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Abstract

Generating synthetic data, with or without differential privacy, has attracted signifi-
cant attention as a potential solution to the dilemma between making data easily
available, and the privacy of data subjects. Several works have shown that consis-
tency of downstream analyses from synthetic data, including accurate uncertainty
estimation, requires accounting for the synthetic data generation. There are very
few methods of doing so, most of them for frequentist analysis. In this paper, we
study how to perform consistent Bayesian inference from synthetic data. We prove
that mixing posterior samples obtained separately from multiple large synthetic
datasets converges to the posterior of the downstream analysis under standard regu-
larity conditions when the analyst’s model is compatible with the data provider’s
model. We also present several examples showing how the theory works in practice,
and showing how Bayesian inference can fail when the compatibility assumption
is not met, or the synthetic dataset is not significantly larger than the original.

1 Introduction

Synthetic data has the potential of opening privacy-sensitive datasets for widespread analysis. The
most convenient and straightforward way for downstream analysts to analyse synthetic data is using
the same method that would be used with real data. However, ignoring the additional stochasticity
arising from the synthetic data generation will yield biased results and overconfident uncertainty
estimates (Raghunathan et al. 2003; Räisä et al. 2023; Wilde et al. 2021). This is especially
problematic when differential privacy (DP) (Dwork et al. 2006b) is used to guarantee the privacy
of the synthetic data, as it requires adding extra noise to the synthetic data generation process. This
problem creates the need for noise-aware analyses that account for the synthetic data generation.

For frequentist downstream analyses, it is possible to account for the extra uncertainty using multiple
synthetic datasets (Raghunathan et al. 2003; Räisä et al. 2023) while reusing the existing analysis
method that would be used with real data. For Bayesian analyses, the only clearly noise-aware
method (Wilde et al. 2021) requires both public data to correct the analysis, and a more complicated
analysis process.

We study the applicability of multiple synthetic datasets to synthetic data, aiming the bring the
simplicity of the frequentist methods using multiple synthetic datasets to Bayesian downstream
analysis. The frequentist methods using multiple synthetic datasets were derived from methods in
missing data imputation (Rubin 1987), so our starting point is the method of Gelman et al. (2014) for
Bayesian inference with missing data. They proposed inferring the downstream posterior by imputing
multiple completed datasets, inferring the analysis posterior for each completed dataset separately,
and mixing the posteriors together. We investigate whether this method is also applicable to synthetic
data.
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Contributions

1. We study inferring the downstream analysis posterior by generating multiple synthetic
datasets, inferring the analysis posterior for each synthetic dataset as if it were the real
dataset, and mixing the posteriors together. We find two important conditions for consistent
Bayesian inference in this setting: synthetic datasets that are larger than the original one,
and a notion of compatibility between the data provider’s and analyst’s models called
congeniality (Meng 1994), which we introduce in Section 2.1.

2. We prove that when congeniality is met and the Bernstein–von Mises, or a similar theorem,
applies, this method converges to the true posterior as the number of synthetic datasets and
the size of the synthetic datasets grow. These are presented in Section 2.

3. We evaluate this method on logistic regression and Gaussian mean estimation examples in
Section 3. We verify that the methods works in practice when the assumptions are met, and
examine what can happen when congeniality is not met.

2 Bayesian Inference from Synthetic Data

When the downstream analysis is Bayesian, the analyst wants to obtain the posterior p(Q|X, IA) of
some quantity Q ∈ Q given real data X and the background knowledge IA, such as priors, of the
analyst. We assume the analyst has a method to sample p(Q|X, IA) if they had access to real data,
and study what they can do when they only have access to synthetic data. We introduce Bayesian
inference and additional background material in Supplemental Section A.

In the DP case, the exact posterior is unobtainable, so we assume that X is only available through a
noisy summary s̃ (Ju et al. 2022; Räisä et al. 2023), so the posterior is p(Q|s̃, IA). To unify these
notations, we use Z to denote the observed values, so Z = X in the non-DP case, Z = s̃ in the DP
case, and the posterior of interest is p(Q|Z, IA). We summarise these random variables and their
dependencies in Figure 1, and give an introduction to DP in Supplemental Section A.2.

In order to introduce the synthetic data into the posterior of interest, we can decompose the posterior
as

p(Q|Z, IA) =
∫

p(Q|Z,X∗, IA)p(X
∗|Z, IA) dX∗, (1)

where we abuse notation by using X∗ as the variable to integrate over, so inside the integral X∗

is not a random variable. The decomposition in (1) means that we could sample p(Q|Z, IA) by

• θ: data generating model parameters
• X: real data
• X∗: hypothetical data
• Z: observed summary of X (Z = X without DP)
• XSyn: synthetic data, XSyn ∼ p(X∗|Z, IS)
• Q ∈ Q: estimated quantity in downstream analysis
• IS : synthetic data provider’s background informa-

tion
• IA: analyst’s background information

θ Q

X X∗

Z

XSyn

Figure 1: Left: random variables in noise-aware uncertainty estimation from synthetic data. Right: a
Bayesian network describing the dependencies of the random variables. This network is conditional
on either IS or IA, depending on whether viewed by the data provider or the analyst.
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first sampling the synthetic data from the posterior predictive XSyn ∼ p(X∗|Z, IA), and then
sampling Q ∼ p(Q|Z,X∗ = XSyn, IA). The posterior predictive decomposes as p(X∗|Z, IA) =∫
p(X∗|θ, IA)p(θ|Z, IA) dθ, where θ is the data generating model parameters, so it is sampled by

sampling θ ∼ p(θ|Z, IA), and then sampling XSyn ∼ p(X∗|θ, IA).
Note that X∗ and XSyn are not the same random variable. X∗ represents a hypothetical real dataset
that could be obtained if more data was collected, as seen in Figure 1, and it is not the synthetic
dataset. The synthetic dataset XSyn is a sample from the conditional distribution of X∗ given Z. For
this reason, p(Q|Z,X∗, IA) ̸= p(Q|Z, IA). To make our notation less cluttered, we write p( · |X∗, · )
in place of p( · |X∗ = XSyn, · ) in probabilities when the meaning is clear.

There are still two major issues with the decomposition in (1):

1. Sampling p(Q|Z,X∗, IA) requires access to Z, which defeats the purpose of using synthetic
data.

2. X∗ needs to be sampled conditionally on the analyst’s background information IA, while
the synthetic data provider could have different background information IS .

To solve the first issue, in Section 2.2 we show that if we replace p(Q|Z,X∗, IA) inside the integral
of (1) with p(Q|X∗, IA), the resulting distribution converges to the desired posterior,∫

p(Q|X∗, IA)p(X
∗|Z, IA) dX∗ → p(Q|Z, IA) (2)

in total variation distance as the size of X∗ grows. It should be noted that many synthetic data sets
XSyn ∼ p(X∗|Z, IA) will be needed to account for the integral over X∗.

The second issue is known as congeniality in the multiple imputation literature (Meng 1994; Xie and
Meng 2016). We look at congeniality in the context of Bayesian inference from synthetic data in
Section 2.1, and find that we can obtain p(Q|Z, IA) under appropriate assumptions on the relationship
between IA and IS .

