple-yet-effective method AttNS. The standard
benchmarks show that AttNS consistently outperforms
other advanced AHS methods.

• We conducted experimental and theoretical analyses
for AttNS, demonstrating its strong generalization and
robustness capabilities while ensuring solver conver-

gence. Finally, we discuss the limitations of AttNS.

2. Preliminaries and Related Works
2.1. The Solving of Differential Equation

For a given equation as shown in Eq. (1), classical forward
numerical methods, such as the Euler method (Shampine,
2018), Runge-Kutta method (Butcher, 2016), etc., solve it
using the iterative formula

un+1 = un + S(f ,un,∆t)∆t, u0 = c0. (3)

Different methods have different S. For example, for the Eu-
ler method (Shampine, 2018), we have S(f ,un,∆t)∆t =
f(un)∆t, where ∆t is a given step size, and un ∈ Rd is an
approximated solution at time

∑n
i=0 ∆t. The AI-Hybrid nu-

merical solver (AHS) considered in this paper, as shown in
Eq. (2), introduces a correction term to help high-precision
solving of the differential equation even with larger step
sizes which makes solving faster. For other methods uti-
lizing deep learning techniques for solving, such as direct
fitting using neural networks (Geneva & Zabaras, 2022;
Liang et al., 2021), operator-based methods focusing on
replacing differential operators (Li et al., 2021b; Lu et al.,
2021), neuralODE-based methods (Chen et al., 2018; Kidger
et al., 2021; Dupont et al., 2019), Hamiltonian-based meth-
ods (Greydanus et al., 2019; Chen et al., 2019; Liang et al.,
2022), and physics-informed neural networks (Choudhary
et al., 2020; Raissi et al., 2019; Ji et al., 2021; Cai et al.,
2021), they’re hard to conduct a fair comparison with
AHS due to their fundamentally different paradigms.
Therefore, this paper primarily focuses on AHS instead of
other deep learning-based solving methods.

2.2. Dynamical System Perspective of ResNet

As shown in Fig.1(a), the simplified residual block in
ResNet (He et al., 2016) can be written as

xt+1 = xt + f(xt|θt), (4)
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where xt ∈ Rd is the input of neural network f(·|θt) with
the learnable parameters θt in t-th block . Several recent
studies (Weinan, 2017; Queiruga et al., 2020; Zhu et al.,
2022; Meunier et al., 2022) have uncovered valuable con-
nections between residual blocks and dynamic systems. i.e.,
the residual blocks can be interpreted as one step of forward
numerical methods in Eq. (3) and Fig.1(c). The initial con-
dition u0 = c0 in Eq. (3) corresponds to the initial input x0

of the network, and ut corresponds to the input feature xt

in t-th block. The output of neural network f(·|θt) in t-th
block can be regarded as an integration S(ut, f ,∆t) with
step size ∆t and numerical integration scheme S. Given the
above connection, some dynamical system theories (Chang
et al., 2017; Chen et al., 2018; Huang et al., 2022b; Lu et al.,
2018) can be transferred to the analysis of ResNet.

2.3. The Challenges for AHS in Limited Data Scenarios

We first briefly define limited data scenarios (LDS). Gener-
ally, the performance of AHS is positively correlated with
the training data size (Huang et al., 2023b), and reaches sat-
uration at data quantity Nb, i.e., further increasing data size
hardly boosts performance. In this paper, LDS are situation
that the data size is ⌊pNb⌋, where 1 ≤ p ≤ 0.5. In fact, the
LDS easily occurs as Nb required for a given equation is not
known before solving and generating data. A sound way is
to make sure, as much as possible, that the solver maintains
a good enough solving performance even in LDS, i.e., the
goal of this paper. The main challenges of this goal are:

(1) Generalization issue. When the training data size is
insufficient, the deep learning module in AHS suffers from
the inherent generalization problem (Zhang et al., 2021;
Neyshabur et al., 2017), i.e., poor prediction of the inputs
outside the training data distribution. This results in a trained
correlation term that cannot accurately compensate for the
accuracy loss caused by the low-resolution term.

(2) Robustness issue. Many differential equations are
chaotic (Greydanus et al., 2019), i.e. sensitive to the small
perturbations in inputs, which makes it hard for AHS to fun-
damentally model the ubiquitous and elusive randomness
of chaos with only limited data, leading to poor generaliza-
tion (Abu-Mostafa et al., 2012). It is easy to accumulate and
propagate error for a non-robust AHS during the iterative
solution process in Eq. (2), leading to a numerical explosion.

2.4. Attention Mechanism for ResNet

For the residual block mentioned in Eq. (4), the attention
mechanism1 can be formulated as

xt+1 = xt + f(xt|θt)⊙ αt, (5)
where αt = Q[f(xt|θt)] is t-th attention module (Hu et al.,
2018; Woo et al., 2018) and ⊙ is element-wise multiplica-

1Unlike Transformer based attention (Vaswani et al., 2017),
the attention mechanisms considered in this paper are for ResNet,
such as SENet (Hu et al., 2018).

tion, which also shown in Fig.1(b). many recent works (Hu
et al., 2018; Huang et al., 2020; Woo et al., 2018; Wang
et al., 2020; Liang et al., 2020; Zhong et al., 2023) vali-
date the effectiveness of these attention modules to improve
model’s generalization and robustness in conventional deep
learning tasks, such as image classification, detection, seg-
mentation, style migration, etc. Specifically,

(1) Improving generalization. The attention mechanism
has the capability to adaptively learn the weights of features
across various tasks and input data (Qin et al., 2021; Huang
et al., 2020; Wang et al., 2020). This flexibility enables
the model to focus on task-relevant information, adapt to
new data, and effectively capture intricate relationships, ulti-
mately enhancing the generalization performance of various
conventional deep learning tasks.

(2) Enhancing robustness. The attention mechanism has
been theoretically proven to mitigate small perturbations
in the input, thereby improving robustness (Zhong et al.,
2023). Specifically, let ϵ represent the perturbation from
noise, satisfying ∥xϵ

0 − x0∥ = ϵ. The upper bound of the
error ∥xϵ

t − xt∥ at the L-th layer, caused by xϵ
0 as input, is

given by ϵ
∏L−1

t=1 (1 + αt∥θt∥2) according to Eq (5), where
the adaptive control is exerted by the attention weights αt.
This perspective is supported by experimental evidence in
tasks such as style transfer and noise attacks (Liang et al.,
2020; Zhong et al., 2023).

3. Method
As mentioned in Section 2.4, attention mechanisms can help
model generalization and robustness issues in conventional
deep learning tasks. These issues, as revealed in Section
2.3, happen to be the primary challenges for AHS in limited
data scenarios. Therefore, it is natural for us to consider
seamlessly transferring the attention mechanism to the nu-
merical solver by exploiting the correspondence between
the forward numerical solver and ResNet mentioned in Sec-
tion 2.2. Some previous works also considered using atten-
tion to help solution (Geneva & Zabaras, 2022; Takamoto
et al., 2023; Rodriguez-Torrado et al., 2022; Hemmasian &
Barati Farimani, 2023), but they are not for AHS and not
the attention mechanisms in Eq. (5).

(1) A straightforward baseline (AttNS-m). According to
Eq. (5), the straightforward numerical solving with attention
can be set as Eq. (6) with multiplication operator.

