
Order Matters in the Presence of Dataset Imbalance
for Multilingual Learning

Dami Choi∗†
U. Toronto & Vector Institute
choidami@cs.toronto.edu

Derrick Xin∗
Google Research
dxin@google.com

Hamid Dadkhahi
Google Research

hdadkhahi@google.com

Justin Gilmer
Google Deepmind

gilmer@google.com

Ankush Garg
Google Deepmind

ankugarg@google.com

Orhan Firat
Google Deepmind

orhanf@google.com

Chih-Kuan Yeh
Google Deepmind

chihkuanyeh@google.com

Andrew M. Dai
Google Deepmind
adai@google.com

Behrooz Ghorbani
OpenAI

ghorbani@openai.com

Abstract

In this paper, we empirically study the optimization dynamics of multi-task learning,
particularly focusing on those that govern a collection of tasks with significant
data imbalance. We present a simple yet effective method of pre-training on high-
resource tasks, followed by fine-tuning on a mixture of high/low-resource tasks.
We provide a thorough empirical study and analysis of this method’s benefits
showing that it achieves consistent improvements relative to the performance trade-
off profile of standard static weighting. We analyze under what data regimes this
method is applicable and show its improvements empirically in neural machine
translation (NMT) and multi-lingual language modeling.

1 Introduction

Over the past few years, large multi-task neural networks have emerged as a popular modeling
paradigm in deep learning. The appeal behind these models is that they can leverage transfer learning
among the tasks to outperform single-task models. Indeed, multi-task models have achieved state-of-
the-art performance in domains such as machine translation [2, 8], language understanding [24, 32],
and speech recognition [4, 3].

Unfortunately, optimizing such multi-task models remains a challenge. To effectively train these
models, the different tasks need to be balanced during training. This is often done by sampling each
task with a static probability.

Prior work [31, 20] shows evidence that when all tasks are in the data rich regime (high-resource),
such static sampling approaches yield optimal results. However, when certain tasks are data sparse

∗Equal contribution †Work done as a student researcher at Google.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

(low-resource)2, which is quite common in real-world applications, the optimality of static sampling
is unclear.

The problem with static sampling in the presence of low-resource tasks is that it has difficulty dealing
with overfitting on the low-resource tasks. This is because early stopping is not a viable solution
due to high-resource tasks needing many more epochs to converge. The transfer learning scheme
of pre-training on high-resource and fine-tuning on low-resource tasks (such as in [33]) provides a
solution to the overfitting problem, since the training of high and low-resource tasks are separated.
Not only this, but the training of low-resource tasks can potentially benefit from positive transfer that
comes from performing well on the high-resource tasks. The problem with this approach, however, is
that during the fine-tuning phase, catastrophic forgetting of the pre-training tasks ensues.

In this paper, we introduce a simple training scheme that combines the best of static sampling and
transfer learning: pre-train on a high-resource task and fine-tune jointly on a mixture of high and low-
resource tasks. A pre-training and fine-tuning scheme effectively enables early stopping by allowing
the training of low-resource tasks to happen for as little as needed to prevent overfitting, while training
the high-resource task for as long as needed. Furthermore, pre-training on a high-resource task will
potentially enable positive transfer for low-resource tasks and result in faster convergence in the
fine-tuning phase. Lastly, the fine-tuning phase on a mixture of high and low-resource tasks will
not only remedy the catastrophic forgetting issue of fine-tuning only on low-resource tasks, but also
enjoy further transfer learning among all the tasks.

Through an extensive empirical study, we find that the pre-training and joint fine-tuning scheme
yields superior low-resource task performance compared to both static sampling and the transfer-
learning scheme. We observed that the performance improvement on static sampling is driven by
two mechanisms. The first is that pre-training initializes the fine-tuning phase at a better starting
point than random initialization due to positive transfer. The second is that higher sampling rates are
more data-efficient than lower sampling rates. Because our method has two separate training phases,
the low-resource-training phase can be short. This in turn enables us to increase the low-resource
sampling rate without risking overfitting. Indeed, our method is more data-efficient than static
sampling in terms of the low-resource tasks throughout the entire fine-tuning phase, achieving better
low-resource task performance while using only a fraction of the data seen by static sampling. We
further observe that pre-training and joint fine-tuning seems to have a regularization effect. However,
we find that regularization is not the main factor behind the performance improvement, since increased
explicit regularization, such as dropout, does not improve the performance to the extent that our
method does.

The contributions of this paper can be summarized as follows:

• To the best of our knowledge, we are the first to show that it is possible to push the Pareto
front of static sampling in the data-imbalanced regime.

• We present a simple algorithm that can be readily used to boost low-resource tasks’ perfor-
mance in multilingual models.

• We show on realistic workloads (up to 13B parameters) that our scheme performs bet-
ter than static sampling and transfer learning with respect to the low-resource language-
pair/language.

2 Background

In our work, we focus on the supervised setting, where our model parameters θ ∈ Rp are trained on
K different tasks, with the loss for task i being Li(θ).
We introduce the idea of Pareto optimality to better explain the trade-off effect that happens when
training on many different tasks.
Definition (Pareto Optimality). θ ∈ Rp Pareto dominates another θ′ if ∀1 ≤ i ≤ K, Li(θ) ≤
Li(θ′) and there exists a task j where Lj(θ) < Lj(θ′). θ is Pareto optimal if it is not dominated by
any other point. The collection of the Pareto optimal points is denoted as the Pareto front.

2In this literature, data rich and data sparse tasks are often referred to as high-resource and low-resource
respectively. Note that whether a task is high-resource or not depends on both the amount of training data and
the model capacity.

2

A standard approach for optimizing multi-task models is scalarization [5] or static sampling:

θ̂(w) = argmin
θ

K∑
i=1

wiLi(θ), (1)

where w is a fixed vector of pre-determined task weights with w > 0 and
∑
iwi = 1.

In our work, we follow convention and implement scalarization via proportional sampling, where
data from task i is sampled with probability equal towi. In this case, the expected loss is equal to the
loss from scalarization:

L(θ) = Ex [`(x;θ)] =
K∑
i=1

P(task i)Ex∼task i [`(x;θ)] =

K∑
i=1

wiLi(θ). (2)

Prior work [31] studied the performance trade-off behavior of scalarization and a variety of different
multi-task optimization (MTO) methods in the two-task setting. They found that both in the high-
resource case and in the data-imbalanced case, no MTO method improved upon the Pareto front
of scalarization. In our work, we compare the performance trade-off behavior of scalarization
and our proposed method, and find that the Pareto front of scalarization can be improved in the
data-imbalanced regime.

Note that practically speaking, it is not feasible to determine whether θ is truly Pareto optimal since
we must check that it is not dominated by all θ′ ∈ Rp. Following [31], instead of considering all of
Rp we consider only the parameters reachable by a fixed set of hyperparameters.

3 Pre-training Joint Fine-tuning

Given K tasks, among which some are low-resource, our goal is to optimize the performance of the
low-resource tasks without sacrificing the performance of the remaining tasks. Static sampling is not
ideal because all tasks are seen constantly throughout the entirety of training, resulting in overfitting
of low-resource tasks while high-resource tasks still need to be learned. Naively breaking up training
into two phases and training on low-resource tasks in the later phase results in catastrophic forgetting
of earlier-trained tasks.

Assuming the existence of at least one high-resource task, we propose to first pre-train on a high-
resource task, and fine-tune the resulting model on the full mixture of K tasks. We call this method
pre-training joint fine-tuning3.

