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Figure 1: We propose STaMP, an inference time control strategy, which can guide outputs from diverse pre-trained
SVG generation LLMs to adhere to color, font and layout controls from a user. Here, we illustrate how STAMP can
infuse colors from the palette while generating an icon from text, or while vectorizing an image (first two boxes). In
the right-most box, we see how STAMP generates design documents aligned with the user provided controls.

ABSTRACT

Recent autoregressive models can generate SVG from text or images, but they fail to reliably follow
user-specified constraints such as colors, layouts and fonts. This limitation highlights that control-
lability is the missing primitive in autoregressive vector generation. Prompt tinkering and post-hoc
edits are brittle, and many practical systems either require retraining for each new constraint or fall
back to raster outputs that must be vectorized, underscoring the absence of any autoregressive vector
generation method that enables control at inference time. We hypothesize that precise, constraint-
driven vector generation is fundamentally a decoding-time constraint-satisfaction problem. For-
mally, we cast this objective as finding the optimal controlled distribution: among all distributions
that satisfy the constraints, select the one closest (in KL) to the base model. We show this distribu-
tion is the information projection (I-projection) of the base model onto the constrained set. Direct
sampling from the I-projection is intractable, but its structure suggests a practical decomposition:
a soft reweighting that steers probabilities toward the desired properties and a hard restriction that
removes invalid continuations. Building on this insight, we introduce STaMP (Soft Tilt-and-Mask
Policy), a model-agnostic, inference-time controller that adds fine-grained control (e.g., color, font,
and layout) to any autoregressive SVG model. Evaluated across text-to-SVG and image-to-SVG
settings on multiple open models, STaMP delivers inference-time control, consistently improves
constraint adherence, and preserves the base model’s output quality. Additionally, we introduce,
to the best of our knowledge, the first text-to-design SVG model as an extended showcase: paired
with STaMP, it produces full compositions as structured, editable SVG while honoring user-defined
controls over color, typography, layout, and asset placement, all within a single inference pass.

1 INTRODUCTION

Modern design workflows increasingly rely on vector graphics for their resolution independence, editability, and com-
pact representation, yet generating production-ready SVG (Scalable Vector Graphic) designs from natural language
remains fundamentally limited by lack of control Polaczek et al. (2025). While recent autoregressive models can
generate impressive vector illustrations from text prompts, they operate as black boxes: once generation begins, de-
signers cannot intervene to enforce brand colors, adjust layouts, or ensure specific typography without regenerating
from scratch or manual post-editing. Existing solutions (Thamizharasan et al., 2024; Zhang et al., 2024) either require
costly model retraining for each new constraint set, resort to generating raster images that must be vectorized (losing
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the benefits of native vector generation), or rely on prompt engineering that offers no guarantees of constraint satis-
faction. At the other extreme, rule-based approaches that strictly enforce constraints produce rigid, uncreative outputs
that fail to leverage the generative model’s learned design knowledge (Dathathri et al., 2019; Yang & Klein, 2021;
Krause et al., 2020). This paper, therefore, addresses a precise challenge: given any pretrained autoregressive SVG
model, can we develop an inference-time control mechanism that enforces user-specified constraints while preserving
the model’s creative capabilities, without any retraining?

Classical fixes attack symptoms rather than the cause. Online fixes treat violations as sampling noise or try to nudge the
decoder on the fly. Prompt engineering, temperature or seed sweeps, and rejection sampling is compute heavy, collapse
diversity, and still offer no guarantees. Ad-hoc logit biasing warps calibration, invites syntax errors, and pushes the
model off its learned manifold. Constrained beam search and post-hoc validators shift the burden into search, where
non-local constraints cause hypothesis sets to explode and pruning reintroduces brittleness. Grammar-based decoders
enforce syntax but cannot coordinate long-range relations and quickly flatten the model’s priors into templated outputs.
Offline fixes try to pre-bake constraints into the system. Per-constraint finetuning must cover a combinatorial space
of rules, so each retrain is slow, drifts with time, and fails on unseen combinations of controls . Raster-first pipelines
avoid structure and vectorize later, which yields tangled paths, oversized files, and no semantic link between code
tokens and design elements, making enforcement and auditing impossible. Template retrieval guarantees conformity
at the cost of homogenization. Reinforcement-learning decoders demand heavy data and delicate reward shaping, and
at test time still need safety shields to keep code valid. In short, online methods treat symptoms and offline methods
hard-code them, and neither provides a principled way to shape the next-token distribution so that control is built in,
not bolted on as an afterthought.

The fundamental limitation is that prior fixes treat control as a pre-processing problem (rewrite the prompt) or a
post-processing problem (repair the output), when what is needed is control during generation. Autoregressive SVG
models are attractive because they emit executable vector code, cover diverse styles under simple conditioning, and fit
naturally into design-as-code workflows. Their weakness is structural: once decoding begins there is no mechanism to
enforce user-specified controls. Training a new model or adding special heads for every control is not feasible at scale
and does not generalize across scenarios. What has been overlooked is that these models expose, at every step, the
full next-token distribution–a probability over all continuations–which in principle indicates which continuations keep
the requested controls still satisfiable; using that information in real time is the hard part. Building upon this insight,
we propose the first training-free, model-agnostic, inference-time controller to align the output token distribution to
that of the conditions from the user. Our intuition is simple: if we shift probability toward continuations that keep
the controls satisfiable and rule out next-token choices that would make them unattainable, decoding stays close to
the base model while meeting the controls. We formalize this by projecting the base distribution onto the constraint-
satisfying set, and implement that projection during decoding via a soft probability tilt with a deterministic mask of
impossible continuations.

Our contributions: (i) We reformulate controlled vector generation as a decoding-time constraint-satisfaction
problem and give a principled characterization of the optimal controlled distribution as an information projection
of the base model. This yields a clean decomposition of control into soft reweighting and hard support restric-
tion. (ii) We introduce STaMP (Soft Tilt-and-Mask Policy), a model-agnostic, retraining-free controller that op-
erates on logits to softly tilt next-token probabilities toward constraints while deterministically masking invalid
continuations, preserving SVG correctness and long-range structure. (iii) We show that STaMP confers practi-
cal, fine-grained control across all open autoregressive SVG generators we test covering both text-to-SVG and
image-to-SVG consistently improving constraint satisfaction and code cleanliness with minimal overhead. (iv) To
stress-test controllability, we build the first text-to-design SVG model that outputs full compositions (e.g., posters,
business cards) as clean, editable code, and demonstrate that STaMP enforces user-defined controls in a single pass.

Note: We use “control” to mean user-specified constraints on the SVGs. In this paper we instantiate three canonical
controls – color palette, typography, and layout – because these dimensions most strongly distinguish vector graphics
and can be evaluated directly from SVG structure and rendering semantics (Polaczek et al., 2025). Our framework is
control-agnostic and applies to any property with a computable scorer or recognizer. Palette, typography and layout
are representative instantiations used to ground experiments, and our methodology can scale to controls beyond these.

2 RELATED WORKS

Autoregressive SVG generation: Early sequence and VAE-style sketch models showed that vector graphics can be
emitted as code (autoregressively) (Ha & Eck, 2017; Cao et al., 2019; Ribeiro et al., 2020; Lopes et al., 2019), and
document-level variants expanded compositional scope across shapes and paths (Carlier et al., 2020; Yamaguchi,
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2021). Code LLMs improve numeric precision and compositional control (Wu et al., 2023; Xing et al., 2025; Wang
et al., 2025), and multimodal systems broaden semantics via visual tokens or draft–refine pipelines (Rodriguez et al.,
2023; Yang et al., 2025b; Wu et al., 2025). However, these models run open-loop at inference time, so control remains
prompt-level or post-hoc (reranking/filters), not a policy that guarantees target satisfaction during sampling. Vector-
ization methods solve the inverse problem from rasters with differentiable rendering or structured fitting (Reddy et al.,
2021; Hu et al., 2024; Ma et al., 2022), but they are not next-token policies and thus cannot offer enforceable per-step
controls. Optimization approaches–gradient-guided curves (Frans et al., 2022; Schaldenbrand et al., 2021; Vinker
et al., 2022) and diffusion-to-vector transfers (Jain et al., 2023; Xing et al., 2023; 2024)–achieve high fidelity via itera-
tive objectives, but lack amortized next-token distributions and provide no mechanism to impose exact sequence-level
targets while decoding. Geometry-aware latents reduce path tangling by representation design (Thamizharasan et al.,
2024; Zhang et al., 2024), yet operate at training/encoding time rather than offering run-time, token-level control. In
contrast, we introduce a decoding-time controller for any autoregressive SVG model that enforces per-step constraints
and calibrates sequence-level targets through explicit, information-theoretic reweighting, moving from prompt-only
steering to guaranteed control at generation time.

Decoding-time control: Attribute-guided decoding steers next-token distributions using auxiliary signals—gradient
injections or prefix/future discriminators (Dathathri et al., 2019; Yang & Klein, 2021), Bayes mixing with a class LM
(Krause et al., 2020) or expert/anti-expert logit composition (Liu et al., 2021). These are effective for coarse attributes
but remain soft: they hinge on calibrated scorers, do not enforce instance-specific structural targets (e.g., nested tag
obligations or element counts), and can trade fluency for control when pushed. Energy-based constrained decoding
frames control as minimizing a sequence energy with Lagrange multipliers or Langevin dynamics (Kumar et al., 2021;
2022b; Qin et al., 2022; Liu et al., 2023). This enables stronger steering but relies on differentiable surrogates, iterative
inner loops, and does not expose a streaming left-to-right policy with structural guarantees. MCMC (Gonzalez et al.,
2025) and edit-based controllers satisfy black-box scorers via token/block-level Metropolis–Hastings or progressive
rewrites ((Mireshghallah et al., 2022; Forristal et al., 2023; Yu et al., 2023; Hallinan et al., 2022), but require many
proposals, struggle with rare events, and lack amortized next-token distributions. Latent composition and posterior-
regularization methods (Dekoninck et al., 2023; Zhong et al., 2023; Meng et al., 2022) decompose sequence-level
oracles into token-level guidance and improve balance/coverage, yet they presume reliable oracles and still do not pro-
vide per-step viability under nested syntax. In short, existing controllers either steer attributes softly or achieve control
via slow, iterative sampling; none directly couples a streaming next-token policy with explicit structural enforcement
and calibrated sequence-level targets, which is precisely the system needed for controlled SVG code generation.