AttNS-m: ûn+1 = ûn + Ŝ∆tc⊙Q[Ŝ|ϕ], (6)
where Ŝ = S(f , ûn,∆tc) and ϕ is the learnable parame-
ters of attention module Q[·|ϕ]. The training loss is defined
as the ℓ2-Squared distance between the estimated trajec-
tory û = [û1, ..., ûN ] and the ground truth trajectory from
the dataset D(traj(u)) following previous works (Dresdner
et al., 2022):

Re = λ · ∥û− u∥22/N, (7)
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Figure 2: a. The loss curves for two kinds of AttNS-m and AttNS. The loss minimization of multiplicative attention is fast
at first and then slow during the last epochs, which have a local minimum with a large loss; b. The mean of attention value
Q[Ŝ|ϕ] (blue) while using Eq.(6), which quickly converges to the vicinity of constant 1 during training.

where λ is a penalty coefficient. λ can alleviate the problem
that the value of Re is too small due to the magnitude of
u in some specific differential equations being too small.
This is because, in such a scenario, the gradient will be
small enough and affect the optimization of the learnable
parameter ϕ. For Ŝ ∈ Rd, the architecture of the attention
module (Xu et al., 2023) in Eq. (6) is

Q[Ŝ|ϕ] = Wh ◦ a ◦ · · · ◦W2 ◦ a ◦W1[Ŝ], (8)

where a is rational activation function (Boullé et al., 2020);
Wi, i = 2, · · · , h − 1 are d1 × d1 matrices, Wh ∈ Rd×d1

and W1 ∈ Rd1×d. We set d1 = 1024 and h = 2 by default.
In Section 5, we will further discuss the concise design in
Eq. (8) is tailored for efficient solving of AHS, on the one
hand, the small number of parameters enables faster infer-
ence speed, and on the other hand, it can be proven that this
architecture has the desirable Lipschitz continuity, which
provides a strong guarantee for the convergence analysis of
our proposed solver. Furthermore, we compare this attention
module architecture with other variants.

(2) A baseline tailored for AHS (AttNS). Actually, in
mathematics, the attention of AttNS-m in Eq. (6) with multi-
plicative operator to calibrate the error from low-resolution
term may impact the accuracy. The reasons are that (i)
the step size ∆tc in Ŝ used for discretization is usually
not equal to the new step size ∆t′c := ∆tc ⊙ Q[Ŝ|ϕ] in
AttNS-m, which isn’t satisfied the mathematical correctness
in Eq. (3); (ii) During the learning process of Q[Ŝ|ϕ], this
mathematical correctness further forces it to expend some
optimization efforts primarily fitting a constant vector I with
all elements being 1, which will bring negative impacts on
its accuracy (Wang et al., 2022). Specifically, in Eq. (2),
the correction term aims to compensate for the errors of
the low-resolution term, and hence the magnitude of the

Algorithm 1 The processing of AttNS and AttNS-m.
Input: A coarse step size ∆tc; The number of step N which
satisfied the evaluation time T = N∆tc; A given equation
du/dt = f(u),u(0) = c0; A given numerical integration scheme
S; The high-quality dataset D(traj(u)). The attention module
Q[·|ϕ]; The learning rate η.
Output: The learned attention module Q[·|ϕ].

for epoch from 0 to Total epoch do
▷ Estimate the trajectories

Sample u = [u0,u1, ...,uN ] ∼ D(traj(u));
û0 ← u0;
for t from 0 to N − 1 do

Calculate integration term Ŝ ← S(f ,ut,∆tc);
Calculate attention term Q[Ŝ|ϕ];
Get ût+1 by Eq.(6) for AttNS-m or Eq.(10) for AttNS;

end for
▷ Update the attention module

û← [û1, ..., ûN ];
Calculate the loss Re by Eq.(7);
Update the parameters ϕ by ϕ← ϕ− η∇ϕRe;

end for
return the attention module Q[·|ϕ]

compensation term ϵc will be small. Then if multiplicative
attention is used, we have Ŝ∆tc + ϵc = Ŝ∆tc ⊙ Q[Ŝ|ϕ],
i.e., (Q[Ŝ|ϕ] − I)Ŝ∆tc = ϵc. Since ∥Ŝ∆tc∥ ≫ ∥ϵc∥, we
have Q[Ŝ|ϕ] ≈ I. This analysis is also supported by Fig. 2b.

To mitigate this issue, a simple-yet-effective strategy is to
normalize the attention as I + Q̃[Ŝ|ϕ] and just learn the
residual part Q̃[Ŝ|ϕ], and we can rewrite Eq. (6) as

ûn+1 = ûn + Ŝ∆tc⊙
(
I+ Q̃[Ŝ|ϕ]

)
= ûn + Ŝ∆tc +Ŝ∆tc ⊙ Q̃[Ŝ|ϕ]︸ ︷︷ ︸

Additive attention

,
(9)

where the term Ŝ∆tc ⊙ Q̃[Ŝ|ϕ] can be regarded as the addi-
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Figure 3: The results of various AHS for four forward numerical solvers on the spring-mass system with different dimensions.
“50%” denotes that we reduce the amount of training data by 50%. The smaller the loss, the better the performance.

tive attention (Wu et al., 2021; Cheuk et al., 2021; Huang
et al., 2022a; Li et al., 2021a; Gao et al., 2021) correction
term. Briefly, we set the iterative formula of AttNS to be

AttNS: ûn+1 = ûn + Ŝ∆tc+Q[Ŝ|ϕ]. (10)

From Eq. (9), AttNS ensures the benefits of attention while
satisfying mathematical correctness over AttNS-m, as il-
lustrated in Fig.2a. In terms of the formula, the primary
distinction between AttNS and general AHS lies in their
input, where the former is S(f , ûn,∆tc) and another is ûn.
In fact, this difference is sufficient for AttNS to achieve
better generalization error and ensure robustness, which
will be discussed in detail in Section 5. Furthermore, the
performance gap introduced by the input of attention has
also been observed in conventional deep learning tasks (Guo
et al., 2020; Hu et al., 2018; Huang et al., 2023a), further
validating the rationale behind AttNS. We summarise AttNS
and AttNS-m in Alg. 1.

4. Experiments
In this section, we consider two perspectives to verify the
effectiveness of the proposed AttNS: (1) on different nu-
merical solvers and (2) different differential equation bench-
marks. Specifically, since AttNS is one of AHS, we use

many commonly used forward numerical solvers as back-
bones to evaluate the enhancement achieved by AttNS, in-
cluding the Euler method, Improved Euler method, 3rd and
4th order Runge-Kutta methods (see Appendix for details).
On the other hand, to demonstrate that AttNS is competent
for complex differential equations, we further experiment
on two chaotic dynamical systems on the 4th order Runge-
Kutta method, i.e., k-link pendulum and elastic pendulum.
For all experiments in this section, for fair comparisons,
we follow the settings in (Huang et al., 2022c; Chen et al.,
2020) for all generations of initial conditions and metrics. In
this section, we consider AttNS, AttNS-m, NeurVec (Huang
et al., 2023b), CSM (Dresdner et al., 2022) and FSNet (Xu
et al., 2023) as the baselines of AHS.

