
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INFERENCE-TIME CONTROL FOR SVG GENERATION VIA
INFORMATION-PROJECTION GUIDED CONSTRAINED DECODING

Anonymous authors
Paper under double-blind review

Figure 1: We propose STaMP, an inference time control strategy, which can guide outputs from diverse pre-trained
SVG generation LLMs to adhere to color, font and layout controls from a user. Here, we illustrate how STAMP can
infuse colors from the palette while generating an icon from text, or while vectorizing an image (first two boxes). In
the right-most box, we see how STAMP generates design documents aligned with the user provided controls.

ABSTRACT

Recent autoregressive models can generate SVG from text or images, but they fail to reliably follow
user-specified constraints such as colors, layouts and fonts. This limitation highlights that control-
lability is the missing primitive in autoregressive vector generation. Prompt tinkering and post-hoc
edits are brittle, and many practical systems either require retraining for each new constraint or fall
back to raster outputs that must be vectorized, underscoring the absence of any autoregressive vector
generation method that enables control at inference time. We hypothesize that precise, constraint-
driven vector generation is fundamentally a decoding-time constraint-satisfaction problem. For-
mally, we cast this objective as finding the optimal controlled distribution: among all distributions
that satisfy the constraints, select the one closest (in KL) to the base model. We show this distribu-
tion is the information projection (I-projection) of the base model onto the constrained set. Direct
sampling from the I-projection is intractable, but its structure suggests a practical decomposition:
a soft reweighting that steers probabilities toward the desired properties and a hard restriction that
removes invalid continuations. Building on this insight, we introduce STaMP (Soft Tilt-and-Mask
Policy), a model-agnostic, inference-time controller that adds fine-grained control (e.g., color, font,
and layout) to any autoregressive SVG model. Evaluated across text-to-SVG and image-to-SVG
settings on multiple open models, STaMP delivers inference-time control, consistently improves
constraint adherence, and preserves the base model’s output quality. Additionally, we introduce,
to the best of our knowledge, the first text-to-design SVG model as an extended showcase: paired
with STaMP, it produces full compositions as structured, editable SVG while honoring user-defined
controls over color, typography, layout, and asset placement, all within a single inference pass.

1 INTRODUCTION

Modern design workflows increasingly rely on vector graphics for their resolution independence, editability, and com-
pact representation, yet generating production-ready SVG (Scalable Vector Graphic) designs from natural language
remains fundamentally limited by lack of control Polaczek et al. (2025). While recent autoregressive models can
generate impressive vector illustrations from text prompts, they operate as black boxes: once generation begins, de-
signers cannot intervene to enforce brand colors, adjust layouts, or ensure specific typography without regenerating
from scratch or manual post-editing. Existing solutions (Thamizharasan et al., 2024; Zhang et al., 2024) either require
costly model retraining for each new constraint set, resort to generating raster images that must be vectorized (losing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the benefits of native vector generation), or rely on prompt engineering that offers no guarantees of constraint satis-
faction. At the other extreme, rule-based approaches that strictly enforce constraints produce rigid, uncreative outputs
that fail to leverage the generative model’s learned design knowledge (Dathathri et al., 2019; Yang & Klein, 2021;
Krause et al., 2020). This paper, therefore, addresses a precise challenge: given any pretrained autoregressive SVG
model, can we develop an inference-time control mechanism that enforces user-specified constraints while preserving
the model’s creative capabilities, without any retraining?

Classical fixes attack symptoms rather than the cause. Online fixes treat violations as sampling noise or try to nudge the
decoder on the fly. Prompt engineering, temperature or seed sweeps, and rejection sampling is compute heavy, collapse
diversity, and still offer no guarantees. Ad-hoc logit biasing warps calibration, invites syntax errors, and pushes the
model off its learned manifold. Constrained beam search and post-hoc validators shift the burden into search, where
non-local constraints cause hypothesis sets to explode and pruning reintroduces brittleness. Grammar-based decoders
enforce syntax but cannot coordinate long-range relations and quickly flatten the model’s priors into templated outputs.
Offline fixes try to pre-bake constraints into the system. Per-constraint finetuning must cover a combinatorial space
of rules, so each retrain is slow, drifts with time, and fails on unseen combinations of controls . Raster-first pipelines
avoid structure and vectorize later, which yields tangled paths, oversized files, and no semantic link between code
tokens and design elements, making enforcement and auditing impossible. Template retrieval guarantees conformity
at the cost of homogenization. Reinforcement-learning decoders demand heavy data and delicate reward shaping, and
at test time still need safety shields to keep code valid. In short, online methods treat symptoms and offline methods
hard-code them, and neither provides a principled way to shape the next-token distribution so that control is built in,
not bolted on as an afterthought.

The fundamental limitation is that prior fixes treat control as a pre-processing problem (rewrite the prompt) or a
post-processing problem (repair the output), when what is needed is control during generation. Autoregressive SVG
models are attractive because they emit executable vector code, cover diverse styles under simple conditioning, and fit
naturally into design-as-code workflows. Their weakness is structural: once decoding begins there is no mechanism to
enforce user-specified controls. Training a new model or adding special heads for every control is not feasible at scale
and does not generalize across scenarios. What has been overlooked is that these models expose, at every step, the
full next-token distribution–a probability over all continuations–which in principle indicates which continuations keep
the requested controls still satisfiable; using that information in real time is the hard part. Building upon this insight,
we propose the first training-free, model-agnostic, inference-time controller to align the output token distribution to
that of the conditions from the user. Our intuition is simple: if we shift probability toward continuations that keep
the controls satisfiable and rule out next-token choices that would make them unattainable, decoding stays close to
the base model while meeting the controls. We formalize this by projecting the base distribution onto the constraint-
satisfying set, and implement that projection during decoding via a soft probability tilt with a deterministic mask of
impossible continuations.

Our contributions: (i) We reformulate controlled vector generation as a decoding-time constraint-satisfaction
problem and give a principled characterization of the optimal controlled distribution as an information projection
of the base model. This yields a clean decomposition of control into soft reweighting and hard support restric-
tion. (ii) We introduce STaMP (Soft Tilt-and-Mask Policy), a model-agnostic, retraining-free controller that op-
erates on logits to softly tilt next-token probabilities toward constraints while deterministically masking invalid
continuations, preserving SVG correctness and long-range structure. (iii) We show that STaMP confers practi-
cal, fine-grained control across all open autoregressive SVG generators we test covering both text-to-SVG and
image-to-SVG consistently improving constraint satisfaction and code cleanliness with minimal overhead. (iv) To
stress-test controllability, we build the first text-to-design SVG model that outputs full compositions (e.g., posters,
business cards) as clean, editable code, and demonstrate that STaMP enforces user-defined controls in a single pass.

Note: We use “control” to mean user-specified constraints on the SVGs. In this paper we instantiate three canonical
controls – color palette, typography, and layout – because these dimensions most strongly distinguish vector graphics
and can be evaluated directly from SVG structure and rendering semantics (Polaczek et al., 2025). Our framework is
control-agnostic and applies to any property with a computable scorer or recognizer. Palette, typography and layout
are representative instantiations used to ground experiments, and our methodology can scale to controls beyond these.

2 RELATED WORKS

Autoregressive SVG generation: Early sequence and VAE-style sketch models showed that vector graphics can be
emitted as code (autoregressively) (Ha & Eck, 2017; Cao et al., 2019; Ribeiro et al., 2020; Lopes et al., 2019), and
document-level variants expanded compositional scope across shapes and paths (Carlier et al., 2020; Yamaguchi,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2021). Code LLMs improve numeric precision and compositional control (Wu et al., 2023; Xing et al., 2025; Wang
et al., 2025), and multimodal systems broaden semantics via visual tokens or draft–refine pipelines (Rodriguez et al.,
2023; Yang et al., 2025b; Wu et al., 2025). However, these models run open-loop at inference time, so control remains
prompt-level or post-hoc (reranking/filters), not a policy that guarantees target satisfaction during sampling. Vector-
ization methods solve the inverse problem from rasters with differentiable rendering or structured fitting (Reddy et al.,
2021; Hu et al., 2024; Ma et al., 2022), but they are not next-token policies and thus cannot offer enforceable per-step
controls. Optimization approaches–gradient-guided curves (Frans et al., 2022; Schaldenbrand et al., 2021; Vinker
et al., 2022) and diffusion-to-vector transfers (Jain et al., 2023; Xing et al., 2023; 2024)–achieve high fidelity via itera-
tive objectives, but lack amortized next-token distributions and provide no mechanism to impose exact sequence-level
targets while decoding. Geometry-aware latents reduce path tangling by representation design (Thamizharasan et al.,
2024; Zhang et al., 2024), yet operate at training/encoding time rather than offering run-time, token-level control. In
contrast, we introduce a decoding-time controller for any autoregressive SVG model that enforces per-step constraints
and calibrates sequence-level targets through explicit, information-theoretic reweighting, moving from prompt-only
steering to guaranteed control at generation time.

Decoding-time control: Attribute-guided decoding steers next-token distributions using auxiliary signals—gradient
injections or prefix/future discriminators (Dathathri et al., 2019; Yang & Klein, 2021), Bayes mixing with a class LM
(Krause et al., 2020) or expert/anti-expert logit composition (Liu et al., 2021). These are effective for coarse attributes
but remain soft: they hinge on calibrated scorers, do not enforce instance-specific structural targets (e.g., nested tag
obligations or element counts), and can trade fluency for control when pushed. Energy-based constrained decoding
frames control as minimizing a sequence energy with Lagrange multipliers or Langevin dynamics (Kumar et al., 2021;
2022b; Qin et al., 2022; Liu et al., 2023). This enables stronger steering but relies on differentiable surrogates, iterative
inner loops, and does not expose a streaming left-to-right policy with structural guarantees. MCMC (Gonzalez et al.,
2025) and edit-based controllers satisfy black-box scorers via token/block-level Metropolis–Hastings or progressive
rewrites ((Mireshghallah et al., 2022; Forristal et al., 2023; Yu et al., 2023; Hallinan et al., 2022), but require many
proposals, struggle with rare events, and lack amortized next-token distributions. Latent composition and posterior-
regularization methods (Dekoninck et al., 2023; Zhong et al., 2023; Meng et al., 2022) decompose sequence-level
oracles into token-level guidance and improve balance/coverage, yet they presume reliable oracles and still do not pro-
vide per-step viability under nested syntax. In short, existing controllers either steer attributes softly or achieve control
via slow, iterative sampling; none directly couples a streaming next-token policy with explicit structural enforcement
and calibrated sequence-level targets, which is precisely the system needed for controlled SVG code generation.

Constrained decoding: Grammar- and automata-based decoding constrains token streams to a formal language using
persistent parse stacks or closed-form automata (Dong et al., 2024; Koo et al., 2024), with token–grammar alignment
and speculative execution improving latency and coverage (Beurer-Kellner et al., 2024; Park et al., 2025), and prefix
pruning enforcing structure on the fly (Sun et al., 2025; Scholak et al., 2021). These mechanisms are strong for
syntax in code, but they (i) often certify only prefix acceptance rather than viability to an accepting terminal under
length/EOS budgets, (ii) depend on tight grammar–subword alignment that can be brittle when tags/attributes straddle
tokens, and (iii) cannot natively encode cross-field numeric/geometric relations (e.g., coordinate consistency) that lie
outside regular and many context-free classes. Controllers based on scopes, types, and static analysis (Ugare et al.,
2024b; Dong et al., 2022; Mündler et al., 2025; Poesia et al., 2022; Agrawal et al., 2023) raise semantic correctness but
still require domain-specific analyzers and do not provide per-step calibration of numeric attributes or global element
counts. Lexically constrained decoding (Hokamp & Liu, 2017; Post & Vilar, 2018; Hu et al., 2019; Bogoychev &
Chen, 2023; Anderson et al., 2016; Lu et al., 2020; Lin et al., 2019) guarantees inclusion of required tokens, yet
inclusion alone neither ensures balanced structures nor prevents dead-ends; aggressive term forcing can also shrink
the viable set and degrade search. Sampling and refinement frameworks—token/block MCMC and posterior methods
(Su et al., 2018; Lipkin et al., 2025; Lew et al., 2023; Ye et al., 2025; Park et al., 2024; Zhang et al., 2023) and
gradient-based or backtracking refinements (Qin et al., 2022; Kumar et al., 2022a; Agarwal et al., 2025a; Ugare et al.,
2024a; Geng et al., 2024; Banerjee et al.; Le et al.; Li et al., 2024; Choi et al., 2023; Hemmer et al., 2023)–enforce
constraints post hoc but rely on iterative proposals or inner loops and do not expose a single-pass, amortized next-token
policy with structural guarantees under nested, numeric SVG requirements. Our approach leverages grammar-aligned
masking for structure but couples it with explicit viability and a probabilistic steering term, yielding a streaming policy
suited to SVG’s nested and numeric constraints.