Exactly sampling the LHS of (2) requires generating a synthetic dataset for each sample of p(Q|Z, IA),
which is not practical. However, we can compute a Monte-Carlo approximation for p(Q|Z, IA) by
generating m synthetic datasets XSyn

1 , . . . , XSyn
m ∼ p(X∗|Z, IA), drawing multiple samples from

each of the p(Q|X∗ = XSyn
i , IA), and mixing these samples, which allows us to obtain more than

one sample of p(Q|Z, IA) per synthetic dataset. We look at some properties of this in Supplemental
Section E, but we use the integral form in (2) in the rest of our theory.

2.1 Congeniality

In the decomposition (1) of the analyst’s posterior, X∗ should be sampled conditionally on the
analyst’s background information IA, while in reality the synthetic data provider could have different
background information IS .

A similar distinction has been studied in the context of missing data (Meng 1994; Xie and Meng
2016), where the imputer of missing data has a similar role as the synthetic data provider. Meng
(1994) found that combining inferences from many completed datasets requires that the probability
models of both parties are compatible in a certain sense, which they defined as congeniality.

As our examples with Gaussian distributions in Supplemental Section C show, some notion of
congeniality is also required in our setting. However, because we study synthetic data instead of
imputation, and Bayesian instead of frequentist downstream analysis, we need a different formal
definition. As the analyst only makes inferences on Q, it suffices that both the analyst and synthetic
data provider make the same inferences of Q:
Definition 2.1. The background information sets IS and IA are congenial for observation Z if

p(Q|X∗, IS) = p(Q|X∗, IA) (3)

for all X∗ and
p(Q|Z, IS) = p(Q|Z, IA). (4)

In the non-DP case, (4) is redundant, as it is implied by (3), but in the DP case, both are needed, as
the parties may draw different conclusions on X given Z = s̃.
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Combining congeniality and (2),∫
p(Q|X∗, IA)p(X

∗|Z, IS) dX∗ =

∫
p(Q|X∗, IS)p(X

∗|Z, IS) dX∗

→ p(Q|Z, IS) = p(Q|Z, IA),
(5)

where the convergence is in total variation distance as the size of X∗ grows. In the following, we
assume congeniality, and drop IA and IS from our notation.

2.2 Consistency Proof

To recap, we want to prove that the posterior from synthetic data,

p̄n(Q) =

∫
p(Q|X∗

n)p(X
∗
n|Z) dX∗

n, (6)

converges in total variation distance to p(Q|Z) as the size n of X∗
n grows. We prove this in

Theorem 2.4, which requires that both p(Q|Z,X∗
n) and p(Q|X∗

n) approach the same distribution as
n grows. We formally state this in Condition 2.2. In Lemma 2.3, we show that Condition 2.2 is a
consequence of the Bernstein–von Mises theorem (Theorem A.6) under some additional assumptions,
so we expect it to hold in typical settings.

To make the notation more compact, let Q̄+
n ∼ p(Q|Z,X∗

n), and let Q̄n ∼ p(Q|X∗
n).

Condition 2.2. For the observed Z and all Q, there exist distributions Dn such that

TV
(
Q̄+

n , Dn

) P−→ 0 and TV
(
Q̄n, Dn

) P−→ 0 (7)

as n → ∞, where the convergence in probability is over sampling X∗
n ∼ p(X∗

n|Z,Q).

The Bernstein–von Mises theorem (Theorem A.6) implies Condition 2.2 with some additional
assumptions:
Lemma 2.3. If the assumptions of Theorem A.6 (Condition A.5) hold for the downstream analysis
for all Q0, and the following assumptions:

(1) Z and X∗ are conditionally independent given Q; and

(2) p(Z|Q) > 0 for all Q,

hold, then Condition 2.2 holds.

Proof. The full proof is in Supplemental Section B.1. Proof idea: when Z and X∗ are conditionally
independent given Q,

p(Q|Z,X∗) ∝ p(X∗|Q)p(Z|Q)p(Q) (8)
so p(Q|Z,X∗) can be equivalently seen as the result of Bayesian inference with observed data
X∗ and prior p(Q|Z). As the only difference to p(Q|X∗) is the prior, the Bernstein–von Mises
theorem implies that both p(Q|Z,X∗) and p(Q|X∗) converge in total variation distance to the same
distribution.

Assumption (1) of Lemma 2.3 will hold if the downstream analysis treats its input data as an i.i.d.
sample from some distribution. Assumption (2) holds when the likelihood is always positive, and in
the DP case when the density of the privacy mechanism is also positive everywhere, which is the case
for common DP mechanisms like the Gaussian and Laplace mechanisms (Dwork and Roth 2014).

Next is the main theorem of this work: (2) holds under Condition 2.2.
Theorem 2.4. Under congeniality and Condition 2.2, TV (p(Q|Z), p̄n(Q)) → 0 as n → ∞.

Proof. The full proof is in Supplemental Section B.1. Proof idea: the proof consists of three steps.
The first two are in Lemma B.1 and the third is in Lemma B.2 in the Supplement. The first step
is showing that TV(Q̄n, Q̄

+
n )

P−→ 0 when X∗
n ∼ p(X∗

n|Z,Q) for fixed Z and Q. This is a simple
consequence of the triangle inequality and Condition 2.2, as total variation distance is a metric. In the
second step, we show that TV(Q̄n, Q̄

+
n )

P−→ 0 also holds when X∗
n ∼ p(X∗

n|Z). In the final step, we
show that this implies the claim.
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Figure 2: Posteriors in the DP logistic regression experiment, where Q are the regression coefficients.
The mixture of posteriors from synthetic data, p̄n(Q), (with nX∗/nX = 20, m = 400) is very close
the to the private posterior p(Q|s̃) computed using (1). Computing the posterior without synthetic data
with DP-GLM gives a somewhat wider posterior. The true parameter values are highlighted by the
grey dashed lines and shown in the panel titles. The privacy bounds are ϵ = 1, δ = n−2

X = 2.5 · 10−7.
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Figure 3: Convergence of the mixture of posteriors from synthetic data on Gaussian mean (µ)
estimation with known variance, with different sizes of the synthetic dataset (nX∗), while the size
of the real data (nX ) is constant. nX∗ = nX is clearly not enough, but nX∗ = 20nX is already
relatively good.

3 Examples

In this section, we present two examples: logistic regression on a toy dataset, with DP synthetic data,
and univariate Gaussian mean estimation.

Logistic Regression Example The data for the logistic regression example is a simple 3-d binary
toy dataset, (nX = 2000), with DP synthetic data, under the same setting as used by Räisä et al.
(2023) for frequentist logistic regression. We change the downstream task to Bayesian logistic
regression to evaluate our theory.

Under DP, Z is a noisy summary s̃ of the real data. We need synthetic data sampled from the posterior
predictive p(X∗|s̃), which is exactly what the NAPSU-MQ algorithm of Räisä et al. (2023) provides.
In NAPSU-MQ, s̃ is the values of user-selected marginal queries with added Gaussian noise. We used
the open-source implementation of NAPSU-MQ1 by Räisä et al. (2023), and describe NAPSU-MQ
in Supplemental Section A.2.