Constrained decoding: Grammar- and automata-based decoding constrains token streams to a formal language using
persistent parse stacks or closed-form automata (Dong et al., 2024; Koo et al., 2024), with token–grammar alignment
and speculative execution improving latency and coverage (Beurer-Kellner et al., 2024; Park et al., 2025), and prefix
pruning enforcing structure on the fly (Sun et al., 2025; Scholak et al., 2021). These mechanisms are strong for
syntax in code, but they (i) often certify only prefix acceptance rather than viability to an accepting terminal under
length/EOS budgets, (ii) depend on tight grammar–subword alignment that can be brittle when tags/attributes straddle
tokens, and (iii) cannot natively encode cross-field numeric/geometric relations (e.g., coordinate consistency) that lie
outside regular and many context-free classes. Controllers based on scopes, types, and static analysis (Ugare et al.,
2024b; Dong et al., 2022; Mündler et al., 2025; Poesia et al., 2022; Agrawal et al., 2023) raise semantic correctness but
still require domain-specific analyzers and do not provide per-step calibration of numeric attributes or global element
counts. Lexically constrained decoding (Hokamp & Liu, 2017; Post & Vilar, 2018; Hu et al., 2019; Bogoychev &
Chen, 2023; Anderson et al., 2016; Lu et al., 2020; Lin et al., 2019) guarantees inclusion of required tokens, yet
inclusion alone neither ensures balanced structures nor prevents dead-ends; aggressive term forcing can also shrink
the viable set and degrade search. Sampling and refinement frameworks—token/block MCMC and posterior methods
(Su et al., 2018; Lipkin et al., 2025; Lew et al., 2023; Ye et al., 2025; Park et al., 2024; Zhang et al., 2023) and
gradient-based or backtracking refinements (Qin et al., 2022; Kumar et al., 2022a; Agarwal et al., 2025a; Ugare et al.,
2024a; Geng et al., 2024; Banerjee et al.; Le et al.; Li et al., 2024; Choi et al., 2023; Hemmer et al., 2023)–enforce
constraints post hoc but rely on iterative proposals or inner loops and do not expose a single-pass, amortized next-token
policy with structural guarantees under nested, numeric SVG requirements. Our approach leverages grammar-aligned
masking for structure but couples it with explicit viability and a probabilistic steering term, yielding a streaming policy
suited to SVG’s nested and numeric constraints.

3 I-PROJECTION GUIDED CONSTRAINED DECODING

Problem statement: Let V be a finite token vocabulary with a designated end-of-sequence token ⟨eos⟩. An autoregres-
sive SVG generator defines a distribution over variable-length sequences x = (x1, . . . , x|x|) ∈ V∗ and assigns joint
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probability by the chain rule,

Pθ(x) =

|x|∏
t=1

Pθ(xt | x<t), x<t = (x1, . . . , xt−1). (1)

We use the standard transformer-style decoding interface with cached history

Ht : (ot+1, Ht+1) = LMθ(xt,Ht) (2)

with xt+1 ∼ Softmax(Wot+1). Let Σ denote the character alphabet. A deterministic decoder dec : V∗→ Σ∗ maps a
token sequence x to its SVG source string, SVG(x) := dec(x), which the renderer consumes.

Our goal is to control this generic autoregressive generator at inference time. This is not straightforward: SVG obeys
strict well-formedness, many constraints are long-range and only decidable after complete rendering, and tokenization
may split tag lexemes across multiple tokens. Naı̈ve next-token rules can admit dead-ends or silently violate global
structure, while purely global reweighting lacks a left-to-right factorization.

We therefore separate requirements into hard and soft constraints. Hard constraints encode syntactic/structural va-
lidity via a recognizer R (e.g., a stack-based XML checker). The feasible token set then is C = {x ∈ V∗ :
R accepts SVG(x) }. Soft constraints capture style targets through a utility f : V∗ → Rm with desired moment
c ∈ Rm (enforced elementwise). We assume feasibility: Pθ(C) > 0 and c ∈ {EQ[f ] : Q≪ Pθ, Q(C) = 1}.
We want the controlled generator to (i) place all mass on valid SVGs, (ii) hit the soft target in expectation, and (iii)
change the base model as little as possible so fluency and prior knowledge are preserved. Among all distributions
satisfying (i)-(ii), the forward KL, KL(Q∥Pθ), implements the minimum-information change to Pθ; it yields a unique
Bregman (information) projection and guarantees absolute continuity with respect to Pθ. It is also behaviorally appro-
priate: forward KL is mode-covering (preserves diversity) and, in the special case with only hard constraints, reduces
exactly to conditioning on validity. These desiderata lead to the information-projection problem

min
Q∈∆(V∗)

KL(Q ∥Pθ) s.t. hard : Q(C) = 1, soft : EQ[f(x)] = c. (3)

Concretely, we seek a model-agnostic token-level control policy that enforces structural well-formedness at inference-
time, and biases sampling toward the desired semantics without retraining the backbone.

3.1 INFORMATION-PROJECTION SOLUTION

How should we solve equation 3? A direct search over distributions is infeasible, but equation 3 has a closed-form
optimizer once we introduce Lagrange multipliers for the soft moments and normalization and restrict attention to
sequences in C. Writing the Lagrangian:

L(Q, η, µ) =
∑
x∈C

Q(x) ln
Q(x)

Pθ(x)
− η⊤

(
EQ[f ]− c

)
+ µ

(∑
x∈C

Q(x)− 1

)
, (4)

with η ∈ Rm and µ ∈ R. The stationarity condition ∂L/∂Q(x) = 0 yields, for every x ∈ C,

lnQ∗(x)− lnPθ(x)+ 1− η⊤f(x)+µ = 0 =⇒ Q∗(x) = 1
Z(η) Pθ(x) exp

(
η⊤f(x)

)
, and Q∗(x) = 0 for x /∈ C,

where the partition function
Z(η) =

∑
x∈C

Pθ(x) exp
(
η⊤f(x)

)
(5)

ensures normalization. Thus the I-projection is an exponential tilting of the base model, restricted to valid sequences.

Moment matching and dual problem. Define ψ(η) = logZ(η). Standard properties of the log-partition imply

∇ψ(η) = EQη [f(x)] and ∇2ψ(η) = CovQη

(
f(x)

)
⪰ 0, (6)

so the multiplier η∗ is determined by the moment-matching condition EQη∗ [f ] = c. Equivalently, η∗ maximizes the
concave dual:

max
η∈Rm

η⊤c− logZ(η)︸ ︷︷ ︸
dual objective

, (7)

whose gradient is c−EQη
[f ] and whose Hessian is−CovQη

(f) ⪯ 0. Under the feasibility assumption in the problem
statement, the primal optimum Q∗ exists and is unique (KL is strictly convex in Q on the feasible set). See Appendix
A.3 for existence/uniqueness and multiplier calibration details.
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Conditionals of the optimal distribution. Although equation 5 gives the joint form of Q∗, generation is left-to-right.
For any prefix x<t with nonzero Q∗-mass, the optimal next-token conditional factors as

Q∗(xt | x<t) = Pθ(xt | x<t) ·
Gη(x<txt)

Gη(x<t)
, Gη(x<t) = Ext:∼Pθ

[
exp
(
η⊤f(x)

)
1{x∈C}

∣∣ x<t

]
, (8)

where Gη(·) is the completion partition, a conditional log-moment-generating function over all valid continuations.
Two immediate sanity checks follow from equation 8: (i) with only the hard constraint (η = 0), Q∗ reduces to Pθ

conditioned on C; (ii) with only the soft constraint and C = V∗, Q∗ reduces to a global exponential tilt of Pθ.

Why this matters for decoding? Equations equation 5-equation 8 characterize the ideal controlled generator defined
by equation 3. In principle, sampling from Q∗ would exactly satisfy the hard validity requirement and meet the soft
moment target while minimally deviating from Pθ.

Intractability of the direct solution. Direct realization of Q∗ is computationally prohibitive for autoregressive SVG
generation:(i) Global normalization: Computing Z(η) (and hence solving the moment equation) requires summing
Pθ(x) exp(η

⊤f(x)) over all valid sequences x ∈ C, an exponentially large space. (ii) Nonlocal conditionals: The
factor Gη(x<t) in equation 8 aggregates all valid completions of a prefix under Pθ, coupling the next-token choice to
the entire suffix. Exact evaluation (or even tight approximation) is generally intractable; naive rejection or importance
sampling degenerates for rare-event constraints. These obstacles preclude computing or sampling from Q∗ exactly
during left-to-right decoding, and they motivate the approximate, online controller introduced in the next section.

4 STAMP: SOFT TILT–AND–MASK POLICY

The I-projection in equation 3 specifies the ideal constrained generator, but equation 5–equation 8 make clear that
exact normalization and next-token conditionals are nonlocal and intractable during left-to-right decoding. STaMP is
a decoding-time controller that emulates the two ingredients implicit in equation 8: an exponential reweighting toward
the target (soft) and a restriction of support to the valid set (hard), realized online as a Soft Tilt followed by a Mask.

4.1 SOFT TILT: LOCAL APPROXIMATION TO THE OPTIMAL CONDITIONAL

The optimal conditional in equation 8 factors Q∗(xt | x<t) into the base next-token model and a multiplicative term

Gη(x<txt)

Gη(x<t)
= exp

(
logGη(x<txt)− logGη(x<t)

)
,

where Gη(·) is the completion partition over valid continuations. We approximate the corresponding ideal log-bias
b∗(x<t, xt) := log Q∗(xt|x<t)

Pθ(xt|x<t)
= logGη(x<txt)− logGη(x<t) with a learned function bϕ(x<t, xt) produced by an

adapter that observes the model’s history stateHt (cf. equation 2). The Soft Tilt forms a biased one-step distribution

Ptilt(xt | x<t) ∝ Pθ(xt | x<t) exp
(
bϕ(x<t, xt)

)
, (9)

which is an autoregressive, locally factorized surrogate for the soft reweighting induced by the I-projection. For vector-
valued utilities f ∈ Rm, bϕ can be parameterized to approximate η⊤ times a predicted incremental contribution to f ;
the scalar η (or vector, elementwise) is the same Lagrange multiplier from equation 4–equation 7 and is calibrated to
target E[f ] = c.