3 I-PROJECTION GUIDED CONSTRAINED DECODING

Problem statement: Let V be a finite token vocabulary with a designated end-of-sequence token ⟨eos⟩. An autoregres-
sive SVG generator defines a distribution over variable-length sequences x = (x1, . . . , x|x|) ∈ V∗ and assigns joint

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

probability by the chain rule,

Pθ(x) =

|x|∏
t=1

Pθ(xt | x<t), x<t = (x1, . . . , xt−1). (1)

We use the standard transformer-style decoding interface with cached history

Ht : (ot+1, Ht+1) = LMθ(xt,Ht) (2)

with xt+1 ∼ Softmax(Wot+1). Let Σ denote the character alphabet. A deterministic decoder dec : V∗→ Σ∗ maps a
token sequence x to its SVG source string, SVG(x) := dec(x), which the renderer consumes.

Our goal is to control this generic autoregressive generator at inference time. This is not straightforward: SVG obeys
strict well-formedness, many constraints are long-range and only decidable after complete rendering, and tokenization
may split tag lexemes across multiple tokens. Naı̈ve next-token rules can admit dead-ends or silently violate global
structure, while purely global reweighting lacks a left-to-right factorization.

We therefore separate requirements into hard and soft constraints. Hard constraints encode syntactic/structural va-
lidity via a recognizer R (e.g., a stack-based XML checker). The feasible token set then is C = {x ∈ V∗ :
R accepts SVG(x) }. Soft constraints capture style targets through a utility f : V∗ → Rm with desired moment
c ∈ Rm (enforced elementwise). We assume feasibility: Pθ(C) > 0 and c ∈ {EQ[f] : Q≪ Pθ, Q(C) = 1}.
We want the controlled generator to (i) place all mass on valid SVGs, (ii) hit the soft target in expectation, and (iii)
change the base model as little as possible so fluency and prior knowledge are preserved. Among all distributions
satisfying (i)-(ii), the forward KL, KL(Q∥Pθ), implements the minimum-information change to Pθ; it yields a unique
Bregman (information) projection and guarantees absolute continuity with respect to Pθ. It is also behaviorally appro-
priate: forward KL is mode-covering (preserves diversity) and, in the special case with only hard constraints, reduces
exactly to conditioning on validity. These desiderata lead to the information-projection problem

min
Q∈∆(V∗)

KL(Q ∥Pθ) s.t. hard : Q(C) = 1, soft : EQ[f(x)] = c. (3)

Concretely, we seek a model-agnostic token-level control policy that enforces structural well-formedness at inference-
time, and biases sampling toward the desired semantics without retraining the backbone.

3.1 INFORMATION-PROJECTION SOLUTION

How should we solve equation 3? A direct search over distributions is infeasible, but equation 3 has a closed-form
optimizer once we introduce Lagrange multipliers for the soft moments and normalization and restrict attention to
sequences in C. Writing the Lagrangian:

L(Q, η, µ) =
∑
x∈C

Q(x) ln
Q(x)

Pθ(x)
− η⊤

(
EQ[f]− c

)
+ µ

(∑
x∈C

Q(x)− 1

)
, (4)

with η ∈ Rm and µ ∈ R. The stationarity condition ∂L/∂Q(x) = 0 yields, for every x ∈ C,

lnQ∗(x)− lnPθ(x)+ 1− η⊤f(x)+µ = 0 =⇒ Q∗(x) = 1
Z(η) Pθ(x) exp

(
η⊤f(x)

)
, and Q∗(x) = 0 for x /∈ C,

where the partition function
Z(η) =

∑
x∈C

Pθ(x) exp
(
η⊤f(x)

)
(5)

ensures normalization. Thus the I-projection is an exponential tilting of the base model, restricted to valid sequences.

Moment matching and dual problem. Define ψ(η) = logZ(η). Standard properties of the log-partition imply

∇ψ(η) = EQη [f(x)] and ∇2ψ(η) = CovQη

(
f(x)

)
⪰ 0, (6)

so the multiplier η∗ is determined by the moment-matching condition EQη∗ [f] = c. Equivalently, η∗ maximizes the
concave dual:

max
η∈Rm

η⊤c− logZ(η)︸ ︷︷ ︸
dual objective

, (7)

whose gradient is c−EQη
[f] and whose Hessian is−CovQη

(f) ⪯ 0. Under the feasibility assumption in the problem
statement, the primal optimum Q∗ exists and is unique (KL is strictly convex in Q on the feasible set). See Appendix
A.3 for existence/uniqueness and multiplier calibration details.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Conditionals of the optimal distribution. Although equation 5 gives the joint form of Q∗, generation is left-to-right.
For any prefix x<t with nonzero Q∗-mass, the optimal next-token conditional factors as

Q∗(xt | x<t) = Pθ(xt | x<t) ·
Gη(x<txt)

Gη(x<t)
, Gη(x<t) = Ext:∼Pθ

[
exp
(
η⊤f(x)

)
1{x∈C}

∣∣ x<t

]
, (8)

where Gη(·) is the completion partition, a conditional log-moment-generating function over all valid continuations.
Two immediate sanity checks follow from equation 8: (i) with only the hard constraint (η = 0), Q∗ reduces to Pθ

conditioned on C; (ii) with only the soft constraint and C = V∗, Q∗ reduces to a global exponential tilt of Pθ.

Why this matters for decoding? Equations equation 5-equation 8 characterize the ideal controlled generator defined
by equation 3. In principle, sampling from Q∗ would exactly satisfy the hard validity requirement and meet the soft
moment target while minimally deviating from Pθ.

Intractability of the direct solution. Direct realization of Q∗ is computationally prohibitive for autoregressive SVG
generation:(i) Global normalization: Computing Z(η) (and hence solving the moment equation) requires summing
Pθ(x) exp(η

⊤f(x)) over all valid sequences x ∈ C, an exponentially large space. (ii) Nonlocal conditionals: The
factor Gη(x<t) in equation 8 aggregates all valid completions of a prefix under Pθ, coupling the next-token choice to
the entire suffix. Exact evaluation (or even tight approximation) is generally intractable; naive rejection or importance
sampling degenerates for rare-event constraints. These obstacles preclude computing or sampling from Q∗ exactly
during left-to-right decoding, and they motivate the approximate, online controller introduced in the next section.

4 STAMP: SOFT TILT–AND–MASK POLICY

The I-projection in equation 3 specifies the ideal constrained generator, but equation 5–equation 8 make clear that
exact normalization and next-token conditionals are nonlocal and intractable during left-to-right decoding. STaMP is
a decoding-time controller that emulates the two ingredients implicit in equation 8: an exponential reweighting toward
the target (soft) and a restriction of support to the valid set (hard), realized online as a Soft Tilt followed by a Mask.

4.1 SOFT TILT: LOCAL APPROXIMATION TO THE OPTIMAL CONDITIONAL

The optimal conditional in equation 8 factors Q∗(xt | x<t) into the base next-token model and a multiplicative term

Gη(x<txt)

Gη(x<t)
= exp

(
logGη(x<txt)− logGη(x<t)

)
,

where Gη(·) is the completion partition over valid continuations. We approximate the corresponding ideal log-bias
b∗(x<t, xt) := log Q∗(xt|x<t)

Pθ(xt|x<t)
= logGη(x<txt)− logGη(x<t) with a learned function bϕ(x<t, xt) produced by an

adapter that observes the model’s history stateHt (cf. equation 2). The Soft Tilt forms a biased one-step distribution

Ptilt(xt | x<t) ∝ Pθ(xt | x<t) exp
(
bϕ(x<t, xt)

)
, (9)

which is an autoregressive, locally factorized surrogate for the soft reweighting induced by the I-projection. For vector-
valued utilities f ∈ Rm, bϕ can be parameterized to approximate η⊤ times a predicted incremental contribution to f ;
the scalar η (or vector, elementwise) is the same Lagrange multiplier from equation 4–equation 7 and is calibrated to
target E[f] = c.

4.2 MASK: VIABILITY-PRESERVING HARD ENFORCEMENT

To realize Q(C) = 1 (hard in equation 3) during decoding, we maintain a recognizer R for well-formed SVG (stack-
based tag matching plus finite-state attribute/lexical checks). At time t, given the current prefix x<t, let Vt ⊆ V be
the set of tokens whose emission keeps some valid completion reachable (viability). The Mask operation zeroes the
probability of all other tokens:

Ptilt+mask(xt | x<t) ∝ Ptilt(xt | x<t) 1{xt∈Vt}, Vt = {v ∈ V : R stays viable on x<tv}. (10)

This enforces hard validity at every step (soundness); see Appendix A.1. If equation 10 uses exact viability (accounting
for EOS/length budgets), sampling with Mask alone is equivalent to conditioning Pθ on C when η = 0. A formal proof
of this equivalence appears in Appendix A.2. Combined with equation 9, it implements the two structural factors of
equation 8 in a left-to-right form. Under oracle tilt and exact viability, the policy equals Q∗; see Appendix A.6.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 ENGINEERING CHOICES AND IMPLEMENTATION RECIPE

STaMP has three moving parts: a recognizerR that answers viability queries, an adapter producing the Soft Tilt, and a
small loop that composes them during decoding. The recognizer is implemented as a deterministic pushdown automa-
ton for balanced, properly nested tags, augmented with a finite-state layer for attribute syntax and forbidden/required
substrings; it exposes a query that returns Vt for a given prefix and budget. The adapter reads the history stateHt and
emits a residual logit bϕ(x<t, ·); magnitude constraints (e.g., clipping or temperature scaling on bϕ) prevent softmax
saturation and preserve calibration.

Training follows the logic of equation 3 but replaces the intractable sequence-level divergence with a token-level
surrogate. Let ht denote the decoder state (includingHt and prefix features) distributed according to the rollout policy
Q̃ϕ induced by equation 9+ equation 10, and let πϕ(· | ht) be the corresponding next-token distribution after Soft Tilt
and Mask. We optimize:

max
ϕ

η⊤Ex∼Q̃ϕ
[f(x)] −

∑
t

Eht∼Q̃ϕ

[
KL
(
πϕ(· | ht) ∥Pθ(· | ht)

)]
, πϕ induced by equation 9 + equation 10.

By Appendix A.5, this per-step KL equals the sequence-level KL(Q̃ϕ ∥Pθ). The first term drives the soft moment
toward c and the per-step KL enforces proximity to the base next-token policy. Gradients are estimated with policy-
gradient (score-function) methods using per-step baselines; alternatively, one may also distill from reward-weighted
trajectories by minimizing cross-entropy between Ptilt(· | x<t) and empirical, reward-weighted next-token counts.

Calibration of η proceeds by a outer loop: for a candidate η, decode short batches with the current controller, estimate
EQ̃ϕ

[f], and update η ← η + α (c − EQ̃ϕ
[f]) (componentwise for m > 1). Under the monotonicity implied by

equation 6, this one-dimensional search converges to the desired moment. At inference time, the controller can run at
every step, but SVG’s structure makes selective activation more efficient. We gate STaMP by the recognizer’s lexical
state and engage it only at semantic decision points, e.g., on entering or closing a tag, emitting path data etc., while
otherwise sampling directly from Pθ. When engaged, we compute base logits, add the Soft Tilt residual, query Vt from
R, apply the Mask, and sample; this reduces average cost to O(ρ |V|) arithmetic per token (with ρ∈ [0, 1] the fraction
of controlled steps) plus a constant-factor automaton cost. With feasible constraints, the viable set remains nonempty
and the loop proceeds without backtracking; optional heuristics (temperature, top-k, nucleus) may be layered on but
constitute further deviations from the implied Q̃ϕ. Theoretical guarantees and proofs are shown in the Apendix.