Because of the simplicity of this model, it is possible to use the exact posterior decomposition (1)
as a baseline, by using p(X|s̃) instead of p(X∗|s̃) to generate synthetic data. We give a detailed
description of this process in Supplemental Section D. We have also included the DP-GLM algo-
rithm (Kulkarni et al. 2021) that does not use synthetic data, and the non-DP posterior from the real
data as baselines. We obtained the code for DP-GLM from Kulkarni et al. (2021) upon request.

1https://github.com/DPBayes/NAPSU-MQ-experiments
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Figure 2 compares the mixture of posteriors from synthetic data p̄n(Q) from (6) that uses p(Q|X∗),
with nX∗/nX = 20 and m = 400 synthetic datasets, to the baselines. p̄n(Q) is very close to the
posterior p(Q|s̃) from (1). The DP-GLM posterior that does not use synthetic data is somewhat wider.
The privacy bounds are ϵ = 1, δ = n−2

X = 2.5 · 10−7.

We ran the experiment 100 times and also with ϵ = 0.1 and ϵ = 0.5, and plot coverages and widths
of credible intervals in Figure S4 in the Supplement. With ϵ = 1 and ϵ = 0.5, the coverages are
accurate and DP-GLM consistently produces wider intervals. With ϵ = 0.1, the mixture of synthetic
data posteriors likely needs more and larger synthetic datasets to converge, as it produced wider and
slightly overconfident intervals for one coefficient.

Gaussian Example In Figure 3, we examine how changing the size of the synthetic dataset affects
p̄n(Q) when estimating the mean µ of a univariate Gaussian with known variance. We see that when
the synthetic dataset has the same size as the real data (nX∗/nX = 1), p̄n(Q) has a much higher
variance than p(µ|X, IA), but when the synthetic dataset gets larger, p̄n(Q) gets closer to p(µ|X, IA).
See Supplemental Section C for more details on this setting, and additional results.

In the Supplement (Section C), we also look at what happens when congeniality is not met. In
the Gaussian mean estimation example, if the data provider and analyst do not have equal known
variances, p̄n(Q) no longer converges to p(µ|X, IA), as seen on the right in Figure S1. However,
p̄n(Q) still converges to p(µ|X, IS), so the result is still sensible. If the task were to infer the variance
σ2 of the Gaussian instead, and the parties had unequal known means, the situation is different, as
seen in Figure S3. In this case, the limit of p̄n(Q) can be different either parties’ posterior from real
data, with the difference depending on how different the known means for the parties are.

4 Discussion

Limitations A clear limitation of mixing posteriors from multiple synthetic datasets is the compu-
tational cost of analysing many large synthetic datasets, which may be substantial for more complex
Bayesian downstream models, where even a single analysis can be computationally expensive. How-
ever, the separate analyses can be run in parallel. We also expect that the information gained from
sampling the posteriors from a few synthetic datasets could be used to speed up sampling the others,
as they likely won’t bee too far from the sampled ones.

Under DP, noise-aware synthetic data generation is needed, which limits the settings in which the
method can currently be applied. However, if new noise-aware methods are developed in the future,
the method can immediately be used with them.

Condition 2.2 limits the applicability our theory to downstream analyses where the prior’s influence
vanishes as the sample size grows. This does not always happen for some models, such as some
infinite-dimensional models, models where the number of parameters increases with dataset size, and
models with a support that heavily depends on the parameters. The method also requires congeniality,
which basically requires the analyst’s prior to be compatible with the data provider’s. Our Gaussian
examples show that it is sometimes possible to recover useful inferences even without congeniality,
but not always, so an important direction for future research is separating these two cases, and finding
out what can be done in the latter case.

Conclusion We considered the problem of consistent Bayesian inference of downstream analyses
using multiple, potentially DP, synthetic datasets, and studied an inference method that mixes the
posteriors from multiple large synthetic datasets. We proved, under congeniality and the general
and well-understood regularity conditions of the Bernstein–von Mises theorem, that the method
is asymptotically exact as the sizes of the synthetic datasets grow. We studied the method in two
examples: non-private Gaussian mean (or variance) estimation and DP logistic regression. In the
former, we were able to use the analytically tractable structure of the setting to derive additional
properties of the method, in particular examining what can happen without congeniality. In both
settings, we experimentally validated our theory, and showed that the method works in practice. This
greatly expands the understanding of Bayesian inference from synthetic data, filling a major gap in
the synthetic data analysis literature.
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A Background

A.1 Bayesian Inference

Bayesian inference is a paradigm of statistical inference where the data analyst’s uncertainty in a
quantity Q after observing data X is represented using the posterior distribution p(Q|X) (Gelman
et al. 2014). The posterior is given by Bayes’ rule:

p(Q|X) =
p(X|Q)p(Q)∫

p(X|Q′)p(Q′) dQ′ , (9)

where p(X|Q) is the likelihood of observing the data X for a given value of Q, and p(Q) is the
analyst’s prior of Q. Computing the denominator is typically intractable, so analysts often use
numerical methods to sample p(Q|X) (Gelman et al. 2014).

Total Variation Distance A crucial component of our theory is the notion of total variation distance
between random variables, which is used to measure the difference between two random variables or
probability distributions.
Definition A.1. The total variation distance between random variables (or distributions) P1 and P2

is
TV(P1, P2) = sup

A
|Pr(P1 ∈ A)− Pr(P2 ∈ A)|, (10)

where A is any measurable set.

As a slight abuse of notation, we allow the arguments of TV(·, ·) to be random variables, probability
distributions, or probability density functions interchangeably.
Lemma A.2 (Kelbert (2023)). Properties of total variation distance:

1. For probability densities p1 and p2,

TV(p1, p2) =
1

2

∫
|p1(x)− p2(x)|dx. (11)

2. Total variation distance is a metric.

3. Pinsker’s inequality: for distributions P1 and P2,

TV(P1, P2) ≤
√

1

2
KL(P1 ||P2) (12)

4. Invariance to bijections: if f is a bijection and P1 and P2 are random variables,

TV(f(P1), f(P2)) = TV(P1, P2) (13)

We also occasionally write TV(p1, p2) for probability densities p1 and p2 as

TV(p1, p2) = sup
h

∣∣∣∣∫ h(x)p1(x) dx−
∫

h(x)p2(x) dx

∣∣∣∣ (14)

where h is an indicator function of some measurable set A.

Bernstein–von Mises Theorem It turns out that in many typical settings, the prior’s influence on
the posterior vanishes when the dataset X is large. A basic example of this is the Bernstein–von
Mises theorem (van der Vaart 1998), which informally states that under some regularity conditions,
the posterior approaches a Gaussian that does not depend on the prior as the size of the dataset
increases.