4.2 MASK: VIABILITY-PRESERVING HARD ENFORCEMENT

To realize Q(C) = 1 (hard in equation 3) during decoding, we maintain a recognizer R for well-formed SVG (stack-
based tag matching plus finite-state attribute/lexical checks). At time t, given the current prefix x<t, let Vt ⊆ V be
the set of tokens whose emission keeps some valid completion reachable (viability). The Mask operation zeroes the
probability of all other tokens:

Ptilt+mask(xt | x<t) ∝ Ptilt(xt | x<t) 1{xt∈Vt}, Vt = {v ∈ V : R stays viable on x<tv}. (10)

This enforces hard validity at every step (soundness); see Appendix A.1. If equation 10 uses exact viability (accounting
for EOS/length budgets), sampling with Mask alone is equivalent to conditioning Pθ on C when η = 0. A formal proof
of this equivalence appears in Appendix A.2. Combined with equation 9, it implements the two structural factors of
equation 8 in a left-to-right form. Under oracle tilt and exact viability, the policy equals Q∗; see Appendix A.6.
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4.3 ENGINEERING CHOICES AND IMPLEMENTATION RECIPE

STaMP has three moving parts: a recognizerR that answers viability queries, an adapter producing the Soft Tilt, and a
small loop that composes them during decoding. The recognizer is implemented as a deterministic pushdown automa-
ton for balanced, properly nested tags, augmented with a finite-state layer for attribute syntax and forbidden/required
substrings; it exposes a query that returns Vt for a given prefix and budget. The adapter reads the history stateHt and
emits a residual logit bϕ(x<t, ·); magnitude constraints (e.g., clipping or temperature scaling on bϕ) prevent softmax
saturation and preserve calibration.

Training follows the logic of equation 3 but replaces the intractable sequence-level divergence with a token-level
surrogate. Let ht denote the decoder state (includingHt and prefix features) distributed according to the rollout policy
Q̃ϕ induced by equation 9+ equation 10, and let πϕ(· | ht) be the corresponding next-token distribution after Soft Tilt
and Mask. We optimize:

max
ϕ

η⊤Ex∼Q̃ϕ
[ f(x) ] −

∑
t

Eht∼Q̃ϕ

[
KL
(
πϕ(· | ht) ∥Pθ(· | ht)

)]
, πϕ induced by equation 9 + equation 10.

By Appendix A.5, this per-step KL equals the sequence-level KL(Q̃ϕ ∥Pθ). The first term drives the soft moment
toward c and the per-step KL enforces proximity to the base next-token policy. Gradients are estimated with policy-
gradient (score-function) methods using per-step baselines; alternatively, one may also distill from reward-weighted
trajectories by minimizing cross-entropy between Ptilt(· | x<t) and empirical, reward-weighted next-token counts.

Calibration of η proceeds by a outer loop: for a candidate η, decode short batches with the current controller, estimate
EQ̃ϕ

[f ], and update η ← η + α (c − EQ̃ϕ
[f ]) (componentwise for m > 1). Under the monotonicity implied by

equation 6, this one-dimensional search converges to the desired moment. At inference time, the controller can run at
every step, but SVG’s structure makes selective activation more efficient. We gate STaMP by the recognizer’s lexical
state and engage it only at semantic decision points, e.g., on entering or closing a tag, emitting path data etc., while
otherwise sampling directly from Pθ. When engaged, we compute base logits, add the Soft Tilt residual, query Vt from
R, apply the Mask, and sample; this reduces average cost to O(ρ |V|) arithmetic per token (with ρ∈ [0, 1] the fraction
of controlled steps) plus a constant-factor automaton cost. With feasible constraints, the viable set remains nonempty
and the loop proceeds without backtracking; optional heuristics (temperature, top-k, nucleus) may be layered on but
constitute further deviations from the implied Q̃ϕ. Theoretical guarantees and proofs are shown in the Apendix.

5 RESULTS

We structure results around three research questions (RQ) that evaluate controllability rather than isolated metrics.
RQ1 Model-agnostic control: Can STaMP enforce constraints on any autoregressive SVG model without requiring
retraining? RQ2 End-to-End designs: In a more challenging setting, can STaMP handle design specifications by
supporting the first text-to-SVG design models, thus serving as an end-to-end control stress test? RQ3 Comparative
control: How does STaMP compare against strong alternatives in the quality–satisfaction–efficiency trade-off?

5.1 MODEL-AGNOSTIC CONTROL

Experiment setting: We pair STaMP with publicly available text-to-SVG and image-to-SVG base models: OmniSVG
(Yang et al., 2025b), LLM4SVG (Xing et al., 2025) (with Qwen 2.5 and Gemma 3 backbones), IconShop (Wu et al.,
2023), and StarVector Rodriguez et al. (2023). For StarVector, we evaluate only the image-to-SVG (the text-to-SVG
model is not publicly released). In addition, we train Qwen 3 (Yang et al., 2025a) and GPT-OSS (Agarwal et al., 2025b)
on a proprietary design SVG corpus and include them as backbones. All evaluations use OmniSVG’s MMSVG-Icon
subset from MMSVG-Bench (Yang et al., 2025b), restricting to icon-level tasks to enable fair comparisons across
backbones. This avoids conflating results with model size disparities (the publicly released OmniSVG checkpoint is
smaller than the strongest models reported), which would otherwise dominate outcomes in broader settings.

Evaluation protocol: Our goal is not to rank base models, but to test whether pairing each backbone with STaMP yields
reliable control without deteriorating the backbone’s strengths. We report control metrics–CIEDE 2000 (Schanda,
2007) (palette control), overlap % between specified and realized regions (layout control), and font matching for
typography–and general metrics that should remain stable under control: quality retention (LPIPS Zhang et al. (2018),
token complexity (number of SVG tokens), generation time, and CLIP score. For RQ1, we focus on two controls and
their combination; for each backbone we compare its native decoding against the same model wrapped with STaMP
under identical prompts and budgets.
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Table 1: Impact of STaMP on controllability of text-to-SVG models: baselines with STaMP vs without, evaluated on
C (color), L (layout), and C+L. Arrows indicate the favorable direction per metric.

Model Variant C: Color Constraint L: Layout Constraint C+L Constraints

CIEDE
2000 ↓

Complexity
(# Tokens) ↓

Generation
Time (s) ↓

CLIP
Score ↑

Overlap
% ↑

Complexity
(# Tokens) ↓

Generation
Time (s) ↓

CLIP
Score ↑

CIEDE
2000 ↓

Overlap
% ↑

Complexity
(# Tokens) ↓

Generation
Time (s) ↓

CLIP
Score ↑

OmniSVG
[3B]

Base 6.41 3.32k 15 0.3012 7.18 3.35k 16 0.3020 6.73 8.62 3.40k 16 0.3019
+STaMP 0.05 3.38k 21 0.3015 84.95 3.99k 21 0.3000 0.02 88.54 3.82k 22 0.3002

LLM4SVG
Qwen2.5 [7B]

Base 8.63 2.10k 25 0.2498 3.17 2.13k 26 0.2489 9.31 4.19 2.15k 26 0.2491
+STaMP 0.07 2.35k 31 0.2483 88.82 2.89k 33 0.2488 0.04 89.76 2.94k 35 0.2487

LLM4SVG
Gemma 3 [4B]

Base 13.91 1.91k 16 0.2109 4.24 1.94k 16 0.2109 13.38 4.75 1.94k 17 0.2110
+STaMP 0.06 2.13k 24 0.2100 84.16 2.50k 27 0.2101 0.01 85.69 2.53k 26 0.2109

IconShop Base 32.04 3.38k 7 0.2079 3.12 3.38k 7 0.2077 38.05 3.08 3.39k 7 0.2076
+STaMP 0.13 3.51k 19 0.2094 86.47 4.17k 20 0.2103 0.08 85.32 4.21k 21 0.2102

Qwen3
[8B]

Base 5.18 5.18k 51 0.3103 31.25 5.92k 63 0.3100 5.64 30.61 6.01k 65 0.3102
+STaMP 0.03 5.20k 59 0.3096 96.17 6.42k 78 0.3099 0.05 94.13 6.51k 77 0.3100

GPT-OSS
[20B]

Base 3.79 5.31k 68 0.3321 48.62 6.01k 77 0.3322 3.85 46.03 6.18k 78 0.3322
+STaMP 0.02 5.31k 87 0.3323 98.14 6.58k 91 0.3323 0.07 97.26 6.82k 96 0.3324

5.1.1 RQ1 KEY RESULTS:

Table 2: Image-to-SVG comparison under
controllability constraints. Baselines with
STaMP vs without.

Model Variant C L C+L

CIEDE
2000 ↓

Overlap
% ↑

Quality
Retention ↑

Complexity
(# Tokens) ↓

Generation
Time (s) ↓

StarVector
[8B]

Base 11.6 9.3 0.11 3.72k 49
+STaMP 0.1 84.1 0.13 4.26k 58

OmniSVG
[3B]

Base 10.9 8.2 0.15 3.92k 18
+STaMP 0.08 78.9 0.15 4.52k 26

StarVector
[8B]

Base 11.6 9.3 0.13 3.72k 49
+STaMP 0.1 84.1 0.16 4.26k 58

OmniSVG
[3B]

Base 10.9 8.2 0.13 3.92k 18
+STaMP 0.08 78.9 0.15 4.52k 26

StarVector
[8B]

Base 11.6 9.3 0.14 3.72k 49
+STaMP 0.1 84.1 0.16 4.26k 58

OmniSVG
[3B]

Base 10.9 8.2 0.15 3.92k 18
+STaMP 0.08 78.9 0.16 4.52k 26

Key result #1: STaMP enables model- and modality-agnostic
inference-time control. Tables 1 and 2 report the quantitative results,
and Figure 1 visualizes the same effect: STaMP enforces palette
and layout across both text-to-SVG and image-to-SVG models, in-
dependent of the backbone. Palette is decided by a small, discrete
set of attribute SVG tokens. The soft tilt concentrates probability
on those tokens at the moments they matter, and calibration pins
the palette error near-zero without touching geometry. Layout is de-
cided by coordinate/path tokens spread across the sequence. The
viability mask prunes choices that would make the required place-
ment unreachable under the remaining length/stack budget, so geom-
etry snaps toward the requested arrangement rather than wandering.
These two controls largely act on disjoint token subsets, so applying
them together is close to commutative in practice. STaMP works
because it sits at the same next-token/logit interface in both text-to-
SVG and image-to-SVG. In each case, once the backbone produces the per-step distribution, STaMP applies a soft
tilt to favor palette/layout-consistent tokens and a mask to remove choices that break feasibility; nothing upstream
(encoders, prompts, or training) is touched. Operating at this decoding neck makes the mechanism inherently model-
and modality-agnostic, which is why the same controller behaves consistently across all backbones.