5 RESULTS

We structure results around three research questions (RQ) that evaluate controllability rather than isolated metrics.
RQ1 Model-agnostic control: Can STaMP enforce constraints on any autoregressive SVG model without requiring
retraining? RQ2 End-to-End designs: In a more challenging setting, can STaMP handle design specifications by
supporting the first text-to-SVG design models, thus serving as an end-to-end control stress test? RQ3 Comparative
control: How does STaMP compare against strong alternatives in the quality–satisfaction–efficiency trade-off?

5.1 MODEL-AGNOSTIC CONTROL

Experiment setting: We pair STaMP with publicly available text-to-SVG and image-to-SVG base models: OmniSVG
(Yang et al., 2025b), LLM4SVG (Xing et al., 2025) (with Qwen 2.5 and Gemma 3 backbones), IconShop (Wu et al.,
2023), and StarVector Rodriguez et al. (2023). For StarVector, we evaluate only the image-to-SVG (the text-to-SVG
model is not publicly released). In addition, we train Qwen 3 (Yang et al., 2025a) and GPT-OSS (Agarwal et al., 2025b)
on a proprietary design SVG corpus and include them as backbones. All evaluations use OmniSVG’s MMSVG-Icon
subset from MMSVG-Bench (Yang et al., 2025b), restricting to icon-level tasks to enable fair comparisons across
backbones. This avoids conflating results with model size disparities (the publicly released OmniSVG checkpoint is
smaller than the strongest models reported), which would otherwise dominate outcomes in broader settings.

Evaluation protocol: Our goal is not to rank base models, but to test whether pairing each backbone with STaMP yields
reliable control without deteriorating the backbone’s strengths. We report control metrics–CIEDE 2000 (Schanda,
2007) (palette control), overlap % between specified and realized regions (layout control), and font matching for
typography–and general metrics that should remain stable under control: quality retention (LPIPS Zhang et al. (2018),
token complexity (number of SVG tokens), generation time, and CLIP score. For RQ1, we focus on two controls and
their combination; for each backbone we compare its native decoding against the same model wrapped with STaMP
under identical prompts and budgets.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Impact of STaMP on controllability of text-to-SVG models: baselines with STaMP vs without, evaluated on
C (color), L (layout), and C+L. Arrows indicate the favorable direction per metric.

Model Variant C: Color Constraint L: Layout Constraint C+L Constraints

CIEDE
2000 ↓

Complexity
(# Tokens) ↓

Generation
Time (s) ↓

CLIP
Score ↑

Overlap
% ↑

Complexity
(# Tokens) ↓

Generation
Time (s) ↓

CLIP
Score ↑

CIEDE
2000 ↓

Overlap
% ↑

Complexity
(# Tokens) ↓

Generation
Time (s) ↓

CLIP
Score ↑

OmniSVG
[3B]

Base 6.41 3.32k 15 0.3012 7.18 3.35k 16 0.3020 6.73 8.62 3.40k 16 0.3019
+STaMP 0.05 3.38k 21 0.3015 84.95 3.99k 21 0.3000 0.02 88.54 3.82k 22 0.3002

LLM4SVG
Qwen2.5 [7B]

Base 8.63 2.10k 25 0.2498 3.17 2.13k 26 0.2489 9.31 4.19 2.15k 26 0.2491
+STaMP 0.07 2.35k 31 0.2483 88.82 2.89k 33 0.2488 0.04 89.76 2.94k 35 0.2487

LLM4SVG
Gemma 3 [4B]

Base 13.91 1.91k 16 0.2109 4.24 1.94k 16 0.2109 13.38 4.75 1.94k 17 0.2110
+STaMP 0.06 2.13k 24 0.2100 84.16 2.50k 27 0.2101 0.01 85.69 2.53k 26 0.2109

IconShop Base 32.04 3.38k 7 0.2079 3.12 3.38k 7 0.2077 38.05 3.08 3.39k 7 0.2076
+STaMP 0.13 3.51k 19 0.2094 86.47 4.17k 20 0.2103 0.08 85.32 4.21k 21 0.2102

Qwen3
[8B]

Base 5.18 5.18k 51 0.3103 31.25 5.92k 63 0.3100 5.64 30.61 6.01k 65 0.3102
+STaMP 0.03 5.20k 59 0.3096 96.17 6.42k 78 0.3099 0.05 94.13 6.51k 77 0.3100

GPT-OSS
[20B]

Base 3.79 5.31k 68 0.3321 48.62 6.01k 77 0.3322 3.85 46.03 6.18k 78 0.3322
+STaMP 0.02 5.31k 87 0.3323 98.14 6.58k 91 0.3323 0.07 97.26 6.82k 96 0.3324

5.1.1 RQ1 KEY RESULTS:

Table 2: Image-to-SVG comparison under
controllability constraints. Baselines with
STaMP vs without.

Model Variant C L C+L

CIEDE
2000 ↓

Overlap
% ↑

Quality
Retention ↑

Complexity
(# Tokens) ↓

Generation
Time (s) ↓

StarVector
[8B]

Base 11.6 9.3 0.11 3.72k 49
+STaMP 0.1 84.1 0.13 4.26k 58

OmniSVG
[3B]

Base 10.9 8.2 0.15 3.92k 18
+STaMP 0.08 78.9 0.15 4.52k 26

StarVector
[8B]

Base 11.6 9.3 0.13 3.72k 49
+STaMP 0.1 84.1 0.16 4.26k 58

OmniSVG
[3B]

Base 10.9 8.2 0.13 3.92k 18
+STaMP 0.08 78.9 0.15 4.52k 26

StarVector
[8B]

Base 11.6 9.3 0.14 3.72k 49
+STaMP 0.1 84.1 0.16 4.26k 58

OmniSVG
[3B]

Base 10.9 8.2 0.15 3.92k 18
+STaMP 0.08 78.9 0.16 4.52k 26

Key result #1: STaMP enables model- and modality-agnostic
inference-time control. Tables 1 and 2 report the quantitative results,
and Figure 1 visualizes the same effect: STaMP enforces palette
and layout across both text-to-SVG and image-to-SVG models, in-
dependent of the backbone. Palette is decided by a small, discrete
set of attribute SVG tokens. The soft tilt concentrates probability
on those tokens at the moments they matter, and calibration pins
the palette error near-zero without touching geometry. Layout is de-
cided by coordinate/path tokens spread across the sequence. The
viability mask prunes choices that would make the required place-
ment unreachable under the remaining length/stack budget, so geom-
etry snaps toward the requested arrangement rather than wandering.
These two controls largely act on disjoint token subsets, so applying
them together is close to commutative in practice. STaMP works
because it sits at the same next-token/logit interface in both text-to-
SVG and image-to-SVG. In each case, once the backbone produces the per-step distribution, STaMP applies a soft
tilt to favor palette/layout-consistent tokens and a mask to remove choices that break feasibility; nothing upstream
(encoders, prompts, or training) is touched. Operating at this decoding neck makes the mechanism inherently model-
and modality-agnostic, which is why the same controller behaves consistently across all backbones.

Figure 2: Illustration of STaMP on a
monochrome-only backbone (IconShop):
decode-time control enables zero-shot
color, typography, and layout changes.
Baseline outputs remain monochrome;
whereas STaMP obeys the palette, ar-
ranges layout as specified, and renders
the requested text and font.

Key result #2: STaMP unlocks zero-shot color, typography, and layout
control on a monochrome-only backbone. IconShop (Wu et al., 2023) is
trained to generate monochrome icons and by design, does not exercise
color or typography controls. Paired with STaMP and stressed with all
three controls at once, it produces SVGs that adopt the specified palette,
insert the requested text with the correct font, and place elements in the
required arrangement, as shown in Fig. 2. The intuition is simple: STaMP
sits at the decoding neck and acts on the backbone’s own next-token prob-
abilities, even if the backbone rarely uses color or text tokens, they remain
in the vocabulary with nonzero mass, the Soft Tilt lifts them precisely
when needed, and the Mask keeps future completion feasible. This con-
verts “unused but available” (long tail) capabilities into reliable, decode-
time control - without retraining the model or changing its encoder–and the
same zero-shot effect appears whenever the relevant tokens and grammar
are present.

5.2 END-TO-END DESIGN

Experiment setting: Most design models today are raster-first: they pro-
duce pixels that are hard to edit procedurally after generation, and practical

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Qualitative end-to-end design generation: STaMP-controlled model vs baselines. STaMP yields SVG
designs that satisfy color, typography, and layout constraints while maintaining visual coherence and editability; base-
lines frequently drift from the specified palette, misplace elements, or misrender text. More results in supplementary.

systems stitch multiple components (layout, asset placement, styling, typography) into a pipeline without a single gra-
dient path (Chen et al., 2025). Real design workflows, however, demand precise controllability (in form of palette,
layout, typography) and editability (structured, token-level changes) so that specifications can be met and iterated
rapidly. We sidestep the raster bottleneck by treating design as code–end-to-end SVGs that explicitly encode geom-
etry, hierarchy, color, and type. While “design-as-code” has been explored in adjacent contexts (Seol et al., 2024), it
has not been realized as full text-to-SVG design models. Concretely, we fine-tune two backbones: Qwen3 (8B) and
an GPT-OSS (20B), on a proprietary end-to-end SVG design corpus, yielding (to our knowledge) the first text-to-SVG
design models. We subsequently stress-test STaMP in this setting, where fidelity, control and editability matter most,
to assess how reliably it steers these models under complete briefs. We compare against strong general-purpose code
LMs–GPT-5 (OpenAI, 2025), Claude-4 (Anthropic, 2025), Gemini-2.5 (Comanici et al., 2025), Qwen3 (8B) (Yang
et al., 2025a), and GPT-OSS (20B) (Agarwal et al., 2025b), covering proprietary and open-source baselines.

Evaluation protocol: Since we claim text-to-design SVGs, we first verify design quality and prompt faithfulness with
two design-specific metrics: (i) CLIP-Aesthetic (LAION aesthetic predictor, a learned proxy for human visual appeal
on rendered designs; and RLR (ROUGE-L Recall) between the prompt and the concatenated text extracted from SVG
<text> nodes, to check that the design’s copy reflects the instruction. We then report the controllability metrics
introduced earlier for color, typography and layout.

5.2.1 RQ2 KEY RESULTS:

Table 3: Comparison across Unconstrained, Color, Layout, Typography, and C+L+T constraints.