The version of the Bernstein–von Mises theorem we use is from van der Vaart (1998). To state the
regularity conditions, we need two definitions:
Definition A.3. A parametric probability density pQ is differentiable in quadratic mean at Q0 if
there exists a measurable vector-valued function ℓ̇Q0

such that, as Q → Q0,∫ (√
pQ(x)−

√
pQ0(x)−

1

2
(Q−Q0)

T ℓ̇Q0(x)
√

pQ0(x)

)2

dx = o(||Q−Q0||22). (15)
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Definition A.4. A randomised test is a function ϕ : X → [0, 1].

The interepretation of ϕ(X) is the probability of rejecting some null hypothesis after observing data
X .

Now we can state the regularity conditions of the theorem:
Condition A.5 (van der Vaart (1998)). For true parameter value Q0 and observed data Xn:

1. The datapoints of Xn are i.i.d.

2. The likelihood p(x|Q) for a single datapoint x is differentiable in quadratic mean at Q0.

3. The Fisher information matrix of p(x|Q) is nonsingular at Q0.

4. For every β > 0, there exists a sequence of randomised tests ϕn such that

p(Xn|Q0)ϕn(Xn) → 0, sup
||Q−Q0||2≥β

p(Xn|Q)(1− ϕn(Xn)) → 0. (16)

5. The prior p(Q) is absolutely continuous (as a measure) in a neighbourhood of Q0 with a
continuous positive density at Q0.

Now we can state the theorem:
Theorem A.6 (Bernstein–von Mises (van der Vaart 1998)). Let n denote the size of the dataset
Xn. Under regularity conditions stated in Condition A.5, for true parameter value Q0, the posterior
Q̄(Xn) ∼ p(Q|Xn) satisfies

TV
(√

n(Q̄(Xn)−Q0),N (µ(Xn),Σ)
) P−→ 0 (17)

as n → ∞ for some µ(Xn) and Σ, that do not depend on the prior, where the convergence in
probability is over sampling Xn ∼ p(Xn|Q0).

A.2 Differential Privacy and Noise-Aware Synthetic Data

Differential privacy (DP) (Dwork et al. 2006b) quantifies the privacy loss from releasing the results
of analysing data. The quantification is done by looking at the output distributions of the analysis
algorithm for two datasets that differ in a single data subject (Dwork and Roth 2014):
Definition A.7. An algorithm M is (ϵ, δ)-DP if

Pr(M(X) ∈ S) ≤ eϵ Pr(M(X ′) ∈ S) + δ (18)

for all measurable sets S and all datasets X,X ′ that differ in one data subject.

The choice of ϵ and δ is a matter of policy (Dwork 2008). One should set δ ≪ 1
n for n datapoints, as

δ ≈ 1
n permits mechanisms that clearly violate privacy (Dwork and Roth 2014).

A common primitive for making an algorithm DP is the Gaussian mechanism (Dwork et al. 2006a),
which simply adds Gaussian noise to the output of a function:
Definition A.8. The Gaussian mechanism with noise variance σ2

DP and function f outputs f(X) +
N (0, σ2

DP I) for input X .

For a given (ϵ, δ)-bound and function f , the required value for σ2
DP can be computed tightly using

the analytical Gaussian mechanism (Balle and Wang 2018).

Noise-Aware Private Synthetic Data To solve the uncertainty estimation problem for frequentist
analyses from DP synthetic data, Räisä et al. (2023) developed a noise-aware algorithm for generating
synthetic data called NAPSU-MQ. NAPSU-MQ takes discrete data, summarises it with marginal
queries, releases the query values under DP with the Gaussian mechanism, and finally generates
multiple synthetic datasets. The downstream analysis is done on each synthetic dataset, and the
results are combined using Rubin’s rules for synthetic data (Raghunathan et al. 2003; Rubin 1993),
which use the multiple analysis results to account for the extra uncertainty coming from the synthetic
data generation.
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The synthetic data is generated by sampling the posterior predictive distribution

p(X∗|s̃) =
∫

p(X∗|θ)p(θ|s̃) dθ. (19)

The conditioning on s̃ and including the Gaussian mechanism in the model is what makes NAPSU-
MQ noise-aware, and allows Rubin’s rules to accurately account for the synthetic data generation and
DP noise in the downstream analysis.

A.3 Bayesian Inference with Gaussian Models

In this section, we collect well-known results on Bayesian inference of a Gaussian mean. See Gelman
et al. (2014) for proofs.

Scaled inverse-chi-square distribution This parameterisation of the inverse gamma distribution is
convenient in this setting.

Inv-χ2(ν, s2) = Inv-Gamma
(
α =

ν

2
, β =

ν

2
s2
)
. (20)

If θ ∼ Inv-χ2(ν, s2), θ > 0,

p(θ) =
(ν2 )

ν
2

Γ(ν2 )
sνθ−( ν

2+1)e−
νs2

2θ (21)

E(θ) =
ν

ν − 2
s2, ν > 2 (22)

Var(θ) =
2ν2

(ν − 2)2(ν − 4)
s4, ν > 4. (23)

Gaussian Model with Known Variance When the variance of the data is known to be σ2
k, and only

the mean is unknown, the conjugate prior is another Gaussian, and we get the following inference
problem:

µ ∼ N (µ0, σ
2
0) (24)

xi|µ ∼ N (µ, σ2
k). (25)

The posterior with n datapoints with sample mean X̄ is:

µ|X ∼ N (µn, σ
2
n) (26)

µn =

1
σ2
0
µ0 +

n
σ2
k
X̄

1
σ2
0
+ n

σ2
k

(27)

1

σ2
n

=
1

σ2
0

+
n

σ2
k

. (28)

Gaussian Model with Unknown Variance When the variance of the data is also unknown, the
conjugate prior is a inverse-chi-squared for the variance, and Gaussian for the mean, which gives the
following inference problem:

σ2 ∼ Inv-χ2(ν0, σ
2
0) (29)

µ|σ2 ∼ N
(
µ0,

σ2

κ0

)
(30)

xi|µ, σ2 ∼ N (µ, σ2). (31)

The joint posterior of µ and σ2 for n datapoints is:

σ2|X ∼ Inv-χ2(νn, σ
2
n) (32)

µ|σ2, X ∼ N
(
µn,

σ2

κn

)
(33)

(34)
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with

X̄ =
1

n

n∑
i=1

xi (35)

s2 =
1

n− 1

n∑
i=1

(xi − X̄)2 (36)

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
X̄ (37)

κn = κ0 + n (38)
νn = ν0 + n (39)

νnσ
2
n = ν0σ

2
0 + (n− 1)s2 +

κ0n

κ0 + n
(X̄ − µ0)

2. (40)

The marginal posterior of µ is

µ|X ∼ tνn

(
µn,

σ2
n

κn

)
. (41)

B Missing Proofs

B.1 Consistency Proof

For ease of reference, we repeat Theorem A.6 and Condition 2.2:
Theorem A.6 (Bernstein–von Mises (van der Vaart 1998)). Let n denote the size of the dataset
Xn. Under regularity conditions stated in Condition A.5, for true parameter value Q0, the posterior
Q̄(Xn) ∼ p(Q|Xn) satisfies

TV
(√

n(Q̄(Xn)−Q0),N (µ(Xn),Σ)
) P−→ 0 (17)

as n → ∞ for some µ(Xn) and Σ, that do not depend on the prior, where the convergence in
probability is over sampling Xn ∼ p(Xn|Q0).