(1) On different numerical solvers. In this section, we con-
sider a high-dimensional linear system, namely the spring-
mass system, and four forward numerical solvers (see Ap-
pendix for details). In a spring-mass system, there are d
masses and d+ 1 springs connecting in sequence, and they
are placed horizontally with two ends connected to two fixed
blocks. The corresponding ODE of this system is

d
dt

(
qi
pi

)
=

(
pi/m
ki (qi−1 − qi) + ki+1 (qi+1 − qi)

)
, (11)

i = 1, 2, · · · , d, q0 = qd+1 = 0, where mi and ki are the
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Figure 4: The simulation on different chaotic systems with
step size 1e − 1. The Mean Squared Error (MSE) loss on
the test set for (a) pendulum and (b) elastic pendulum.

mass of the t-th mass and force coefficient of the t-th spring,
respectively. The momentum and the position of t-th mass
are denoted as pi and qi. We adopt the coarse step size
∆t = 2e− 1 for the numerical solver and the fine step size
1e− 3 for training the AHS.

The experiment results at evaluation time T=20 are shown
in Fig. 3. For the Euler method with low simulation accu-
racy, our AttNS achieves consistent performance with the
state-of-the-art (SOTA) AHS for the spring-mass system
in different dimensions. For other numerical solvers with
higher accuracy, AttNS can better enhance the solver than
others. Even for the spring-mass system with increasing di-
mensions, although the difficulty of the simulation increases,
AttNS can still maintain the performance. In addition, we
can observe that our AttNS can achieve similar performance
as the SOTA AHS with less data size, showing that we are
capable of training an efficient and robust AHS with a small
amount of data. AttNS-m performs poorly in most different
settings, which is consistent with the analysis of Section 3.

(2) On different chaotic systems. We reduce the amount of
training data by 50% and use two chaotic dynamical systems
to verify the effectiveness of our AttNS, i.e., the elastic
and k-link pendulum. The elastic pendulum considers a
ball without volume connected to an elastic rod. Under
the effect of gravity and force of spring (Breitenberger &
Mueller, 1981), the motion of the ball will be chaotic, and
its ODE is

d
dt

 θ
r

θ̇
ṙ

 =


θ̇
ṙ
1
r
(−g sin θ − θ̇ṙ)

rθ̇2 − k
m
(r − l0) + g cos θ

 , (12)

where k,m, l0, and g are related constants. There are two

variables θ and r in Eq. (12). Specifically, r is the length
of the spring, and θ is the angle between the spring and
the vertical axis. For k-link pendulum, it considers K balls
connected end to end with K rods under the effect of gravity
(Lopes & Tenreiro Machado, 2017), and its ODE is

d(θ, θ̇)/dt = (θ̇,A−1b) (13)

where θ = (θ1, θ2, · · · , θK) and θi is the angle between the
ith rod and the vertical axis. Let b = (b1, b2, · · · , bK) and
bi = −

∑K
j=1

[
c(i, j)θ̇2j sin (θi − θj)

]
−(K−i+1)g sin θi.

A is a K × K matrix and the element in Ai,j is [K −
max(i, j) + 1] cos (θi − θj). The simulation results are
shown in Fig. 4. From Fig. 4, we can observe that even
for chaotic systems that are more difficult to solve, the
proposed AttNS still maintains a better solution accuracy
under limited data scenarios and outperforms other AHS.

5. Discussion
(1) The convergence analysis of AttNS. Our AttNS is a
numerical solver, so we need to estimate its numerical con-
vergence. Now we take our AttNS with step size k∆t and
the Euler method as an example to provide the convergence
analysis for the proposed AttNS in Theorem 5.1.

Theorem 5.1. We consider ODE du/dt = f(u),u(0) = c0
and Euler method un+1 = un + ∆tf(un) . We assume
that: (1) f is Lipschitz continuous with Lipschitz constant
L, and (2) the second derivative of the true solution u is
uniformly bounded by M > 0, i.e., ∥u′′∥∞ ≤M on [0, T ].
Moreover, we assume that the attention module Q[·] in AttNS
is Lipschitz continuous with Lipschitz constant k∆tLatt. For
the solution of AttNS û with step size k∆t, we have

|ûN − u(T )| ≤ α∆t+ β
√
δ, (14)

where α = 1
2LM exp(2TL), β =

√
T exp(TL(1+Latt))√

L(1+Latt)
and δ

is a error term about the training loss Re. If the AttSlover
can fit the training data well, i.e., Re → 0, the error δ → 0.

Proof. (See Appendix C).

In fact, the conditions of Theorem 5.1 are mild. First, the
Lipschitz condition of the attention module Q is provided
by the analysis of Eq. (8) in Section 5(2), where we prove
that it can be readily satisfied. Second, the boundedness
of the true solution u can be directly verified for multiple
physical systems (see Appendix). Theorem 5.1 can also
be used to analyze the convergence of AttNS. For instance,
some previous works (Du et al., 2019; Jacot et al., 2018)
reveal that under certain mild conditions, gradient descent
can allow a neural network to converge to a globally optimal
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Figure 5: The noise attack experiments for the elastic pendulum under different data sizes. AttNS, with the attention
mechanism, can better mitigate the adverse effects of noise than other AHS.

Table 1: The impact of the depth h and width d1 of the attention module on the simulation performance. Rel. Infe. Speed is
the relative inference speed of the network based on our proposed AttNS setting, i.e., h = 2 and d1 = 1024.

Spring-mass k-link pendulum elastic pendulum

MSE loss Rel. Infe. Speed MSE loss Rel. Infe. Speed MSE loss Rel. Infe. Speed

h = 2 (ours) 2.58e-6 - 4.26e-9 - 5.41e-7 -
h = 3 2.49e-6 (↑ 3.61%) ↓ 88.49% 4.39e-9 (↓ 2.52%) ↓ 91.60% 5.28e-7 (↑ 2.46%) ↓ 90.89%
h = 4 2.55e-6 (↑ 1.18%) ↓ 93.95% 4.42e-9 (↓ 3.62%) ↓ 95.64% 5.58e-7 (↓ 3.05%) ↓ 95.33%

d1 = 512 3.76e-5 (↓ 83.36%) ↑ 27.59% 2.56e-8 (↓ 93.14%) ↑ 15.36% 2.56e-6 (↓ 78.87%) ↑ 17.25%
d1 = 1024 (ours) 2.58e-6 - 4.26e-9 - 5.41e-7 -
d1 = 2048 2.41e-6 (↑ 7.05%) ↓ 26.48% 3.98e-9 (↑ 7.03%) ↓ 23.12% 4.83e-7 (↑ 12.01%) ↓ 24.63%

solution, where the loss Re in Eq. (7) tends to 0. Then
according to Theorem 5.1, we have δ → 0,

|ûN − u(T )| ≤ |uNk − u(T )|︸ ︷︷ ︸
≤∆t·M ·exp(2TL)/2L

+ |ûN − uNk|︸ ︷︷ ︸
≤β

√
δ→0

. (15)

and thus |ûN − u(T )| = O(∆t). In this case, the AttNS
with step size k∆t can achieve the same accuracy as the
Euler method with the step size ∆t, whose global truncation
error is also O(∆t) (Butcher, 2016). However, the evalu-
ation speed of AttNS is approximately O(k) times greater
than that of the Euler method in this situation.

