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Abstract

Non-local interactions play a vital role in boost-
ing performance for image restoration. However,
local window Transformer has been preferred due
to its efficiency for processing high-resolution
images. The superiority in efficiency comes at
the cost of sacrificing the ability to model non-
local interactions. In this paper, we present that
local window Transformer can also function as
modeling non-local interactions. The counter-
intuitive function is based on the permutation-
equivariance of self-attention. The basic principle
is quite simple: by randomly shuffling the input,
local self-attention also has the potential to model
non-local interactions without introducing extra
parameters. Our random shuffle strategy enjoys el-
egant theoretical guarantees in extending the local
scope. The resulting Transformer dubbed Shuffle-
Former is capable of processing high-resolution
images efficiently while modeling non-local inter-
actions. Extensive experiments demonstrate the
effectiveness of ShuffleFormer across a variety
of image restoration tasks, including image de-
noising, deraining, and deblurring. Code is avail-
able at https://github.com/jiexiaou/
ShuffleFormer.

1. Introduction
Image restoration is typically an ill-posed inverse problem
aiming to reconstruct the high-quality clean image from
its low-quality counterpart, which lays the foundation for
various vision tasks. According to the degradation pro-
cess, image restoration can be categorized into many sub-
tasks, e.g., denoising, super-resolution, deblurring, derain-
ing and compression artifact reduction. With the popu-
larity of deep learning (LeCun et al., 2015), deep neural
networks, especially convolutional neural networks (CNNs),
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Figure 1: The comparison between shifted window strategy
and our proposed random shuffle strategy.

have pushed the state-of-the-art for various image restora-
tion tasks. Recently, vision transformers (Dosovitskiy et al.,
2021; Liu et al., 2021) have achieved comparable or even
better performance across a number of vision tasks. Sim-
ilarly, there are also numerous literature studying how to
make Transformer suitable for these pixel-level regression
tasks. IPT (Chen et al., 2021) adopts the standard Trans-
former architecture (Vaswani et al., 2017), which conducts
global self-attention across spatial dimension, for image
processing. IPT enjoys the typical advantage—modeling
global interactions—of the standard Transformer. However,
IPT inevitably suffers from quadratic complexity in both
computation and memory usage, which hinders its applica-
tion to high-resolution images. Local window Transform-
ers, e.g., SwinIR (Liang et al., 2021) and Uformer (Wang
et al., 2022), first partition the input into non-overlapping
local windows, and restrict computation of attention in a
local window. In order to enable inter-window interactions,
shifted window strategy (Liu et al., 2021; Tolstikhin et al.,
2021) is employed, which, however, still cannot escape the
local scope brought by window partition. The complexity
of local window Transformer is linear to the input resolu-
tion, making it more suitable for processing high-resolution
images. In conclusion, there exists an unpleasing trade-off
between modeling non-local interactions and efficiency in
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computation and memory usage. Therefore, a natural ques-
tion arises: is it possible to model non-local interactions
with local window Transformer? In this work, we provide a
solution to the seemingly counterintuitive question.

The reason behind local self-attention decreases the cost of
computation and memory is that window partition limits
the number of tokens in self-attention. Consequently, linear
complexity can be retained as long as window partition be-
fore self-attention is reserved. The challenge we now face is
to let self-attention capture non-local interactions with only
local window configuration. As aforementioned, shifted
window strategy cannot extend the local scope. There-
fore, it is possible to accomplish our goal—using local
self-attention to capture non-local interactions—with only
shifted window strategy replaced. Since the configuration
of window partition is reserved, in order to model non-local
interactions, we have to relieve the constraint of locality
brought by window partition. It is ready to approach an
elegant solution: we choose to randomly shuffle the input
across spatial dimension instead of adopting the shifted
window strategy. The local window based multi-head self-
attention layer is termed window multi-head self-attention
(W-MSA); W-MSA with random shuffle is named chaotic
window multi-head self-attention (CW-MSA) 1, and with
shifted window is called shifted window multi-head self-
attention (SW-MSA). Since shuffling the pixels in space will
destroy semantic information, after passing through CW-
MSA, a corresponding inverse shuffle must be conducted to
exactly recover the origin rearrangement of pixels. Random
shuffle and inverse shuffle constitute an invertible transfor-
mation pair without introducing any information loss. The
comparison between our random shuffle strategy and shifted
window strategy is illustrated in Figure 1.

A potential concern is that random shuffle may cause in-
stability for training process. Indeed, the permutation-
equivariance property of self-attention, i.e., it gives the
same output independently of how the input tokens are
shuffled (Cordonnier et al., 2019), ensures that Transformer
exhibits robustness to random permutation. For training,
each individual input goes through CW-MSA with an inde-
pendent random shuffle sample, which introduces no extra
parameters or FLOPs. In this way, non-local interactions can
be captured from the sense of expectation. During testing, in
the similar spirit with Dropout (Srivastava et al., 2014), we
approximate the expectation of CW-MSA by Monte-Carlo
averaging. This ensures that for each CW-MSA, the actual
output at testing time approximates the expected output.

In conclusion, the contributions of this work include:

• We propose the chaotic window multi-head self-

1Chaotic window multi-head self-attention is named because
the participant pixels are randomly rearranged.

attention (CW-MSA) as an alternative to shifted win-
dow multi-head self-attention (SW-MSA) for image
restoration. CW-MSA can extend the local scope of
SW-MSA without introducing extra parameters. CW-
MSA is the first to successfully model non-local in-
teractions only using local self-attention. Our method
also enjoys elegant theoretical guarantees;

• We design the training and testing strategy for CW-
MSA. For training, each input is passed through CW-
MSA with an independent sample of random shuffle.
During testing, we approximate the layer-wise expec-
tation by Monte-Carlo averaging;

• Extensive experiments on various tasks, e.g., deraining,
denoising and deblurrring, validate that the restoration
performance can be consistently improved by equip-
ping with our chaotic window self-attention.