Recall that Q̄+
n ∼ p(Q|Z,X∗

n), and Q̄n ∼ p(Q|X∗
n).

Condition 2.2. For the observed Z and all Q, there exist distributions Dn such that

TV
(
Q̄+

n , Dn

) P−→ 0 and TV
(
Q̄n, Dn

) P−→ 0 (7)

as n → ∞, where the convergence in probability is over sampling X∗
n ∼ p(X∗

n|Z,Q).
Lemma 2.3. If the assumptions of Theorem A.6 (Condition A.5) hold for the downstream analysis
for all Q0, and the following assumptions:

(1) Z and X∗ are conditionally independent given Q; and

(2) p(Z|Q) > 0 for all Q,

hold, then Condition 2.2 holds.

Proof. Under Assumption (1)

p(Q|Z,X∗
n) ∝ p(X∗

n|Q)p(Z|Q)p(Q) (42)

so we can view both p(Q|Z,X∗
n) and p(Q|X∗

n) as the posteriors for the same Bayesian inference
problem with observed data X∗

n, and priors p(Q|Z) ∝ p(Z|Q)p(Q) and p(Q), respectively. Due
to Condition A.5 (5) and Assumption (2), p(Q|Z) has an everywhere positive density. Recall that
Q̄+

n ∼ p(Q|Z,X∗
n) and Q̄n ∼ p(Q|X∗

n). Now, Theorem A.6 gives

TV
(√

n(Q̄+
n −Q0),N (µn,Σ)

) P−→ 0 (43)

and
TV

(√
n(Q̄n −Q0),N (µn,Σ)

) P−→ 0 (44)

12



as n → ∞, where µn,Σ are equal in the two cases because they do not depend on the prior. The
probability is over X∗

n ∼ p(X∗
n|Q0). Because of Assumption (1), p(X∗

n|Q0) = p(X∗
n|Z,Q0), so the

convergence also holds with probability over X∗
n ∼ p(X∗

n|Z,Q0). These hold for any Q0. Because
the function fn(q) =

√
n(q −Q0) is a bijection and total variation distance is invariant to bijections,

Condition 2.2 holds with Dn being the pushforward distribution Dn = f−1
n ◦ N (µn,Σ), with the Q

of Condition 2.2 being Q0. Note that Dn is allowed to depend on Q in Condition 2.2 due to the order
of quantifiers.

Lemma B.1. Under Condition 2.2,

TV(Q̄+
n , Q̄n)

P−→ 0 (45)
as n → ∞, with the probability over X∗

n ∼ p(X∗
n|Z).

Proof. Total variation distance is a metric, so
TV

(
Q̄+

n , Q̄n

)
≤ TV

(
Q̄+

n , Dn

)
+TV

(
Q̄n, Dn

)
(46)

so by Condition 2.2
TV

(
Q̄+

n , Q̄n

) P−→ 0 (47)
as n → ∞, with the probability over X∗

n ∼ p(X∗
n|Z,Q).

It remains to show (47) with the probability over X∗
n ∼ p(X∗

n|Z) instead of X∗
n ∼ p(X∗

n|Z,Q).
With X∗

n ∼ p(X∗
n|Z), for any ϵ > 0,

Pr
X∗

n|Z
(TV(Q̄+

n , Q̄n) > ϵ) =

∫
Pr

X∗
n|Z,Q

(TV(Q̄+
n , Q̄n) > ϵ)p(Q|Z) dQ (48)

(47) holds for any Q, so
lim
n→∞

Pr
X∗

n|Z,Q
(TV(Q̄+

n , Q̄n) > ϵ) = 0 (49)

The dominated convergence theorem then implies that
lim
n→∞

Pr
X∗

n|Z
(TV(Q̄+

n , Q̄n) > ϵ) = 0 (50)

so
TV(Q̄+

n , Q̄n)
P−→ 0 (51)

as n → ∞, with the probability over X∗
n ∼ p(X∗

n|Z).

Lemma B.2. Let yn ∼ Un be an arbitrary sequence of continuous random variables and let S(yn),
T (yn) be continuous random variables that depend on yn. Let the density functions of S(yn), T (yn)
and Un be fS(yn), fT (yn) and fUn , respectively. If

TV(S(yn), T (yn))
P−→ 0 (52)

as n → ∞, where the probability is over yn ∼ Un, then

TV

(∫
fS(yn)(x)fUn

(yn) dyn,

∫
fT (yn)(x)fUn

(yn) dyn

)
→ 0 (53)

as n → ∞.

Proof. Let h be an indicator function of x over any measurable set and let ϵ > 0. Then∣∣∣∣∫ h(x)

∫
fS(yn)(x)fUn

(yn) dyn dx−
∫

h(x)

∫
fT (yn)(x)fUn

(yn) dyn dx

∣∣∣∣ (54)

=

∣∣∣∣∫ h(x)

∫
fUn(yn)

(
fS(yn)(x)− fT (yn)(x)

)
dyn dx

∣∣∣∣ (55)

=

∣∣∣∣∫ fUn
(yn)

∫
h(x)

(
fS(yn)(x)− fT (yn)(x)

)
dxdyn

∣∣∣∣ (56)

≤
∫

fUn
(yn)

∣∣∣∣∫ h(x)
(
fS(yn)(x)− fT (yn)(x)

)
dx

∣∣∣∣ dyn (57)

=

∫
fUn(yn)

∣∣∣∣∫ h(x)fS(yn)(x) dx−
∫

h(x)fT (yn)(x) dx

∣∣∣∣ dyn (58)
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Because TV(S(yn), T (yn))
P−→ 0, for large enough n, there is a set Yn with TV(S(yn), T (yn)) <

ϵ
2

for all yn ∈ Yn, and Pr(yn ∈ Y C
n ) < ϵ

2 . As

TV(S(yn), T (yn)) = sup
h

∣∣∣∣∫ h(x)fS(yn)(x) dx−
∫

h(x)fT (yn)(x) dx

∣∣∣∣ ≤ 1 (59)

now ∫
fUn

(yn)

∣∣∣∣∫ h(x)fS(yn)(x) dx−
∫

h(x)fT (yn)(x) dx

∣∣∣∣ dyn (60)

=

∫
Yn

fUn(yn)

∣∣∣∣∫ h(x)fS(yn)(x) dx−
∫

h(x)fT (yn)(x) dx

∣∣∣∣ dyn
+

∫
Y C
n

fUn
(yn)

∣∣∣∣∫ h(x)fS(yn)(x) dx−
∫

h(x)fT (yn)(x) dx

∣∣∣∣ dyn (61)

<

∫
Yn

fUn
(yn)

ϵ

2
dyn +

∫
Y C
n

fUn
(yn) dyn (62)

<
ϵ

2
+

ϵ

2
(63)

= ϵ (64)

for large enough n. Now

TV

(∫
fS(yn)(x)fUn

(yn) dy,

∫
fT (yn)(x)fUn

(yn) dyn

)
(65)

= sup
h

∣∣∣∣∫ h(x)

∫
fS(yn)(x)fUn

(yn) dyn dx−
∫

h(x)

∫
fT (yn)(x)fUn

(yn) dyn dx

∣∣∣∣ (66)

< ϵ (67)

for any ϵ > 0 with large enough n.