Model Unconstrained Color Layout Typography C+L+T

CLIP-A ↑ RLR ↑ Complexity
(# Tokens)

CIEDE
2000 ↓ CLIP-A ↑ RLR ↑ Complexity

(# Tokens)
Overlap

% ↑ CLIP-A ↑ RLR ↑ Complexity
(# Tokens)

Font
Match % ↑ CLIP-A ↑ RLR ↑ Complexity

(# Tokens)
CIEDE
2000 ↓

Overlap
% ↑

Font
Match % ↑ CLIP-A ↑ RLR ↑ Complexity

(# Tokens)

GPT 5 4.51 0.88 8.12k 10.32 4.29 0.87 8.06k 34.37 4.16 0.89 8.55k 95.37 4.23 0.87 8.11k 11.18 33.92 95.14 4.35 0.86 8.54k
Claude 4 3.77 0.89 6.97k 11.96 3.48 0.90 7.00k 36.84 3.65 0.92 7.33k 92.76 3.74 0.91 7.02k 12.35 34.26 89.23 3.82 0.89 7.48k
Gemini 2.5 3.96 0.93 7.53k 10.57 3.81 0.91 7.59k 32.61 3.93 0.94 7.95k 90.28 4.05 0.93 7.56k 10.59 30.83 88.15 4.17 0.94 7.94k
Qwen3 (8B) 3.44 0.89 6.04k 12.15 3.43 0.88 6.02k 21.34 3.57 0.85 6.45k 89.19 3.62 0.84 6.06k 13.07 20.31 87.82 3.73 0.83 6.45k
GPT-OSS(20B) 4.11 0.89 7.21k 10.54 4.17 0.91 7.24k 33.95 4.32 0.94 7.63k 85.84 4.46 0.92 7.24k 10.62 33.48 81.16 4.51 0.91 7.82k

Qwen3 (8B)-FT 7.91 0.95 13.84k 3.92 7.68 0.96 13.86k 48.69 7.45 0.93 13.96k 95.63 7.51 0.91 13.88k 4.03 47.75 94.31 7.64 0.90 14.16k
GPT-OSS (20B)-FT 7.12 0.97 14.95k 4.16 6.84 0.91 14.91k 51.38 6.71 0.92 14.89k 95.07 6.85 0.90 14.53k 4.16 51.64 94.75 6.92 0.88 14.99k

Qwen3 (8B)-FT+STaMP 7.91 0.96 13.84k 0.03 7.73 0.97 13.88k 97.27 7.98 0.96 13.96k 100.00 8.03 0.97 13.86k 0.05 98.12 100.00 8.15 0.95 14.24k
GPT-OSS (20B)-FT+STaMP 7.10 0.98 14.94k 0.03 7.26 0.99 14.99k 94.93 7.17 0.95 14.22k 100.00 7.28 0.96 14.53k 0.01 96.28 100.00 7.36 0.97 14.91k

Key result #3: Text-to-SVG fine-tuning yields state-of-the-art design quality, surpassing strong code LMs. On the
end-to-end briefs, the fine-tuned text-to-SVG models (Qwen3-8B-FT, GPT-OSS-FT) top the general-purpose code
LMs across both design metrics–higher CLIP-Aesthetic and higher RLR–consistently across prompts (see Table 3
and qualitative results 3). These gains are substantive: fine-tuning teaches SVG-specific composition (e.g., grouping,
coordinate frames, layering of shapes and text), which stabilizes where and how <text> nodes are emitted (raising
RLR) and yields more balanced, appealing arrangements (raising CLIP-A). As a downstream consequence of that
structural competence, control metrics also move sharply in the right direction (lower CIEDE-2000, higher layout
overlap, stronger font matches), indicating the model has learned the SVG knobs that make palette, layout, and type
editable and precise in a single pass.

Key result #4: STaMP delivers full control on end-to-end designs without reducing creative expression. On full
briefs (color+layout+typography), the STaMP variants of our fine-tuned text-to-SVG models meet all three controls
simultaneously and retain the design quality and variety learned during fine-tuning: CLIP-Aesthetic and RLR stay at
the fine-tuned baseline or improve, and the qualitative panel shows diverse, on-spec compositions rather than template
collapse (see the Table 3 and Fig. 1, 3). Methods without STaMP frequently miss at least one axis under the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

same briefs; only the STaMP configurations achieve all the user-defined constraint satisfaction while preserving the
backbone’s creative range.

5.3 COMPARATIVE CONTROL

Experiment setting: To probe the control–quality–efficiency trade-off under identical conditions, we evaluate all meth-
ods on the same end-to-end design generation setup as the previous section (identical specs/prompts and decoding
harness), using the same two backbones: Qwen-3 (8B) and GPT-OSS (20B). We keep the backbone and prompts
fixed so that any change in outcomes reflects only the control policy at inference time. We compare controllers in five
clusters to expose the trade-offs: (i) Prompting family: Prompt-only (vanilla models), Prompt-only (with finetuned
models), finetuned + multi-turn prompting: gauges how far instruction following and interactive prompting can go
without an explicit controller (with the latency cost of extra turns). (ii) Test-time guidance/editing: GeDi-style guid-
ance, ScoPE-style progressive editing: measures generic attribute steering and edits that lack structural guarantees.
(iii) Search/rerank: Rejection + rerank, Constrained Beam Search (CBS): non-learned optimization via sampling or
viability-aware beam, mapping satisfaction versus compute. (iv) Factorized ablations: Only Soft Tilt, Only Mask:
isolates soft moment steering versus hard feasibility to attribute STaMP’s gains. (v) Ours: STaMP: a unified Soft Tilt
+ Mask policy.

Evaluation protocol: All methods consume the same design specifications (color, layout, typography) and decode
under matched settings (identical prompts, max length, temperature). For search/rerank baselines, we tune candidate
pools and beam widths to their operating points, and report the resulting generation time alongside outcomes. We
report the controllability metrics introduced earlier together with CLIP-Aesthetic and generation time. The only
additional metric here is well-formedness satisfaction rate (WFSR), the fraction of outputs that parse as valid SVG
under a strict parser.

5.3.1 RQ3 KEY RESULTS:

Table 4: Control-method comparison for Qwen3 8B
and GPT-OSS-20B under C+L+T constraints.
Model Control Method C+L+T Metrics

CIEDE
2000 ↓

Overlap
% ↑

Font
Match % ↑ CLIP-A ↑ WFSR % ↑ Generation

time (s) ↓

Qwen-3 (8B)

Prompt (vanilla) 9.84 31.87 61.23 3.73 37.16 154
Prompt (finetuned) 6.35 39.42 83.69 7.51 61.85 162
FT+multi-turn Prompt 1.57 43.18 100.00 7.23 69.34 313
ScoPE 2.63 64.85 91.47 7.01 59.72 176
GEDi 1.95 69.58 94.26 7.14 62.83 178
Rejection Sampling 0.64 89.17 100.00 7.30 100.00 486
CBS 1.09 91.28 100.00 7.12 100.00 247
Only Soft tilt 0.82 72.19 100.00 7.48 56.31 179
Only DFA Mask 6.17 36.64 87.86 7.25 100.00 168
STaMP 0.03 97.15 100.00 6.92 100.00 184

GPT-OSS (20B)

Prompt w/o FT 7.12 46.18 66.84 4.51 41.06 168
Prompt w/ FT 5.53 50.74 78.95 6.85 61.27 173
Multi-turn Prompt w/ FT 1.16 56.19 100.00 6.90 63.82 341
ScoPE 2.56 68.47 92.13 6.92 60.52 187
GEDi 1.84 72.96 95.31 7.05 64.18 189
Rejection Sampling 0.57 91.35 100.00 7.25 100.00 512
CBS 1.14 93.06 100.00 7.18 100.00 262
Only Soft tilt 0.91 78.17 100.00 6.38 58.94 182
Only DFA Mask 5.08 47.43 80.15 6.83 100.00 177
STaMP 0.02 97.18 100.00 7.36 100.00 189

Key result #5: STaMP sits on the control–quality–efficiency
Pareto front for controlled SVG generation. Across all back-
bones, STaMP delivers the tightest control–near-zero ∆E2000

for color, top-tier layout Overlap, perfect font matching, and
100% well-formedness, while adding only modest generation
time compared to heavy search baselines. The ablations reveal
the trade-offs: Only Soft Tilt improves color/typography but
loses validity; Only Mask secures validity yet leaves soft tar-
gets under-optimized; GeDi/ScoPE nudge soft metrics with-
out structural guarantees; CBS and Rejection approach high
compliance but incur substantial time costs (and still trail
on color or layout in our setting). Notably, STaMP pre-
serves perceptual quality (CLIP-Aesthetic is competitive), in-
dicating that tighter control need not sacrifice aesthetics. In
short, the combined Soft Tilt+Mask policy dominates the con-
trol–quality–efficiency frontier, delivering simultaneous con-
straint satisfaction with validity guarantees at single-pass,
inference-time cost.

6 CONCLUSION

We introduce STaMP (Soft Tilt-and-Mask Policy), the first training-free and model-agnostic inference-time decod-
ing controller that enforces structural and semantic constraints during autoregressive SVG generation. By framing
control as an I-projection and factorizing it into a soft tilt for probabilistic reweighting and a hard mask for validity,
STaMP achieves reliable palette, layout, and typography control across diverse backbones without sacrificing fluency.
Beyond enabling workflows such as text-to-design generation of posters and cards, STaMP highlights how princi-
pled inference-time interventions can unlock controllable generation without retraining. A key next step is to extend
STaMP from local constraint enforcement towards global, higher-order design objectives (e.g., composition, balance,
accessibility), enabling models to satisfy not just token-level rules but holistic design principles during generation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Bhavik Agarwal, Ishan Joshi, and Viktoria Rojkova. Think inside the json: Reinforcement strategy for strict llm
schema adherence. arXiv preprint arXiv:2502.14905, 2025a.

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K Arora, Yu Bai,
Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv preprint arXiv:2508.10925,
2025b.

Lakshya A Agrawal, Aditya Kanade, Navin Goyal, Shuvendu Lahiri, and Sriram Rajamani. Monitor-guided decoding
of code lms with static analysis of repository context. Advances in Neural Information Processing Systems, 36:
32270–32298, 2023.

Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Guided open vocabulary image captioning with
constrained beam search. arXiv preprint arXiv:1612.00576, 2016.

Anthropic. Anthropic claude 4 system card: Claude opus 4 claude sonnet 4. 2025.

Debangshu Banerjee, Tarun Suresh, Shubham Ugare, Sasa Misailovic, and Gagandeep Singh. Crane: Reasoning with
constrained llm generation. In ICLR 2025 Workshop: VerifAI: AI Verification in the Wild.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding llms the right way: Fast, non-invasive constrained
generation. arXiv preprint arXiv:2403.06988, 2024.

Nikolay Bogoychev and Pinzhen Chen. Terminology-aware translation with constrained decoding and large language
model prompting. arXiv preprint arXiv:2310.05824, 2023.

Nan Cao, Xin Yan, Yang Shi, and Chaoran Chen. Ai-sketcher: a deep generative model for producing high-quality
sketches. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 2564–2571, 2019.

Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. Deepsvg: A hierarchical generative network
for vector graphics animation. Advances in Neural Information Processing Systems, 33:16351–16361, 2020.

Haoyu Chen, Xiaojie Xu, Wenbo Li, Jingjing Ren, Tian Ye, Songhua Liu, Ying-Cong Chen, Lei Zhu, and Xinchao
Wang. Posta: A go-to framework for customized artistic poster generation. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pp. 28694–28704, 2025.

Sehyun Choi, Tianqing Fang, Zhaowei Wang, and Yangqiu Song. Kcts: Knowledge-constrained tree search decoding
with token-level hallucination detection. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 14035–14053, 2023.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blis-
tein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multi-
modality, long context, and next generation agentic capabilities. arXiv preprint arXiv:2507.06261, 2025.

Imre Csiszár, Paul C Shields, et al. Information theory and statistics: A tutorial. Foundations and Trends® in Com-
munications and Information Theory, 1(4):417–528, 2004.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. Plug and play language models: A simple approach to controlled text generation. arXiv preprint
arXiv:1912.02164, 2019.

Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner, and Martin Vechev. Controlled text generation via language
model arithmetic. arXiv preprint arXiv:2311.14479, 2023.

Yihong Dong, Xue Jiang, Yuchen Liu, Ge Li, and Zhi Jin. Codepad: Sequence-based code generation with pushdown
automaton. arXiv preprint arXiv:2211.00818, 2022.

Yixin Dong, Charlie F Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqi Chen. Xgrammar: Flexible
and efficient structured generation engine for large language models. arXiv preprint arXiv:2411.15100, 2024.

Jarad Forristal, Fatemehsadat Mireshghallah, Greg Durrett, and Taylor Berg-Kirkpatrick. A block metropolis-hastings
sampler for controllable energy-based text generation. In Proceedings of the 27th Conference on Computational
Natural Language Learning (CoNLL), pp. 403–413, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kevin Frans, Lisa Soros, and Olaf Witkowski. Clipdraw: Exploring text-to-drawing synthesis through language-image
encoders. Advances in Neural Information Processing Systems, 35:5207–5218, 2022.

Saibo Geng, Berkay Döner, Chris Wendler, Martin Josifoski, and Robert West. Sketch-guided constrained decoding
for boosting blackbox large language models without logit access. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 234–245, 2024.

Emmanuel Anaya Gonzalez, Sairam Vaidya, Kanghee Park, Ruyi Ji, Taylor Berg-Kirkpatrick, and Loris D’Antoni.
Constrained sampling for language models should be easy: An mcmc perspective. arXiv preprint arXiv:2506.05754,
2025.