2. Related works
2.1. Image Restoration

Image Restoration (Zhang et al., 2019c; 2017b; Fan et al.,
2020; Luo et al., 2021; Liu et al., 2018; Li et al., 2021b;a;
Lin et al., 2022b) is typically an ill-posed inverse problem,
which aims to reconstruct the latent clean image from the
degraded counterpart. Classic image restoration tasks in-
clude image denoising (Laine et al., 2019; Yue et al., 2019;
Zhang et al., 2018b; 2017a; Dai et al., 2021; Zhang et al.,
2021a), image super-resolution (Dai et al., 2019; Haris et al.,
2018; Huang et al., 2020; Zhang et al., 2021b), image de-
blurring (Dong et al., 2020; Nah et al., 2017; Kupyn et al.,
2018; Zhang et al., 2018a; Ren et al., 2021; 2018), image
deraining (Fu et al., 2017; Zhang et al., 2019b; Ren et al.,
2019), etc. Recently, remarkable progress against tradi-
tional model-driven methods (Dabov et al., 2007a; Wang
et al., 2008; He et al., 2011) has been achieved due to the
development of deep learning technologies (LeCun et al.,
2015). Instead of relying on handcraft priors, learning based
methods directly learn to project from noisy to clean ones
from pre-collected data in supervised or self-supervised
way (Lehtinen et al., 2018; Batson & Royer, 2019). Non-
local prior (Dabov et al., 2007b) has been proven effective
for image restoration. Modeling non-local interactions is a
key ingredient for the advanced models to achieve promising
results. Researchers have made massive efforts elaborating
sophisticated models to capture non-local interactions, in-
cluding non-local methods (Lefkimmiatis, 2017; Plötz &
Roth, 2018), graph methods (Mou et al., 2021), and Trans-
formers (Chen et al., 2021).

2.2. Vision Transformer

With great success of Transformer (Vaswani et al., 2017;
Devlin et al., 2018) in NLP, Vision Transformers (Dosovit-
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skiy et al., 2021; Liu et al., 2021; Wu et al., 2022; Nguyen
et al., 2022; Lin et al., 2022a) have also gained popularity in
vision community. ViT (Dosovitskiy et al., 2021) treated im-
age patches as token sequence and applied the vanilla trans-
former on it for image classification. Swin Transformer (Liu
et al., 2021) brought in the locality prior to self-attention and
adopted the shifted window self-attention to establish a hier-
archical architecture. A few transformers (Chen et al., 2021;
Liang et al., 2021; Wang et al., 2022; Zamir et al., 2022) for
low-level vision have also arose. Nevertheless, most of them
adopt the vanilla global self-attention or shifted window self-
attention, which cannot model non-local interactions with
linear complexity.

3. Method
We first recall the mathematical formulation of self-attention
layers, comprising the vanilla global self-attention and the
local self-attention variant. The global self-attention suf-
fers from quadratic complexity in computation and mem-
ory usage while the local self-attention cannot model non-
local interactions. Then, we introduce the chaotic window
self-attention to enjoys both merits of efficiency and non-
local interactions modeling. Last, we construct the ultimate
Transformer model, named ShuffleFormer, by alternating
local window self-attention layer and chaotic window self-
attention layer for image restoration.

3.1. Self-Attention

Global Self-Attention. Self-attention can be described as
mapping a query and a set of key-value pairs to an out-
put, where the query, keys and values are obtained from
linear projections of input. One of the widely-used imple-
mentations is the scaled dot-product attention, as expressed
in Equation (1). Let x denote the input. SA first computes
the query Q, key K and value V through linear projections
parameterized by WQ, WK , and WV respectively. Then, a
similarity matrix is computed by the scaled dot-production
of the query and key, where the scaled factor is the root of di-
mension of key. The similarity matrix is further normalized
by softmax function to produce the weight, which is used to
aggregate the value. A key property of SA is that it cannot
make use of positional information. To compensate for that,
a number of position encoding approaches are studied, e.g.,
absolute positional encoding (Vaswani et al., 2017), relative
positional encoding (Shaw et al., 2018; Bello et al., 2019;
Liu et al., 2021), etc. To enhance representation, SA is often
extended to the multi-head version (Vaswani et al., 2017).

SA (x) = softmax
(
xWQ(xWK)T√

dk

)
xWV . (1)

Self-attention is often used to model global interactions.
However, the complexity in time and memory is quadratic

with respect to the token number. For image restoration, the
token number, which often corresponds to the input pixels,
incurs prohibitively huge burden in both computation and
memory cost. In addition, due to the lack of inductive biases,
the vanilla Transformer (Dosovitskiy et al., 2021; Chen et al.,
2021) requires expensive pretraining on large-scale dataset.

Local Self-Attention. Locality (LeCun et al., 1989), as
a widely acknowledged prior for vision tasks, is incorpo-
rated in self-attention. Local attention (Ramachandran et al.,
2019; Liu et al., 2021) restricts the scope of participant to-
kens to a local window. Swin Transformer (Liu et al., 2021)
adopts window self-attention (W-SA) to exploit the locality
prior and reduce the complexity as well. To enable commu-
nications between windows, Swin Transformer adopted the
shifted window strategy, which produces the shifted window
self-attention (SW-SA). By restricting self-attention to the
local scope, the complexity of Swin Transformer is reduced
to linearity w.r.t. the input resolution. The mathematical
formulation of W-SA/SW-SA is

W-SA (x) = SA (W(x)) ,

SW-SA (x) = SA (SW(x)) ,
(2)

where the W(x)/SW(x) function partitions x into non-
overlapping windows. Despite the significant reduction
in complexity, local attention sacrifices the capacity of mod-
eling non-local relationships. Non-local relationships are
essential for image restoration since, in general, degradation
often appears the non-local characteristic. Therefore, given
the consideration of both the complexity and scope size, it
is desirable to utilize local attention to accomplish the goal
of modeling non-local interactions.

3.2. Chaotic Window Self-Attention

3.2.1. SHUFFLING BREAKS THE LOCAL BARRIER

Our objective is to design an alternative strategy to shifted
window strategy so that the local attention is capable of mod-
eling non-local interactions. In this way, the strategy can
function as a plug-and-play way to extend the scope of local
attention. Our solution is somewhat ambitious: randomly
shuffling the input across spatial dimension before passing
though local attention. Although the subsequent attention is
still restricted within a fixed window, the participant tokens
come from the non-local field, which breaks the local bar-
rier brought by local attention. Random shuffle thoroughly
destroys the relative relationships between pixels.