Figure 2: Illustration of STaMP on a
monochrome-only backbone (IconShop):
decode-time control enables zero-shot
color, typography, and layout changes.
Baseline outputs remain monochrome;
whereas STaMP obeys the palette, ar-
ranges layout as specified, and renders
the requested text and font.

Key result #2: STaMP unlocks zero-shot color, typography, and layout
control on a monochrome-only backbone. IconShop (Wu et al., 2023) is
trained to generate monochrome icons and by design, does not exercise
color or typography controls. Paired with STaMP and stressed with all
three controls at once, it produces SVGs that adopt the specified palette,
insert the requested text with the correct font, and place elements in the
required arrangement, as shown in Fig. 2. The intuition is simple: STaMP
sits at the decoding neck and acts on the backbone’s own next-token prob-
abilities, even if the backbone rarely uses color or text tokens, they remain
in the vocabulary with nonzero mass, the Soft Tilt lifts them precisely
when needed, and the Mask keeps future completion feasible. This con-
verts “unused but available” (long tail) capabilities into reliable, decode-
time control - without retraining the model or changing its encoder–and the
same zero-shot effect appears whenever the relevant tokens and grammar
are present.

5.2 END-TO-END DESIGN

Experiment setting: Most design models today are raster-first: they pro-
duce pixels that are hard to edit procedurally after generation, and practical
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Figure 3: Qualitative end-to-end design generation: STaMP-controlled model vs baselines. STaMP yields SVG
designs that satisfy color, typography, and layout constraints while maintaining visual coherence and editability; base-
lines frequently drift from the specified palette, misplace elements, or misrender text. More results in supplementary.

systems stitch multiple components (layout, asset placement, styling, typography) into a pipeline without a single gra-
dient path (Chen et al., 2025). Real design workflows, however, demand precise controllability (in form of palette,
layout, typography) and editability (structured, token-level changes) so that specifications can be met and iterated
rapidly. We sidestep the raster bottleneck by treating design as code–end-to-end SVGs that explicitly encode geom-
etry, hierarchy, color, and type. While “design-as-code” has been explored in adjacent contexts (Seol et al., 2024), it
has not been realized as full text-to-SVG design models. Concretely, we fine-tune two backbones: Qwen3 (8B) and
an GPT-OSS (20B), on a proprietary end-to-end SVG design corpus, yielding (to our knowledge) the first text-to-SVG
design models. We subsequently stress-test STaMP in this setting, where fidelity, control and editability matter most,
to assess how reliably it steers these models under complete briefs. We compare against strong general-purpose code
LMs–GPT-5 (OpenAI, 2025), Claude-4 (Anthropic, 2025), Gemini-2.5 (Comanici et al., 2025), Qwen3 (8B) (Yang
et al., 2025a), and GPT-OSS (20B) (Agarwal et al., 2025b), covering proprietary and open-source baselines.

Evaluation protocol: Since we claim text-to-design SVGs, we first verify design quality and prompt faithfulness with
two design-specific metrics: (i) CLIP-Aesthetic (LAION aesthetic predictor, a learned proxy for human visual appeal
on rendered designs; and RLR (ROUGE-L Recall) between the prompt and the concatenated text extracted from SVG
<text> nodes, to check that the design’s copy reflects the instruction. We then report the controllability metrics
introduced earlier for color, typography and layout.

5.2.1 RQ2 KEY RESULTS:

Table 3: Comparison across Unconstrained, Color, Layout, Typography, and C+L+T constraints.

Model Unconstrained Color Layout Typography C+L+T

CLIP-A ↑ RLR ↑ Complexity
(# Tokens)

CIEDE
2000 ↓ CLIP-A ↑ RLR ↑ Complexity

(# Tokens)
Overlap

% ↑ CLIP-A ↑ RLR ↑ Complexity
(# Tokens)

Font
Match % ↑ CLIP-A ↑ RLR ↑ Complexity

(# Tokens)
CIEDE
2000 ↓

Overlap
% ↑

Font
Match % ↑ CLIP-A ↑ RLR ↑ Complexity

(# Tokens)

GPT 5 4.51 0.88 8.12k 10.32 4.29 0.87 8.06k 34.37 4.16 0.89 8.55k 95.37 4.23 0.87 8.11k 11.18 33.92 95.14 4.35 0.86 8.54k
Claude 4 3.77 0.89 6.97k 11.96 3.48 0.90 7.00k 36.84 3.65 0.92 7.33k 92.76 3.74 0.91 7.02k 12.35 34.26 89.23 3.82 0.89 7.48k
Gemini 2.5 3.96 0.93 7.53k 10.57 3.81 0.91 7.59k 32.61 3.93 0.94 7.95k 90.28 4.05 0.93 7.56k 10.59 30.83 88.15 4.17 0.94 7.94k
Qwen3 (8B) 3.44 0.89 6.04k 12.15 3.43 0.88 6.02k 21.34 3.57 0.85 6.45k 89.19 3.62 0.84 6.06k 13.07 20.31 87.82 3.73 0.83 6.45k
GPT-OSS(20B) 4.11 0.89 7.21k 10.54 4.17 0.91 7.24k 33.95 4.32 0.94 7.63k 85.84 4.46 0.92 7.24k 10.62 33.48 81.16 4.51 0.91 7.82k

Qwen3 (8B)-FT 7.91 0.95 13.84k 3.92 7.68 0.96 13.86k 48.69 7.45 0.93 13.96k 95.63 7.51 0.91 13.88k 4.03 47.75 94.31 7.64 0.90 14.16k
GPT-OSS (20B)-FT 7.12 0.97 14.95k 4.16 6.84 0.91 14.91k 51.38 6.71 0.92 14.89k 95.07 6.85 0.90 14.53k 4.16 51.64 94.75 6.92 0.88 14.99k

Qwen3 (8B)-FT+STaMP 7.91 0.96 13.84k 0.03 7.73 0.97 13.88k 97.27 7.98 0.96 13.96k 100.00 8.03 0.97 13.86k 0.05 98.12 100.00 8.15 0.95 14.24k
GPT-OSS (20B)-FT+STaMP 7.10 0.98 14.94k 0.03 7.26 0.99 14.99k 94.93 7.17 0.95 14.22k 100.00 7.28 0.96 14.53k 0.01 96.28 100.00 7.36 0.97 14.91k

Key result #3: Text-to-SVG fine-tuning yields state-of-the-art design quality, surpassing strong code LMs. On the
end-to-end briefs, the fine-tuned text-to-SVG models (Qwen3-8B-FT, GPT-OSS-FT) top the general-purpose code
LMs across both design metrics–higher CLIP-Aesthetic and higher RLR–consistently across prompts (see Table 3
and qualitative results 3). These gains are substantive: fine-tuning teaches SVG-specific composition (e.g., grouping,
coordinate frames, layering of shapes and text), which stabilizes where and how <text> nodes are emitted (raising
RLR) and yields more balanced, appealing arrangements (raising CLIP-A). As a downstream consequence of that
structural competence, control metrics also move sharply in the right direction (lower CIEDE-2000, higher layout
overlap, stronger font matches), indicating the model has learned the SVG knobs that make palette, layout, and type
editable and precise in a single pass.

Key result #4: STaMP delivers full control on end-to-end designs without reducing creative expression. On full
briefs (color+layout+typography), the STaMP variants of our fine-tuned text-to-SVG models meet all three controls
simultaneously and retain the design quality and variety learned during fine-tuning: CLIP-Aesthetic and RLR stay at
the fine-tuned baseline or improve, and the qualitative panel shows diverse, on-spec compositions rather than template
collapse (see the Table 3 and Fig. 1, 3). Methods without STaMP frequently miss at least one axis under the
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same briefs; only the STaMP configurations achieve all the user-defined constraint satisfaction while preserving the
backbone’s creative range.

5.3 COMPARATIVE CONTROL

Experiment setting: To probe the control–quality–efficiency trade-off under identical conditions, we evaluate all meth-
ods on the same end-to-end design generation setup as the previous section (identical specs/prompts and decoding
harness), using the same two backbones: Qwen-3 (8B) and GPT-OSS (20B). We keep the backbone and prompts
fixed so that any change in outcomes reflects only the control policy at inference time. We compare controllers in five
clusters to expose the trade-offs: (i) Prompting family: Prompt-only (vanilla models), Prompt-only (with finetuned
models), finetuned + multi-turn prompting: gauges how far instruction following and interactive prompting can go
without an explicit controller (with the latency cost of extra turns). (ii) Test-time guidance/editing: GeDi-style guid-
ance, ScoPE-style progressive editing: measures generic attribute steering and edits that lack structural guarantees.
(iii) Search/rerank: Rejection + rerank, Constrained Beam Search (CBS): non-learned optimization via sampling or
viability-aware beam, mapping satisfaction versus compute. (iv) Factorized ablations: Only Soft Tilt, Only Mask:
isolates soft moment steering versus hard feasibility to attribute STaMP’s gains. (v) Ours: STaMP: a unified Soft Tilt
+ Mask policy.