Theorem 2.4. Under congeniality and Condition 2.2, TV (p(Q|Z), p̄n(Q)) → 0 as n → ∞.

Proof. The claim follows from Lemma B.2 with yn = X∗
n, Un = p(X∗

n|Z), S(yn) ∼ p(Q|X∗
n) and

T (yn) ∼ p(Q|Z,X∗
n). These meet the condition for Lemma B.2 due to Lemma B.1.

C Gaussian Examples

C.1 Non-private Gaussian Mean Estimation

Our first Gaussian example is very simple: the analyst infers the mean µ of a Gaussian distribution
with known variance from synthetic data that has been generated from the same model. The posteriors
for this setting can be found in Supplemental Section A.3. To differentiate the variables for the analyst
and data provider, we use bars for the data provider (like σ̄2

0) and hats for the analyst (like σ̂2
0).

When the synthetic data is generated from the known variance model with known variance σ̄2
k, we

sample from the posterior predictive p(X∗|X) as

µ̄|X ∼ N (µ̄nX
, σ̄2

nX
), X∗|µ̄ ∼ NnX∗ (µ̄, σ̄2

k) (68)

µ̄nX
=

1
σ̄0

2 µ̄0 +
nX

σ̄2
k
X̄

1
σ̄2
0
+ nX

σ̄2
k

,
1

σ̄2
nX

=
1

σ̄2
0

+
nX

σ̄2
k

. (69)

NnX∗ denotes a Gaussian distribution over nX∗ i.i.d. samples.

When downstream analysis is the model with known variance σ̂2
k, we have

µ̂|X∗ ∼ N (µ̂nX∗ , σ̂
2
nX∗ ), µ̂nX∗ =

1
σ̂0

2 µ̂0 +
nX∗
σ̂2
k
X̄∗

1
σ̂2
0
+ nX∗

σ̂2
k

,
1

σ̂2
nX∗

=
1

σ̂2
0

+
nX∗

σ̂2
k

. (70)
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Figure S1: Simulation results for the Gaussian mean estimation example, showing that the mixture of
posteriors from synthetic data in green converges. In the left panel, both the analyst and data provider
have the correct known variance. The blue and orange lines overlap, as both parties have the same
p(µ|X). On the right, the analyst’s known variance is too small (σ̂2

k = 1
4 σ̄

2
k), so congeniality is not

met, but the mixture of posteriors from synthetic data, p̄n(µ), still converges to the data provider’s
posterior. In both panels, m = 400 and nX∗

nX
= 20.

Next we check where the mean and variance of µ∗ ∼ p̄n(µ) converge when nX∗ → ∞:

E(µ∗) = E(E(µ∗|X∗)) = E (µ̂nX∗ ) (71)

= E

( 1
σ̂2
0
µ̂0 +

nX∗
σ̂2
k
X̄∗

1
σ̂2
0
+ nX∗

σ̂2
k

)
(72)

=

1
σ̂2
0
µ̂0 +

nX∗
σ̂2
k
E(X̄∗)

1
σ̂2
0
+ nX∗

σ̂2
k

(73)

→ E(X∗) = µ̄nX
(74)

as nX∗ → ∞.

Var(µ∗) = E(Var(µ∗|X∗)) + Var(E(µ∗|X∗)) (75)

= E(σ̂2
nX∗ ) + Var(µ̂nX∗ ) (76)

E(σ̂2
nX∗ ) = E

(
1

nX∗
σ̂2
k

+ 1
σ̂2
0

)
→ 0, nX∗ → ∞ (77)

Var (µ̂nX∗ ) = Var

 nX∗
σ̂2
k
X̄∗ + µ̂0

σ̂2
0

nX∗
σ̂2
k

+ 1
σ̂2
0

 =

( nX∗
σ̂2
k

nX∗
σ̂2
k

+ 1
σ̂2
0

)2

Var(X̄∗) (78)

Var(X̄∗) = E(Var(X̄∗|µ̄)) + Var(E(X̄∗|µ̄)) = 1

nX∗
E(Var(x∗

i )) + Var(µ̄) → Var(µ̄) = σ̄2
nX

(79)
as nX∗ → ∞.

Putting these together,

E(µ∗) → µ̄nX
(80)

Var(µ∗) → σ̄2
nX

(81)

as nX∗ → ∞.

µ∗ also has a Gaussian distribution, which we will show next. In

µ∗ ∼
∫

p(µ|X∗
n)p(X

∗
n|X)dX∗, (82)
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both p(µ|X∗
n) = N (µ̂nX∗ , σ̂

2
nX∗ ) and p(X∗

n|X) are Gaussian. µ̂nX∗ is a linear function of X∗
n, so

p(µ̂nX∗ |X) is also Gaussian. σ̂2
nX∗ does not depend on X∗, so µ∗ is the sum of a random variable

with distribution N (0, σ̂2
nX∗ ) and µ̂nX∗ , which is also Gaussian, meaning that µ∗ is Gaussian.

We test the theory with a numerical simulation in Figure S1. We generated the real data X of size
nX = 100 by i.i.d. sampling from N (1, 4). Both the analyst and data provider use N (0, 102) as the
prior. The data provider uses the correct known variance (σ̄2

k = 4), and the analyst either uses the
correct known variance (σ̂2

k = 4), or a too small known variance (σ̂2
k = 1), which is an example of

uncongeniality.

In the congenial case in the left panel of Figure S1, both parties have the same posterior given the real
data X , and the mixture of posteriors from synthetic data is very close to that. In the uncongenial case
in the right panel, where the analyst underestimates the variance, the parties have different posteriors
given X , but the mixture of synthetic data posteriors is still close to the data provider’s posterior.

In Figure 3, we examine the convergence of the mixture of posteriors from synthetic data under
congeniality. We see that setting nX∗ = nX is not enough, as the mixture of posteriors is significantly
wider than the analyst’s posterior. The synthetic dataset needs to be larger than the original, with
nX∗ = 5nX already giving a decent approximation and nX∗ = 20nX a rather good one. In Figure S2
in the Supplement, we also examine the effect of m on the mixture of synthetic data posteriors, and
see that m must also be sufficiently large, otherwise the method produces very jagged posteriors.

The plots of p(µ∗) in Figures S1, 3, S2 and are density functions of a mixture of Gaussians, where
each mixture component is the Gaussian posterior distribution from one synthetic dataset.