(2) The network architecture of Q[Ŝ|ϕ]. We design the
attention module structure Q[Ŝ|ϕ] in Eq. (8) primarily be-
cause, on the one hand, it has a smaller number of parame-
ters and enables faster inference speed, which ensures the
computational efficiency. For example, in Eq. (2), if data
Df is generated by a fine step size ∆tf , then theoretically
its evaluation speed is O(∆tc/[(1 + ϵ)∆tf ] times (Huang
et al., 2022c) that of the classical method Eq. (3), where
ϵ > 0 is related to the inference speed of the neural network.
Therefore, the inference speed of the neural network in AHS
is important.

On the other hand, it can be proven in Theorem 5.2 that
this architecture possesses the desirable Lipschitz continuity
property, which provides a strong guarantee for the conver-
gence analysis of AttNS stated in Theorem 5.1. We will

compare this attention module structure with other variants
in Section 6.
Theorem 5.2. For x ∈ definition domain A , the attention
module Q(x) = W2 ◦ a ◦W1x , is Lipschitz continuous.

a is rational activation function, i.e. a(x) =
∑3

i=1 aix
i∑2

i=1 bixi ,
where ai, bi ∈ R .

Proof. (See Appendix D).

(3) The the effectiveness of AttNS for generalization .
Now we extend our discussion of the data size, where some
analyses have been given by Theorem 5.3 under the Euler
method and some mild assumptions. Theorem 5.3 is based
on the view of Vapnik-Chervonenkis theory (Vapnik, 1999).
Compared to the general AHS, AttNS requires a smaller
data size to achieve the same generalization error, which is
consistent with the experimental results in Fig. 3.
Theorem 5.3. Let Net(Ŝ|ϕ,Df ) and Net(un|ϕ,Df ), where
Ŝ = S(f ,un,∆tc), be the correction term of general AHS
and AttNS, respectively. For ϵ > 0, when the data size is
more than N ′, the empirical error of two methods satisfy
Re(ϕ|AHS) ≤ ϵ and Re(ϕ|AttNS) ≤ ϵ. For small enough
ϵ0 ≪ ϵ and Euler method, we have

N(AttNS) ≲ N(AHS), (16)

where N(∗) is the lower bound of the data size that the
generalization error of method ∗ can reach ϵ(1− ϵ0)

−1.
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Table 2: (Left) The impact of skip connection and considering ∆tc as a part of the input. (Right) The performance of other
type network architectures for Q[Ŝ|ϕ].

Benchmark w/ skip w/o ∆tc Ours Module MSE (elastic) MSE (k-link)

Spring-mass 4.57e-4 (↓ 99.44%) 3.67e-6 (↓ 29.78%) 2.58e-6 LSTM (Hochreiter & Schmidhuber, 1997) 7.21e-06 1.35e-08
K-link 6.36e-6 (↓ 99.93%) 4.18e-9 (↑ 1.91%) 4.26e-9 Transformer (Liu et al., 2021) 3.64e-04 2.65e-06
Elastic 1.39e-4 (↓ 99.61%) 1.65e-6 (↓ 67.21%) 5.41e-7 Ours 5.41e-07 4.26e-09

Proof. (See Appendix E).

Although our proposed method does reduce the data size
required by the SOTA method, the accuracy may not be
sufficient for all the problems in the natural sciences and
engineering. Therefore, if we need to solve a problem that
requires high accuracy, it would be better to increase the
training data size as much as possible to further improve
the performance of the AI-enhance solver than only relying
on the algorithmic design. This is because we can observe
when the complete training data is used, the improvement
brought by AttNS may be less than 10%-15%, which is
reasonable since the AttNS is designed tailored to the data-
insufficient scenario and we have not explicitly maximized
the performance of AttNS when the data is sufficient. In
the future, we will explore improving the AttNS in the data-
sufficient scenario.

(4) The the effectiveness of AttNS for robustness . Our
proposed method AttNS is inspired by the attention mech-
anism in ResNet. In Fig. 5, we empirically explore the
robustness of AttNS by noise attack experiments under dif-
ferent data sizes. Injecting noise into the input is an explicit
way of adding small perturbations that help us observe the
robustness of the model. Specifically, in the training process,
we can interfere with the training phase of AttNS by adding
constant noise σ = 1e−5 to ûn, i.e., ûn ← ûn+σ for all n
in Eq. (10). Experimental results show that, compared with
the baseline AHS, i.e., NeurVec, our proposed method can
significantly regulate the noise, leading to smaller training
loss and stable simulations. In contrast, NeurVec explodes
numerically at the beginning of the simulation due to the
effect of noise in all settings.

The above experiments illustrate that the proposed AttNS is
robust enough to maintain a stable solution even in limited
data scenarios.

(5) Limitation . From the experiment results in our paper,
the proposed AttNS can achieve good enough simulation
performance with less training data. However, AttNS does
not completely prevent the solution from being disturbed
under the inherent noise in the dataset. So we aim to alle-
viate the noise issue rather than solve it completely. If we
want to further mitigate this issue, we may need more elabo-
rate network structures and training settings to enhance the
effectiveness of our AttNS.

The experiments in this paper only consider the ordinary
differential equation (ODE) and not the benchmark for con-
sidering partial differential equations (PDE), this is because
the ODE is more conducive to some of the theoretical anal-
yses in this paper, whereas the complex PDE is not easy to
analyze. Fortunately, the AHS can also be used for PDE
solv (Dresdner et al., 2022), so this could be used as future
work to use AttNS for PDE solving.

6. Ablation study
In this section, we perform several ablation studies on AttNS.
In Table 1, we analyze the impact of the depth h and width
d1 for the attention module in Eq. (8). We observe that the
depth h has little effect on the MSE loss in all benchmarks,
but the model’s performance is positively correlated with
the width d1. Therefore, to increase the inference speed, we
choose a sufficiently shallow depth h = 2 and appropriate
width d1 = 1024 for AttNS.

Then we study popular residual structures for AttNS. From
Table 2 (Left), the skip connection will bring significant
negative impacts on simulation for both high-dimension lin-
ear systems and chaotic dynamical systems. This motivates
us to adopt a simple stacking structure like Eq. (8) for our
AttNS. Moreover, we analyze the form of the input of the
attention module, where we take Ŝ as input instead of the
complete integration term Ŝ∆tc in Eq. (8).

In Table 2, we show that the input Ŝ has better performance
than input Ŝ∆tc, except for k-link pendulum (similar perfor-
mance). Furthermore, Table 2 (Right) demonstrates the per-
formance of other network architectures for Q[Ŝ|ϕ], high-
lighting the effectiveness of the attention module structure
as defined in Eq. (8).

7. Conclusion
This paper discusses how to improve AHS for effective
computation even in limited data scenarios. Using the dy-
namical system view of ResNet, we introduce the attention
mechanism into the numerical solver and propose AttNS to
help the generalization and robustness issue when the data is
limited. Experimental results show the effectiveness of At-
tNS in improving various numerical solvers, where we also
analyze the convergence, generalization, and robustness.
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A. The details of the proposed algorithm.

Table 3: Summary of the datasets mentioned in this paper.