David Ha and Douglas Eck. A neural representation of sketch drawings. arXiv preprint arXiv:1704.03477, 2017.

Skyler Hallinan, Alisa Liu, Yejin Choi, and Maarten Sap. Detoxifying text with marco: Controllable revision with
experts and anti-experts. arXiv preprint arXiv:2212.10543, 2022.

Arthur Hemmer, Mickaël Coustaty, Nicola Bartolo, Jerome Brachat, and Jean-Marc Ogier. Lazy-k decoding: Con-
strained decoding for information extraction. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 6727–6736. Association for Computational Linguistics, 2023.

Chris Hokamp and Qun Liu. Lexically constrained decoding for sequence generation using grid beam search. arXiv
preprint arXiv:1704.07138, 2017.

J Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick Xia, Tongfei Chen, Matt Post, and Benjamin Van Durme.
Improved lexically constrained decoding for translation and monolingual rewriting. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 839–850, 2019.

Teng Hu, Ran Yi, Baihong Qian, Jiangning Zhang, Paul L Rosin, and Yu-Kun Lai. Supersvg: Superpixel-based
scalable vector graphics synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24892–24901, 2024.

Ajay Jain, Amber Xie, and Pieter Abbeel. Vectorfusion: Text-to-svg by abstracting pixel-based diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1911–1920, 2023.

Terry Koo, Frederick Liu, and Luheng He. Automata-based constraints for language model decoding. arXiv preprint
arXiv:2407.08103, 2024.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation. arXiv preprint
arXiv:2009.06367, 2020.

Sachin Kumar, Eric Malmi, Aliaksei Severyn, and Yulia Tsvetkov. Controlled text generation as continuous optimiza-
tion with multiple constraints. Advances in Neural Information Processing Systems, 34:14542–14554, 2021.

Sachin Kumar, Biswajit Paria, and Yulia Tsvetkov. Gradient-based constrained sampling from language models. arXiv
preprint arXiv:2205.12558, 2022a.

Sachin Kumar, Biswajit Paria, and Yulia Tsvetkov. Gradient-based constrained sampling from language models. arXiv
preprint arXiv:2205.12558, 2022b.

Duong Minh Le, Yang Chen, Alan Ritter, and Wei Xu. Constrained decoding for cross-lingual label projection. In The
Twelfth International Conference on Learning Representations.

Alexander K Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K Mansinghka. Sequential monte carlo steering of large
language models using probabilistic programs. arXiv preprint arXiv:2306.03081, 2023.

Zelong Li, Wenyue Hua, Hao Wang, He Zhu, and Yongfeng Zhang. Formal-llm: Integrating formal language and
natural language for controllable llm-based agents. arXiv preprint arXiv:2402.00798, 2024.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang Ren.
Commongen: A constrained text generation challenge for generative commonsense reasoning. arXiv preprint
arXiv:1911.03705, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Benjamin Lipkin, Benjamin LeBrun, Jacob Hoover Vigly, João Loula, David R MacIver, Li Du, Jason Eisner, Ryan
Cotterell, Vikash Mansinghka, Timothy J O’Donnell, et al. Fast controlled generation from language models with
adaptive weighted rejection sampling. arXiv preprint arXiv:2504.05410, 2025.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith, and Yejin Choi.
Dexperts: Decoding-time controlled text generation with experts and anti-experts. arXiv preprint arXiv:2105.03023,
2021.

Xin Liu, Muhammad Khalifa, and Lu Wang. Bolt: Fast energy-based controlled text generation with tunable biases.
arXiv preprint arXiv:2305.12018, 2023.

Raphael Gontijo Lopes, David Ha, Douglas Eck, and Jonathon Shlens. A learned representation for scalable vector
graphics. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7930–7939, 2019.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Neurologic decod-
ing:(un) supervised neural text generation with predicate logic constraints. arXiv preprint arXiv:2010.12884, 2020.

Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev, Nikita Orlov, Yun Fu, and Humphrey Shi. Towards
layer-wise image vectorization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16314–16323, 2022.

Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang. Controllable text generation with neurally-decomposed oracle.
Advances in Neural Information Processing Systems, 35:28125–28139, 2022.

Fatemehsadat Mireshghallah, Kartik Goyal, and Taylor Berg-Kirkpatrick. Mix and match: Learning-free controllable
text generation using energy language models. arXiv preprint arXiv:2203.13299, 2022.

Niels Mündler, Jingxuan He, Hao Wang, Koushik Sen, Dawn Song, and Martin Vechev. Type-constrained code
generation with language models. Proceedings of the ACM on Programming Languages, 9(PLDI):601–626, 2025.

OpenAI. Introducing gpt-5. 2025.

Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikarpova, and Loris D’Antoni. Grammar-aligned
decoding. Advances in Neural Information Processing Systems, 37:24547–24568, 2024.

Kanghee Park, Timothy Zhou, and Loris D’Antoni. Flexible and efficient grammar-constrained decoding. arXiv
preprint arXiv:2502.05111, 2025.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit Gulwani.
Synchromesh: Reliable code generation from pre-trained language models. arXiv preprint arXiv:2201.11227, 2022.

Sagi Polaczek, Yuval Alaluf, Elad Richardson, Yael Vinker, and Daniel Cohen-Or. Neuralsvg: An implicit represen-
tation for text-to-vector generation. arXiv preprint arXiv:2501.03992, 2025.

Matt Post and David Vilar. Fast lexically constrained decoding with dynamic beam allocation for neural machine
translation. arXiv preprint arXiv:1804.06609, 2018.

Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin Choi. Cold decoding: Energy-based constrained text genera-
tion with langevin dynamics. Advances in Neural Information Processing Systems, 35:9538–9551, 2022.

Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J Mitra. Im2vec: Synthesizing vector graphics without
vector supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7342–7351, 2021.

Leo Sampaio Ferraz Ribeiro, Tu Bui, John Collomosse, and Moacir Ponti. Sketchformer: Transformer-based rep-
resentation for sketched structure. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 14153–14162, 2020.

Juan A Rodriguez, Shubham Agarwal, Issam H Laradji, Pau Rodriguez, David Vazquez, Christopher Pal, and Marco
Pedersoli. Starvector: Generating scalable vector graphics code from images. arXiv preprint arXiv:2312.11556,
2023.

Peter Schaldenbrand, Zhixuan Liu, and Jean Oh. Styleclipdraw: Coupling content and style in text-to-drawing syn-
thesis. arXiv preprint arXiv:2111.03133, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

János Schanda. Colorimetry: understanding the CIE system. John Wiley & Sons, 2007.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. Picard: Parsing incrementally for constrained auto-
regressive decoding from language models. arXiv preprint arXiv:2109.05093, 2021.

Jaejung Seol, Seojun Kim, and Jaejun Yoo. Posterllama: Bridging design ability of language model to content-aware
layout generation. In European Conference on Computer Vision, pp. 451–468. Springer, 2024.

Jinyue Su, Jiacheng Xu, Xipeng Qiu, and Xuanjing Huang. Incorporating discriminator in sentence generation: a
gibbs sampling method. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Xintong Sun, Chi Wei, Minghao Tian, and Shiwen Ni. Earley-driven dynamic pruning for efficient structured decoding.
arXiv preprint arXiv:2506.01151, 2025.

Vikas Thamizharasan, Difan Liu, Matthew Fisher, Nanxuan Zhao, Evangelos Kalogerakis, and Michal Lukac. Nivel:
Neural implicit vector layers for text-to-vector generation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 4589–4597, 2024.

Shubham Ugare, Rohan Gumaste, Tarun Suresh, Gagandeep Singh, and Sasa Misailovic. Itergen: Iterative semantic-
aware structured llm generation with backtracking. arXiv preprint arXiv:2410.07295, 2024a.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Syncode: Llm generation with
grammar augmentation. Transactions on Machine Learning Research, 2024b.

Yael Vinker, Ehsan Pajouheshgar, Jessica Y Bo, Roman Christian Bachmann, Amit Haim Bermano, Daniel Cohen-Or,
Amir Zamir, and Ariel Shamir. Clipasso: Semantically-aware object sketching. ACM Transactions on Graphics
(TOG), 41(4):1–11, 2022.

Feiyu Wang, Zhiyuan Zhao, Yuandong Liu, Da Zhang, Junyu Gao, Hao Sun, and Xuelong Li. Svgen: Interpretable
vector graphics generation with large language models. arXiv preprint arXiv:2508.09168, 2025.

Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. Iconshop: Text-guided vector icon synthesis with autoregressive
transformers. ACM Transactions on Graphics (TOG), 42(6):1–14, 2023.

Ronghuan Wu, Wanchao Su, and Jing Liao. Chat2svg: Vector graphics generation with large language models and
image diffusion models. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 23690–
23700, 2025.

Ximing Xing, Chuang Wang, Haitao Zhou, Jing Zhang, Qian Yu, and Dong Xu. Diffsketcher: Text guided vector
sketch synthesis through latent diffusion models. Advances in Neural Information Processing Systems, 36:15869–
15889, 2023.

Ximing Xing, Haitao Zhou, Chuang Wang, Jing Zhang, Dong Xu, and Qian Yu. Svgdreamer: Text guided svg
generation with diffusion model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4546–4555, 2024.

Ximing Xing, Juncheng Hu, Guotao Liang, Jing Zhang, Dong Xu, and Qian Yu. Empowering llms to understand and
generate complex vector graphics. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
19487–19497, 2025.

Kota Yamaguchi. Canvasvae: Learning to generate vector graphic documents. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5481–5489, 2021.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025a.

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. arXiv preprint
arXiv:2104.05218, 2021.

Yiying Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Fukun Yin, Jiaxu Zhang, Liao Wang, Gang Yu, Xingjun Ma, and
Yu-Gang Jiang. Omnisvg: A unified scalable vector graphics generation model. arXiv preprint arXiv:2504.06263,
2025b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Haotian Ye, Himanshu Jain, Chong You, Ananda Theertha Suresh, Haowei Lin, James Zou, and Felix Yu. Efficient
and asymptotically unbiased constrained decoding for large language models. arXiv preprint arXiv:2504.09135,
2025.

Sangwon Yu, Changmin Lee, Hojin Lee, and Sungroh Yoon. Controlled text generation for black-box language models
via score-based progressive editor. arXiv preprint arXiv:2311.07430, 2023.

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for autoregressive language
generation. In International Conference on Machine Learning, pp. 40932–40945. PMLR, 2023.

Peiying Zhang, Nanxuan Zhao, and Jing Liao. Text-to-vector generation with neural path representation. ACM
Transactions on Graphics (TOG), 43(4):1–13, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 586–595, 2018.

Tianqi Zhong, Quan Wang, Jingxuan Han, Yongdong Zhang, and Zhendong Mao. Air-decoding: Attribute distribution
reconstruction for decoding-time controllable text generation. arXiv preprint arXiv:2310.14892, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THEORETICAL GUARANTEES OF STAMP

A.1 HARD-VALIDITY (SOUNDNESS) OF STAMP

Setting. Recall the feasible set:
C = {x ∈ V∗ : R accepts SVG(x) },

whereR is a deterministic recognizer for well-formed SVG, and the one-step policy produced by STaMP,

Ptilt+mask(xt | x<t) ∝ Ptilt(xt | x<t) 1{xt∈Vt}, Ptilt(xt | x<t) ∝ Pθ(xt | x<t) exp
(
bϕ(x<t, xt)

)
, (11)

with Vt the set of viable tokens at prefix x<t. Let st denote the state ofR after feeding the decoded prefix SVG(x<t);
write δ for the (deterministic) state transition function ofR composed with the token decoder, i.e., δ(st, xt) is the state
reached after appending token xt (expanding it into characters via dec and streaming them through R). We assume
exact viability:

Vt =
{
v ∈ V : ∃ y ∈ V∗ s.t. δ

(
δ(st, v), y

)
∈ F and the termination rule accepts

}
, (12)

where F is the set of accepting states of R and the termination rule is the one used in the main text (EOS-terminated
sequences, or fixed-length sequences). In the EOS case we additionally gate EOS: the EOS token is included in Vt if
and only if st ∈ F .