To achieve the purpose of modeling non-local interactions
with only local window based self-attention, we first assume
the size of local window is much smaller compared with the
input resolution (Assumption 3.1).

Assumption 3.1 (Local Partition). For local window parti-
tion for performing self-attention, the size of local window
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s × s satisfies s ≪ H and s ≪ W , where H ×W is the
input resolution.

Definition 3.2 (Random Shuffle Function). S : X 7→ Y is
the random shuffle function if the elements of Y ∈ RH×W

correspond to a random permutation of the elements of
X ∈ RH×W . Let m be the 2D index of X and m be the
corresponding index of Y , that is, Ym = S(X)m = Xm.

Although window self-attention only captures relationships
of pixels within the same local window, random shuffle may
pull two pixels into the same window regardless the distance.
To depict the property formally, we have Definition 3.3:

Definition 3.3 (Chaotic Set). We denote the collection of
pixel pairs that locate within the same local window after
performing the random shuffle as the chaotic set CS , i.e.,
CS = {(m1,m2): after performing the random shuffle S,
pixels of index m1 and m2 are in the same local window}.

Random shuffle allows self-attention to integrate informa-
tion across the whole image. To depict the capacity of mod-
eling non-local interactions, we define the distance criterion
between a pixel pair in the following:

Definition 3.4 (Chaotic Distance). We define the chaotic
distance between pixels of index m1 and m2 as

dS(m1,m2) =

{
∥m1 −m2∥2, if (m1,m2) ∈ CS ,

∞, if (m1,m2) /∈ CS .
(3)

In Equation (3), infinity means that the interaction cannot be
captured and does not affect derivation of modeling distance.
We denote the expected chaotic distance to pixel m1 as
d(m1), which is defined by:

d(m1) = E
m2|(m1,m2)∈CS

[dS(m1,m2)] . (4)

d(m1) in Definition 3.4 measures the expected distance
between a pixel pair captured by CW-SA. We can prove that
the asymptotic lower bound of d(m1) is Ω(

√
2
4 (H +W )).

Rigorously, we have the following:
Theorem 3.5. The lower bound of d(m1) is

√
2

4(HW − 1)
[Hmw1

(mw1
+ 1) + Wmh1

(mh1
+ 1)+

H(W − mw1
)(W − mw1

− 1) + W (H − mh1
)(H − mh1

− 1)],

(5)

in which m1 = (mh1 ,mw1).

The proof of Theorem 3.5 is delayed to Appendix A. A
corollary of Theorem 3.5 is the following.

Corollary 3.6. Let d̄(m1) be the average distance of inter-
actions captured by a window of CW-SA. Then, we have

d̄(m1) ≈ d(m1). (6)

Proof. We compute the average distance in a window by:

d̄(m1) =
1

s2 − 1

s2−1∑
i=1

d(m1|HW − i). (7)

d(m1|HW − i) denotes the expected chaotic distance when
the total number of remaining pixels is HW − i. Accord-
ing to Assumption 3.1, when i ∈ [2, s2 − 1], we have the
approximation:

d(m1|HW − i) ≈ d(m1|HW − 1) = d(m1). (8)

Therefore, we can approximate d̄(m1) by:

d̄(m1) =
1

s2 − 1

s2−1∑
i=1

d(m1|HW − i)

≈ 1

s2 − 1

s2−1∑
i=1

d(m1|HW − 1)

=
1

s2 − 1

s2−1∑
i=1

d(m1)

= d(m1)

(9)

which completes the proof.

According to Corollary 3.6, the average distance of interac-
tion captured by a window of CW-SA is Ω(

√
2
4 (H +W )),

thereby capturing non-local interactions. More evidence
is included in Appendix E.1. As aforementioned, self-
attention cannot model positional relationships. This prop-
erty seems not preferable for vision tasks since the rear-
rangement of pixels contains basic structural information
for an image. However, this permutation-equivariance of
self-attention, in turn, supports the increasing of local scope
by randomly shuffling. Since the relative position of pix-
els is essential for constructing semantic information, the
output must be inversely shuffled to exactly align with the
input. The random shuffle and inverse shuffle constitutes a
invertible transformation pair without any information loss.
Besides, to compensate for the inability of positional mod-
eling, a simple depth-wise convolution layer is conducted
before shuffling (Chu et al., 2023), as shown in Figure 2.
The derived attention mechanism, named Chaotic Window
Self-Attention (CW-SA), can process high-resolution input
in linear complexity as well as model non-local relation-
ships. To enrich the diversity of representation, CW-SA can
easily be extended to the multi-head version (CW-MSA).
Without loss of generality, we only consider the single-head
version for simplicity.

3.2.2. TRAINING WITH RANDOM SHUFFLE

Random shuffle is introduced in local attention to break
the local barrier. The window partition plays the role of
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Figure 2: Training of CW-SA with a random shuffle sample.

scaling down the complexity of self-attention. By shuf-
fling randomly, any pair of tokens has the same probability
of entering the same local window regardless of the dis-
tance, thus providing the foundation for modeling non-local
interactions. For notation uncluttered, we use typewriter
typestyle x to stand for the randomly shuffled version of
regular feature x. As illustrated in Figure 2, each individual
input goes through CW-SA with a random shuffle sample,
window self-attention, and the corresponding inverse shuffle.
The above procedure can be formulated as:

x = S (x) ,

z = W-SA (x) ,

CW-SA (x;S) = IS (z) ,

(10)

where S(·) is the random shuffle function and IS(·) is the
corresponding inverse shuffle function. The random shuf-
fle samples are independent along the depth of network.
With random shuffle, CW-SA has the same probability to
model the interactions between any pair of pixels. Therefore,
CW-SA can model non-local interactions from the sense of
expectation. It is noteworthy that although possessing the
non-local scope, CW-SA can also be trained efficiently due
to sampling from random shuffle.