In our preliminary experiments, we found that it is important to reset the learning rate schedule
and optimizer state when switching over to the joint fine-tuning phase. This is because learning is
extremely slow for tasks that are newly introduced when the learning rate has already decayed. In our
evaluations, we additionally experiment with adding resetting to the scalarization baseline to ensure
that improvements from our method are not purely from resetting. See Sections 4.1.2 and 4.2 for
more detail.

Our two-stage training process introduces additional hyperparameters compared to scalarization: the
hyperparameters involved in the pre-training phase, and the length of the pre-training phase. However,
we find that tuning is not much more difficult than scalarization, and in some cases it is easier to tune.
The pre-training phase only involves tuning for a single task, which is much easier than tuning for
multiple tasks. We also expect the joint fine-tuning phase to be shorter than the full training length
of scalarization; therefore, tuning for the second phase should be around the same or easier than
scalarization. Lastly, our results show that pre-training does not hurt fine-tuning performance and
longer pre-training translates to better fine-tuning. From this, we recommend that if there is a strict
training budget, it is better to be conservative and pre-train for a shorter amount of time. However,
if the goal is to obtain the best performance and there is no strict compute budget, we recommend
pre-training for as long as possible before fine-tuning. See Section 4.3 for more details.

3We use the terms ‘pre-training’ and ‘fine-tuning’ only to distinguish the two phases of training, and that
the training objectives are the same for both phases. In other words, we do not suggest using any particular
self-supervised objective for the pre-training phase, or training on downstream tasks for the fine-tuning phase.

3

4 Experiments

In the following sections, we apply our proposed training scheme to NMT (where each task is a
language-pair) and multilingual training (where each task is a language). In the NMT experiments,
we show that pre-training joint fine-tuning pushes past the trade-off frontier of scalarization through
significant improvements on the low-resource task– a feat that many popular gradient-based multi-task
optimization methods were not able to achieve [31]. In the language modeling experiments, we scale
up the number of tasks, and show that our method retains the same benefits for the low-resource
languages.

4.1 Neural Machine Translation

For our first experiment, we focus on a setting where we can trace out, and compare the trade-off
frontiers obtained with and without pre-training. As in prior work [31], we choose to work on the
two-task setting due to the ease of visualizing the performance trade-off curves.

We choose our high and low-resource language-pairs from the WMT dataset, where
English→{Chinese, French} are the high-resource language pairs, and English→{Romanian, Hindi}
are the low-resource language pairs. See Table 1 for details on each language-pair. All models in this
section use a pre-LayerNorm encoder-decoder transformer architecture [28]. In the main paper, we
present results on models with three encoder layers and three decoder layers. Results obtained with a
larger model size are in Appendix A.2. Further details, including hyperparameters, are in A.1.

Table 1: Overview of data sources used in our
NMT experiments. Our datasets are from WMT.

Language Pair # Train Ex. # Eval Ex.

En-Fr ’15 40, 853, 298 4, 503
En-Zh ’19 25, 986, 436 3, 981
En-Ro ’16 610, 320 1, 999
En-Hi ’14 313, 748 520

In order to trace out the trade-off frontiers for
the pre-training joint fine-tuning method and the
scalarization baseline, we adhere to the follow-
ing methodology. For scalarization, we iterate
through a grid of task weights (since there are
only two tasks, a grid is a linear function of the
granularity) and train on the two language pairs
for N steps using proportional sampling accord-
ing to the task weights. For the pre-training
joint fine-tuning method, we first pre-train on
the high-resource language pair for N1 training
steps. We then reset the optimizer state and the learning rate schedule and fine-tune on a mixture of
high-resource and low-resource language pairs for N2 training steps such that N1 +N2 = N . For
the fine-tuning phase, we iterate through a grid of task weights as with scalarization. The grid of
sampling rates will trace a performance trade-off front, which can be used to compare our method
and scalarization.

Lastly, we train a restart baseline in order to ablate the possibility that any improvements coming from
pre-training joint fine-tuning are due to the resetting of optimizer state and learning rate schedules
before fine-tuning. The restart baseline takes the model obtained via scalarization trained for N1

steps, resets optimizer states and the learning rate schedule, and continues to train it with the same
sampling rate as in scalarization.

4.1.1 High-Resource and High-Resource:

We first start by highlighting that pre-training joint fine-tuning does not show benefits if all tasks
are high-resource. Figure 1 shows that in the English→{Chinese, French} translation tasks, the
performance on each of the language-pairs are bounded by the amount of data seen from that pair. In
other words, pre-training on En→Fr cannot act as a proxy for En→Zh data, because if it could, the
front would be improved. At the same time, pre-training does not negatively impact En→Zh training.
Figures 21 and 22 show that pre-training does not affect the learning efficiency for En→Zh (slope of
the curves are similar to one another), and also did not result in a worse initialization for En→Zh.

4.1.2 High-Resource and Low-Resource

In the data-imbalanced setting of English→{Romanian, French}, we pre-train for 400k steps and
fine-tune for 50k steps to emphasize the computational benefits of pre-training fine-tuning. Although
a single full run of scalarization (N steps) and pre-training fine-tuning (N1 +N2 = N) take the same

4

2.2 2.4 2.6 2.8 3.0
Valid Cross-Entropy Loss (En → Zh)

1.2

1.3

1.4

1.5

1.6

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Zh, Fr}
En-{Zh,Fr} (300k)
En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k)

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
Train Cross-Entropy Loss (En → Zh)

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Fr
)

Optimization Behavior Overview En → {Zh, Fr}
En-{Zh,Fr} (300k)
En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k) En-Zh Rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 1: The trade-off front from pre-training does not improve upon the trade-off front from fully
static sampling when all tasks are high-resource. The performance on each of the high-resource tasks
are bounded by the amount of data seen for that task. We can also observe interference between the
two tasks from how all 9 different sampling rates form the trade-off frontier. These observations hold
for both testing (left) and training (right).

1.75 1.80 1.85 1.90 1.95 2.00 2.05
Valid Cross-Entropy Loss (En → Ro)

1.24

1.26

1.28

1.30

1.32

1.34

1.36

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Ro, Fr}
En-{Ro,Fr} (400k)
En-{Ro,Fr} (450k)
En-Fr (400k) + En-{Ro,Fr} (50k)
Best Scalarization En-Ro Loss
Restart Baseline

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Cross-Entropy Loss (En → Ro)

1.2

1.3

1.4

1.5

1.6

1.7
Tr

ai
n

Cr
os

s-
En

tro
py

 L
os

s (
En

→
Fr

)
Optimization Behavior Overview En → {Ro, Fr}

En-{Ro,Fr} (400k)
En-{Ro,Fr} (450k)
En-Fr (400k) + En-{Ro,Fr} (50k) En-Ro Rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 2: (Left:) In the data-imbalanced case, the trade-off front from pre-training yields better
low-resource task performance than the trade-off front of scalarization. The poor performance of the
restart baseline shows that the resetting of states is not why pre-training and fine-tuning performs
well. Note that the trade-off fronts consist of only a subset of the sampling ratios due to overfitting,
which is different from the fully high-resource setting. Right: Pre-training results in a noticeably
worse performance on the training set, hinting that pre-training has a regularization effect on the
low-resource task.

amount of compute, pre-training joint fine-tuning makes hyperparamter tuning much more efficient,
since 1) tuning for pre-training is on a single task and therefore, easier to tune, and 2) tuning for
fine-tuning is faster since N2 � N .

In Figure 2 we can observe that pre-training joint fine-tuning is able to achieve performance trade-
off points that go beyond what is achievable via scalarization. Pre-training on a high-resource
language pair creates non-dominated points by yielding significantly better performance in the
low-resource task (En→Ro) without completely sacrificing performance in the high-resource task
(En→Fr). Additionally, it is able to do this while seeing less overall Romanian tokens according to
Figure 3.