Evaluation protocol: All methods consume the same design specifications (color, layout, typography) and decode
under matched settings (identical prompts, max length, temperature). For search/rerank baselines, we tune candidate
pools and beam widths to their operating points, and report the resulting generation time alongside outcomes. We
report the controllability metrics introduced earlier together with CLIP-Aesthetic and generation time. The only
additional metric here is well-formedness satisfaction rate (WFSR), the fraction of outputs that parse as valid SVG
under a strict parser.

5.3.1 RQ3 KEY RESULTS:

Table 4: Control-method comparison for Qwen3 8B
and GPT-OSS-20B under C+L+T constraints.
Model Control Method C+L+T Metrics

CIEDE
2000 ↓

Overlap
% ↑

Font
Match % ↑ CLIP-A ↑ WFSR % ↑ Generation

time (s) ↓

Qwen-3 (8B)

Prompt (vanilla) 9.84 31.87 61.23 3.73 37.16 154
Prompt (finetuned) 6.35 39.42 83.69 7.51 61.85 162
FT+multi-turn Prompt 1.57 43.18 100.00 7.23 69.34 313
ScoPE 2.63 64.85 91.47 7.01 59.72 176
GEDi 1.95 69.58 94.26 7.14 62.83 178
Rejection Sampling 0.64 89.17 100.00 7.30 100.00 486
CBS 1.09 91.28 100.00 7.12 100.00 247
Only Soft tilt 0.82 72.19 100.00 7.48 56.31 179
Only DFA Mask 6.17 36.64 87.86 7.25 100.00 168
STaMP 0.03 97.15 100.00 6.92 100.00 184

GPT-OSS (20B)

Prompt w/o FT 7.12 46.18 66.84 4.51 41.06 168
Prompt w/ FT 5.53 50.74 78.95 6.85 61.27 173
Multi-turn Prompt w/ FT 1.16 56.19 100.00 6.90 63.82 341
ScoPE 2.56 68.47 92.13 6.92 60.52 187
GEDi 1.84 72.96 95.31 7.05 64.18 189
Rejection Sampling 0.57 91.35 100.00 7.25 100.00 512
CBS 1.14 93.06 100.00 7.18 100.00 262
Only Soft tilt 0.91 78.17 100.00 6.38 58.94 182
Only DFA Mask 5.08 47.43 80.15 6.83 100.00 177
STaMP 0.02 97.18 100.00 7.36 100.00 189

Key result #5: STaMP sits on the control–quality–efficiency
Pareto front for controlled SVG generation. Across all back-
bones, STaMP delivers the tightest control–near-zero ∆E2000

for color, top-tier layout Overlap, perfect font matching, and
100% well-formedness, while adding only modest generation
time compared to heavy search baselines. The ablations reveal
the trade-offs: Only Soft Tilt improves color/typography but
loses validity; Only Mask secures validity yet leaves soft tar-
gets under-optimized; GeDi/ScoPE nudge soft metrics with-
out structural guarantees; CBS and Rejection approach high
compliance but incur substantial time costs (and still trail
on color or layout in our setting). Notably, STaMP pre-
serves perceptual quality (CLIP-Aesthetic is competitive), in-
dicating that tighter control need not sacrifice aesthetics. In
short, the combined Soft Tilt+Mask policy dominates the con-
trol–quality–efficiency frontier, delivering simultaneous con-
straint satisfaction with validity guarantees at single-pass,
inference-time cost.

6 CONCLUSION

We introduce STaMP (Soft Tilt-and-Mask Policy), the first training-free and model-agnostic inference-time decod-
ing controller that enforces structural and semantic constraints during autoregressive SVG generation. By framing
control as an I-projection and factorizing it into a soft tilt for probabilistic reweighting and a hard mask for validity,
STaMP achieves reliable palette, layout, and typography control across diverse backbones without sacrificing fluency.
Beyond enabling workflows such as text-to-design generation of posters and cards, STaMP highlights how princi-
pled inference-time interventions can unlock controllable generation without retraining. A key next step is to extend
STaMP from local constraint enforcement towards global, higher-order design objectives (e.g., composition, balance,
accessibility), enabling models to satisfy not just token-level rules but holistic design principles during generation.
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A THEORETICAL GUARANTEES OF STAMP

A.1 HARD-VALIDITY (SOUNDNESS) OF STAMP

Setting. Recall the feasible set:
C = {x ∈ V∗ : R accepts SVG(x) },

whereR is a deterministic recognizer for well-formed SVG, and the one-step policy produced by STaMP,

Ptilt+mask(xt | x<t) ∝ Ptilt(xt | x<t) 1{xt∈Vt}, Ptilt(xt | x<t) ∝ Pθ(xt | x<t) exp
(
bϕ(x<t, xt)

)
, (11)

with Vt the set of viable tokens at prefix x<t. Let st denote the state ofR after feeding the decoded prefix SVG(x<t);
write δ for the (deterministic) state transition function ofR composed with the token decoder, i.e., δ(st, xt) is the state
reached after appending token xt (expanding it into characters via dec and streaming them through R). We assume
exact viability:

Vt =
{
v ∈ V : ∃ y ∈ V∗ s.t. δ

(
δ(st, v), y

)
∈ F and the termination rule accepts

}
, (12)

where F is the set of accepting states of R and the termination rule is the one used in the main text (EOS-terminated
sequences, or fixed-length sequences). In the EOS case we additionally gate EOS: the EOS token is included in Vt if
and only if st ∈ F .

Claim (Soundness). Let Q̃ϕ be the sequence distribution induced by sampling xt ∼ Ptilt+mask(· | x<t) at each step and
terminating only when EOS is sampled (EOS-terminated) or when the prescribed fixed length is reached (fixed-length).
Under the exact-viability specification equation 12 (and EOS gating when applicable), every realized sequence lies in
the feasible set:

Q̃ϕ(C) = 1.

Proof. We give the argument for the EOS-terminated case; the fixed-length case is identical after replacing the EOS
gate by a length budget in the viability test.

We prove by induction on t the invariant:

Inv(t) : (i) st is the state reached by SVG(x<t), (ii) there exists a valid completion y ∈ V∗ with δ(st, y) ∈ F.

Base case. At t = 1, x<1 is empty, s1 is the start state of R. Feasibility of the task ensures there exists some valid
x ∈ C; hence (ii) holds for y = x. Thus Inv(1) holds.

Inductive step. Assume Inv(t) holds. By exact viability equation 12, the mask in equation 11 restricts sampling to Vt,
i.e., to tokens xt for which there exists a suffix y with δ(δ(st, xt), y) ∈ F . The controller samples some xt ∈ Vt with
nonzero probability, then updates the recognizer state to:

st+1 = δ(st, xt).

By the defining property of Vt, there is at least one y such that δ(st+1, y) ∈ F , so (ii) holds at t + 1; (i) holds by
construction. Hence Inv(t+ 1).

Termination and acceptance. In the EOS-terminated setting, the process halts only when EOS is sampled. By EOS
gating, EOS ∈ Vt if and only if st ∈ F . Thus, the only way to terminate is from an accepting state. (For every
reachable accepting state, the conditional probability of emitting EOS under Ptilt+mask(EOS|·) is bounded. Therefore,
standard geometric-series arguments imply the process terminates almost surely and with finite expectation). The
realized sequence x satisfiesR accepts SVG(x), i.e., x ∈ C. Therefore Q̃ϕ(C) = 1.

Fixed length. When a fixed length T is imposed, the viability definition equation 12 is understood with a budget on the
remaining steps: a token v is viable at time t only if there exists y of length at most T − t such that δ(δ(st, v), y) ∈ F .
The inductive invariant carries through verbatim, and at t = T only prefixes that admit an accepting completion of
length 0 (i.e., already accepting) can occur. Hence the realized sequence is accepted byR and lies in C.

Discussion. The guarantee is soundness, not completeness. Soundness says every sequence the controller emits is
in C; it does not claim that every x ∈ C is reachable with positive probability. Completeness would additionally
require liveness/progress conditions (Appendix A.7) ensuring the viable set never empties along trajectories. For the
hard-validity contract, soundness is the essential safety property: regardless of the learned Soft component, as long as
the Mask enforces exact viability and EOS gating, the controller cannot produce an invalid SVG.
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A.2 MASK-ONLY ≡ CONDITIONING (WHEN η = 0)

Setting. Consider the hard constraint set:

C = {x ∈ V∗ : R accepts SVG(x) },
the base autoregressive model Pθ as in equation 1–equation 2, and the Mask policy equation 10. In this appendix we
set η = 0 (no Soft Tilt), i.e., bϕ ≡ 0 and Ptilt(· | x<t) = Pθ(· | x<t). For any prefix x<t with Pθ(x<t) > 0, define the
base-model acceptance probability:

G0(x<t) := Ext:∼Pθ

[
1{x∈C}

∣∣ x<t

]
= Pθ

(
x ∈ C

∣∣ x<t

)
, (13)

and similarly G0(x<tv) = Pθ(x ∈ C | x<tv). For the equivalence below we use the Pθ-reachable viable set:

Vt = { v ∈ V : G0(x<tv) > 0 },
which refines recognizer viability by excluding next tokens that admit accepting completions only with zero
Pθ-probability. In the EOS-terminated setting, EOS is allowed iff the current recognizer state is accepting (equiv-
alently, G0(x<t⟨eos⟩) > 0). The Mask-only next-token policy is then:

πmask(xt | x<t) =
Pθ(xt | x<t)1{xt∈Vt}∑

v∈Vt
Pθ(v | x<t)

. (14)

Target conditional under the base model. Conditioning Pθ on eventual validity defines:

Pθ

(
xt | x<t, x ∈ C

)
=

Pθ

(
xt, x ∈ C | x<t

)
Pθ

(
x ∈ C | x<t

) =
Pθ(xt | x<t)G0(x<txt)

G0(x<t)
, (15)

where the last equality is the law of total probability over suffixes under Pθ.

Claim (Equivalence, with necessary and sufficient condition). Fix any prefix x<t with G0(x<t) > 0. Then

πmask(· | x<t) = Pθ(· | x<t, x ∈ C) ⇐⇒ G0(x<tv) is constant over v ∈ Vt.
In particular, ifG0(x<tv) does not depend on the choice of viable next token, then Mask-only sampling coincides with
conditioning the base model on eventual validity. If G0 varies across viable tokens, the two next-token distributions
generally differ.