Claim (Soundness). Let Q̃ϕ be the sequence distribution induced by sampling xt ∼ Ptilt+mask(· | x<t) at each step and
terminating only when EOS is sampled (EOS-terminated) or when the prescribed fixed length is reached (fixed-length).
Under the exact-viability specification equation 12 (and EOS gating when applicable), every realized sequence lies in
the feasible set:

Q̃ϕ(C) = 1.

Proof. We give the argument for the EOS-terminated case; the fixed-length case is identical after replacing the EOS
gate by a length budget in the viability test.

We prove by induction on t the invariant:

Inv(t) : (i) st is the state reached by SVG(x<t), (ii) there exists a valid completion y ∈ V∗ with δ(st, y) ∈ F.

Base case. At t = 1, x<1 is empty, s1 is the start state of R. Feasibility of the task ensures there exists some valid
x ∈ C; hence (ii) holds for y = x. Thus Inv(1) holds.

Inductive step. Assume Inv(t) holds. By exact viability equation 12, the mask in equation 11 restricts sampling to Vt,
i.e., to tokens xt for which there exists a suffix y with δ(δ(st, xt), y) ∈ F . The controller samples some xt ∈ Vt with
nonzero probability, then updates the recognizer state to:

st+1 = δ(st, xt).

By the defining property of Vt, there is at least one y such that δ(st+1, y) ∈ F , so (ii) holds at t + 1; (i) holds by
construction. Hence Inv(t+ 1).

Termination and acceptance. In the EOS-terminated setting, the process halts only when EOS is sampled. By EOS
gating, EOS ∈ Vt if and only if st ∈ F . Thus, the only way to terminate is from an accepting state. (For every
reachable accepting state, the conditional probability of emitting EOS under Ptilt+mask(EOS|·) is bounded. Therefore,
standard geometric-series arguments imply the process terminates almost surely and with finite expectation). The
realized sequence x satisfiesR accepts SVG(x), i.e., x ∈ C. Therefore Q̃ϕ(C) = 1.

Fixed length. When a fixed length T is imposed, the viability definition equation 12 is understood with a budget on the
remaining steps: a token v is viable at time t only if there exists y of length at most T − t such that δ(δ(st, v), y) ∈ F .
The inductive invariant carries through verbatim, and at t = T only prefixes that admit an accepting completion of
length 0 (i.e., already accepting) can occur. Hence the realized sequence is accepted byR and lies in C.

Discussion. The guarantee is soundness, not completeness. Soundness says every sequence the controller emits is
in C; it does not claim that every x ∈ C is reachable with positive probability. Completeness would additionally
require liveness/progress conditions (Appendix A.7) ensuring the viable set never empties along trajectories. For the
hard-validity contract, soundness is the essential safety property: regardless of the learned Soft component, as long as
the Mask enforces exact viability and EOS gating, the controller cannot produce an invalid SVG.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 MASK-ONLY ≡ CONDITIONING (WHEN η = 0)

Setting. Consider the hard constraint set:

C = {x ∈ V∗ : R accepts SVG(x) },
the base autoregressive model Pθ as in equation 1–equation 2, and the Mask policy equation 10. In this appendix we
set η = 0 (no Soft Tilt), i.e., bϕ ≡ 0 and Ptilt(· | x<t) = Pθ(· | x<t). For any prefix x<t with Pθ(x<t) > 0, define the
base-model acceptance probability:

G0(x<t) := Ext:∼Pθ

[
1{x∈C}

∣∣ x<t

]
= Pθ

(
x ∈ C

∣∣ x<t

)
, (13)

and similarly G0(x<tv) = Pθ(x ∈ C | x<tv). For the equivalence below we use the Pθ-reachable viable set:

Vt = { v ∈ V : G0(x<tv) > 0 },
which refines recognizer viability by excluding next tokens that admit accepting completions only with zero
Pθ-probability. In the EOS-terminated setting, EOS is allowed iff the current recognizer state is accepting (equiv-
alently, G0(x<t⟨eos⟩) > 0). The Mask-only next-token policy is then:

πmask(xt | x<t) =
Pθ(xt | x<t)1{xt∈Vt}∑

v∈Vt
Pθ(v | x<t)

. (14)

Target conditional under the base model. Conditioning Pθ on eventual validity defines:

Pθ

(
xt | x<t, x ∈ C

)
=

Pθ

(
xt, x ∈ C | x<t

)
Pθ

(
x ∈ C | x<t

) =
Pθ(xt | x<t)G0(x<txt)

G0(x<t)
, (15)

where the last equality is the law of total probability over suffixes under Pθ.

Claim (Equivalence, with necessary and sufficient condition). Fix any prefix x<t with G0(x<t) > 0. Then

πmask(· | x<t) = Pθ(· | x<t, x ∈ C) ⇐⇒ G0(x<tv) is constant over v ∈ Vt.
In particular, ifG0(x<tv) does not depend on the choice of viable next token, then Mask-only sampling coincides with
conditioning the base model on eventual validity. If G0 varies across viable tokens, the two next-token distributions
generally differ.

Proof. By equation 14, for any xt ∈ Vt,

πmask(xt | x<t) =
Pθ(xt | x<t)∑
v∈Vt

Pθ(v | x<t)
.

By equation 15, for any xt ∈ Vt,

Pθ(xt | x<t, x ∈ C) =
Pθ(xt | x<t)G0(x<txt)

G0(x<t)
, G0(x<t) =

∑
v∈Vt

Pθ(v | x<t)G0(x<tv),

(the last identity sums over all tokens; terms with G0 = 0 vanish and can be dropped). Hence,

Pθ(xt | x<t, x ∈ C) =
Pθ(xt | x<t)G0(x<txt)∑
v∈Vt

Pθ(v | x<t)G0(x<tv)
.

Comparing with πmask, equality for all xt ∈ Vt holds iff G0(x<tv) is the same constant for all v ∈ Vt (so the common
factor cancels). This condition is also necessary.

Discussion and implications. Equation equation 15 is the η = 0 instance of equation 8 and shows that conditioning
multiplies base next-token probabilities by G0(x<txt) before renormalization. The Mask-only policy equation 14
enforces G0(x<txt) > 0 but omits this multiplicative factor. Consequently, Mask-only is exactly Pθ(· | x ∈ C) if and
only if the acceptance probability is token-invariant across the viable set at that prefix—that is, when all viable next
tokens yield the same G0 under Pθ. In general, especially for long-range constraints, G0 varies with v and the two
policies differ.

From the STaMP viewpoint, Mask enforces the hard requirement (no invalid paths), while the missing multiplicative
factor is the η→ 0 case of the ideal log-bias b∗(x<t, xt) = logGη(x<txt) − logGη(x<t) in equation 8. Thus, if
bϕ = b∗ at η = 0, the combined Soft Tilt+Mask reproduces conditioning exactly; if bϕ ≡ 0, Mask-only matches
conditioning precisely in the token-invariant case above. In all cases, Appendix A.1 applies: regardless of these
weights, every realized sequence lies in C (soundness).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 EXISTENCE & UNIQUENESS OF THE I-PROJECTION

Setting and assumptions. We study equation 3 over the simplex ∆(V∗) with the hard support restriction Q(C) = 1 and
soft moment constraint EQ[f] = c (elementwise when m > 1). We adopt the feasibility assumption from the main
text: Pθ(C) > 0 and c ∈M, where:

M =
{
EQ[f] : Q≪ Pθ, Q(C) = 1

}
.

To avoid technicalities unrelated to SVG control, assume either that f is bounded or, more generally, that the exponen-
tial moment

∑
x∈C Pθ(x) exp(η

⊤f(x)) is finite in a neighborhood of the origin, so the log-partition ψ(η) = logZ(η)
in equation 5 is well-defined and smooth on its effective domain (Z(η) < ∞∀η in an open convex set containing the
optimum). These assumptions ensure uniform integrability of f on the feasible slice and continuity of Q 7→ EQ[f]
under weak convergence.

Existence. Consider the Lagrangian equation 4 with multipliers η ∈ Rm and µ ∈ R, restricted to distributions
supported on C. Eliminating Q by the stationarity condition yields the tilted family:

Qη(x) =
1

Z(η)
Pθ(x) exp

(
η⊤f(x)

)
1{x∈C}, Z(η) =

∑
x∈C

Pθ(x) exp
(
η⊤f(x)

)
,

and the concave dual g(η) = η⊤c − ψ(η) with ∇g(η) = c − EQη [f] and ∇2g(η) = −CovQη (f) ⪯ 0 (cf. equa-
tion 6–equation 7). There are two complementary existence routes. (i) Dual route. If c lies in the relative interior of
the exponential-family moment image:

Mexp =
{
EQη [f] : Z(η) <∞

}
= Im(∇ψ),

then by continuity of ∇ψ there exists η∗ with EQη∗ [f] = c; strong duality gives Q∗ = Qη∗ . (ii) Direct route. On a
countable alphabet the feasible set

{Q ∈ ∆(V∗) : Q(C) = 1, EQ[f] = c, Q≪ Pθ }
is convex and closed (linearity of constraints and absolute continuity are closed conditions; continuity of Q 7→ EQ[f]
(Weierstrass) follows from the regularity above). Since Q 7→ KL(Q∥Pθ) is lower semicontinuous and takes values in
[0,∞], the infimum is attained. Boundary cases (see below) are handled by closure of the feasible set.

Uniqueness of the primal optimizer. The mapping Q 7→ KL(Q∥Pθ) is strictly convex in Q on the affine slice defined
by the constraints (with Q≪ Pθ). Hence there is at most one minimizer; together with existence, this yields a unique
optimizer Q∗, independent of parameterization.

Characterization and dual optimality. By the KKT conditions for equation 4, the unique primal optimizer has the
exponential-tilt form:

Q∗(x) =
1

Z(η∗)
Pθ(x) exp

(
η∗⊤f(x)

)
1{x∈C}

for some dual maximizer η∗, and satisfies the moment-matching condition EQ∗ [f] = c. Conversely, any η with
EQη [f] = c yields a feasible Qη attaining the primal optimum. The Pythagorean identity (Csiszár et al., 2004) for the
I-projection holds: for any feasible Q,

KL(Q∥Pθ) = KL(Q∥Q∗) + KL(Q∗∥Pθ),

which certifies optimality of Q∗ and shows that deviations from Q∗ strictly increase the objective.

Uniqueness of multipliers and redundancy. While Q∗ is unique, the dual vector η∗ is unique iff the features in f
are nonredundant under Q∗, e.g., CovQ∗(f) ≻ 0 (equivalently, there is no nonzero a ∈ Rm with a⊤f(x) Q∗-a.s.
constant). If such redundancy exists (e.g., including a constant feature), the set of dual maximizers is an affine translate
along redundant directions; all such η produce the same Q∗ because the induced tilt differs only by a multiplicative
constant absorbed into Z(η).

Boundary cases. If c lies on the boundary of the achievable moment setM, a maximizing sequence ηk may diverge
while Qηk

converges (in distribution) to a limit supported on C that satisfies the constraint; then the primal optimizer
still exists and is unique, while the dual optimum is attained only in the extended sense (at infinity). (In other words,
if c lies on ∂M, there exists a diverging sequence ηk with ||ηk|| → ∞, such that Qηk

converges weakly to Q∗ - the
dual supremum is attained only in the extended sense.) Under the standing regularity (bounded f or finite exponential
moments) and c in the relative interior ofM, both primal and dual optima are attained with finite η∗.

Discussion. Under the feasibility and regularity conditions above, the I-projection equation 3 admits a unique solution
Q∗, realized by an exponential reweighting of Pθ restricted to C, with multipliers chosen to satisfy EQ∗ [f] = c. This
establishes that the target controlled generator is well-posed and reproducible; all approximation error in subsequent
sections (e.g., Soft Tilt and Mask) can be interpreted relative to this uniquely defined information-theoretic optimum.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.4 SOFT-MOMENT CALIBRATION (EXISTENCE / UNIQUENESS / CONVERGENCE)

Setting. The hard constraint is encoded by C as before, and the soft target is c ∈ Rm for a utility f : V∗→ Rm. For
any multiplier η ∈ Rm in the natural parameter domain domψ := {η : Z(η) <∞}, define:

Qη(x) =
1

Z(η)
Pθ(x) exp

(
η⊤f(x)

)
1{x∈C}, Z(η) =

∑
x∈C

Pθ(x) exp
(
η⊤f(x)

)
,

and ψ(η) = logZ(η). As established in equation 6, ∇ψ(η) = EQη
[f(x)] and ∇2ψ(η) = CovQη

(f) ⪰ 0 (all
gradients/Hessians elementwise). The dual objective in equation 7 is D(η) = η⊤c − ψ(η) with gradient ∇D(η) =
c− EQη [f(x)] and Hessian ∇2D(η) = −CovQη (f) ⪯ 0.