We see similar results for En→{Hi, Fr}, shown in Figure 12 in the Appendix. This is a surprising
result since French and Hindi are less linguistically similar than French and Romanian. Finally, we
can see from the sub-optimal performance of the restart baseline in Figures 2 and 12 that the act of
resetting is not the reason behind the success of the pre-training joint fine-tuning scheme. We provide
BLEU score evaluations for En→{Ro, Fr} and En→{Hi, Fr} in Appendix A.5, validating that the
improvements in loss translate to downstream metrics.

5

103 104 105 106 107 108

Num. Examples Seen (En → Ro)

10

2

3

4

6

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Ro
) En-{Ro,Fr} (400k)

En-{Ro,Fr} (450k)
En-Fr (400k) + En-{Ro,Fr} (50k)

103 104 105 106 107 108

Num. Examples Seen (En → Fr)

10

6

4

3

2

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
) En-{Ro,Fr} (400k)

En-{Ro,Fr} (450k)
En-Fr (400k) + En-{Ro,Fr} (50k)

Figure 3: Pre-training joint fine-tuning has both better initialization and data-efficiency than
scalarization. Each line corresponds to the datapoint that achieved the best En→Ro validation loss in
Figure 2 among the different run groups.

103 104 105 106 107 108 109

Num. Examples Seen (En → Ro)

2

3

4

6

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Ro
)

103 104 105 106 107 108 109

Num. Examples Seen (En → Ro)

1

7
5

3
2

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Ro
)

10−3

10−2

10−1

En-Ro Rate

Figure 4: Each curve corresponds to a single scalarization trial with a particular (static) sampling rate
for En→Ro. The rate at which the training loss decreases is slower for lower En→Ro sampling rates
than for higher sampling rates. At higher sampling rates, overfitting starts to happen.

4.1.3 Analysis

The performance improvement of pre-training joint fine-tuning stems from two main mechanisms.

• Pre-training utilizes positive transfer between tasks, and initializes the fine-tuning phase at a
better starting point than random initialization. Figure 3 shows this effect for the En→{Ro,
Fr} translation tasks.

• Higher sampling rates are more data-efficient than lower sampling rates. Figure 4 shows how
optimization (training set performance) gets more and more data-efficient as the sampling
rate increases. However, on the generalization side, increasing the sampling rate works only
up until a certain point, where overfitting kicks in.

By design, pre-training joint fine-tuning has two separate training phases which allows the low-
resource-training phase to be short. This in turn enables us to increase the low-resource sampling
rate, resulting in faster training. This effect can be seen in Figure 2, where the En→Ro sampling
rates that resulted in the best En→Ro performance was 0.4, while for pre-training joint fine-tuning,
the best rate is 0.5. Figure 3 confirms that indeed after pre-training, fine-tuning on En→Ro is more
data-efficient than not pre-training.

Joint fine-tuning is also an important piece in addition to the two-stage setup. Only fine-tuning on the
low-resource task, which is the classic transfer learning scheme, results in overfitting and catastrophic
forgetting of the pre-training task as shown in Figure 6.

Lastly, Figure 2 shows that pre-training joint fine-tuning yields worse training set performance, and
therefore, could be seen as having a regularization effect. We show in Figure 5 that regularization by
itself does not explain the superior performance of our scheme.

The results seen so far show that data order matters when training in the presence of a low-resource
task, since seeing high-resource data first before seeing low-resource data later pushes the pareto
front of seeing both types of data at the same time.

6

1.8 1.9 2.0 2.1 2.2
Valid Cross-Entropy Loss (En → Ro)

1.25

1.30

1.35

1.40

1.45

1.50

1.55

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Ro, Fr}
En-{Ro,Fr} (450k, 0.1 do)
En-{Ro,Fr} (450k, 0.2 do)
En-{Ro,Fr} (450k, 0.3 do)
En-Fr (400k) + En-{Ro,Fr} (50k)

0.2 0.4 0.6 0.8 1.0
Train Cross-Entropy Loss (En → Ro)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Fr
)

Optimization Behavior Overview En → {Ro, Fr}
En-{Ro,Fr} (450k, 0.1 do)
En-{Ro,Fr} (450k, 0.2 do)
En-{Ro,Fr} (450k, 0.3 do)
En-Fr (400k) + En-{Ro,Fr} (50k)

En-Ro Rate
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 5: pre-training joint fine-tuning has a regularization effect, but cannot be replaced by simply
increasing regularization strength. The dropout rate used in pre-training joint fine-tuning is 0.1.

4.2 Multilingual Training

2 3 4 5 6 7 8
Valid Cross-Entropy Loss (En → Ro)

1

2

3

4

5

6

7

8

9

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Ro, Fr}
En-Fr (200k)
En-Fr (200k) + En-Ro (50k)
En-Fr (200k) + En-{Ro,Fr} (50k)

Figure 6: Fine-tuning solely on the low-resource
task (En→Ro) leads to both catastrophic forgetting
of the pre-trained task (En→Fr) and worse low-
resource task performance than fine-tuning on all
tasks (En→{Ro, Fr}).

In this section, we expand from a two-task set-
ting to a many-task setting. We train on five
languages from the mC4 dataset [32]–English,
Hindi, Gujarati, Swahili, and Gaelic– using the
span corruption objective from T5 [24]. See Ta-
ble 2 for details on the dataset. Canonically the
mC4 dataset is used in the pre-training phase for
models (not to be confused by our pre-training
joint fine-tuning method). These models are
subsequently applied to downstream tasks such
as question answering. This multilingual pre-
training phase is also known as the language
balancing problem. Our goal is to show that our
two stage method can effectively balance high-
resource and low-resource languages, improving
performance on low-resource languages beyond
what is achievable by the conventional method
of temperature sampling while not sacrificing
performance on high-resource languages.

Table 2: Data used from mC4.
Language # Chars (B)

En (English) 13, 396
Hi (Hindi) 75
Gu (Gujarati) 3.6
Gd (Gaelic) 0.8
Sw (Swahili) 4.1

Note that in the mC4 corpus, English is 16745 times larger
than the smallest language we use. This data imbalance un-
derscores the necessity for effective language balancing, par-
ticularly in determining the proportion of each language to
be used during training. This presents a highly challenging
and computationally demanding problem, as it is not feasible
to simply sweep the scalarization weights as one would in a
two-task setting.

For our training setup we closely follow mT5 [32] for the
model architecture and training procedure. Specifically, we use the mT5-XXL model (13B parame-
ters), which is an encoder-decoder transformer architecture. Additional training details are available
in Appendix B.

Temperature Sampling Because we increase the amount of tasks in this setting, detailing the full
scalarization trade-off frontier would be computationally infeasible. Therefore, we employ the widely
used temperature sampling heuristic [11, 7, 2]. Let Di be data size of language or task i, we then
define the empirical distribution P for each task i as:

P(x ∈ task i) =
Di∑
j Dj

. (3)

7

1010 1011 1012

Num. Chars Seen

1

1.2

1.4

1.6
1.8

2
2.2
2.4

En
 V

al
id

 C
ro

ss
-E

nt
ro

py

109 1010 1011

Num. Chars Seen

1

1.2

1.4
1.6
1.8

2
2.2
2.4
2.6

Hi
 V

al
id

 C
ro

ss
-E

nt
ro

py

109 1010

Num. Chars Seen

1.2

1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

Gu
 V

al
id

 C
ro

ss
-E

nt
ro

py

109 1010

Num. Chars Seen

2

3
Gd

 V
al

id
 C

ro
ss

-E
nt

ro
py

109 1010

Num. Chars Seen

2

3

Sw
 V

al
id

 C
ro

ss
-E

nt
ro

py

= 3.33 (500k)
= 3.33 (200k) + = 3.33 (300k)

En (200k) + = 3.33 (300k)

Figure 8: Pre-training on English and joint fine-tuning on all 5 languages leads to better optima
for Gujarati, Gaelic and Swahili, the 3 low-resource languages. Pre-training also results in better
initialization and token-efficiency for all languages newly seen in the fine-tuning phase.