Proof. By equation 14, for any xt ∈ Vt,

πmask(xt | x<t) =
Pθ(xt | x<t)∑
v∈Vt

Pθ(v | x<t)
.

By equation 15, for any xt ∈ Vt,

Pθ(xt | x<t, x ∈ C) =
Pθ(xt | x<t)G0(x<txt)

G0(x<t)
, G0(x<t) =

∑
v∈Vt

Pθ(v | x<t)G0(x<tv),

(the last identity sums over all tokens; terms with G0 = 0 vanish and can be dropped). Hence,

Pθ(xt | x<t, x ∈ C) =
Pθ(xt | x<t)G0(x<txt)∑
v∈Vt

Pθ(v | x<t)G0(x<tv)
.

Comparing with πmask, equality for all xt ∈ Vt holds iff G0(x<tv) is the same constant for all v ∈ Vt (so the common
factor cancels). This condition is also necessary.

Discussion and implications. Equation equation 15 is the η = 0 instance of equation 8 and shows that conditioning
multiplies base next-token probabilities by G0(x<txt) before renormalization. The Mask-only policy equation 14
enforces G0(x<txt) > 0 but omits this multiplicative factor. Consequently, Mask-only is exactly Pθ(· | x ∈ C) if and
only if the acceptance probability is token-invariant across the viable set at that prefix—that is, when all viable next
tokens yield the same G0 under Pθ. In general, especially for long-range constraints, G0 varies with v and the two
policies differ.

From the STaMP viewpoint, Mask enforces the hard requirement (no invalid paths), while the missing multiplicative
factor is the η→ 0 case of the ideal log-bias b∗(x<t, xt) = logGη(x<txt) − logGη(x<t) in equation 8. Thus, if
bϕ = b∗ at η = 0, the combined Soft Tilt+Mask reproduces conditioning exactly; if bϕ ≡ 0, Mask-only matches
conditioning precisely in the token-invariant case above. In all cases, Appendix A.1 applies: regardless of these
weights, every realized sequence lies in C (soundness).
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A.3 EXISTENCE & UNIQUENESS OF THE I-PROJECTION

Setting and assumptions. We study equation 3 over the simplex ∆(V∗) with the hard support restriction Q(C) = 1 and
soft moment constraint EQ[f ] = c (elementwise when m > 1). We adopt the feasibility assumption from the main
text: Pθ(C) > 0 and c ∈M, where:

M =
{
EQ[f ] : Q≪ Pθ, Q(C) = 1

}
.

To avoid technicalities unrelated to SVG control, assume either that f is bounded or, more generally, that the exponen-
tial moment

∑
x∈C Pθ(x) exp(η

⊤f(x)) is finite in a neighborhood of the origin, so the log-partition ψ(η) = logZ(η)
in equation 5 is well-defined and smooth on its effective domain (Z(η) < ∞∀η in an open convex set containing the
optimum ). These assumptions ensure uniform integrability of f on the feasible slice and continuity of Q 7→ EQ[f ]
under weak convergence.

Existence. Consider the Lagrangian equation 4 with multipliers η ∈ Rm and µ ∈ R, restricted to distributions
supported on C. Eliminating Q by the stationarity condition yields the tilted family:

Qη(x) =
1

Z(η)
Pθ(x) exp

(
η⊤f(x)

)
1{x∈C}, Z(η) =

∑
x∈C

Pθ(x) exp
(
η⊤f(x)

)
,

and the concave dual g(η) = η⊤c − ψ(η) with ∇g(η) = c − EQη [f ] and ∇2g(η) = −CovQη (f) ⪯ 0 (cf. equa-
tion 6–equation 7). There are two complementary existence routes. (i) Dual route. If c lies in the relative interior of
the exponential-family moment image:

Mexp =
{
EQη [f ] : Z(η) <∞

}
= Im(∇ψ),

then by continuity of ∇ψ there exists η∗ with EQη∗ [f ] = c; strong duality gives Q∗ = Qη∗ . (ii) Direct route. On a
countable alphabet the feasible set

{Q ∈ ∆(V∗) : Q(C) = 1, EQ[f ] = c, Q≪ Pθ }
is convex and closed (linearity of constraints and absolute continuity are closed conditions; continuity of Q 7→ EQ[f ]
(Weierstrass) follows from the regularity above). Since Q 7→ KL(Q∥Pθ) is lower semicontinuous and takes values in
[0,∞], the infimum is attained. Boundary cases (see below) are handled by closure of the feasible set.

Uniqueness of the primal optimizer. The mapping Q 7→ KL(Q∥Pθ) is strictly convex in Q on the affine slice defined
by the constraints (with Q≪ Pθ). Hence there is at most one minimizer; together with existence, this yields a unique
optimizer Q∗, independent of parameterization.

Characterization and dual optimality. By the KKT conditions for equation 4, the unique primal optimizer has the
exponential-tilt form:

Q∗(x) =
1

Z(η∗)
Pθ(x) exp

(
η∗⊤f(x)

)
1{x∈C}

for some dual maximizer η∗, and satisfies the moment-matching condition EQ∗ [f ] = c. Conversely, any η with
EQη [f ] = c yields a feasible Qη attaining the primal optimum. The Pythagorean identity (Csiszár et al., 2004) for the
I-projection holds: for any feasible Q,

KL(Q∥Pθ) = KL(Q∥Q∗) + KL(Q∗∥Pθ),

which certifies optimality of Q∗ and shows that deviations from Q∗ strictly increase the objective.

Uniqueness of multipliers and redundancy. While Q∗ is unique, the dual vector η∗ is unique iff the features in f
are nonredundant under Q∗, e.g., CovQ∗(f) ≻ 0 (equivalently, there is no nonzero a ∈ Rm with a⊤f(x) Q∗-a.s.
constant). If such redundancy exists (e.g., including a constant feature), the set of dual maximizers is an affine translate
along redundant directions; all such η produce the same Q∗ because the induced tilt differs only by a multiplicative
constant absorbed into Z(η).

Boundary cases. If c lies on the boundary of the achievable moment setM, a maximizing sequence ηk may diverge
while Qηk

converges (in distribution) to a limit supported on C that satisfies the constraint; then the primal optimizer
still exists and is unique, while the dual optimum is attained only in the extended sense (at infinity). (In other words,
if c lies on ∂M, there exists a diverging sequence ηk with ||ηk|| → ∞, such that Qηk

converges weakly to Q∗ - the
dual supremum is attained only in the extended sense.) Under the standing regularity (bounded f or finite exponential
moments) and c in the relative interior ofM, both primal and dual optima are attained with finite η∗.

Discussion. Under the feasibility and regularity conditions above, the I-projection equation 3 admits a unique solution
Q∗, realized by an exponential reweighting of Pθ restricted to C, with multipliers chosen to satisfy EQ∗ [f ] = c. This
establishes that the target controlled generator is well-posed and reproducible; all approximation error in subsequent
sections (e.g., Soft Tilt and Mask) can be interpreted relative to this uniquely defined information-theoretic optimum.
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A.4 SOFT-MOMENT CALIBRATION (EXISTENCE / UNIQUENESS / CONVERGENCE)

Setting. The hard constraint is encoded by C as before, and the soft target is c ∈ Rm for a utility f : V∗→ Rm. For
any multiplier η ∈ Rm in the natural parameter domain domψ := {η : Z(η) <∞}, define:

Qη(x) =
1

Z(η)
Pθ(x) exp

(
η⊤f(x)

)
1{x∈C}, Z(η) =

∑
x∈C

Pθ(x) exp
(
η⊤f(x)

)
,

and ψ(η) = logZ(η). As established in equation 6, ∇ψ(η) = EQη
[f(x)] and ∇2ψ(η) = CovQη

(f) ⪰ 0 (all
gradients/Hessians elementwise). The dual objective in equation 7 is D(η) = η⊤c − ψ(η) with gradient ∇D(η) =
c− EQη [f(x)] and Hessian ∇2D(η) = −CovQη (f) ⪯ 0.

Claim (existence). Let,

M =
{
EQ[f ] : Q≪ Pθ, Q(C) = 1

}
(achievable moments under Pθ on C).

If c ∈ ri(M) (relative interior), then there exists η∗ ∈ domψ such that EQη∗ [f ] = c, i.e., D(η) attains its maximum
at a finite η∗ and ∇D(η∗) = 0. If c ∈ M \ ri(M) (boundary case), there exists a maximizing sequence ηk with
∥ηk∥ → ∞ such that Qηk

converges (in distribution) to the unique primal optimizer Q∗ with EQ∗ [f ] = c.

Reasoning. ψ is convex and lower semicontinuous on domψ (an open convex set), hence D is concave and upper
semicontinuous. For c ∈ ri(M), standard convex duality implies dual attainment at a finite η∗ with first-order opti-
mality∇D(η∗) = 0, i.e., EQη∗ [f ] = c. If c lies on the boundary, the supremum of D is achieved only in the limit; the
corresponding Qηk

converges to the primal Q∗ that attains equation 3.

Claim (uniqueness). If f is nondegenerate in the sense that CovQη (f) ≻ 0 in a neighborhood of the solution, then ψ
is strictly convex and D is strictly concave; the maximizer η∗ is unique, and thus Qη∗ is unique. Even if CovQη

(f) is
only positive semidefinite (e.g., f contains an affine redundancy), the primal optimizer Q∗ of equation 3 is still unique
because KL(Q∥Pθ) is strictly convex in Q over the affine constraint set.

Reasoning. Strict convexity of ψ makes∇ψ injective, so∇ψ(η) = c has at most one (finite) solution. In the degenerate
case, multiple multipliers can map to the same Qη; strict convexity of the primal objective then pins down a unique
Q∗ even if η is not unique.

Monotonicity and the m = 1 specialization. When m = 1, ψ′(η) = EQη
[f ] and ψ′′(η) = VarQη

(f) ≥ 0. If f is not
a.s. constant under Qη in a neighborhood of the solution, then ψ′′(η) > 0 there and η 7→ EQη

[f ] is strictly increasing.
Consequently, a one-dimensional root-finder (bisection, or Newton with line search) finds η∗ robustly.