C.2 Gaussian with Known Mean, Unknown Variance

To asses the effects of uncongeniality when the downstream posterior is not Gaussian, we look at
Bayesian estimation of the variance of a Gaussian, with known mean. In this case, the data provider’s
prior is

σ̄2 ∼ Inv-χ2(ν̄0, σ̄
2
0) (83)

and their known mean is µ̄k. The synthetic data is generated from

v̄ =
1

nX

nX∑
i=1

(xi − µ̄k)
2 (84)

ν̄nX
= ν̄0 + nX (85)

σ̄2
nX

=
ν̄0σ̄

2
0 + nX v̄

ν̄0 + nX
(86)

σ̄2|X ∼ Inv-χ2(ν̄nX
, σ̄2

nX
) (87)

x∗
i |σ̄2 ∼ N (µ̄k, σ̄

2) (88)

The analyst’s prior is

σ̂2 ∼ Inv-χ2(ν̂0, σ̂
2
0) (89)

their known mean is µ̂k, and the downstream posterior is

v̂ =
1

nX∗

nX∗∑
i=1

(x∗
i − µ̂k)

2 (90)

ν̂nX∗ = ν̂0 + nX∗ (91)

σ̂2
nX∗ =

ν̂0σ̂
2
0 + nX∗ v̂

ν̂0 + nX∗
(92)

σ̂2|X∗ ∼ Inv-χ2(ν̂nX∗ , σ̂
2
nX∗ ) (93)
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Figure S2: Convergence of the mixture of synthetic data posteriors (in orange) with different values
of m and nX∗ in Gaussian mean estimation with known variance.

Denoting a sample from the mixture of synthetic data posteriors as σ2
∗, we have

E(σ2
∗) = E(E(σ2

∗|X∗)) (94)

= E
(

ν̂nX∗

ν̂nX∗ − 2
σ̂2
nX∗

)
(95)

=
ν̂0 + nX∗

ν̂0 + nX∗ − 2
E
(
σ̂2
nX∗

)
(96)

=
ν̂0 + nX∗

ν̂0 + nX∗ − 2

ν̂0σ̂
2
0 + nX∗E(v̂)
ν̂0 + nX∗

(97)

=
ν̂0σ̂

2
0 + nX∗E(v̂)

ν̂0 + nX∗ − 2
(98)
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E(v̂) =
1

nX∗

nX∗∑
i=1

E((x∗
i − µ̂k)

2) (99)

=
1

nX∗

nX∗∑
i=1

E((x∗
i )

2 − 2x∗
i µ̂k + µ̂2

k) (100)

=
1

nX∗

nX∗∑
i=1

(
E((x∗

i )
2)− 2µ̄kµ̂k + µ̂2

k

)
(101)

= µ̂2
k − 2µ̄kµ̂k +

1

nX∗

nX∗∑
i=1

E((x∗
i )

2) (102)

= µ̂2
k − 2µ̄kµ̂k +

1

nX∗

nX∗∑
i=1

(E(x∗
i )

2 +Var(x∗
i )) (103)

= µ̂2
k − 2µ̄kµ̂k +

1

nX∗

nX∗∑
i=1

(µ̄2
k +Var(x∗

i )) (104)

= µ̄2
k + µ̂2

k − 2µ̄kµ̂k +Var(x∗
i ) (105)

= (µ̄k − µ̂k)
2 +Var(x∗

i ) (106)

Var(x∗
i ) = Var(E(x∗

i |σ̄2)) + E(Var(x∗
i |σ̄2)) (107)

= E(σ̄2) (108)

Putting these together,
E(σ2

∗) → E(σ̄2) + (µ̄k − µ̂k)
2, (109)

as nX∗ → ∞, so mixing the downstream posteriors can only recover the data provider’s posterior
when both parties have equal known means.

We verify this with a simulation shown in Figure S3. Both the data provider and analyst use the
Gaussian with unknown variance, known mean as their model. Otherwise, the setting is identical with
the other Gaussian examples. When both parties have the correct known mean, p̄n(σ2) converges as
expected, but when the analyst has an incorrect known mean, p̄n(σ2) converges to neither party’s
posterior. However, after applying the mean correction from (109), p̄n(σ2) appears to have the same
variance and shape as the data provider’s posterior.

D Toy Data Logistic Regression Details

Setting Details In the toy data setting of Räisä et al. (2023), the real dataset consists of nX = 2000
i.i.d. samples of three binary variables. The first two variables are sampled with independent coinflips,
and the third is sampled from logistic regression on the other two, with coefficients (1, 0). The prior
for the downstream logistic regression is N (0, 10I).

We generate synthetic data with the NAPSU-MQ algorithm (Räisä et al. 2023), instructing the
algorithm to generate m synthetic datasets of size nX∗ . DP-GLM doesn’t use synthetic data, so we
run it directly on the real data. For the privacy bounds, we vary ϵ, and set δ = n−2

X = 2.5 · 10−7,
which is how DP mechanisms are typically evaluated.

Hyperparameters For NAPSU-MQ, we use the hyperparameters of Räisä et al. (2023), except
we used NUTS (Hoffman and Gelman 2014) with 200 warmup samples and 500 kept samples for
ϵ ∈ {0.5, 1}, and 1500 kept samples for ϵ = 0.1, as the posterior sampling algorithm. The prior is
N (0, 102I), and the marginal queries are the full set of 3-way marginals of all three variables.

The hyperparameters of DP-GLM are the L2-norm upper bound R for the covariates of the logistic
regression, a coefficient norm upper bound s, and the parameters of the posterior sampling algorithm
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Figure S3: Posteriors from estimating a Gaussian variance σ2 with known mean. On the right, both
the data provider and the analyst use the correct known mean, so p̄n(σ

2) converges as expected by
our theory. On the right, the analyst mean is incorrect, so the model is not congenial. In this case,
p̄n(σ

2) does not converge to either to analyst’s or the data provider’s posterior. After correcting the
mean of p̄n(σ2) as in (109), it appears to have the same variance and shape as the data provider’s
posterior. The gray line shows the true parameter value. In both panels, m = 400 and nX∗

nX
= 20.

DP-GLM uses. We set R =
√
2 so that the covariates do not get clipped, and set s = 5 after some

preliminary runs. The posterior sampling algorithm is NUTS (Hoffman and Gelman 2014) with 1000
warmup iterations and 1000 kept samples from 4 parallel chains.

Plotting Details The plotted density of DP-GLM in Figure 2 is a kernel density estimate from the
posterior samples DP-GLM returns. The non-DP density is a Laplace approximation. Both synthetic
data methods use Laplace approximations in the downstream analysis, so their posteriors are mixtures
of these Laplace approximations for each synthetic dataset. This was also used in Figure S5.

Sampling the exact posterior In order to sample the exact posterior p(Q|s̃), we use another
decomposition:

p(Q|s̃) =
∫

p(Q|s̃, X)p(X|s̃) dX =

∫
p(Q|X)p(X|s̃) dX, (110)

where p(Q|s̃, X) = p(Q|X) due to the independencies of the graphical model in Figure 1. It remains
to sample p(X|s̃). This is not tractable in general, but is possible in the toy data setting due to using
the full set of 3-way marginals that covers all possible values of a datapoint, and the simplicity of the
toy data.