Temperature sampling then uses a distribution Q defined by a temperature parameter τ as follows:

Q(x ∈ task i) =
P(x ∈ task i)1/τ∑
j P(x ∈ task j)1/τ

(4)

0.9

1.0

1.1

1.2

1.3

1.4

1.5 = 3.33 (500k)
= 3.33 (200k) + = 3.33 (300k)

En (200k) + = 3.33 (300k)

En Hi Gu Gd Sw
0.0

0.1Be
st

 V
al

id
 C

ro
ss

-E
nt

ro
py

 L
os

s

Figure 7: Pre-training joint fine-tuning yields
the best performance in 4 out of 5 languages,
with significant improvements in the low-
resource tasks.

The temperature parameter τ controls the peakiness
(or flatness) of the sampling distribution. Commonly
used τ ’s in the literature are greater than 1, which
essentially up-samples low-resource tasks and down-
samples high-resource tasks.

Static Sampling Baseline Temperature sampling
is ubiquitous due to its simplicity and intuitiveness,
but its performance varies greatly with τ . For our
static sampling baseline, we tuned τ among com-
monly used values in the literature (1.43, 2, 3.33, 5)
at a smaller scale, and found that τ = 3.33 performed
the best in terms of low-resource languages. We also
tried a more intricate sampling strategy called Uni-
Max [6], but found that on the 5 languages we chose,
it did not perform better than τ = 3.33.

Pre-training joint Fine-tuning For our pre-training joint fine-tuning setup, we first pre-train on
English, reset the optimizer state and learning rate schedule, and then fine-tune on all 5 languages
using temperature sampling. We use the same sampling rates as the static sampling baseline (τ =
3.33) to reduce the tuning overhead over static sampling.

As in the NMT experiments, we employ a restart baseline to fully ablate the pre-training fine-tuning
scheme. The restart baseline resets the optimizer state and learning rate schedule in the middle of
training for the static sampling baseline.

Results Figures 7 and 8 show that while a learning rate schedule restart helps performance, pre-
training joint fine-tuning yields the best results on the low-resource tasks. Surprisingly, it not only
improves the performance on Gujarati, Gaelic, and Swahili, but also shows a slight enhancement on
English. We note that due to the vast dataset imbalance, the temperature sampling baseline overfits
on the low-resource tasks before English has a chance to converge. Consequently, pre-training joint
fine-tuning can leverage the benefits mentioned in the previous section–regularization, transfer, and
reduced forgetting–to achieve a superior lower bound performance with higher token efficiency.

8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6
= 3.33 (500k)

En (100k) + = 3.33 (400k)
En (200k) + = 3.33 (300k)
En (300k) + = 3.33 (200k)

En Hi Gu Gd Sw
0.0

0.1Be
st

 V
al

id
 C

ro
ss

-E
nt

ro
py

 L
os

s

(a)

1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10
Valid Cross-Entropy Loss (En → Ro)

1.24

1.26

1.28

1.30

1.32

1.34

1.36

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Ro, Fr}
En-Fr (200k) + En-{Ro,Fr} (50k)
En-Fr (400k) + En-{Ro,Fr} (50k)
En-Fr (600k) + En-{Ro,Fr} (50k)
Best Scalarization En-Ro Loss

(b)

Figure 9: Left: For language modeling on mC4, longer pre-training leads to better best-achievable
performance for the 3 low-resource languages (Gu, Gd, Sw) despite the decreased length of fine-
tuning. On the other hand, due to the decreased length of fine-tuning, high-resource languages do
not enjoy the benefits of pre-training. Right: For NMT, when the training budget is not fixed, longer
pre-training leads to better overall performance trade-off fronts.

4.3 Length of Pre-training

Our method is simple but comes with some choices to make, one of which is the number of steps
to pre-train for. We investigate the effect of the number of pre-training steps in NMT and language
modeling on mC4 by pre-training with less, and more steps than in the previous sections. With
the language modeling task, we fix the total training length to be 500k steps to emulate a compute-
constrained scenario. We chose to use a smaller model (mT5-XL as opposed to mT5-XXL used in
Section 4.2 for faster training). With NMT, we fix the number of fine-tuning steps, but let the total
training steps vary.

Figure 9(a) displays the effects of varying pre-training length in the mC4 experiments. We see that
longer pre-training improves best achievable performance on the low-resource tasks of Gujarati,
Gaelic, and Swahili. This is despite the fact that the number of fine-tuning steps decreased due to the
fixed total step budget. In other words, for the 3 low-resource tasks, longer pre-training improves
performance more than exposure to the tokens. On the other hand, performance on English and Hindi
worsens with increased pre-training length. For English, this is due to the resetting of the learning rate
schedule and the decreasing of fine-tuning steps. Resetting involves a learning rate warmup, which
worsens English performance before improving again (see the panel corresponding to En for Figure
8). Decreasing fine-tuning steps gives English less time to recover its performance from pre-training.
For Hindi, the worsened performance is simply because it is not a low-resource task in this context,
and therefore, less tokens seen translates to worse performance.

In Figure 9(b) we see that in the NMT experiments, pre-training longer on En→Fr translates to better
overall trade-off fronts, not just for the low-resource task.

The implications of these results are that when there is a strict training budget, it is better to be
conservative and pre-train for a shorter amount of time. However, if the goal is to obtain the best
performance with no strict compute budget, it is better to pre-train for as long as possible before
fine-tuning. Note that longer overall training is an option for our method (by pre-training for longer)
but not for static sampling because static sampling needs to constantly be training on the low-resource
tasks, which will lead to overfitting when training for too long.

5 Related Work

Multitask Learning Multitask learning has gained increased attention in being able to learn many
tasks in an efficient way due to parameter sharing and transfer between tasks. In the language domain,
multilingual neural machine translation [12, 14] enables translation from multiple source languages
to multiple target languages. Due to the transfer of information between language pairs, multilingual
NMT has seen improvements in low-resource language-pair performance compared to training solely

9

on that language pair [12]. In addition to NMT, large multilingual pre-trained language models are
used to fine-tune on a variety of downstream tasks with different languages [32]. Prior works on
intermediate training take advantage of cross-task [23] and cross-lingual [22] transfer to improve
downstream task performance. However, in multilingual approaches there exists the problem of
dataset imbalance, where low-resource languages tend to suffer in performance. Recently, [6] found
that naive temperature sampling might lead to overfitting of low-count languages, and suggested
epoch capping with a uniform distribution for high-count languages, showing improvements over
temperature sampling. In multilingual NMT, to our knowledge, we are the first to show that a
simple pre-training stage on a high-resource language pair can improve the trade-off front of static
sampling. Furthermore, our method is orthogonal to innovations in sampling strategies like [6], and
can potentially show better results in conjunction with better sampling.