Benchmark Type Dimension Data size Step size Generative Method Evaluation time T

Spring-mass Train * 5k 1e-3 * 20
Spring-mass Validation * 0.1k 1e-5 RK4 20
Spring-mass Test * 5k 1e-5 RK4 20

2-link pendulum Train 4 20k 1e-3 RK4 10
2-link pendulum Validation 4 1k 1e-5 RK4 10
2-link pendulum Test 4 10k 1e-5 RK4 10

Elastic pendulum Train 4 20k 1e-3 RK4 50
Elastic pendulum Validation 4 1k 1e-5 RK4 50
Elastic pendulum Test 4 10k 1e-5 RK4 50

The details of dataset. We summarize the information on training, validation, and test data for all benchmarks in this
paper in Table 3. We obtain the discrete solutions every step size up to the model time T and the evaluation time for all
experimental results of MSE loss in this paper is T . The Generative method of Spring-mass during training depends on the
numerical solver used in Table 1 in main text. Moreover, the dimension of the Spring-mass system also depends on d in
Table 1 in main text, and if d = 20, the dimension is 2d = 40. “RK4” denotes 4th order Runge-Kutta method.

Table 4: The initialization of different benchmarks. “Uniform random” means that the variables are sampled with uniform
distribution of a given range. “Constant” means the variable is initialized as a constant. The dimension of p and q in
Spring-mass system depends on d in Table 1 in main text, and if d = 20, their dimension are d = 20.

Task Variable Dimension Type Range of initialization Model input?

Spring-mass p * Uniform random [−2.5, 2.5]20 ✓
Spring-mass q * Uniform random [−2.5, 2.5]20 ✓

Elastic pendulum θ 1 Uniform random [0, π/8] ✓
Elastic pendulum r 1 Constant 10 ✓
Elastic pendulum θ̇ 1 Constant 0 ✓
Elastic pendulum ṙ 1 Constant 0 ✓
Elastic pendulum l0 1 Constant 10
Elastic pendulum g 1 Constant 9.8
Elastic pendulum k 1 Constant 40
Elastic pendulum m 1 Constant 1

2-link pendulum θ 2 Uniform random [0, π/8]2 ✓
2-link pendulum θ̇ 2 Constant 0 ✓
2-link pendulum m 1 Constant 1
2-link pendulum g 1 Constant 9.8

Numerical solvers. In this paper, we consider four forward numerical solvers to validate the effectiveness of our proposed
AttNS, including the Euler method, Improved Euler method, 3rd and 4th order Runge-Kutta methods. In this section, we
introduce these solvers. As mentioned in Eq. (2) in main text, these solvers have different integration terms S(f, un,∆t).

For 3rd order Runge-Kutta method ,the coefficients λ1 = λ3 = 1
6 and λ2 = 2

3 . Besides, K1 = f(un),K2 = f(un + ∆t
2 K1)

and K3 = f(un −∆tK1 + 2∆tK2). For the 4th order Runge-Kutta method, β1 = β4 = 1
6 and β2 = β3 = 1

3 . Moreover,
J1 = f(un), J2 = f(un+

∆t
2 J1), J3 = f(un+

∆t
2 J2) and J4 = f(un+∆tJ3). Generally speaking, 4th order Runge-Kutta

method has the smallest Global truncation error O(∆t4), i.e., 4th order Runge-Kutta method has the highest accuracy.

12
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Table 5: The integration terms for different kinds of numerical solvers with step size ∆t.

Numerical solver Integration term S(f, un,∆t) Global truncation error

Euler ∆tf(un) O(∆t)
Improved Euler ∆t

2 [f(un) + f(un +∆tf(un))] O(∆t2)
3rd order Runge-Kutta ∆t(λ1K1 + λ2K2 + λ3K3) O(∆t3)
4th order Runge-Kutta ∆t(β1J1 + β2J2 + β3J3 + β4J4) O(∆t4)

However, due to its most complex integration term ∆t(β1J1 + β2J2 + β3J3 + β4J4), its simulation speed is the slowest
among the four numerical solvers in Table 5.

B. The motivation and challenge behind the proof of our Theorems
B.1. Preliminaries

This work focuses on the numerical solvers for differential equations. The stability (or robustness) and convergence are two
essential metrics for numerical solvers. Specifically, we introduce the definition of the stability and convergence for ODE
solvers as follows (Ferziger et al., 2002; Dahlquist, 1956):

Stability refers to the sensitivity of the solver to initial conditions, parameters, and round-off errors during computation. A
stable solver can produce reliable results even if the input conditions vary slightly with “noise”. If a numerical method is
unstable, it may produce unreasonable results or even lead to computation failure.

Convergence refers to the ability of numerical computation to approach the true solution as the step size (∆t) decreases. A
convergent solver will produce increasingly accurate results, and the error will tend to zero as the step size approaches zero.
If a solver does not converge, it will not produce accurate results even with a small step size.

The above preliminaries on stability and convergence highlight that these two metrics are distinct for numerical solvers
of differential equations. That’s why we separately discuss stability and convergence by Theorem 2.1 and Theorem 5.1,
respectively. Specifically,

For stability, Theorem 2.1 investigates the ability of attention mechanisms to regulate noise and enhance model robustness,
inspiring us to introduce attention mechanisms in numerical solvers.

For convergence, Theorem 5.1 examines the convergence of the proposed solver by analyzing approximation errors, and
provides the convergence rate of the solver under well-trained neural networks.

Numerical solvers that have both good stability and convergence can obtain good solutions in different scenarios of
differential equations. Moreover, since the AI-enhanced numerical solver is still exactly a numerical solver but only
enhanced by a neural network, when we only have a small size of training data, the stability and convergence of such kind of
solver may not be sufficiently guaranteed, and thus we must have a new kind of AI-enhanced numerical solver that can have
better theoretical guarantee on the stability and convergence such that we may better offset the adverse effect on stability
and convergence than other existing solvers when the size of the training data is small. Theorem 2.1 and Theorem 5.1
respectively reveal the potential for the proposed AttNS to become a sufficiently good AI-enhanced numerical solver from
these two perspectives, and we also empirically show that our AttNS performs much better than other solvers when the size
of training data is small. The further theoretical analysis can be the future work to enhance the existing AttNS.

B.2. The technical novelty and difficulty in proving theorem

We summarize the difficulty of proving Theorem 5.1 as follows:

1. Theorem 5.1 is used to analyze the convergence of a numerical solver integrated with attention mechanism. To the best of
our knowledge, we are the first to introduce attention mechanisms into numerical solvers, and hence there are not many
related proof techniques in the existing literature that can be used for analyzing the convergence of the numerical solver that
incorporates attention modules.

2. In proving Theorem 5.1, our goal is to make the proof approach versatile and generalizable, i.e., we want to design a

13
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unified approach that can be used to prove Theorem 5.1 for many attention modules Q that satisfy certain conditions. This
requirement naturally adds difficulty on constructing our proof, but will provide us more general theoretical evidence for
improving attention modules Q in the future.

3. To bridge the gap between theory and practice, it is challenging to set reasonable and mild conditions that can make
Theorem 5.1 applicable for analyzing the convergence of solvers with specific empirical designs, such as our AttNS.

4. Since the solver we considered is AI-enhanced numerical, we must non-trivially connect the concepts of the numerical
solver and the neural network to prove the convergence. However, the concept of the numerical solver and neural network
both separately involve many different factors and perspectives in their own theoretical analyses, and the combination of
these two concepts naturally introduces more factors, which greatly interferes with our target that we want to prove in
Theorem 5.1. Therefore, we need to design a proof approach that can disentangle and eliminate interference factors that are
irrelevant to our proof goal, enabling us to provide a clean proof that directly addresses our proof target for Theorem 5.1.