3.2.3. TESTING WITH MONTE-CARLO AVERAGING

We introduce random factors, i.e., random factors of stacked
CW-SAs, into Transformer. From the Bayesian perspective,
these random factors should be marginalized to yield the
ultimate restored result (see Appendix D.1). However, the
way of random shuffle forms exponentially many potential
models. It is not feasible to explicitly average the predic-
tions from these models. Inspired by Dropout (Srivastava
et al., 2014), the expectation of the whole model can be well
approximated by the layer-wise expectation. Therefore, it
makes sense to compute the expectation with respect to the
random shuffle for CW-SA, which is expressed as

CW-SAtest (x) = E
S
[CW-SA (x,S)] . (11)

However, to compute CW-SAtest according to Equation (11),
it is required to enumerate all possible shuffle outcomes,

×1

×𝑚

×𝑀

⋮

⋮

a batch of M
shuffles

×1⋮

⋮ ×𝑚

×𝑀

:depth-wise convolution :random shuffle :inverse shuffle

input outputDconv

Dconv

W-SA

Figure 3: Testing of CW-SA with Monte-Carlo averaging.

which in practice is prohibitively expensive. An approxima-
tion to expectation is Monte-Carlo averaging, as formulated
by Equation (12). Specifically, the procedure is: shuffling
the input x independently by M times, computing M out-
puts of the CW-SA and averaging the outputs to obtain the
Monte-Carlo estimator. As M → ∞, the Monte-Carlo
estimator gets close to the true expectation.

CW-SAtest (x) ≈ 1

M

M∑
i=1

CW-SA (x,Si) . (12)

It seems that the testing time will be scaled by M , which
is the number of averaged forward passes. However, the
multiple forward passes can be conducted concurrently with
modern accelerators, which significantly reduces the testing
time. Specifically, this acceleration can be done by transfer-
ring an input to GPU(s) and setting a mini-batch comprising
the same input multiple times. CW-SA shuffles indepen-
dently along the batch dimension. After one forward pass
through CW-SA, averaging over the mini-batch yields the
Monte-Carlo estimation. Figure 3 illustrates the procedure.

3.2.4. COMPLEXITY ANALYSIS

We provide a detailed analysis about the time and space
complexity of CW-MSA in Tables 1 and 2. We include
the complexity of MSA and W-MSA for comparison. For
training, our CW-MSA is as efficient as W-MSA in speed
and memory usage, as shown in Table 1. However, W-
MSA is unable to capture non-local interactions. MSA can
model interactions from the non-local scope while suffering
from quadratic complexity in input resolution. In contrast,
our CW-MSA enjoys efficient training while possessing the
capacity of modeling the non-local interactions. For testing,
as shown in Table 2, W-MSA can inference with linear
complexity but is still restricted by local interactions. On
the other hand, the complexity of CW-MSA for testing is
linear to the input resolution and scaled by the number of
Monte-Carlo samples compared with the training case.

3.3. ShuffleFormer

The proposed chaotic window self-attention is capable of
modeling non-local interactions in linear complexity. For
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Table 1: Complexity comparison for training. B: batch size, (H,W,C): feature size, s: local window size, h: number of
heads.

Method Time Complexity Space Complexity Non-local Scope?

MSA O(BH2W 2C +BHWC2) O(BhH2W 2 +BHWC)
√

W-MSA O(BHWCs2 +BHWC2) O(BhHWs2 +BHWC) ×
CW-MSA O(BHWCs2 +BHWC2) O(BhHWs2 +BHWC)

√

Table 2: Complexity comparison for testing. B: batch size, (H,W,C): feature size, s: local window size, h: number of
heads, M : number of Monte-Carlo samples.

Method Time Complexity Space Complexity Non-local Scope?

MSA O(BH2W 2C +BHWC2) O(BhH2W 2 +BHWC)
√

W-MSA O(BHWCs2 +BHWC2) O(BhHWs2 +BHWC) ×
CW-MSA O(MBHWCs2 +MBHWC2) O(MBhHWs2 +MBHWC)

√

image restoration tasks, both local and non-local interac-
tions are essential for recovering clean images. Therefore,
the desired model is expected to not only model non-local
interactions but also enhance locality. To this end, we al-
ternate W-MSA (for local interactions) and CW-MSA (for
non-local interactions) in consecutive blocks, which is com-
puted according to

x̂l = W-MSA(LN(xl−1)) + xl−1,

xl = MLP(LN(x̂l)) + x̂l,

x̂l+1 = CW-MSA(LN(xl)) + xl,

xl+1 = MLP(LN(x̂l+1)) + x̂l+1,

(13)

where x̂l and xl denote the output features of the (C)W-MSA
module and the MLP module for block l, respectively. Sim-
ilar to previous works (Liu et al., 2021; Wang et al., 2022),
we establish an hierarchical Transformer with the widely-
used U-shape architecture (Ronneberger et al., 2015; Isola
et al., 2017). The resulting Transformer, named Shuffle-
Former, not only enjoys the capacity of modeling non-local
interactions but also enhances locality. It should be empha-
sized ShuffleFormer can process input in linear complexity
with respect to the resolution. The overall architecture of
ShuffleFormer is illustrated in Figure 4.

4. Experiment
4.1. Experimental Setting

Setting. In this section, we validate the effectiveness of the
proposed ShuffleFormer. Following the experimental setting
of previous work (Xiao et al., 2022), we also elaborate four
ShuffleFormer variants: ShuffleFormer-SS, ShuffleFormer-
SM, ShuffleFormer-CS, ShuffleFormer-CM. The first symbol

aims to indicate whether the chaotic window self-attention
is adopted for training(S: the shifted window self-attention;
C: the chaotic window self-attention) and the second symbol
represents whether the Monte-Carlo averaging is adopted for
testing(S: the shifted window self-attention; M: the Monte-
Carlo averaging for the chaotic window self-attention).
These variants are identical except for the shifted/chaotic
window self-attention. In particular, ShuffleFormer-SS is
degraded to the traditional shifted window transformer. The
number of samples used in Monte-Carlo averaging is 16, i.e.,
M = 16. For ShuffleFormer-SM and ShuffleFormer-CM, we
should evaluate the trained model five times and report the
mean as well as standard deviation in the form of mean±std.
In practice, due to Monte-Carlo averaging, the standard de-
viation is an order of magnitude smaller compared with the
precision of the mean value. Therefore, we only report the
mean results for simplicity.