Transfer Learning in NMT The benefits of transfer learning to low-resource language-pairs has
been long known in the NMT literature [33, 9, 17]. [33] showed that pre-training on a high-resource
language pair can improve performance compared to training from scratch. While most prior work
on transfer learning in NMT focus on improving performance on low-resource bilingual data, recent
work [21] used transfer learning to improve performance on multiple language pairs. Unlike the
transfer learning literature in NMT [21, 15], we show that pre-training can push the low-resource
frontier in the multilingual setting, by testing a grid of sampling rates and hyperparameters to trace
the trade-off front. Prior work in the literature study the relationship between the pre-training and
fine-tuning language pairs [10], freezing different parts of the model during fine-tuning [1], and
experimenting with many-stage pre-training [9]. We expect to further benefit from research done in
this direction.

Curriculum Learning Due to the imbalanced nature of multilingual datasets, a static sampling
strategy is unsatisfactory. [30] used a hand-crafted temperature sampling schedule that samples
more high-resource earlier in the training, and gradually samples more low-resource languages. The
performance boost from using such a schedule, compared to a static one, supports our observations
from pre-training using a high-resource language pair. On the other hand, there are many works that
employ a more intricate strategy for an adaptive schedule [13, 29, 18]. In comparison, our method is
simple with little to no overhead. We include discussion on our experience, though preliminary, with
trying an adaptive schedule in Appendix C. Lastly, [26] showed that the ordering of data within a
task affects catastrophic forgetting, which supports our observations.

6 Limitations and Future work

In our experiments, we focus on training on a single high-resource task during the pre-training phase.
It would be interesting future work to study pre-training with more than one language or language-pair.
We also only experiment with fine-tuning all parameters of the pre-trained model. Studying the effect
of freezing different parts of the model during fine-tuning, potentially as a function of the relationship
between pre-training and fine-tuning tasks, is left to future work.

7 Conclusion

In this work, we demonstrated the benefits of a pre-train joint fine-tune setup for multi-objective
optimization when there is a mixture of high and low-resource tasks. We show that in the presence
of large data imbalance, the order at which tasks are introduced has significant impact on overall
performance. We demonstrate through a variety of experimental settings that this methodology
produces points that can go past the trade-off frontier achieved by scalarization. We show that a
major weak point of scalarization in this regime is that it overfits on the low-resource task, being
unable to early stop due to the high-resource task not converging. Our method both allows the high-
resource task to converge during pre-training and prevents overfitting through joint fine-tuning. It also
outperforms scalarization that under-samples the low-resource task due to higher token efficiency.
We also show that fine-tuning only on the low-resource task, a popular scheme in the NMT literature,
is undesirable due to its inability to prevent forgetting. Our method is a simple natural strategy
for avoiding the above failure modes. Given the significant performance boost we observe in our
experiments, we believe that this training regime has the potential to become a standard approach,
particularly in the era of large language models.

10

Acknowledgments and Disclosure of Funding

We thank George E. Dahl, Wolfgang Macherey, and Macduff Hughes for their constructive comments
on the initial version of this manuscript. Additionally, we thank Sourabh Medapati and Zachary Nado
for their help in debugging our code base. Moreover, we are grateful to Soham Ghosh and Mojtaba
Seyedhosseini for valuable discussions regarding the role of MTOs in large-scale models. Lastly, we
thank Chris J.H. Zhang for helpful discussions.

References
[1] Alham Fikri Aji, Nikolay Bogoychev, Kenneth Heafield, and Rico Sennrich. In neural machine

translation, what does transfer learning transfer? Association for Computational Linguistics,
2020.

[2] Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin, Melvin Johnson, Maxim
Krikun, Mia Xu Chen, Yuan Cao, George Foster, Colin Cherry, et al. Massively multilingual neu-
ral machine translation in the wild: Findings and challenges. arXiv preprint arXiv:1907.05019,
2019.

[3] Ankur Bapna, Colin Cherry, Yu Zhang, Ye Jia, Melvin Johnson, Yong Cheng, Simran Khanuja,
Jason Riesa, and Alexis Conneau. mslam: Massively multilingual joint pre-training for speech
and text. arXiv preprint arXiv:2202.01374, 2022.

[4] Ankur Bapna, Yu-an Chung, Nan Wu, Anmol Gulati, Ye Jia, Jonathan H Clark, Melvin Johnson,
Jason Riesa, Alexis Conneau, and Yu Zhang. Slam: A unified encoder for speech and language
modeling via speech-text joint pre-training. arXiv preprint arXiv:2110.10329, 2021.

[5] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[6] Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang,
and Noah Constant. Unimax: Fairer and more effective language sampling for large-scale
multilingual pretraining. In The Eleventh International Conference on Learning Representations.

[7] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wen-
zek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov.
Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116,
2019.

[8] Marta R Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin
Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. No language left
behind: Scaling human-centered machine translation. arXiv preprint arXiv:2207.04672, 2022.

[9] Raj Dabre, Atsushi Fujita, and Chenhui Chu. Exploiting multilingualism through multistage fine-
tuning for low-resource neural machine translation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 1410–1416, 2019.

[10] Raj Dabre, Tetsuji Nakagawa, and Hideto Kazawa. An empirical study of language relatedness
for transfer learning in neural machine translation. In Proceedings of the 31st Pacific Asia
conference on language, information and computation, pages 282–286, 2017.

[11] Jacob Devlin. Multilingual bert readme. https://github.com/google-research/bert/
blob/master/multilingual.md, 2018.

[12] Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. Multi-way, multilingual neural machine
translation with a shared attention mechanism. arXiv preprint arXiv:1601.01073, 2016.

[13] Sébastien Jean, Orhan Firat, and Melvin Johnson. Adaptive scheduling for multi-task learning.
arXiv preprint arXiv:1909.06434, 2019.

11

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md

[14] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil
Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. Google’s multilingual neural
machine translation system: Enabling zero-shot translation. Transactions of the Association for
Computational Linguistics, 5:339–351, 2017.

[15] Yunsu Kim, Yingbo Gao, and Hermann Ney. Effective cross-lingual transfer of neural machine
translation models without shared vocabularies. arXiv preprint arXiv:1905.05475, 2019.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[17] Tom Kocmi and Ondřej Bojar. Trivial transfer learning for low-resource neural machine
translation. arXiv preprint arXiv:1809.00357, 2018.

[18] Julia Kreutzer, David Vilar, and Artem Sokolov. Bandits don’t follow rules: Balancing multi-
facet machine translation with multi-armed bandits. arXiv preprint arXiv:2110.06997, 2021.

[19] Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

[20] Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and M Pawan Ku-
mar. In defense of the unitary scalarization for deep multi-task learning. arXiv preprint
arXiv:2201.04122, 2022.

[21] Surafel M Lakew, Aliia Erofeeva, Matteo Negri, Marcello Federico, and Marco Turchi. Transfer
learning in multilingual neural machine translation with dynamic vocabulary. arXiv preprint
arXiv:1811.01137, 2018.

[22] Jason Phang, Iacer Calixto, Phu Mon Htut, Yada Pruksachatkun, Haokun Liu, Clara Vania,
Katharina Kann, and Samuel Bowman. English intermediate-task training improves zero-shot
cross-lingual transfer too. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and the 10th International Joint Conference on
Natural Language Processing, pages 557–575, 2020.

[23] Jason Phang, Thibault Févry, and Samuel R Bowman. Sentence encoders on stilts: Supplemen-
tary training on intermediate labeled-data tasks. arXiv preprint arXiv:1811.01088, 2018.

[24] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

[25] Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel
Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor
Lewkowycz, Alex Salcianu, Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini
Soares, Haitang Hu, Sasha Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis
Bulian, Xavier Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Jonathan H. Clark, Stephan
Lee, Dan Garrette, James Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten
Bosma, Alexandre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan
Saeta, Ryan Sepassi, Alexander Spiridonov, Joshua Newlan, and Andrea Gesmundo. Scaling
up models and data with t5x and seqio. arXiv preprint arXiv:2203.17189, 2022.