Convergence of calibration via the dual. Consider gradient ascent on D:
ηk+1 = ηk + αk

(
c− EQηk

[f ]
)
,

with either a backtracking line search guaranteeing ascent of D, or diminishing stepsizes (αk) that satisfy
∑

k αk =
∞ and

∑
k α

2
k < ∞. Since D is concave with ∇D(η) = c − EQη [f ] and ∇2D(η) = −CovQη (f) ⪯ 0, the

iteration converges to the (unique) maximizer η∗ when it exists at finite norm. On compact level sets where ∇D is
Lipschitz, fixed stepsizes smaller than the inverse Lipschitz constant also yield global convergence. In them = 1 case,
monotonicity of EQη

[f ] implies that bracketing with bisection converges linearly to η∗.

Stochastic calibration with Monte Carlo estimates. In practice, EQηk
[f ] is estimated from samples. If the estimator

is unbiased (or asymptotically unbiased) with bounded variance and (αk) is a Robbins–Monro stepsize sequence, the
stochastic approximation:

ηk+1 = ηk + αk

(
c− ÊQηk

[f ]
)

converges almost surely to η∗ under standard SA conditions (e.g., local strong concavity ofD via λmin(CovQη∗ (f)) >

0 and Lipschitz continuity of the mean map). If one replacesQηk
by the controlled sampler Q̃ϕ from equation 9–equa-

tion 10, and the resulting estimator has a uniform bias bound supη ∥EQ̃ϕ
[f ]−EQη

[f ]∥ ≤ B, then the iterates converge
to a neighborhood of η∗ whose radius scales as O(B/µ), where µ is the local strong-concavity modulus of D (i.e., the
minimal eigenvalue of CovQη∗ (f)). In the oracle limit (ideal bϕ and exact masking), B = 0 and the iterates converge
to η∗.

Under the standing feasibility assumption and mild regularity, there exists a multiplier that achieves the soft target: if
c ∈ ri(M), a finite η∗ satisfies EQη∗ [f ] = c; on the boundary, a maximizing sequence ηk yields Qηk

⇒ Q∗ with
the correct moment. The solution is unique at the distribution level, and dual-gradient calibration converges to η∗
(or to the boundary in the limit), with stochastic and approximate variants converging to a quantifiable neighborhood
governed by estimator bias and local curvature.
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A.5 CHAIN-RULE KL DECOMPOSITION (TOKEN-LEVEL SURROGATE IS EXACT)

Setting. Let Q̃ϕ be the sequence distribution induced by the controlled decoder (equation 9–equation 10) with EOS
termination (almost surely). Thus, for any realized sequence x = (x1, . . . , x|x|) (terminated by ⟨eos⟩),

Q̃ϕ(x) =

|x|∏
t=1

πϕ(xt | x<t), Pθ(x) =

|x|∏
t=1

Pθ(xt | x<t),

where πϕ(· | x<t) is the normalized next-token policy after Soft Tilt and Mask, and Pθ(· | x<t) is the base next-token
distribution from equation 1–equation 2. We assume absolute continuity of Q̃ϕ with respect to Pθ at the sequence
level, which is ensured by the per-step support inclusion:

suppπϕ(· | x<t) ⊆ suppPθ(· | x<t) Q̃ϕ-a.s.

(reweighting preserves zeros and Mask only removes mass). Let ht denote the decoder state at step t (a measurable
function of x<t and the cached historyHt). For brevity we write πϕ(· | ht) and Pθ(· | ht) in place of conditioning on
x<t.

Claim (chain-rule KL). If KL(Q̃ϕ ∥Pθ) <∞, then:

KL
(
Q̃ϕ ∥Pθ

)
=
∑
t≥1

Eht∼Q̃ϕ

[
KL
(
πϕ(· | ht) ∥Pθ(· | ht)

)]
. (16)

Proof. By the autoregressive factorization,

log
Q̃ϕ(x)

Pθ(x)
=

|x|∑
t=1

log
πϕ(xt | x<t)

Pθ(xt | x<t)
.

Taking expectation under Q̃ϕ and conditioning on X<t (or ht) yields:

EQ̃ϕ

[
log

Q̃ϕ(X)

Pθ(X)

]
=
∑
t≥1

Eht∼Q̃ϕ

[
EXt∼πϕ(·|ht)

(
log

πϕ(Xt | ht)
Pθ(Xt | ht)

)]
.

For each t, the inner expectation is the discrete KL divergence KL
(
πϕ(· | ht) ∥Pθ(· | ht)

)
≥ 0. Because these terms

are nonnegative, we may exchange the (a.s. finite) sum and the outer expectation by monotone convergence, obtaining
equation 16. Finally, by padding sequences after EOS with an absorbing token for which both policies put probability
1, all summands for t > |X| are 0 a.s., so the series is well defined.

Discussion. Equation equation 16 shows that the token-level KL regularizer used in the training objective of
§ STaMP, namely

∑
tEht∼Q̃ϕ

[
KL(πϕ(· | ht) ∥Pθ(· | ht))

]
–is exactly the sequence-level divergence KL(Q̃ϕ∥Pθ) for

EOS-terminated autoregressive decoding. Thus the engineering surrogate is not an approximation: it is the chain-rule
decomposition of the global information change from the base model. In particular, controlling the per-step KL budget
directly controls the overall deviation from Pθ, and by Pinsker’s inequality this also bounds the total-variation shift be-
tween the induced sequence distributions. The argument is unaffected by the Mask: masking only removes mass (and,
together with reweighting, never creates mass where Pθ has none), so absolute continuity and the per-step conditional
KL remain well defined at each prefix.

A.6 ORACLE CONSISTENCY (EXACTNESS IF COMPONENTS ARE EXACT)

Setting. Recall the optimal next-token conditional from equation 8:

Q∗(xt | x<t) = Pθ(xt | x<t) ·
Gη(x<txt)

Gη(x<t)
, Gη(x<t) = Ext:∼Pθ

[
exp
(
η⊤f(x)

)
1{x∈C}

∣∣ x<t

]
.

The STaMP controller forms at each step the Soft Tilt policy equation 9,

Ptilt(xt | x<t) ∝ Pθ(xt | x<t) exp
(
bϕ(x<t, xt)

)
,

followed by the Mask equation 10,

Ptilt+mask(xt | x<t) ∝ Ptilt(xt | x<t) 1{xt∈Vt}, Vt = {v ∈ V : R remains viable on x<tv},
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where viability includes EOS/length budgets as in Appendix A.1. The ideal log-bias from equation 8 is:

b∗(x<t, xt) = logGη(x<txt)− logGη(x<t).

Claim (oracle consistency). Suppose (i) the adapter is oracle-accurate, bϕ(x<t, xt) = b∗(x<t, xt) for all prefixes and
tokens with positive base support, and (ii) masking enforces exact Pθ-reachable viability, i.e.,

xt ∈ Vt ⇐⇒ Pθ

(
∃ accepting continuation

∣∣ x<txt
)
> 0 ⇐⇒ Gη(x<txt) > 0.

Then for every prefix x<t with Q∗(x<t) > 0, the next-token policies coincide:

Ptilt+mask(· | x<t) = Q∗(· | x<t).

Consequently, the induced sequence distribution of the controlled decoder equals the I-projection optimum:

Q̃ϕ = Q∗.

Proof. Fix a prefix x<t with Q∗(x<t) > 0. Then Gη(x<t) > 0 and Pθ(x<t) > 0. With bϕ = b∗,

Ptilt(xt | x<t) ∝ Pθ(xt | x<t) exp
(
logGη(x<txt)− logGη(x<t)

)
= Pθ(xt | x<t)

Gη(x<txt)

Gη(x<t)
.

Because exp(η⊤f) is strictly positive, Gη(x<txt) = 0 holds iff Pθ(x ∈ C | x<txt) = 0, i.e., there is no accepting
continuation with positive Pθ-probability. By assumption (ii),

xt ∈ Vt ⇐⇒ Gη(x<txt) > 0.

Applying the Mask multiplies by 1{Gη(x<txt)>0}, which leaves the expression unchanged for viable tokens and zeroes
it for nonviable ones. Renormalizing over xt ∈ Vt gives:

Ptilt+mask(xt | x<t) =
Pθ(xt | x<t)Gη(x<txt)∑
v∈Vt

Pθ(v | x<t)Gη(x<tv)
.

Using
Gη(x<t) =

∑
v∈V

Pθ(v | x<t)Gη(x<tv) =
∑
v∈Vt

Pθ(v | x<t)Gη(x<tv)

(terms with Gη(x<tv) = 0 vanish), we obtain:

Ptilt+mask(xt | x<t) = Pθ(xt | x<t)
Gη(x<txt)

Gη(x<t)
= Q∗(xt | x<t).

Equality of next-token conditionals at every prefix with positive probability under Q∗ implies, by induction on t,
equality of the induced sequence distributions: Q̃ϕ = Q∗.

Discussion. The result ties STaMP to the information-theoretic optimum: if the Soft Tilt supplies the ideal log-bias
and the Mask implements exact Pθ-reachable viability (including EOS gating and length budgets), then the controlled
decoder reproduces the I-projection exactly. In practice, the only approximation gaps arise from (i) deviations of bϕ
from b∗ and (ii) any relaxation in viability testing; when these vanish, so does the gap to Q∗.

A.7 NO DEAD-ENDS UNDER FEASIBILITY (PROGRESS/LIVENESS)

Setting. Let C = {x ∈ V∗ : R accepts SVG(x)} be the hard feasible set recognized by R with accepting states F .
As in equation 10, at step t the Mask restricts next tokens to the viable set:

Vt =
{
v ∈ V : ∃ y ∈ V∗ such that δ

(
δ(st, v), y

)
∈ F and the termination rule is satisfied

}
, (17)

where st is the state ofR after consuming SVG(x<t), δ is the transition function composed with the token decoder, and
the “termination rule” is either EOS-terminated (EOS is permitted iff st ∈ F ) or fixed-length with remaining budget.
The controlled one-step policy normalizes Ptilt(· | x<t) ∝ Pθ(· | x<t) exp(bϕ) over Vt (cf. equation 9–equation 10);
we assume bϕ is finite so exp(bϕ) > 0. Throughout we assume feasibility from the main text: Pθ(C) > 0. We also
adopt the standard softmax property of the base LM (cf. equation 2): for any prefix that occurs, Pθ(v | x<t) > 0 for
all v ∈ V .1

1If a model imposes structural zeros at the vocabulary level, replace Vt by {v ∈ Vt : Pθ(v | x<t) > 0}; the argument below
proceeds identically.
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Claim (liveness). Under exact viability equation 17 with EOS gating (or length budgeting) and the feasibility assump-
tion Pθ(C) > 0, the controlled decoder cannot stall. More precisely, along any trajectory generated by sampling from
the Masked policy, the viable set is nonempty at every step before termination:

Vt ̸= ∅ for all t prior to halting,

and in the EOS-terminated setting halting occurs only when st ∈ F (so EOS is viable). Consequently the normalized
policy Ptilt+mask(· | x<t) is well defined at every step until termination.