4.2. Image Denoising

We perform the real noise removal experiment on SIDD (Ab-
delhamed et al., 2018) datasets. To demonstrate the efficacy
of our method, we include nine representative methods for
comparison. Table 3 reports PSNR and SSIM scores of
previous methods as well as ShuffleFormer variants for real-
world image denoising, respectively. Figure 10 shows visual
comparison with other methods.

4.3. Image Deraining

Image deraining experiments are performed on the real-
world SPA-Data (Purohit et al., 2021), which 638K train-
ing pairs and 1000 testing images. Except for the elab-
orate four ShuffleFormer variants, existing six deraining
methods are included: GMM (Li et al., 2016), DDN (Fu
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Figure 4: (a) The overall architecture of ShuffleFormer; (b) the structure of ShuffleBlock.

Table 3: Quantitative results of image denoising on SIDD.

Method SIDD
PSNR ↑ SSIM ↑

BM3D (Dabov et al., 2007b) 25.65 0.685
RIDNet (Anwar & Barnes, 2019) 38.71 0.914
VDN (Yue et al., 2019) 39.28 0.909
DANet (Yue et al., 2020) 39.47 0.918
CycleISP (Zamir et al., 2020a) 39.52 0.957
MIRNet (Zamir et al., 2020b) 39.72 0.959
MPRNet (Zamir et al., 2021) 39.71 0.958
NBNet (Cheng et al., 2021) 39.75 0.959
MAXIM (Tu et al., 2022) 39.96 0.960
ShuffleFormer-SS(Wang et al., 2022) 39.89 0.960
ShuffleFormer-SM 39.35 0.956
ShuffleFormer-CS 39.60 0.958
ShuffleFormer-CM 40.00 0.960

et al., 2017), SPANet (Wang et al., 2019), JORDER-E (Yang
et al., 2020), RCDNet (Wang et al., 2020), SPAIR (Puro-
hit et al., 2021). Table 4 shows the performance compar-
ison. Figure 11 shows in comparison with other methods,
ShuffleFormer-CM is more effective in removing rainy arti-
facts while preserving image textures.

4.4. Image Deblurring

We conduct deblurring experiments on four benchmark
datasets, including two synthesized datasets (GoPro (Nah
et al., 2017) and HIDE (Shen et al., 2019)), and two real-
world datasets (RealBlur-R (Rim et al., 2020) and RealBlur-
J (Rim et al., 2020)). Following previous works (Kupyn
et al., 2019), we train ShuffleFormer only on the GoPro
dataset and directly evaluate the well-trained model on Go-
Pro, HIDE, RealBlur-R and RealBlur-J. Table 5 presents
PSNR and SSIM scores of different deblurring methods
and ShuffleFormer variants. Figure 12 presents an image
deblurring example from GoPro (Nah et al., 2017).

Table 4: Quantitative results of image deraining on SPA-
Data dataset.

Method SPA-Data
PSNR ↑ SSIM ↑

GMM (Li et al., 2016) 34.30 0.9428
DDN (Fu et al., 2017) 36.97 0.9604
SPANet (Wang et al., 2019) 40.24 0.9811
JORDER-E (Yang et al., 2020) 40.78 0.9811
RCDNet (Wang et al., 2020) 41.47 0.9834
SPAR (Purohit et al., 2021) 44.10 0.9872
ShuffleFormer-SS (Wang et al., 2022) 48.80 0.9935
ShuffleFormer-SM 47.91 0.9927
ShuffleFormer-CS 48.08 0.9923
ShuffleFormer-CM 49.19 0.9935

Findings. Based on above experimental results on vari-
ous image restoration tasks, we can make the following
observations and analyses:

• ShuffleFormer-SS vs. ShuffleFormer-SM: Without the
random shuffle for training, directly applying Monte-
Carlo averaging will degrade performance dramatically,
which reveals that the performance gain cannot simply
attribute to feature ensemble at testing time and training
with random shuffle matters;

• ShuffleFormer-CM vs. ShuffleFormer-SM: Random
shuffle for training plays a vital role in performance
improvements when testing with MC averaging;

• ShuffleFormer-CM vs. ShuffleFormer-CS: If only
shifted window strategy is adopted for testing, Shuffle-
Former suffers from severe performance degradation.
This result seems weird since shifted window can be a
particular instance of random shuffle. The distinction
is that random shuffle enables window self-attention
to model non-local interactions while shifted window
strategy is still restricted to the local scope.
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Table 5: Quantitative results of image deblurring on GoPro.

Method GoPro HIDE RealBlur-R RealBlur-J Average
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Xu et al. (Xu et al., 2013) 21.00 0.741 - - 34.46 0.937 27.14 0.830 - -
Nah et al. (Nah et al., 2017) 29.08 0.914 25.73 0.874 32.51 0.841 27.87 0.827 28.80 0.864
DeblurGAN (Kupyn et al., 2018) 28.70 0.858 24.51 0.871 33.79 0.903 27.97 0.834 28.74 0.867
Zhang et al. (Zhang et al., 2018a) 29.19 0.931 - - 35.48 0.947 27.80 0.847 - -
SRN (Tao et al., 2018) 30.26 0.934 28.36 0.915 35.66 0.947 28.56 0.867 30.71 0.915
DeblurGAN-v2 (Kupyn et al., 2019) 29.55 0.934 26.61 0.875 35.26 0.944 28.70 0.866 30.03 0.905
DMPHN (Zhang et al., 2019a) 31.20 0.940 29.09 0.924 35.70 0.948 28.42 0.860 31.10 0.918
DBGAN (Zhang et al., 2020) 31.10 0.942 28.94 0.915 - - - - - -
MPRNet (Zamir et al., 2021) 32.66 0.959 30.96 0.939 35.99 0.952 28.70 0.873 32.08 0.931
DGUNet+ (Mou et al., 2022) 33.17 0.963 31.40 0.944 - - - - - -
MAXIM (Tu et al., 2022) 32.86 0.961 32.83 0.956 35.78 0.947 28.83 0.875 32.58 0.935
Restormer (Zamir et al., 2022) 32.92 0.961 31.22 0.942 36.19 0.957 28.96 0.879 32.32 0.935
ShuffleFormer-SS (Wang et al., 2022) 33.05 0.962 30.89 0.940 36.19 0.956 29.06 0.884 32.30 0.936
ShuffleFormer-SM 31.74 0.953 29.77 0.928 35.40 0.944 28.01 0.852 31.23 0.919
ShuffleFormer-CS 32.38 0.958 30.42 0.936 35.75 0.951 28.40 0.866 31.74 0.928
ShuffleFormer-CM 33.38 0.965 31.25 0.943 36.34 0.958 29.19 0.890 32.54 0.939