[26] Chenze Shao and Yang Feng. Overcoming catastrophic forgetting beyond continual learning:
Balanced training for neural machine translation. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2023–2036,
2022.

[27] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

12

[29] Xinyi Wang, Yulia Tsvetkov, and Graham Neubig. Balancing training for multilingual neural
machine translation. arXiv preprint arXiv:2004.06748, 2020.

[30] Yiren Wang, ChengXiang Zhai, and Hany Hassan Awadalla. Multi-task learning for multilingual
neural machine translation. arXiv preprint arXiv:2010.02523, 2020.

[31] Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do current
multi-task optimization methods in deep learning even help? Advances in Neural Information
Processing Systems, 35:13597–13609, 2022.

[32] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text
transformer. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 483–498,
Online, June 2021. Association for Computational Linguistics.

[33] Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. Transfer learning for low-resource
neural machine translation. arXiv preprint arXiv:1604.02201, 2016.

13

A NMT Experiments: Additional Information

A.1 Detailed Training Setup

This section details the experimental setup used in Section 4.1. We use the pre-LN encoder-decoder
transformer architecture. The experiments presented in the main text use three layers for both the
encoder and decoder, but we also present results with 6 layers for the encoder and decoder. We follow
the convention in NMT literature and train our models with 0.1 label smoothing and 0.1 dropout for
feed-forward and attention layers. See Table 3 for complete architecture details.

Table 3: Transformer architecture details and common hyperparameters.

Hyperparameter

Feed-forward dim 2048
Model dim 512
Attention heads 8
Attention QKV dim 512
Label smoothing 0.1
Dropout 0.1

We use SentencePiece tokenization [19] to generate a vocabulary of size 64,000 for each NMT
problem (e.g. En→{Zh, Fr}).

All models were trained using the Adam [16] optimizer with a batch size of 1024. For all our NMT
experiments, we used a linear warmup to the desired learning rate, followed by a cosine decay
schedule that decays to 0. This is true for all legs of training for methods that use our scheme; during
the pre-training phase, we do a linear warmup followed by a cosine decay, and during the fine-tuning
phase, after loading the pre-trained model, we do a linear warmup followed by cosine decay.

For the baseline experiments that do not do pre-training, and also for the pre-training portion, we
warmup for 40k steps. For fine-tuning, we tune the warmup steps from within {10k, 20k, 30k, 40k}
for all experiments other than for En→{Zh, Fr}, where we warmup for 40k steps. The base number of
training steps, and the number of fine-tuning steps are shown in Table 4. Note that for comparison’s
sake we also trained a baseline-without-pre-training model for ‘base + fine-tune’ number of steps.

Table 4: Number of training steps for all NMT experiments.

3-layer 6-layer

base fine-tune base fine-tune

En→{Zh, Fr} 300k 300k 300k 300k
En→{Ro, Fr} 400k 50k 300k 50k
En→{Hi, Fr} 300k 50k 275k 50k

For all experiments, we sweep the base learning rate in the grid {2.5e-4, 5e-4, 2.5e-3, 5e-3, 7.5e-
3}. We also sweep the sampling rate for En→Fr and En→Cs in the grid {i/10}9i=1, which fully
determines the sampling rate for the other language pair. All plotted points correspond to the final
measurement taken for each trial.

For all fine-tuning experiments, when loading the pre-trained model checkpoint, we reset the optimizer
state. We also trained all parameters of the model, and did not freeze anything.

14

A.2 Additional Performance Trade-Off Curves

In this section, we present the performance trade-off curves for En→{Hi, Fr}, as well as for 6-layer
models on En→{Zh, Fr}, En→{Ro, Fr}, and En→{Hi, Fr}. The black-bordered points in the
generalization portion of Figures 11 and 13 below correspond to the restart baseline.

2.0 2.2 2.4 2.6 2.8
Valid Cross-Entropy Loss (En → Zh)

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Zh, Fr}
En-{Zh,Fr} (300k)
En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k)

1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1
Train Cross-Entropy Loss (En → Zh)

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Fr
)

Optimization Behavior Overview En → {Zh, Fr}
En-{Zh,Fr} (300k)
En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k)

Figure 10: Performance trade-off behavior for En→{Zh, Fr} with 6-layer models. Each point
corresponds to the final performance of a model. Similarly to the 3-layer-model case (Figure 1),
pre-training does not yield improvements.

1.650 1.675 1.700 1.725 1.750 1.775 1.800 1.825
Valid Cross-Entropy Loss (En → Ro)

1.16

1.18

1.20

1.22

1.24

1.26

1.28

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Ro, Fr}
En-{Ro,Fr} (300k)
En-{Ro,Fr} (350k)
En-Fr (300k) + En-{Ro,Fr} (50k)
Best Scalarization En-Ro Loss
Restart Baseline

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Train Cross-Entropy Loss (En → Ro)

1.1

1.2

1.3

1.4

1.5

1.6

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Fr
)

Optimization Behavior Overview En → {Ro, Fr}
En-{Ro,Fr} (300k)
En-{Ro,Fr} (350k)
En-Fr (300k) + En-{Ro,Fr} (50k)

Figure 11: Performance trade-off behavior for En→{Ro, Fr} with 6-layer models. We see a similar
behavior as with 3-layer models. In addition, we are able to further improve the performance on both
En→Ro due to a larger model size.

2.90 2.95 3.00 3.05 3.10 3.15 3.20
Valid Cross-Entropy Loss (En → Hi)

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Hi, Fr}
En-{Hi,Fr} (300k)
En-{Hi,Fr} (350k)
En-Fr (300k) + En-{Hi,Fr} (50k)
Best Scalarization En-Hi Loss
Restart Baseline

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Train Cross-Entropy Loss (En → Hi)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Fr
)

Optimization Behavior Overview En → {Hi, Fr}
En-{Hi,Fr} (300k)
En-{Hi,Fr} (350k)
En-Fr (300k) + En-{Hi,Fr} (50k)

Figure 12: Performance trade-off behavior for En→{Hi, Fr} with 3-layer models. These results
mirror those seen in Figure 2. We note that here French and Hindi are more linguistically dissimilar
than French and Romanian.

15

2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10
Valid Cross-Entropy Loss (En → Hi)

1.18

1.20

1.22

1.24

1.26

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Hi, Fr}
En-{Hi,Fr} (275k)
En-{Hi,Fr} (325k)
En-Fr (275k) + En-{Hi,Fr} (50k)
Best Scalarization En-Hi Loss
Restart Baseline

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Train Cross-Entropy Loss (En → Hi)

1.1

1.2

1.3

1.4

1.5

1.6

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Fr
)

Optimization Behavior Overview En → {Hi, Fr}
En-{Hi,Fr} (275k)
En-{Hi,Fr} (325k)
En-Fr (275k) + En-{Hi,Fr} (50k)

Figure 13: Performance trade-off behavior for En→{Hi, Fr} with 6-layer models. As with the 3-layer
models, We observe a similar improvement in both En→Hi and En→Fr performances, despite the
dissimilarity of French and Hindi.

A.3 Performance Trade-Off Curves with Sampling Rate as Markers

In this section, we present the same performance trade-off curves as shown previously, but with
the markers representing sampling rates for the lower-resource language pair. We can see that in
all but one case (En→{Hi,Fr} 6-layer model; Figure 19), the model that performs the best in the
low-resource language pair, samples the low-resource language pair at a higher rate than the baselines
that do not use pre-training. The black-bordered points in the generalization portion of Figures 16, 17
18, and 19 below correspond to the restart baseline.