We also summarize the novelty of proving Theorem 5.1 as follows:

1. Disentanglement. As discussed in “Difficulty,” in order to eliminate the complex interference factors in the theoretical
analysis of numerical solvers and neural networks, we skillfully disentangle the convergence of AttNS |ûNk − u(T )| into
the convergence of the original numerical method |uNk − u(T )| and the performance of the attention module |ûN − uNk|
using the triangle inequality in the proof, i.e.,

|ûNk − u(T )| ≤ |uNk − u(T )|︸ ︷︷ ︸
≤∆t·M ·exp(2TL)/2L

+ |ûN − uNk|︸ ︷︷ ︸
≤β

√
δ→0

, (17)

Since |uNk − u(T )| and module training are independent, traditional mathematical methods can be used to analyze |uNk −
u(T )| , while |ûN − uNk| can be proven using relevant methods for neural network convergence. This disentanglement
successfully bridges the convergence of AttNS and the training performance of the neural network, and may also inspire
future theoretical proofs of introducing neural networks into differential equation solvers.

2. Versatility. As mentioned in ”Difficulty,” our proof should be applicable to many different attention modules. Specifically,
we make our proof be versatile by considering the Lipschitz continuity of the attention module, which is a very general
property that can be used to formally evaluate different and new kinds of attention module in the future. We also show
in Lemma D.3 that the MLP-alike attention module with a rational activation function in AttNS from Eq.(9) satisfies the
Lipschitz continuity condition. The convergence of attention modules with Lipschitz conditions can be estimated uniformly
using Theorem 5.1.

3. Instructiveness. The Lipschitz condition can guide the design of new attention modules in numerical solvers in the future
and may be a necessary condition for the effectiveness of the solver. Specifically, attention modules that satisfy the Lipschitz
condition, such as the ”simple” MLP-alike structure with rational activation function shown in Eq.(9), can effectively solve
differential equations under the proposed AttNS framework. However, some ”complex” attention module structures, such as
transformer and LSTM,may have poor prediction due to the fact that they generally lack the Lipschitz continuity condition,
which is consistent with the experimental observation in the main text.
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C. The proof of Theorem 5.1
Theorem 5.1. We consider ODE du/dt = f(u),u(0) = c0 and Euler method un+1 = un +∆tf(un) . We assume that
(1) f is Lipschitz continuous with Lipschitz constant L and (2) the second derivative of the true solution u is uniformly
bounded by M > 0, i.e., ∥u′′∥∞ ≤M on [0, T ]. Moreover, we assume that the attention module Q[·] in AttNS is Lipschitz
continuous with Lipschitz constant k∆tLatt. For the solution of AttNS û with step size k∆t, we have

|ûN − u(T )| ≤ α∆t+ β
√
δ, (18)

where α = 1
2LM exp(2TL), β =

√
T exp(TL(1+Latt)√

L(1+Latt)
and δ is a error term about the training of AttSlover. If the AttSlover

can fit the training data well, the error δ → 0.

Lemma C.1. If the assumptions (1) and (2) in Theorem 5.1 hold, for Euler method un+1 = un +∆tf(un), we have

|uNk − u(T )| ≤ M exp(2TL)

2L
∆t, (19)

where 0 = t0 < t1 < · · · < tNk = T be uniform points on [0, T ] and ∆t = T
Nk .

Lemma C.2. For any n ∈ N+ and x > 0, we have

(1 + x)n ≤ exp(nx), (20)

Proof. (For Lemma C.2). According to the Taylor expansion, we have

exp(nx) =

∞∑
i=0

(nx)i

i!
≥

∞∑
i=0

nix
i

i!
≥

∞∑
i=0

i−1∏
j=0

(n− j)
xi

i!
=

∞∑
i=0

Ci
nx

i = (1 + x)n (21)

Proof. (For Theorem 5.1.) Let’s consider the discretization for time interval [0, T ] as shown in Fig.6, and En := ûn − unk

Original Euler method AttSolver(ours)

Figure 6: The discretization of the original Euler method (Left) and our AttNS (Right).

|ûNk − u(T )| ≤ |uNk − u(T )|+ |ûN − uNk| Since |a− b| ≤ |a|+ |b|

=
M exp(2TL)

2L
∆t+ EN Since Lemma D.1

Next we estimate the upper bound of EN . For any n ≥ 0 we have

ûn+1 − uk(n+1) = ûn + f(ûn)(k∆t) +Q(f(ûn)|ϕ)− uk(n+1)

= ûn − ukn +
(
f(ûn)− f(ukn)

)
(k∆t) +Q(f(ûn)|ϕ)−Q(f(ukn)|ϕ)− (k∆t)Vn.

(22)

where Vn is an error term about training, i.e.,

Vn =
1

k∆t
(uk(n+1) − ukn − f(ukn)k∆t−Q(f(unk)|ϕ)). (23)
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Next, from Lipschitz conditions and the triangle inequality, we have

|ûn+1 − uk(n+1)| ≤ |ûn − ukn|+ L|ûn − ukn|(k∆t) + k∆tLatt|f(ûn)− f(ukn)|+ (k∆t)|Vn|
≤ |ûn − ukn|+ L|ûn − ukn|(k∆t) + k∆tLatt · L|ûn − ukn|+ (k∆t)|Vn|
= (1 + k∆tL+ k∆tLattL)|ûn − ukn|+ (k∆t)|Vn|.

(24)

Let w = (1 + k∆tL+ k∆tLNV L). Eq.(24) can be rewritten as

|En+1| ≤ w|En|+ (k∆t)|Vn|
≤ w(w|En−1|+ (k∆t)|Vn−1|) + (k∆t)|Vn|
= w2|En−1|+ w(k∆t)|Vn−1|+ (k∆t)|Vn|

≤ wn+1|E0|+ (k∆t)

n∑
i=0

wi|Vn−i| = (k∆t)

n∑
i=0

wi|Vn−i|,

(25)

where E0 = 0 as E0 = û0 − u0 = c0 − c0 = 0. Let

δ =
1

N
(∥V0∥22 + ∥V1∥22 + ...+ ∥VN−1∥22) (26)

By the Cauchy inequality and Eq.(25),

|EN | = (k∆t)

N−1∑
i=0

wi|VN−1−i|

≤ (k∆t)(

N−1∑
i=0

w2i)
1
2 (

N−1∑
i=0

|VN−1−i|2)
1
2 Since Cauchy inequality

= (k∆t)
√
(w2N − 1)/(w2 − 1)

√
Nδ. Since Eq.(26)

Next, we simplify the term
√
(w2N − 1)/(w2 − 1). Note that w = (1 + k∆tL+ k∆tLattL) ≥ 1, hence

w2 − 1 ≥ w − 1. (27)

Therefore, √
(w2N − 1)/(w2 − 1) ≤

√
[(1 + k∆tL+ k∆tLattL)2N ]/[k∆tL+ k∆tLattL] Since Eq.(27)

≤

√
exp(2Nk∆tL(1 + Latt))

k∆tL(1 + Latt)
Since Lemma C.2

Therefore,

|EN | ≤ (k∆t)
exp(TL(1 + LNV ))√

k∆tL(1 + Latt)

√
Nδ =

√
T exp(TL(1 + Latt))√

L(1 + Latt)

√
δ.