4.5. Analytic Experiment

Trade-off of running time and performance. We analyze
the trade-off of running time and performance brought by
Monte-Carlo averaging. We conduct experiment on SIDD
dataset (Abdelhamed et al., 2018) and evaluate the trend
of running time and PSNR as the number of MC samples
increases. Each experiment is repeated 5 times and then
compute the mean and standard deviation. Figure 5 presents
the results. We can draw the conclusion: i) Even when the
number of MC samples is 16, it only incurs approximate
4× additional running time (rather than 16×); ii) We can
still obtain significant performance improvements in the
case of a single sample where the efficiency is the same
with the shifted window self-attention. The trend of mem-
ory footprint against Monte-Carlo samples can be found
in Appendix D.1.

Effect of position modeling. To make use of positional
information, we employ a single depth-wise convolution fol-
lowing (Chu et al., 2023). We further conduct experiments
for validate the effectiveness of a depth-wise convolution
for position modeling on SIDD dataset and the results are
reported in Table 6. It can be found that the depth-wise
convolution can model relative position based interactions
to slightly promote the final performance.

Visualization of attention map. To further validate that the
capacity of modeling non-local interactions, we provide vi-
sualization of the attention map in Figure 9. We can observe
that attention map of SW-MSA is restricted within a local
window. In contrast, CW-MSA with random shuffle breaks
the local barrier brought by window partition and capture
non-local interactions. Please refer to Appendix E.1.2 for
more details.

Consistent improvements across window size. In As-

Table 6: Abalation study about position modeling based on
SIDD dataset.

Method PSNR (dB) ↑ SSIM ↑
w/o Dconv 39.93 0.960
+ Dconv 40.00 0.960

sumption 3.1, we hypothesize that CW-MSA utilizes local
window self-attention whose size is much smaller compared
with the input resolution to model non-local interactions.
We here further demonstrate that CW-MSA can still attain
consistent improvements across different window size. We
perform real-world denoising experiments based on SIDD
dataset (Abdelhamed et al., 2018) and choose three differ-
ent window size {2× 2, 4× 4, 8× 8}, which still respects
the local partition in Assumption 3.1. Figure 5 shows that
CW-MSA exhibits consistent superiority to the shifted win-
dow baseline across varying small window size, which is
attributed to its significantly increased modeling distance by
the random shuffle transformation pair.

5. Limitation
We provide a fresh perspective to increase the modeling dis-
tance of window self-attention by randomly shuffling the in-
put. It should be emphasized that the basics of applying ran-
dom shuffle to self-attention is the permutation-equivariance
property. In addition, we have also extended the random
shuffle strategy to CNN and the experiments reveal that
CNN can not easily benefit from the extended receptive
field by random shuffle. Please refer to Appendix D.2 for
more evidence. As shown in Figure 5, random shuffle when
integrated with CNN leads to a severe oscillation in perfor-
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Figure 5: Left: Trade-off between performance and running time. Middle: Consistent improvements over varying window
size. Right: CNN cannot benefit from random shuffle.

mance. All observations lead to a conclusion that random
shuffle impairs the modeling ability of CNN. The reason
is that CNN depends its modeling solely on the relative
position, which is no longer reliable after random shuffle.
Exploring the way to adapt the random shuffle to CNN or
constructing a completely new transformation to extend the
receptive field of CNN is an interesting topic for us.

6. Conclusion
In this paper, we attempt to model non-local interactions
with only local window Transformer for image restoration.
Given the philosophy that motion is relative, we propose to
randomly shuffle the input rather than shift window strat-
egy before passing self-attention. Random shuffle breaks
the local barrier incurred by window partition and facil-
itates local self-attention to model non-local interactions
without introducing extra parameters. The derived CW-SA
can be trained efficiently by sampling the random shuffle.
For testing, we elaborate the Monte-Carlo averaging to ap-
proximate the expectation of the introduced random factors.
Our method enjoys both elegant theoretical guarantees and
superior performance for classic image restoration tasks.
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A. Proof to Theorem Theorem 3.5
Proof. Each pixel has the equal probability to be in the same window with pixel m1 = (mh1

,mw1
). Hence, the expected

chaotic distance is computed as:

d(m1) = E
m2|(m1,m2)∈CS

[dS(m1,m2)]

=
1

HW − 1

H−1∑
h=0

W−1∑
w=0

√
(h−mh1

)2 + (w −mw1
)2.

(14)

Given the mean inequality √
x2 + y2

2
≥ x+ y

2
, (15)

d(m1) has the lower bound:

d(m1) =
1

HW − 1

H−1∑
h=0

W−1∑
w=0

√
(h−mh1

)2 + (w −mw1
)2

≥ 1

HW − 1

H−1∑
h=0

W−1∑
w=0

√
2

2
(|h−mh1

|+ |w −mw1
|) .

(16)

Note that

W−1∑
w=0

|w −mw1 |

=

mw1∑
w=0

(mw1
− w) +

W−1∑
w=mw1

(w −mw1
)

=
mw1

(mw1
+ 1)

2
+

(W −mw1
)(W −mw1

− 1)

2

(17)

and

H−1∑
h=0

|h−mh1
|

=

mh1∑
h=0

(mh1 − h) +

H−1∑
h=mh1

(h−mh1)

=
mh1(mh1 + 1)

2
+

(H −mh1
)(H −mh1

− 1)

2
,

(18)

we then have:

d(m1) ≥
√
2

4(HW − 1)
[Hmw1

(mw1
+ 1) +Wmh1

(mh1
+ 1)

+H(W −mw1)(W −mw1 − 1) +W (H −mh1)(H −mh1 − 1)]

(19)

which completes the proof.