2.2 2.4 2.6 2.8 3.0
Valid Cross-Entropy Loss (En → Zh)

1.2

1.3

1.4

1.5

1.6

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Zh, Fr}
En-{Zh,Fr} (300k)
En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k)

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
Train Cross-Entropy Loss (En → Zh)

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Fr
)

Optimization Behavior Overview En → {Zh, Fr}
En-{Zh,Fr} (300k)
En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k) En-Zh Rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 14: Performance trade-off behavior for En→{Zh, Fr} with 3-layer models. We can clearly
see that there is no optimal rate in this case, since we trace a Pareto front as we vary the En→Zh
sampling rates from 0.1 to 0.9.

2.0 2.2 2.4 2.6 2.8
Valid Cross-Entropy Loss (En → Zh)

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Zh, Fr}
En-{Zh,Fr} (300k)
En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k)

1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1
Train Cross-Entropy Loss (En → Zh)

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Fr
)

Optimization Behavior Overview En → {Zh, Fr}
En-{Zh,Fr} (300k)
En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k) En-Zh Rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 15: Performance trade-off behavior for En→{Zh, Fr} with 6-layer models. We observe a
similar behavior as in the 3-layer case.

16

1.75 1.80 1.85 1.90 1.95 2.00 2.05
Valid Cross-Entropy Loss (En → Ro)

1.24

1.26

1.28

1.30

1.32

1.34

1.36

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Ro, Fr}
En-{Ro,Fr} (400k)
En-{Ro,Fr} (450k)
En-Fr (400k) + En-{Ro,Fr} (50k)
Best Scalarization En-Ro Loss
Restart Baseline

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Cross-Entropy Loss (En → Ro)

1.2

1.3

1.4

1.5

1.6

1.7

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Fr
)

Optimization Behavior Overview En → {Ro, Fr}
En-{Ro,Fr} (400k)
En-{Ro,Fr} (450k)
En-Fr (400k) + En-{Ro,Fr} (50k) En-Ro Rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 16: Performance trade-off behavior for En→{Ro, Fr} with 3-layer models. Unlike the
En→{Zh, Fr} case, we have a few sampling rates that are more optimal than the rest. Pre-training
allows sampling En→Ro at a higher rate without overfitting, than without pre-training.

1.650 1.675 1.700 1.725 1.750 1.775 1.800 1.825
Valid Cross-Entropy Loss (En → Ro)

1.16

1.18

1.20

1.22

1.24

1.26

1.28

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Ro, Fr}
En-{Ro,Fr} (300k)
En-{Ro,Fr} (350k)
En-Fr (300k) + En-{Ro,Fr} (50k)
Best Scalarization En-Ro Loss
Restart Baseline

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Train Cross-Entropy Loss (En → Ro)

1.1

1.2

1.3

1.4

1.5

1.6

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Fr
)

Optimization Behavior Overview En → {Ro, Fr}
En-{Ro,Fr} (300k)
En-{Ro,Fr} (350k)
En-Fr (300k) + En-{Ro,Fr} (50k) En-Ro Rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 17: Performance trade-off behavior for En→{Ro, Fr} with 6-layer models. We see a similar
behavior as in the 3-layer case.

2.90 2.95 3.00 3.05 3.10 3.15 3.20
Valid Cross-Entropy Loss (En → Hi)

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Hi, Fr}
En-{Hi,Fr} (300k)
En-{Hi,Fr} (350k)
En-Fr (300k) + En-{Hi,Fr} (50k)
Best Scalarization En-Hi Loss
Restart Baseline

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Train Cross-Entropy Loss (En → Hi)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Fr
)

Optimization Behavior Overview En → {Hi, Fr}
En-{Hi,Fr} (300k)
En-{Hi,Fr} (350k)
En-Fr (300k) + En-{Hi,Fr} (50k) En-Hi Rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 18: Performance trade-off behavior for En→{Hi, Fr} with 3-layer models. Like in the
En→{Ro, Fr}, pre-training allows sampling En→Hi at a higher rate without overfiting than without
pre-training.

2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10
Valid Cross-Entropy Loss (En → Hi)

1.18

1.20

1.22

1.24

1.26

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
)

Generalization Behavior Overview En → {Hi, Fr}
En-{Hi,Fr} (275k)
En-{Hi,Fr} (325k)
En-Fr (275k) + En-{Hi,Fr} (50k)
Best Scalarization En-Hi Loss
Restart Baseline

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Train Cross-Entropy Loss (En → Hi)

1.1

1.2

1.3

1.4

1.5

1.6

Tr
ai

n
Cr

os
s-

En
tro

py
 L

os
s (

En
→

Fr
)

Optimization Behavior Overview En → {Hi, Fr}
En-{Hi,Fr} (275k)
En-{Hi,Fr} (325k)
En-Fr (275k) + En-{Hi,Fr} (50k) En-Hi Rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 19: Performance trade-off behavior for En→{Hi, Fr} with 6-layer models. In this case,
pre-training still allows sampling En→Hi at a higher rate, but the rate that yielded the best En→Hi
was surprisingly the same rate as the baseline without pre-training.

17

A.4 Efficiency Plots

In this section, we plot the number of examples seen from one language pair against the validation
cross-entropy loss on that language pair. The number of XX→YY examples seen at train step t
is computed by multiplying t, the batch size, and the sampling rate for XX→YY. Each curve in
a given figure corresponds to the trial that achieved the best final validation performance on the
low(er)-resource language pair within the method given by the legend (i.e. the blue curve in Figure
20 corresponds to the trial that achieved the best final validation En→Zh cross-entropy loss among all
trials that did not use pre-training, and was trained for 300k steps.) For the curves corresponding to
our proposed pre-training and fine-tuning scheme, we only show the fine-tuning portion of training.

Note that initial linear decay followed by a smooth decay is an artifact of evaluating on a linear-scale
when the plots are in log-scale.

103 104 105 106 107 108 109

Num. Examples Seen (En → Zh)

10

2

3

4

6

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Zh
) En-{Zh,Fr} (300k)

En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k)

102 103 104 105 106 107 108

Num. Examples Seen (En → Fr)

10

6

4

3

2

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
) En-{Zh,Fr} (300k)

En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k)

Figure 20: For the 3-layer model, pre-training does not provide any significant gains in training
efficiency for En→Zh when pre-training on En→Fr. Given that the blue and red curves coincide
towards the end of training, we can anticipate that pre-training did not impair En→Zh training (by
providing a suboptimal initialization), and that if we were to train the red curve for 300k more steps,
it would be able to catch up with the orange curve (best En→Zh performance).

103 104 105 106 107 108 109

Num. Examples Seen (En → Zh)

10

2

3

4

6

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Zh
) En-{Zh,Fr} (300k)

En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k)

102 103 104 105 106 107 108

Num. Examples Seen (En → Fr)

10

6

4

3

2

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
) En-{Zh,Fr} (300k)

En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k)

Figure 21: We observe a similar behavior with 6-layer models as with 3-layer models.

103 104 105 106 107 108

Num. Examples Seen (En → Ro)

10

2

3

4

6

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Ro
) En-{Ro,Fr} (400k)

En-{Ro,Fr} (450k)
En-Fr (400k) + En-{Ro,Fr} (50k)

103 104 105 106 107 108

Num. Examples Seen (En → Fr)

10

6

4

3

2

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
) En-{Ro,Fr} (400k)

En-{Ro,Fr} (450k)
En-Fr (400k) + En-{Ro,Fr} (50k)

Figure 22: On the 3-layer models, pre-training is able to accelerate training on En→Ro when pre-
trained on En→Fr. Even with less overall examples seen in En→Ro, we can perform better than the
baselines that did not use pre-training.