We can decompose

p(X|s̃) =
∫

p(s|s̃)p(X|s) dθ dX =

∫
p(X|s)

∫
p(s, θ|s̃) dθ dX, (111)

so we can sample (s, θ) ∼ p(s, θ|s) and then sample X ∼ p(X|s) to obtain a sample from p(X|s̃).
Due to the simplicity of the toy data setting, sampling both p(s, θ|s) and p(X|s) is possible.

NAPSU-MQ uses the following Bayesian inference problem:

θ ∼ Prior (112)
X ∼ MEDn

θ (113)
s = a(X) (114)

s̃ ∼ N (s, σ2
DP ), (115)

where a are the marginal queries, σ2
DP is the noise variance of the Gaussian mechanism, and MEDn

θ
is the maximum entropy distribution (Räisä et al. 2023) with point probability

p(x) = exp(θTa(x)− θ0(θ)), (116)

where θ0 is the log-normalising constant.
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Figure S4: (a) Coverages of credible intervals in the toy data experiment. The mixture of synthetic
data posteriors is accurate, except with ϵ = 0.1, where it may not have converged yet. (b) Widths of
credible intervals in the toy data experiment. DP-GLM produces much wider intervals than other
methods, except with ϵ = 0.1.

In the toy data setting, a is the full set of 3-way marginals for all of the 3 variables. In other words,
a(x) is the one-hot coding of x, so s = a(X) is a vector of counts of how many times each of the 8
possible values is repeated in X . This means that sampling p(X|s) is simple:

1. For each possible value of a datapoint, find the corresponding count from s, and repeat that
datapoint according the that count.

2. Shuffle the datapoints to a random order.

As the downstream analysis p(Q|X) doesn’t depend on the order of the datapoints, the second step is
not actually needed.

To sample p(s, θ|s̃), we use a Metropolis-within-Gibbs sampler (Gilks et al. 1995) that sequentially
updates s and θ while keeping the other fixed. The proposal for θ is obtained from Hamiltonian Monte
Carlo (HMC) (Duane et al. 1987; Neal 2011). The proposal for s is obtained by repeatedly choosing
a random index in s to increment and another to decrement. It is possible to obtain negative values in
s from this proposal, but those will always be rejected by the acceptance test, as the likelihood for
them is 0.

To initialise the sampler, we pick an initial value for θ from a Gaussian distribution, and pick the
initial s by rounding s̃ to integer values, changing the rounded values such that they sum to n while
ensuring that all values are non-negative.
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Figure S5: Convergence of the mixture of synthetic data posteriors (in blue) with different values of
m and nX∗ in the toy data logistic regression experiment.

The step size for the HMC we used is 0.05, and the number of steps is 20. In the s proposal, we
repeat the combination of an increment and a decrement 30 times. We take 20000 samples in total
from 4 parallel chains, and drop the first 20% as warmup samples.

The method described in this section is similar to the noise-aware Bayesian inference method of
Ju et al. (2022). The difference between the two is that Ju et al. (2022) use X instead of s as the
auxiliary variable, and they sample the X proposals from the model, changing one datapoint at a
time. This makes their algorithm more generalisable.

E Finite Number of Synthetic Datasets

In practice, we only have a finite number of synthetic datasets, so we must further approximate

p(Q|Z) ≈
∫

p(Q|X∗
n)p(X

∗
n|Z) dX∗

n ≈ 1

m

m∑
i=1

p(Q|X∗
n = X∗

i,n), (117)

with X∗
i,n ∼ p(X∗

n|Z).
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Total variation distance is a metric, so

TV

(
1

m

m∑
i=1

p(Q|X∗
i,n), p(Q|Z)

)

≤ TV

(
1

m

m∑
i=1

p(Q|X∗
i,n), p̄n(Q)

)
+TV (p̄n(Q), p(Q|Z)) .

(118)

Theorem 2.4 gives
lim

n→∞
TV (p̄n(Q), p(Q|Z)) = 0. (119)

If, for all n, p(Q|X∗
n) is continuous for all X∗

n, p(Q|X∗
n) ≤ hn(X

∗
n) for an integrable function

hn(X
∗
n), and Q ⊂ Rd is compact, the uniform law of large numbers (Jennrich 1969, Theorem 2)

gives

sup
Q∈Q

∣∣∣∣∣ 1m
m∑
i=1

p(Q|X∗
n = X∗

i,n)− p̄n(Q)

∣∣∣∣∣→ 0 (120)

almost surely as m → ∞. If Q = Rd, we can represent Q as a countable union of compact sets Qk,
apply the uniform law of large numbers on each Qk, and use the union bound to obtain (120) for Q.
A similar decomposition of Q can be done for many other constrained parameter sets encountered in
practice.

This implies (van der Vaart 1998, Corollary 2.30)

lim
m→∞

TV

(
1

m

m∑
i=1

p(Q|X∗
i,n), p̄n(Q)

)
= 0 (121)

for almost all X∗
i,n, so

lim
n→∞

lim
m→∞

TV

(
1

m

m∑
i=1

p(Q|X∗
i,n), p(Q|Z)

)
= 0 (122)

almost surely when X∗
i,n ∼ p(X∗

n|Z).

Based on the experiment in Figure S2, it looks like

lim
m→∞

lim
n→∞

TV

(
1

m

m∑
i=1

p(Q|X∗
i,n), p(Q|Z)

)
̸= 0 (123)

because the distributions p(Q|X∗
i,n) become narrower as n increases, so a fixed number of them is

not enough to cover p(Q|Z). This means that in practice, the number of synthetic datasets should be
increased along with the size of the synthetic datasets.

F Relation to Missing Data Imputation

In the missing data setting, only a part Xobs of the complete dataset X is observed, while a part Xmis

is missing (Rubin 1987). To facilitate downstream analysis, the missing data is imputed by sampling
Xmis ∼ p(Xmis|Xobs, II). Analogously with synthetic data, II represents the imputer’s background
knowledge.

Like with synthetic data, we have the decomposition (Gelman et al. 2014)

p(Q|Xobs, IA) =

∫
p(Q|Xobs, Xmis, IA)p(Xmis|Xobs, IA) dXmis. (124)

If the analyst’s and imputer’s models are congenial in the sense that

p(Q|Xobs, IA) = p(Q|Xobs, II) (125)

and
p(Q|X, IA) = p(Q|X, II) (126)
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for any complete dataset X , then

p(Q|Xobs, IA) = p(Q|Xobs, II) =

∫
p(Q|Xobs, Xmis, II)p(Xmis|Xobs, II) dXmis

=

∫
p(Q|Xobs, Xmis, IA)p(Xmis|Xobs, II) dXmis,

(127)

so sampling p(Q|Xobs, IA) can be done by sampling Xmis ∼ p(Xmis|Xobs, II) multiple times,
sampling p(Q|Xobs, Xmis, IA) for each Xmis, and combining the samples. Unlike with synthetic
data, where sampling p(Q|X,X∗, IA) would require the original data and defeat the purpose of using
synthetic data, in the missing data setting, sampling p(Q|Xobs, Xmis, IA) is simply the analysis for a
complete dataset, so generating large imputed datasets is not required.
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