B. Experimental Setting
Loss function. The loss function adopted for training is the Charbonnier loss (Charbonnier et al., 1994), whose mathematical
formula is:

L(I ′, I) =
√
||I ′ − I||2 + ϵ2, (20)
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where I ′ and I are the restored and ground-truth image respectively. The constant ϵ is empirically set to 10−3.

Training Detail. Following Uformer (Wang et al., 2022), ShuffleFormers employ a four-level encoder-decoder structure.
The numbers of ShuffleBlock are {1, 2, 8, 8} for level-1 to level-4 of Encoder and the blocks for Decoder are mirrored. The
number of channel is set to 32 and the window size is 8× 8. We train the network with Adam optimizer (β1 = 0.9, β2 =
0.999) with the initial learning rate 2× 10−4 gradually reduced to 1× 10−6 with the cosine annealing. The training samples
are augmented by the horizontal flipping and rotation of 90◦, 180◦, or 270◦. We then describe the task-specific settings.

Image deraining. We train ShuffleFormers using four TITAN Xp GPUs with batch size 8 on 256 × 256 image pairs.
The training process lasts for 10 epochs. Following previous works (Wang et al., 2020; Yang et al., 2017), We evaluate
PSNR (Huynh-Thu & Ghanbari, 2008) and SSIM (Wang et al., 2004) based on the luminance channel, i.e., Y channel of
YCbCr space.

Image denosing. For image denoising, we conduct real noise removal experiment on SIDD (Abdelhamed et al., 2018)
dataset. The training patches are cropped from the total training set with size 128× 128. We train ShuffleFormers using
four TITAN Xp GPUs for total 250 epoches with batch size 32 and PSNR is evaluated on the full-size test images.

Image deblurring. ShuffleFormers are trained on GoPro dataset (Nah et al., 2017)2 and directly applied to GoPro (Nah
et al., 2017), HIDE (Shen et al., 2019), RealBlur-R (Rim et al., 2020) and RealBlur-J (Rim et al., 2020). We crop 512× 512
image patches with stride 256 from GoPro dataset and train ShuffleFormers with 256× 256 training pairs randomly cropped
from 512× 512 image patches. The total training epoch is 600 with batch size 8 on four TITAN Xp GPUs and we evaluate
PSNR and SSIM on the full-size test images.

C. Implementation for random shuffle and inverse shuffle
We provide python implementation for the random shuffle and corresponding inverse shuffle in Algorithm 1 and 2, which
only involves rearrangement operations.

Algorithm 1 Python Implementation of random shuffle
import random
def random_shuffle(x):

B, H, W, C = x.shape
H_shuffle = random.shuffle(list(range(0, H))) #shuffle index
W_shuffle = random.shuffle(list(range(0, W)))
shuffle_x = x[:, H_Shuffle, :, :] #shuffle on H
shuffle_x = shuffle_x[:, :, W_Shuffle, :]#shuffle on W
return shuffle_x, (H_shuffle, W_shuffle)

Algorithm 2 Python Implementation of inverse shuffle
def inverse_shuffle(x, (H_shuffle, W_shuffle)):

B, H, W, C = x.shape
H_Index, W_Index = list(range(0, H)), list(range(0, W))
inverse_x[:, :, W_Shuffle, :] = x[:, :, W_Index, :] #inverse for W
inverse_x[:, H_Shuffle, :, :] = inverse_x[:, H_Index, :, :] #inverse for H
return inverse_x

D. Analytic Experiments
D.1. Trade-off of resource and performance

Chaotic window self-attention allows to trade resource including computation and memory for performance. To validate,
we conduct experiments on SIDD (Abdelhamed et al., 2018) and evaluate the trend of resource consumption and PSNR
as the number of samples increases. Every experiment is repeated 5 times and then compute the mean and standard
deviation. Figure 6 shows the results. We can draw the following conclusions: i) the performance and consumed resources
increase with the number of MC samples, which provides a performance-efficiency trade-off; ii) Even when the number
of MC samples is 16, it only incurs approximate 4× (rather than 16×) additional running time (Figure 6(b)) and memory

2https://seungjunnah.github.io/Datasets/gopro, CC BY 4.0 license.
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(a) PSNR vs. # MC sample (b) Running time vs. # MC sample (c) Memory vs. # MC sample

Figure 6: Monte-Carlo averaging can trade resource for accurate restoration results.

consumption (Figure 6(c)); iii) in the case of a single sample where the efficiency is the same with tranditional shifted
window self-attention, we can still obtain significant performance improvements.

Discussion: why is Monte-Carlo averaging needed given the fact that we can get promising results when the number of
MC sample is 1? We design the algorithm based on two considerations: i) To ensure theoretical completeness of our
random shuffle framework. Since random shuffle introduces random factors in Transformer, we must propose a way to
approximate the model expectation as Dropout does; ii) Monte-Carlo averaging can reduce the variance of restored results
(see Figure 6(a)); iii) we provide a theoretical interpretation that Monte-Carlo averaging boosts the model performance:
suppose that the model is denoted by F , the random factors are collectively denoted S , we utilize the square of L2 norm as
the criterion to evaluate the fitted network. Given the degraded image x, the expected loss of the fitted F (x;S) is given by

ES [||F (x,S)− I(x)||22] = ES [||F (x,S)− ES [F (x,S)] + ES [F (x,S)]− I(x)||22] (21)

= ES [||F (x,S)− ES [F (x,S)||22] + ||ES [F (x,S)]− I(x)||22 (22)

≥ ||ES [F (x,S)]− I(x)||22. (23)

Therefore, taking expectation over random factors (ES [F (x,S)]) can boost performance against single forward process
(F (x,S)) from the sense of expected loss. The true marginalization involves prohibitively expensive computational burden
(since the combinations of random factors are exponentially huge). We take two steps of approximations to derive our final
layer-wise Monte-Carlo averaing algorithm from the true model expectation. First, in the similar spirit with testing strategy
of Dropout (Srivastava et al., 2014), we adopt layer-wise expectation to approximate the expensive model average. Second,
for a certain chaotic attention layer, we adopt the Monte-Carlo averaging to approximate the exact layer-wise expectation.