Proof. We argue by induction on t.

Base case. Feasibility provides some x⋆ ∈ C with Pθ(x
⋆) > 0. In the EOS-terminated setting, this implies that from

the start state s1 there exists a valid continuation (namely x⋆), so by equation 17 the first symbol v = x⋆1 is in V1;
hence V1 ̸= ∅. In the fixed-length setting, feasibility is interpreted with respect to the target length budget, yielding
the same conclusion.

Inductive step. Suppose Vt ̸= ∅ and a token xt ∈ Vt is sampled by the controller. Let st+1 = δ(st, xt). By the
definition of Vt, there exists a suffix y such that δ(st+1, y) ∈ F and the termination rule is satisfied for the remaining
budget. If the process halts at t (EOS-terminated case), EOS must have been viable, which by gating implies st ∈ F ;
thus termination happens only at acceptance. If the process does not halt at t, we consider two cases:

(a) If st+1 ∈ F , then EOS is permitted at t+1 by the gating rule; hence Vt+1 ̸= ∅.

(b) If st+1 /∈ F , then any accepting completion y must be nonempty; let y1 be its first token. By equation 17,
y1 ∈ Vt+1, so Vt+1 ̸= ∅.

This completes the induction.

Well-defined normalization. Because the base LM uses a softmax head, Pθ(v | x<t) > 0 for all v ∈ V , and exp(bϕ) >
0 by assumption. Since Vt ̸= ∅ at each nonterminal step, the normalizing denominator

∑
v∈Vt

Ptilt(v | x<t) is strictly
positive, and Ptilt+mask(· | x<t) is a proper distribution.

Discussion. The result formalizes progress: exact viability ensures that from every nonterminal prefix on a trajectory,
at least one next token keeps some accepting completion reachable, so the Mask never exhausts all options. The
softmax property guarantees a positive normalizer, hence a well-defined sampling step. The argument is independent
of the values of the Soft Tilt bϕ (in other words, any finite Soft Tilt cannot break liveness, it only re-weights viable
options) and of any additional sampling heuristic, provided such heuristics are applied after masking and do not
eliminate all viable tokens; thus liveness is fundamentally a property of the recognizer and the viability test coupled to
the termination rule.

A.8 EFFICIENCY COMPARISON - STAMP VS. REJECTION / I.I.D. SAMPLING

We compare expected computational cost measured in token-generation steps required to produce one valid (feasible)
sequence in three regimes: STaMP (Soft Tilt + Mask), rejection sampling from Pθ, and any method that draws full
sequences i.i.d. from Pθ and accepts only those in the feasible set C. We assume EOS-terminated generation and
finite maximum length T (or, an almost-sure bound on length). The statements below extend to random yet integrable
lengths by replacing T with the expected length.

Assumption. LetC ⊂ V ∗ be the feasible set recognized by the deterministic recognizerR. Suppose: (i) Pθ(C) =: ε ∈
(0, 1) (the feasible set has base mass ε), (ii) STaMP enforces exact viability - every sample drawn from the masked
controlled decoder Q̃ lies in C with probability 1 (soundness), and the decoder always halts in at most T token steps
(EOS-termination and bounded length), (iii) The cost of generating one token from the base model (including mask
check) is counted as one token step, computing the mask is assumed to cost at most O(1) token-step-equivalent work
per token (so mask overhead is absorbed into the token-step count).

Claim (Rejection sampling is costly for rare feasible sets). Under the above assumption, the expected number of
token-generation steps required by rejection sampling from Pθ to obtain one valid sequence is:

E[token stepsrej] =
T

ε
.

Hence, when ε≪ 1 (rare feasible set) rejection sampling is inefficient: the expected token cost scales as 1
ε .

Proof. Rejection sampling draws full sequencesX(1), X(2), . . . i.i.d. from Pθ until one falls inC. Each draw produces
a full sequence of at most T tokens (by assumption). The number of draws until the first success is geometric Geom(ε)
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with mean 1
ε . Therefore, the expected total token steps is the number of draws times T :

E[token stepsrej] = T · E[#draws] = T · 1
ε
.

This gives the claimed result.

Claim (Any i.i.d. full-sequence sampler must account for 1
ε draws). Let a procedure produce candidate full sequences

by drawing i.i.d. from Pθ and accept only those in C (this includes naive importance resampling that samples from Pθ

then keeps only accepted draws). Then, the expected number of full-sequence draws until the first accepted sample is
at least 1

ε . Consequently, the expected token-step cost is at least T
ε .

Proof. Let N be the number of independent Pθ-draws needed to see the first sample in C. The probability of success
on each draw is exactly ε, hence N ∼ Geom(ε) and E[N ] = 1

ε . The corresponding token-step cost is E[N ] · T = T
ε .

Comparison to STaMP. Under the above assumption, STaMP produces one valid sequence with at most T token steps
(since it constructs a feasible sequence in a single run). Therefore, the token-step cost for STaMP is bounded by T .
Combining Claims 1 and 2, when ε≪ 1 the expected token-step cost of STaMP is smaller than that of rejection/i.i.d.
sampling by a factor on the order of 1

ε . That is, when the feasible set is rare under the base model, STaMP avoids the
1
ε blow-up inherent to sequence-level i.i.d. sampling.

B ADDITIONAL QUALITATIVE RESULTS

Figure 4: Inference-time control of StarVector img2svg model.

C END-TO-END DESIGN GENERATION RESULTS

User studies have shown that designers care for three classes of constraints: (i) global layout, (ii) asset placement,
and (iii) brand styling, which bundles colour palette, typeface choice, font colour and weight into a single visual
identity knob. We therefore evaluate our model and approach on a combination of these constraints and also include
unconstrained generation:
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C.1 UNCONSTRAINED DESIGN GENERATION

Figure 5: Unconstrained generation results (1/2).

Figure 6: Unconstrained generation results.
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C.2 CONSTRAINED DESIGN GENERATION

We now show the outputs on constrained generation.

Figure 7: Constrained generation results (1/2).
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Figure 8: Constrained generation results (2/2).

D DESIGN- AND CONTROL-SPECIFIC EVALUATION METRICS

CIEDE 2000 (palette control). Let the target palette be P ⋆ = {c1, . . . , cK} (in CIE L∗a∗b∗) and the realized palette
P̂ = {ĉ1, . . . , ĉK} extracted from SVG fill/stroke tokens (deduped by hex/RGB and mapped to L∗a∗b∗). Define
the assignment

π⋆ = arg min
π∈SK

1

K

K∑
i=1

∆E00

(
ci, ĉπ(i)

)
,

and report

CIEDE2000 =
1

K

K∑
i=1

∆E00

(
ci, ĉπ⋆(i)

)
,

where ∆E00 is the standard CIEDE 2000 color-difference in L∗a∗b∗ space (lower is better).

Layout Overlap % (region IoU). Let the specification provide N target regions with binary masks {Mi}Ni=1 (in ren-
der pixel space), and let {M̂i}Ni=1 be realized masks obtained from the rendered SVG (via ID/color tags or raster
segmentation). Define

IoU(Mi, M̂i) =
|Mi ∩ M̂i|
|Mi ∪ M̂i|

, Overlap% = 100 · 1
N

N∑
i=1

IoU(Mi, M̂i).

Font Match % (typography control). For each specified text slot t with target font attributes font⋆t =

(family,weight,style), parse realized <text> nodes to recover f̂ontu. Greedily match slots to nodes by
maximum string overlap of textual content, then compute

Font Match% = 100 · 1
T

T∑
t=1

1{f̂ontu(t) = font⋆t },
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(optionally report a relaxed variant counting family-only matches).

CLIP Score (prompt alignment). Render the SVG to an image R(x); compute text and image embeddings et =
CLIPtext(p), ei = CLIPimg(R(x)). Report cosine similarity

CLIP =
e⊤t ei
∥et∥ ∥ei∥

.

CLIP-Aesthetic (design quality proxy). Apply the LAION aesthetic predictor a(·) on the image embedding of R(x):

CLIP-Aesthetic = a
(
CLIPimg(R(x))

)
,

(higher is better; model outputs are typically on a 1–10 scale).

ROUGE-L Recall (RLR) on SVG copy. Extract concatenated text y(x) from all <text> nodes (reading order heuris-
tic). Let p be the prompt string. With LCS(y, p) the longest common subsequence length,

RLR =
LCS(y(x), p)

|p|
.

Quality retention (LPIPS). Compare the controlled rendering R(x̃) to the same backbone’s uncontrolled rendering
R(xbase) under identical prompts:

LPIPS = LPIPS
(
R(x̃), R(xbase)

)
(lower is better),

and optionally a normalized retention score Retain = 1− LPIPS.

Token complexity. Sequence length in tokens:

Tokens = |x| and ∆Tokens = |x| − |xbase|.

Generation time. Wall-clock latency per sample (seconds) measured end-to-end.

Well-Formedness Satisfaction Rate (WFSR). With a strict SVG parserR,

WFSR = 100 · 1
N

N∑
n=1

1{R accepts SVG(x(n))}.

E USE OF LARGE LANGUAGE MODELS (LLMS).

We did not use LLMs for research ideation, algorithm design, or writing. Their role was limited to serving as an
evaluation tool: we used LLMs to assess and compare outputs of our approach against baselines under specific design
constraints, ensuring consistency and scalability in the evaluation process.
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