Claim (existence). Let,

M =
{
EQ[f] : Q≪ Pθ, Q(C) = 1

}
(achievable moments under Pθ on C).

If c ∈ ri(M) (relative interior), then there exists η∗ ∈ domψ such that EQη∗ [f] = c, i.e., D(η) attains its maximum
at a finite η∗ and ∇D(η∗) = 0. If c ∈ M \ ri(M) (boundary case), there exists a maximizing sequence ηk with
∥ηk∥ → ∞ such that Qηk

converges (in distribution) to the unique primal optimizer Q∗ with EQ∗ [f] = c.

Reasoning. ψ is convex and lower semicontinuous on domψ (an open convex set), hence D is concave and upper
semicontinuous. For c ∈ ri(M), standard convex duality implies dual attainment at a finite η∗ with first-order opti-
mality∇D(η∗) = 0, i.e., EQη∗ [f] = c. If c lies on the boundary, the supremum of D is achieved only in the limit; the
corresponding Qηk

converges to the primal Q∗ that attains equation 3.

Claim (uniqueness). If f is nondegenerate in the sense that CovQη (f) ≻ 0 in a neighborhood of the solution, then ψ
is strictly convex and D is strictly concave; the maximizer η∗ is unique, and thus Qη∗ is unique. Even if CovQη

(f) is
only positive semidefinite (e.g., f contains an affine redundancy), the primal optimizer Q∗ of equation 3 is still unique
because KL(Q∥Pθ) is strictly convex in Q over the affine constraint set.

Reasoning. Strict convexity of ψ makes∇ψ injective, so∇ψ(η) = c has at most one (finite) solution. In the degenerate
case, multiple multipliers can map to the same Qη; strict convexity of the primal objective then pins down a unique
Q∗ even if η is not unique.

Monotonicity and the m = 1 specialization. When m = 1, ψ′(η) = EQη
[f] and ψ′′(η) = VarQη

(f) ≥ 0. If f is not
a.s. constant under Qη in a neighborhood of the solution, then ψ′′(η) > 0 there and η 7→ EQη

[f] is strictly increasing.
Consequently, a one-dimensional root-finder (bisection, or Newton with line search) finds η∗ robustly.

Convergence of calibration via the dual. Consider gradient ascent on D:
ηk+1 = ηk + αk

(
c− EQηk

[f]
)
,

with either a backtracking line search guaranteeing ascent of D, or diminishing stepsizes (αk) that satisfy
∑

k αk =
∞ and

∑
k α

2
k < ∞. Since D is concave with ∇D(η) = c − EQη [f] and ∇2D(η) = −CovQη (f) ⪯ 0, the

iteration converges to the (unique) maximizer η∗ when it exists at finite norm. On compact level sets where ∇D is
Lipschitz, fixed stepsizes smaller than the inverse Lipschitz constant also yield global convergence. In them = 1 case,
monotonicity of EQη

[f] implies that bracketing with bisection converges linearly to η∗.

Stochastic calibration with Monte Carlo estimates. In practice, EQηk
[f] is estimated from samples. If the estimator

is unbiased (or asymptotically unbiased) with bounded variance and (αk) is a Robbins–Monro stepsize sequence, the
stochastic approximation:

ηk+1 = ηk + αk

(
c− ÊQηk

[f]
)

converges almost surely to η∗ under standard SA conditions (e.g., local strong concavity ofD via λmin(CovQη∗ (f)) >

0 and Lipschitz continuity of the mean map). If one replacesQηk
by the controlled sampler Q̃ϕ from equation 9–equa-

tion 10, and the resulting estimator has a uniform bias bound supη ∥EQ̃ϕ
[f]−EQη

[f]∥ ≤ B, then the iterates converge
to a neighborhood of η∗ whose radius scales as O(B/µ), where µ is the local strong-concavity modulus of D (i.e., the
minimal eigenvalue of CovQη∗ (f)). In the oracle limit (ideal bϕ and exact masking), B = 0 and the iterates converge
to η∗.

Under the standing feasibility assumption and mild regularity, there exists a multiplier that achieves the soft target: if
c ∈ ri(M), a finite η∗ satisfies EQη∗ [f] = c; on the boundary, a maximizing sequence ηk yields Qηk

⇒ Q∗ with
the correct moment. The solution is unique at the distribution level, and dual-gradient calibration converges to η∗
(or to the boundary in the limit), with stochastic and approximate variants converging to a quantifiable neighborhood
governed by estimator bias and local curvature.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.5 CHAIN-RULE KL DECOMPOSITION (TOKEN-LEVEL SURROGATE IS EXACT)

Setting. Let Q̃ϕ be the sequence distribution induced by the controlled decoder (equation 9–equation 10) with EOS
termination (almost surely). Thus, for any realized sequence x = (x1, . . . , x|x|) (terminated by ⟨eos⟩),

Q̃ϕ(x) =

|x|∏
t=1

πϕ(xt | x<t), Pθ(x) =

|x|∏
t=1

Pθ(xt | x<t),

where πϕ(· | x<t) is the normalized next-token policy after Soft Tilt and Mask, and Pθ(· | x<t) is the base next-token
distribution from equation 1–equation 2. We assume absolute continuity of Q̃ϕ with respect to Pθ at the sequence
level, which is ensured by the per-step support inclusion:

suppπϕ(· | x<t) ⊆ suppPθ(· | x<t) Q̃ϕ-a.s.

(reweighting preserves zeros and Mask only removes mass). Let ht denote the decoder state at step t (a measurable
function of x<t and the cached historyHt). For brevity we write πϕ(· | ht) and Pθ(· | ht) in place of conditioning on
x<t.

Claim (chain-rule KL). If KL(Q̃ϕ ∥Pθ) <∞, then:

KL
(
Q̃ϕ ∥Pθ

)
=
∑
t≥1

Eht∼Q̃ϕ

[
KL
(
πϕ(· | ht) ∥Pθ(· | ht)

)]
. (16)

Proof. By the autoregressive factorization,

log
Q̃ϕ(x)

Pθ(x)
=

|x|∑
t=1

log
πϕ(xt | x<t)

Pθ(xt | x<t)
.

Taking expectation under Q̃ϕ and conditioning on X<t (or ht) yields:

EQ̃ϕ

[
log

Q̃ϕ(X)

Pθ(X)

]
=
∑
t≥1

Eht∼Q̃ϕ

[
EXt∼πϕ(·|ht)

(
log

πϕ(Xt | ht)
Pθ(Xt | ht)

)]
.

For each t, the inner expectation is the discrete KL divergence KL
(
πϕ(· | ht) ∥Pθ(· | ht)

)
≥ 0. Because these terms

are nonnegative, we may exchange the (a.s. finite) sum and the outer expectation by monotone convergence, obtaining
equation 16. Finally, by padding sequences after EOS with an absorbing token for which both policies put probability
1, all summands for t > |X| are 0 a.s., so the series is well defined.

Discussion. Equation equation 16 shows that the token-level KL regularizer used in the training objective of
§ STaMP, namely

∑
tEht∼Q̃ϕ

[
KL(πϕ(· | ht) ∥Pθ(· | ht))

]
–is exactly the sequence-level divergence KL(Q̃ϕ∥Pθ) for

EOS-terminated autoregressive decoding. Thus the engineering surrogate is not an approximation: it is the chain-rule
decomposition of the global information change from the base model. In particular, controlling the per-step KL budget
directly controls the overall deviation from Pθ, and by Pinsker’s inequality this also bounds the total-variation shift be-
tween the induced sequence distributions. The argument is unaffected by the Mask: masking only removes mass (and,
together with reweighting, never creates mass where Pθ has none), so absolute continuity and the per-step conditional
KL remain well defined at each prefix.

A.6 ORACLE CONSISTENCY (EXACTNESS IF COMPONENTS ARE EXACT)

Setting. Recall the optimal next-token conditional from equation 8:

Q∗(xt | x<t) = Pθ(xt | x<t) ·
Gη(x<txt)

Gη(x<t)
, Gη(x<t) = Ext:∼Pθ

[
exp
(
η⊤f(x)

)
1{x∈C}

∣∣ x<t

]
.

The STaMP controller forms at each step the Soft Tilt policy equation 9,

Ptilt(xt | x<t) ∝ Pθ(xt | x<t) exp
(
bϕ(x<t, xt)

)
,

followed by the Mask equation 10,

Ptilt+mask(xt | x<t) ∝ Ptilt(xt | x<t) 1{xt∈Vt}, Vt = {v ∈ V : R remains viable on x<tv},

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where viability includes EOS/length budgets as in Appendix A.1. The ideal log-bias from equation 8 is:

b∗(x<t, xt) = logGη(x<txt)− logGη(x<t).

Claim (oracle consistency). Suppose (i) the adapter is oracle-accurate, bϕ(x<t, xt) = b∗(x<t, xt) for all prefixes and
tokens with positive base support, and (ii) masking enforces exact Pθ-reachable viability, i.e.,

xt ∈ Vt ⇐⇒ Pθ

(
∃ accepting continuation

∣∣ x<txt
)
> 0 ⇐⇒ Gη(x<txt) > 0.

Then for every prefix x<t with Q∗(x<t) > 0, the next-token policies coincide:

Ptilt+mask(· | x<t) = Q∗(· | x<t).

Consequently, the induced sequence distribution of the controlled decoder equals the I-projection optimum:

Q̃ϕ = Q∗.

Proof. Fix a prefix x<t with Q∗(x<t) > 0. Then Gη(x<t) > 0 and Pθ(x<t) > 0. With bϕ = b∗,

Ptilt(xt | x<t) ∝ Pθ(xt | x<t) exp
(
logGη(x<txt)− logGη(x<t)

)
= Pθ(xt | x<t)

Gη(x<txt)

Gη(x<t)
.

Because exp(η⊤f) is strictly positive, Gη(x<txt) = 0 holds iff Pθ(x ∈ C | x<txt) = 0, i.e., there is no accepting
continuation with positive Pθ-probability. By assumption (ii),

xt ∈ Vt ⇐⇒ Gη(x<txt) > 0.

Applying the Mask multiplies by 1{Gη(x<txt)>0}, which leaves the expression unchanged for viable tokens and zeroes
it for nonviable ones. Renormalizing over xt ∈ Vt gives:

Ptilt+mask(xt | x<t) =
Pθ(xt | x<t)Gη(x<txt)∑
v∈Vt

Pθ(v | x<t)Gη(x<tv)
.

Using
Gη(x<t) =

∑
v∈V

Pθ(v | x<t)Gη(x<tv) =
∑
v∈Vt

Pθ(v | x<t)Gη(x<tv)

(terms with Gη(x<tv) = 0 vanish), we obtain:

Ptilt+mask(xt | x<t) = Pθ(xt | x<t)
Gη(x<txt)

Gη(x<t)
= Q∗(xt | x<t).

Equality of next-token conditionals at every prefix with positive probability under Q∗ implies, by induction on t,
equality of the induced sequence distributions: Q̃ϕ = Q∗.

Discussion. The result ties STaMP to the information-theoretic optimum: if the Soft Tilt supplies the ideal log-bias
and the Mask implements exact Pθ-reachable viability (including EOS gating and length budgets), then the controlled
decoder reproduces the I-projection exactly. In practice, the only approximation gaps arise from (i) deviations of bϕ
from b∗ and (ii) any relaxation in viability testing; when these vanish, so does the gap to Q∗.