D.2. Extending random shuffle to CNN

Again with the philosophy of local→non-local modeling, we extend random shuffle to CNN by alternating regular
convolution and ‘chaotic’ convolution. We adopt the classic DnCNN (Zhang et al., 2017a) as the basic model and modify it to
the chaotic version by absorbing random shuffle into half its convolution layers. Besides, we also include Shuffleformer with
window size 4 for comparison (Figure 7(b) and Figure 7(d)). Experiments are conducted on SIDD dataset (Abdelhamed et al.,
2018). Note that random shuffle does not introduce changes in model parameters or FLOPs. Figure 7 shows the loss curve
during training and PSNR curve on testing set. Figure 7(a) shows that random shuffle imposes difficulty on CNN. In contrast,
when equipped with transformer, random shuffle even facilitates optimization as illustrates in Figure 7(b). Figure 7(c) reveals
that random shuffle leads to unstable and worse performance of CNN on unseen data, which is distinct from Transformer
(Figure 7(d)). These observations conform to our argument that the key of introducing random shuffle to Transformer is the
permutation-equivariance property of self-attention.

E. Visualization
E.1. Non-Local Interactions

E.1.1. LOWER BOUND OF CHAOTIC DISTANCE

We examine the ability of modeling non-local interactions by visualizing the lower bound of the expected chaotic distance
d(m1) in Figure 8. Specifically, we consider two representative instances of m1 = (0, 0) (the red dot in Figure 8(a)) and
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(a) Training loss of CNN (b) Training loss of Transformer (c) PSNR of CNN (d) PSNR of Transformer

Figure 7: Extension of random shuffle to CNN.

m1 = (H2 ,
W
2 ) (the red dot in Figure 8(b)). Based on Theorem 3.5, we obtain the expressions for these two instances:

d ((0, 0)) ≥
√
2HW (H +W − 2)

4(HW − 1)
,

d

((
H

2
,
W

2

))
≥

√
2HW (H +W )

8(HW − 1)
.

(24)

Figure 8 presents the lower bound of modeling distance using a red circle whose radius is proportional to the distance.
From Assumption 3.1, the size of local window used to perform self-attention is much smaller than the input resolution 3.
However, random shuffle can break the local barrier of local window. As shown in Figure 8, the lower bound of expected
distance of interactions captured by chaotic window self-attention is comparable to the input resolution.

E.1.2. ATTENTION MAP

We further validate that the capacity of modeling non-local interactions by visualizing attention map. To mitigate the
dependency on input content, we randomly pick 10 test images from SIDD and then record averaged attention maps.
Attention maps from second encoding block are considered. We consider the case that the query pixel, which is marked
by white point in the left column of Figure 9, locates in the centre of the feature map. As shown in the middle column
of Figure 9, attention map of SW-MSA is restricted within a local window, which hinders to capture non-local interactions.
In contrast, with random shuffle, CW-MSA breaks the local barrier of window partition. Figure 9 reveals that CW-MSA is
capable of aggregating information from the non-local region. It is noteworthy that CW-MSA (right column of Figure 9)
contains more attended pixels compared to the case of SW-MSA (middle column of Figure 9). It is because Monte-Carlo
averaging (M = 16) is adopted for the testing case of CW-MSA.

E.2. Visualization of Image Restoration

We also provide more visual results on image denoising (Figure 10), image deraining (Figure 11), and image deblurring
(Figure 12). In comparison with other state-of-the-art methods and other ShuffleFormer variants, ShuffleForme-CM, which is
equipped with random shuffle strategy for training and Monte-Carlo averaging for testing, can recover more image textures
and further generate visually faithful results.

Broader Impacts
Generally, image acquisition system tends to suffer from various degenerations, including inherent noise of capturing
instruments, shaking during shooting, unpredictable weather condition, and so forth. Therefore, image restoration has
practical value in research and application. Our proposed random shuffle strategy can extend the modeling distance of the
window transformer so that improve the performance on several tasks. Nevertheless, some negative consequences may come
along. For instance, the deviation from the actual image textures caused by image restoration technologies may lead to
unfair judgments in medical and criminal situations. In these scenarios, it is required to consult with human experts to avoid
misjudgments.

3In practice, the window size is 8× 8 while the input resolution is 512× 512.
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Figure 8: Visualization of the lower bound of the expected chaotic distance d(m1). The red dot is the reference pixel m1.
The radius of red circle depicts the lower bound of the expected chaotic distance.

head 1

head 2

(a) The query (b) Attention map of SW-MSA (c) Attention map of CW-MSA

Figure 9: Visual comparison of attention map of SW-MSA and CW-MSA.
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(a) Visual comparison on the full-size image.

Input VDN MPRNet ShuffleFormer-SS

ShuffleFormer-SM ShuffleFormer-CS ShuffleFormer-CM Target

(b) Enlarged region of Figure 10(a).

Figure 10: Visualization of image denoising on SIDD.

18



Random Shuffle Transformer for Image Restoration

Input
PSNR

DDN
31.24 dB

RCDNet
31.25 dB

ShuffleFormer-SS
31.38 dB

ShuffleFormer-SM
28.79 dB

ShuffleFormer-CS
30.89 dB

ShuffleFormer-CM
35.48 dB

Target
∞

(a) Visual comparison on the full-size image.

Input DDN RCDNet ShuffleFormer-SS

ShuffleFormer-SM ShuffleFormer-CS ShuffleFormer-CM Target

(b) Enlarged region of Figure 11(a).

Figure 11: Visualization of image deraining on SPA-Data.
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(a) Visual comparison on the full-size image.
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(b) Enlarged region of Figure 12(a).

Figure 12: Visualization of image deblurring on GoPro.
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