Hence, we have
|ûN − u(T )| ≤ α∆t+ β

√
δ, (28)

where α = 1
2LM exp(2TL), β =

√
T exp(TL(1+Latt)√

L(1+Latt)
. Since Eq.(23), if the AttSlover can fit the training data well,

∥Vn∥2 → 0, and we have δ → 0.
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D. Lipschitz continuous of our Q[·]
Lemma D.1. For x ∈ [a, b] , the polynomial function P (x) =

∑n
k=0 ckx

k is Lipschitz continuous.

Proof. For all x, y ∈ [a, b] ,we have |xk − yk| = (x− y)
∑k−1

i=0 xiyk−1−i ≤ |x− y| · k ·max(a, b)k−1. Therefore, we have

|P (x)− P (y)| ≤
n∑

k=0

|ck||xk − yk| ≤ {
n∑

k=0

k · |ck| ·max(a, b)k−1}︸ ︷︷ ︸
Lipschitz constant

·|x− y|. (29)

Lemma D.2. For x ∈ definition domain A , the rational activation a(x) =
∑3

i=1 aix
i∑2

i=1 bixi is Lipschitz continuous.

Proof. For all x1, x2 ∈ A ,Let p(x) =
∑3

i=1 aix
i and q(x) =

∑2
i=1 bix

i . For all x1, x2 ∈ A ,we have

|a(x1)− a(x2)| = |
p(x1)

q(x1)
− p(x2)

q(x2)
| (30)

= |p(x1)q(x2)− q(x1)p(x2)

q(x1)q(x2)
| (31)

= |p(x1)q(x2)− p(x1)q(x1) + p(x1)q(x1)− q(x1)p(x2)

q(x1)q(x2)
| (32)

≤ |p(x1)|
|q(x1)q(x2)|

|q(x2)− q(x1)|+
|q(x1)|

|q(x1)q(x2)|
|p(x2)− p(x1)|. (33)

Note that, since the polynomial function p(x) and q(x) are continuous in A ,they are bounded in A . Let
max(|p(x)|, |q(x)|) ≤ M and min(|p(x)|, |q(x)|) ≥ N . Meoreover, from Lemma D.1, for all x1, x2 ∈ A , we as-
sume |q(x2)− q(x1)| ≤ Lq|x2 − x1| and |p(x2)− p(x1)| ≤ Lp|x2 − x1| .

Therefore, we have

|a(x1)− a(x2)| ≤
|p(x1)|

|q(x1)q(x2)|
|q(x2)− q(x1)|+

|q(x1)|
|q(x1)q(x2)|

|p(x2)− p(x1)| (34)

≤ M

N2
|q(x2)− q(x1)|+

M

N2
|p(x2)− p(x1)| (35)

≤ M

N2
· (Lp + Lq)︸ ︷︷ ︸

Lipschitz constant

·|x1 − x2|. (36)

Lemma D.3. For x ∈ definition domain A , the attention module shown in Eq.(9) in main text, i.e., Q(x) = W2 ◦ a ◦W1x

, is Lipschitz continuous. a is rational activation function, i.e. a(x) =
∑3

i=1 aix
i∑2

i=1 bixi , where ai, bi ∈ R .

Proof. For all x, y ∈ A , from Lemma D.2, there exist a constant L1 s.t. ||a(x)− a(y)|| ≤ L1||x− y||. Therefore,

||a ◦W1(x)− a ◦W1(y)|| ≤ L1||W1(x)−W1(y)|| (37)
≤ L1||W1|| · ||x− y||. (38)

Moreover, we consider the attention module Q[·] , and we have

||Q(x)−Q(y)|| = ||W2 ◦ a ◦W1(x)−W2 ◦ a ◦W1(y)|| (39)
≤ ||W1|| · ||a ◦W1(x)− a ◦W1(y)|| (40)
≤ L1 · ||W2|| · ||W1||︸ ︷︷ ︸

Lipschitz constant

·||x− y||. (41)
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Therefore, the attention module in Eq.(9) in main text we considered is Lipschitz continuous.

D.1. About the condition ∥u′′∥∞ ≤M on [0, T ].

The condition that ”the second derivative of the true solution is uniformly bounded” in Theorem 5.1 is usually easy to satisfy
and our algorithm can collaborate with it. Specifically,

(1) The ”second derivative” ||u′′||∞ does not directly affect the training objective of AttNS, i.e., the AttNS can use a large
step size k∆t (fast estimation speed) to solve the differential equations such that we can achieve a similar accuracy to the
original numerical method solved by a small step size ∆t (slow estimation speed).

The role of Theorem 5.1 is to inform us that AttNS can achieve this desired goal. Specifically, given the evaluation time T
and the Lipschitz constant L , if the neural network is well-trained, i.e., β

√
δ → 0 , then the accuracy of AttNS, |ûN −u(T )|

, and the accuracy of the original numerical algorithm at small time steps ∆t , |uNk − u(T )| , are comparable. This is
because

|ûN − u(T )| ≤ |uNk − u(T )|︸ ︷︷ ︸
≤∆t·M ·exp(2TL)/2L

+ |ûN − uNk|︸ ︷︷ ︸
≤β

√
δ→0

. (42)

On the other hand, the above inequality reveals that the upper bound M of |u′′|∞ mainly affects the accuracy of both AttNS
and the original numerical method. When M is large, the upper bound of their accuracy may increase, but it does not affect
the goal that AttNS with large step size k∆t can approximate to the original numerical method at small time steps ∆t .

(2) Most ”second derivative” |u′′|∞ are relatively small. We extracted 1000 trajectories from the testing sets of two systems,
namely the spring-chain and the 2-link pendulum, and computed their |u′′|∞ by second-order difference scheme. The
trajectories were generated using the RK4 method with a step size of 1e-4, which can be considered as a proxy for the true
solution. The results are presented in the table below.

Table 6: The distribution of |u′′|∞.

|u′′|∞ (spring-chain) 30 60 90 120 150 180 210 240 270
The percentage of ¡ |u′′|∞ 55.35% 80.51% 91.84% 96.68% 98.57% 99.41% 99.76% 99.91% 99.97%

|u′′|∞ (2-link pendulum) 5 10 15 20 25 30 35 40 45
The percentage of ¡ |u′′|∞ 41.10% 65.93% 80.55% 89.48% 94.66% 97.61% 99.03% 99.71% 99.95%

From these tables, we observe that the distribution of |u′′|∞ follows a long-tailed distribution, where the majority of |u′′|∞
are relatively small. Note that the magnitude of |u′′|∞ varies across different systems due to differences in dimensionality
and coordinates. And only a minority of |u′′|∞ are large. This observation is consistent with the findings in (Liang et al.,
2022) for other chaotic systems, i.e., three-body systems and billiard systems.

The large |u′′|∞ corresponds to stiffness steps in the dynamical system, where the solution changes abruptly and may have
some impact on the model training. We next investigate whether our proposed Attsovler can collaborate with these large
|u′′|∞ .

(3) Our proposed AttNS can collaborate with large ”second derivative”. As the examples using the elastic pendulum system
and 2-link pendulum, we selected the trajectories in the test set with the top 10% the largest ”second derivative” and
recombined them into a new test set. The experimental results with RK4 (step size = 1e-1) at evaluation time T=10 are
presented below.