A.7 NO DEAD-ENDS UNDER FEASIBILITY (PROGRESS/LIVENESS)

Setting. Let C = {x ∈ V∗ : R accepts SVG(x)} be the hard feasible set recognized by R with accepting states F .
As in equation 10, at step t the Mask restricts next tokens to the viable set:

Vt =
{
v ∈ V : ∃ y ∈ V∗ such that δ

(
δ(st, v), y

)
∈ F and the termination rule is satisfied

}
, (17)

where st is the state ofR after consuming SVG(x<t), δ is the transition function composed with the token decoder, and
the “termination rule” is either EOS-terminated (EOS is permitted iff st ∈ F) or fixed-length with remaining budget.
The controlled one-step policy normalizes Ptilt(· | x<t) ∝ Pθ(· | x<t) exp(bϕ) over Vt (cf. equation 9–equation 10);
we assume bϕ is finite so exp(bϕ) > 0. Throughout we assume feasibility from the main text: Pθ(C) > 0. We also
adopt the standard softmax property of the base LM (cf. equation 2): for any prefix that occurs, Pθ(v | x<t) > 0 for
all v ∈ V .1

1If a model imposes structural zeros at the vocabulary level, replace Vt by {v ∈ Vt : Pθ(v | x<t) > 0}; the argument below
proceeds identically.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Claim (liveness). Under exact viability equation 17 with EOS gating (or length budgeting) and the feasibility assump-
tion Pθ(C) > 0, the controlled decoder cannot stall. More precisely, along any trajectory generated by sampling from
the Masked policy, the viable set is nonempty at every step before termination:

Vt ̸= ∅ for all t prior to halting,

and in the EOS-terminated setting halting occurs only when st ∈ F (so EOS is viable). Consequently the normalized
policy Ptilt+mask(· | x<t) is well defined at every step until termination.

Proof. We argue by induction on t.

Base case. Feasibility provides some x⋆ ∈ C with Pθ(x
⋆) > 0. In the EOS-terminated setting, this implies that from

the start state s1 there exists a valid continuation (namely x⋆), so by equation 17 the first symbol v = x⋆1 is in V1;
hence V1 ̸= ∅. In the fixed-length setting, feasibility is interpreted with respect to the target length budget, yielding
the same conclusion.

Inductive step. Suppose Vt ̸= ∅ and a token xt ∈ Vt is sampled by the controller. Let st+1 = δ(st, xt). By the
definition of Vt, there exists a suffix y such that δ(st+1, y) ∈ F and the termination rule is satisfied for the remaining
budget. If the process halts at t (EOS-terminated case), EOS must have been viable, which by gating implies st ∈ F ;
thus termination happens only at acceptance. If the process does not halt at t, we consider two cases:

(a) If st+1 ∈ F , then EOS is permitted at t+1 by the gating rule; hence Vt+1 ̸= ∅.

(b) If st+1 /∈ F , then any accepting completion y must be nonempty; let y1 be its first token. By equation 17,
y1 ∈ Vt+1, so Vt+1 ̸= ∅.

This completes the induction.

Well-defined normalization. Because the base LM uses a softmax head, Pθ(v | x<t) > 0 for all v ∈ V , and exp(bϕ) >
0 by assumption. Since Vt ̸= ∅ at each nonterminal step, the normalizing denominator

∑
v∈Vt

Ptilt(v | x<t) is strictly
positive, and Ptilt+mask(· | x<t) is a proper distribution.

Discussion. The result formalizes progress: exact viability ensures that from every nonterminal prefix on a trajectory,
at least one next token keeps some accepting completion reachable, so the Mask never exhausts all options. The
softmax property guarantees a positive normalizer, hence a well-defined sampling step. The argument is independent
of the values of the Soft Tilt bϕ (in other words, any finite Soft Tilt cannot break liveness, it only re-weights viable
options) and of any additional sampling heuristic, provided such heuristics are applied after masking and do not
eliminate all viable tokens; thus liveness is fundamentally a property of the recognizer and the viability test coupled to
the termination rule.

A.8 EFFICIENCY COMPARISON - STAMP VS. REJECTION / I.I.D. SAMPLING

We compare expected computational cost measured in token-generation steps required to produce one valid (feasible)
sequence in three regimes: STaMP (Soft Tilt + Mask), rejection sampling from Pθ, and any method that draws full
sequences i.i.d. from Pθ and accepts only those in the feasible set C. We assume EOS-terminated generation and
finite maximum length T (or, an almost-sure bound on length). The statements below extend to random yet integrable
lengths by replacing T with the expected length.

Assumption. LetC ⊂ V ∗ be the feasible set recognized by the deterministic recognizerR. Suppose: (i) Pθ(C) =: ε ∈
(0, 1) (the feasible set has base mass ε), (ii) STaMP enforces exact viability - every sample drawn from the masked
controlled decoder Q̃ lies in C with probability 1 (soundness), and the decoder always halts in at most T token steps
(EOS-termination and bounded length), (iii) The cost of generating one token from the base model (including mask
check) is counted as one token step, computing the mask is assumed to cost at most O(1) token-step-equivalent work
per token (so mask overhead is absorbed into the token-step count).

Claim (Rejection sampling is costly for rare feasible sets). Under the above assumption, the expected number of
token-generation steps required by rejection sampling from Pθ to obtain one valid sequence is:

E[token stepsrej] =
T

ε
.

Hence, when ε≪ 1 (rare feasible set) rejection sampling is inefficient: the expected token cost scales as 1
ε .

Proof. Rejection sampling draws full sequencesX(1), X(2), . . . i.i.d. from Pθ until one falls inC. Each draw produces
a full sequence of at most T tokens (by assumption). The number of draws until the first success is geometric Geom(ε)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

with mean 1
ε . Therefore, the expected total token steps is the number of draws times T :

E[token stepsrej] = T · E[#draws] = T · 1
ε
.

This gives the claimed result.

Claim (Any i.i.d. full-sequence sampler must account for 1
ε draws). Let a procedure produce candidate full sequences

by drawing i.i.d. from Pθ and accept only those in C (this includes naive importance resampling that samples from Pθ

then keeps only accepted draws). Then, the expected number of full-sequence draws until the first accepted sample is
at least 1

ε . Consequently, the expected token-step cost is at least T
ε .

Proof. Let N be the number of independent Pθ-draws needed to see the first sample in C. The probability of success
on each draw is exactly ε, hence N ∼ Geom(ε) and E[N] = 1

ε . The corresponding token-step cost is E[N] · T = T
ε .

Comparison to STaMP. Under the above assumption, STaMP produces one valid sequence with at most T token steps
(since it constructs a feasible sequence in a single run). Therefore, the token-step cost for STaMP is bounded by T .
Combining Claims 1 and 2, when ε≪ 1 the expected token-step cost of STaMP is smaller than that of rejection/i.i.d.
sampling by a factor on the order of 1

ε . That is, when the feasible set is rare under the base model, STaMP avoids the
1
ε blow-up inherent to sequence-level i.i.d. sampling.

B ADDITIONAL QUALITATIVE RESULTS

Figure 4: Inference-time control of StarVector img2svg model.

C END-TO-END DESIGN GENERATION RESULTS

User studies have shown that designers care for three classes of constraints: (i) global layout, (ii) asset placement,
and (iii) brand styling, which bundles colour palette, typeface choice, font colour and weight into a single visual
identity knob. We therefore evaluate our model and approach on a combination of these constraints and also include
unconstrained generation:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.1 UNCONSTRAINED DESIGN GENERATION

Figure 5: Unconstrained generation results (1/2).

Figure 6: Unconstrained generation results.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.2 CONSTRAINED DESIGN GENERATION

We now show the outputs on constrained generation.

Figure 7: Constrained generation results (1/2).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 8: Constrained generation results (2/2).

D DESIGN- AND CONTROL-SPECIFIC EVALUATION METRICS

CIEDE 2000 (palette control). Let the target palette be P ⋆ = {c1, . . . , cK} (in CIE L∗a∗b∗) and the realized palette
P̂ = {ĉ1, . . . , ĉK} extracted from SVG fill/stroke tokens (deduped by hex/RGB and mapped to L∗a∗b∗). Define
the assignment

π⋆ = arg min
π∈SK

1

K

K∑
i=1

∆E00

(
ci, ĉπ(i)

)
,

and report

CIEDE2000 =
1

K

K∑
i=1

∆E00

(
ci, ĉπ⋆(i)

)
,

where ∆E00 is the standard CIEDE 2000 color-difference in L∗a∗b∗ space (lower is better).

Layout Overlap % (region IoU). Let the specification provide N target regions with binary masks {Mi}Ni=1 (in ren-
der pixel space), and let {M̂i}Ni=1 be realized masks obtained from the rendered SVG (via ID/color tags or raster
segmentation). Define

IoU(Mi, M̂i) =
|Mi ∩ M̂i|
|Mi ∪ M̂i|

, Overlap% = 100 · 1
N

N∑
i=1

IoU(Mi, M̂i).

Font Match % (typography control). For each specified text slot t with target font attributes font⋆t =

(family,weight,style), parse realized <text> nodes to recover f̂ontu. Greedily match slots to nodes by
maximum string overlap of textual content, then compute

Font Match% = 100 · 1
T

T∑
t=1

1{f̂ontu(t) = font⋆t },

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(optionally report a relaxed variant counting family-only matches).

CLIP Score (prompt alignment). Render the SVG to an image R(x); compute text and image embeddings et =
CLIPtext(p), ei = CLIPimg(R(x)). Report cosine similarity

CLIP =
e⊤t ei
∥et∥ ∥ei∥

.

CLIP-Aesthetic (design quality proxy). Apply the LAION aesthetic predictor a(·) on the image embedding of R(x):

CLIP-Aesthetic = a
(
CLIPimg(R(x))

)
,

(higher is better; model outputs are typically on a 1–10 scale).

ROUGE-L Recall (RLR) on SVG copy. Extract concatenated text y(x) from all <text> nodes (reading order heuris-
tic). Let p be the prompt string. With LCS(y, p) the longest common subsequence length,

RLR =
LCS(y(x), p)

|p|
.

Quality retention (LPIPS). Compare the controlled rendering R(x̃) to the same backbone’s uncontrolled rendering
R(xbase) under identical prompts:

LPIPS = LPIPS
(
R(x̃), R(xbase)

)
(lower is better),

and optionally a normalized retention score Retain = 1− LPIPS.

Token complexity. Sequence length in tokens:

Tokens = |x| and ∆Tokens = |x| − |xbase|.

Generation time. Wall-clock latency per sample (seconds) measured end-to-end.

Well-Formedness Satisfaction Rate (WFSR). With a strict SVG parserR,

WFSR = 100 · 1
N

N∑
n=1

1{R accepts SVG(x(n))}.

E USE OF LARGE LANGUAGE MODELS (LLMS).

We did not use LLMs for research ideation, algorithm design, or writing. Their role was limited to serving as an
evaluation tool: we used LLMs to assess and compare outputs of our approach against baselines under specific design
constraints, ensuring consistency and scalability in the evaluation process.

26

	Introduction
	Related works
	I-Projection Guided Constrained Decoding
	Information-Projection Solution

	STaMP: Soft Tilt–and–Mask Policy
	Soft Tilt: local approximation to the optimal conditional
	Mask: viability-preserving hard enforcement
	Engineering Choices and Implementation Recipe

	Results
	Model-Agnostic Control
	RQ1 Key Results:

	End-to-End Design
	RQ2 Key Results:

	Comparative Control
	RQ3 Key Results:

	Conclusion
	Theoretical Guarantees of STaMP
	Hard‑Validity (Soundness) of STaMP
	Mask‑only Conditioning (when =0)
	Existence & Uniqueness of the I‑Projection
	Soft‑moment calibration (existence / uniqueness / convergence)
	Chain‑Rule KL Decomposition (Token‑Level Surrogate is Exact)
	Oracle Consistency (Exactness if Components are Exact)
	No Dead‑Ends Under Feasibility (Progress/Liveness)
	Efficiency comparison - STaMP vs. rejection / i.i.d. sampling

	Additional Qualitative Results
	End-to-End Design Generation Results
	Unconstrained Design Generation
	Constrained Design Generation

	Design- and Control-Specific Evaluation Metrics
	Use of Large Language Models (LLMs).