18

103 104 105 106 107 108

Num. Examples Seen (En → Ro)

10

2

3

4

6

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Ro
) En-{Ro,Fr} (300k)

En-{Ro,Fr} (350k)
En-Fr (300k) + En-{Ro,Fr} (50k)

103 104 105 106 107 108

Num. Examples Seen (En → Fr)

10

6

4

3

2

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
) En-{Ro,Fr} (300k)

En-{Ro,Fr} (350k)
En-Fr (300k) + En-{Ro,Fr} (50k)

Figure 23: We observe a similar efficiency boost with 6-layer models as with 3-layer models.

102 103 104 105 106 107

Num. Examples Seen (En → Hi)

10

3

4

6

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Hi
) En-{Hi,Fr} (300k)

En-{Hi,Fr} (350k)
En-Fr (300k) + En-{Hi,Fr} (50k)

103 104 105 106 107 108

Num. Examples Seen (En → Fr)

10

6

4

3

2

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
) En-{Hi,Fr} (300k)

En-{Hi,Fr} (350k)
En-Fr (300k) + En-{Hi,Fr} (50k)

Figure 24: On the 3-layer models, we observe a similar efficiency boost as with En→{Ro,Fr}

102 103 104 105 106 107

Num. Examples Seen (En → Hi)

10

3

4

6

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Hi
) En-{Hi,Fr} (275k)

En-{Hi,Fr} (325k)
En-Fr (275k) + En-{Hi,Fr} (50k)

103 104 105 106 107 108

Num. Examples Seen (En → Fr)

10

6

4

3

2

Va
lid

 C
ro

ss
-E

nt
ro

py
 L

os
s (

En
→

Fr
) En-{Hi,Fr} (275k)

En-{Hi,Fr} (325k)
En-Fr (275k) + En-{Hi,Fr} (50k)

Figure 25: On the 6-layer models, we observe a similar efficiency boost as with 3-layer models.

A.5 BLEU Score Plots

Here, we present the performance trade-off curves for when the metric is BLEU score instead of
cross-entropy loss. All translations are generated via Beam-Search with beam size of 4.

29 30 31 32 33
Valid BLEU Score (En Zh)

32

33

34

35

36

37

Va
lid

 B
LE

U
Sc

or
e

(E
n

 Fr
)

Generalization Behavior Overview En {Zh, Fr}

En-{Zh,Fr} (300k)
En-{Zh,Fr} (600k)
En-Fr (300k) + En-{Zh,Fr} (300k)

Figure 26: The BLEU score plot paints a better picture for pre-training than the cross-entropy plot
(Figure 1), since pre-training was able to improve the En-Zh BLEU score to be on par with the score
of joint training for 600k steps. Results are with 3-layer models.

19

24.0 24.5 25.0 25.5 26.0
Valid BLEU Score (En → Ro)

33.0

33.5

34.0

34.5

35.0

Va
lid

 B
LE

U
Sc

or
e

(E
n→

Fr
)

Generalization Behavior Overview En → {Ro, Fr}

En-{Ro,Fr} (400k)
En-{Ro,Fr} (450k)
En-Fr (400k) + En-{Ro,Fr} (50k)

23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0
Valid BLEU Score (En → Ro)

35.2

35.4

35.6

35.8

36.0

36.2

Va
lid

 B
LE

U
Sc

or
e

(E
n→

Fr
)

Generalization Behavior Overview En → {Ro, Fr}

En-{Ro,Fr} (300k)
En-{Ro,Fr} (350k)
En-Fr (300k) + En-{Ro,Fr} (50k)

Figure 27: Our proposed pre-training scheme improves upon the best BLEU score for En→Ro
without pre-training for both the 3-layer models (left) and 6-layer models (right).

10.5 11.0 11.5 12.0 12.5 13.0
Valid BLEU Score (En → Hi)

32.75

33.00

33.25

33.50

33.75

34.00

34.25

34.50

34.75

Va
lid

 B
LE

U
Sc

or
e

(E
n→

Fr
)

Generalization Behavior Overview En → {Hi, Fr}

En-{Hi,Fr} (300k)
En-{Hi,Fr} (350k)
En-Fr (300k) + En-{Hi,Fr} (50k)

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0
Valid BLEU Score (En → Hi)

34.25

34.50

34.75

35.00

35.25

35.50

35.75

36.00

Va
lid

 B
LE

U
Sc

or
e

(E
n→

Fr
)

Generalization Behavior Overview En → {Hi, Fr}

En-{Hi,Fr} (275k)
En-{Hi,Fr} (325k)
En-Fr (275k) + En-{Hi,Fr} (50k)

Figure 28: Our proposed pre-training scheme improves upon the best BLEU score for En→Hi without
pre-training for both the 3-layer models (left) and 6-layer models (right). The improvements are more
substantial than for En→{Ro, Fr}.

B Additional Training Details in Multilingual Training

We use an additionally processed version of the mC4 [32] dataset as proposed in [6] (documents with
language ID confidence below 0.95 were filtered).

The model architectures used are the same as mT5 models [32], except that relative position embed-
dings are not shared across layers. We also use the number of real target tokens as the effective loss
normalization instead of using a loss normalization factor.

We use SentencePiece tokenization [19] to generate a vocabulary of size 64,000. The corpus used to
generate the vocabulary is sampled from the training data using temperature sampling with τ = 3.33.

We use the T5X library [25] to train the models. For all experiments, we use the Adafactor optimizer
[27], where we use momentum, and we do not factorize the second moment of the Adafactor states.
The baseline run without fine-tuning, and the pre-training phase of our proposed method, was run
with a constant learning rate of 0.01 in the first 10,000 steps and inverse square root decay afterwards.
For the fine-tuning phase of our method, we reset the optimizer state, and do a 10,000-step linear
warmup with inverse square root decay afterwards.

20

C Discussion on Sampling Rate Schedules

From our preliminary experiments on using schedules for the sampling rates in the NMT workloads,
we find that the learning rate schedule must be tuned accordingly, which affects the overall perfor-
mance of the run. For example, we find that cosine decay schedule performs better than inverse
square root decay for scalarization. However, if we use cosine learning rate decay in conjunction
with linear sampling rate decay (used by DDS, and defining sampling rate to be for the high-resource
language-pair), by the time the sampling rate for low-resource task is high enough, the learning
rate has decayed rapidly (by nature of cosine decay), resulting in little learning for the low-resource
task. Using inverse square root learning rate decay solves this issue, but this results in overall worse
performance due to the suboptimal learning rate schedule. In contrast, our method is free to use any
scheduler that maximizes performance in each leg of training (pre-training and fine-tuning). Lastly,
when tuning hyperparameters, using dynamic sampling rates requires executing the full training run
many times. On the other hand, for our method, we can focus our resources on tuning the fine-tuning
phase, (since the pre-training phase has only one task, and is an easier optimization problem) which
is shorter than the total training time.

21

	Introduction
	Background
	Pre-training Joint Fine-tuning
	Experiments
	Neural Machine Translation
	High-Resource and High-Resource:
	High-Resource and Low-Resource
	Analysis

	Multilingual Training
	Length of Pre-training

	Related Work
	Limitations and Future work
	Conclusion
	NMT Experiments: Additional Information
	Detailed Training Setup
	Additional Performance Trade-Off Curves
	Performance Trade-Off Curves with Sampling Rate as Markers
	Efficiency Plots
	BLEU Score Plots

	Additional Training Details in Multilingual Training
	Discussion on Sampling Rate Schedules