Method MSE loss (elastic) MSE loss (2-link)

RK4 4.33e-0 3.56e-2
NeurVec 6.32e-5 3.54e-6
AttNS (ours) 1.34e-6 8.54e-8

We can find that our method can still significantly outperform SOTA and traditional numerical methods in these trajectories
with relatively large ”second derivatives”, although the performance does decrease.
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E. The proof of Theorem 5.3.
Theorem 5.3. Let Net(Ŝ|ϕ,Df ) and Net(un|ϕ,Df ), where Ŝ = S(f ,un,∆tc), be the correction term of general AHS
and AttNS, respectively. For ϵ > 0, when the data size is more than N ′, the empirical error of two methods satisfy
Re(ϕ|AHS) ≤ ϵ and Re(ϕ|AttNS) ≤ ϵ. For small enough ϵ0 ≪ ϵ and Euler method, we have

N(AttNS) ≲ N(AHS), (43)

where N(∗) is the lower bound of the data size that the generalization error of method ∗ can reach ϵ(1− ϵ0)
−1.

Lemma E.1. Consider the set of the models Sk = {f(·|w), w ∈ ωk}. If S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ · · · ,

h1 ≤ h2 ≤ · · · ≤ hk ≤ · · · , (44)

where hi is the Vapnik-Chervonenkis dimension of the model in set Si, i = 1, 2, · · · .

Lemma E.2. Let f(x) = (lnx+ α)/x, x ∈ (0,+∞) and α ∈ R. f(x) achieves its maximum value at x = e1+α, when
x ∈ (0, e1+α), f(x) rises monotonically, and when x ∈ (e1+α,+∞), f(x) decreases monotonically.

Lemma E.3. Let f(x) = x exp(−a
x ) where a > 0 and x ∈ R. Then f(x) rises monotonically.

Lemma E.4. Let W (x) be Lambert W function, if |x| < 1/e, the Taylor expansion of W (x) is

W (x) =

∞∑
n=1

(−n)n−1

n!
xn = x− x2 +

3

2
x3 − 8

3
x4 + · · · . (45)

Assumption E.5. For x ∈ R and a general real function f(x), we consider the maps f1 : x → ∇xf(x)
T f(x) and

f2 : f(x)→ ∇xf(x)
T f(x). For a small enough ϵ > 0, if S1 and S2 are the sets that ∀g1(ϕ) ∈ S1 and g2(ϕ) ∈ S2,

∥g1(ϕ)− f1∥ ≤ ϵ, ∥g2(ϕ)− f2∥ ≤ ϵ, (46)

we assume that S1 ⊂ S2. This assumption means that the complexity of the model for fitting f1 is higher than that for f2.

Proof. (For Theorem 6.1).

According to Vapnik-Chervonenkis theory (Vapnik, 1999) for regression, for any data distribution P (x, y), model A (ϕ),
the generalization error R(ϕ) and empirical error Re(ϕ), the inequality

R(ϕ) ≤ Re(ϕ)
(
1− c

√
δ(hA (ϕ), N)

)−1

+
, (47)

holds with probability 1− η. hA (ϕ) is Vapnik-Chervonenkis dimension of model A (ϕ), N is the data size, c usually is set
as 1, and

δ(h,N) = (h

[
ln

N

h
+ 1

]
− ln η)/N. (48)

Therefore, from Eq.(47), for the generalization error R(ϕ|Neur.) and R(ϕ|Att.), we have

R(ϕ|Neur.) ≤ Re(ϕ|Neur.)
(
1− c

√
δ(hNeur.(ϕ), N)

)−1

+
, (49)

and

R(ϕ|Att.) ≤ Re(ϕ|Att.)
(
1− c

√
δ(hAtt.(ϕ), N)

)−1

+
, (50)
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Next, we consider how many data size can the term
(
1−

√
δ(hA (ϕ), N)

)−1
reach the accuracy (1 − ϵ0)

−1. Let δ :=
(ln N̄ + α)/N̄ , where N̄ = N/hA (ϕ) and α = 1− ln η/hA (ϕ).

(ln N̄ + α)/N̄ = ϵ0 ⇐⇒ ln N̄ + α = N̄ϵ0

⇐⇒ N̄ exp(−N̄ϵ0) = exp(−α)
⇐⇒ −ϵ0N̄ exp(−N̄ϵ0) = −ϵ0 exp(−α).

(51)

Therefore −ϵN̄ = W (−ϵ0 exp(−α)), where W is Lambert W function (Lehtonen, 2016), and

N̄ = −
hA (ϕ)

ϵ0
·W

(
−ϵ0 exp(

ln η

hA (ϕ)
− 1)

)
, (52)

From Lemma E.2, we know that when the data size N ≥ N̄ ,
(
1−

√
δ(hA (ϕ), N)

)−1
can reach the accuracy

(1 − ϵ0)
−1. From Eq.(49) and Eq.(50), when N ≥ max

{
N ′,−hNeur.(ϕ)

ϵ0
·W

(
−ϵ0 exp( ln η

hNeur.(ϕ)
− 1)

)}
and N ≥

max
{
N ′,−hAtt.(ϕ)

ϵ0
·W

(
−ϵ0 exp( ln η

hAtt.(ϕ)
− 1)

)}
, we have

R(ϕ|Att.) ≤ ϵ(1− ϵ0)
−1, R(ϕ|Neur.) ≤ ϵ(1− ϵ0)

−1, (53)

holds with probability 1− η. In fact, since ϵ0 ≪ ϵ and Lemma E.2, in Eq.(52), N̄ ≫ N ′, therefore, we can set

N(AttNS) = −
hAtt.(ϕ)

ϵ0
·W

(
−ϵ0 exp(

ln η

hAtt.(ϕ)
− 1)

)
, N(AHS) = −

hNeur.(ϕ)

ϵ0
·W

(
−ϵ0 exp(

ln η

hNeur.(ϕ)
− 1)

)
. (54)

Note that exp(ln η/hA (ϕ) − 1) < exp(−1), i.e.,∣∣−ϵ0 exp(ln η/hA (ϕ) − 1)
∣∣ < exp(−1). (55)

Therefore, since Lemma E.4, for Eq.(52), we have

−
hA (ϕ)

ϵ0
·W

(
−ϵ0 exp(

ln η

hA (ϕ)
− 1)

)
≈ −

hA (ϕ)

ϵ0
·
(
−ϵ0 exp(

ln η

hA (ϕ)
− 1)

)
= hA (ϕ) exp(

ln η

hA (ϕ)
− 1).

(56)

Note that, for ODE du/dt = f(u),u(0) = c0, the target label of the neural network in AI-enhanced numerical solver is
actually the error term for different numerical solver, which is dominated by O [∇f(u)f(u)]. From Assumption E.5 and
Lemma E.1, we have

hAtt.(ϕ) ≤ hNeur.(ϕ). (57)

Therefore, we have

N(AttNS) = −
hAtt.(ϕ)

ϵ0
·W

(
−ϵ0 exp(

ln η

hAtt.(ϕ)
− 1)

)
Since Eq.(54)

≲ −
hNeur.(ϕ)

ϵ0
·W

(
−ϵ0 exp(

ln η

hNeur.(ϕ)
− 1)

)
Since Eq.(57) and Lemma E.3

= N(AHS)
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