
Under review as a conference paper at ICLR 2024

EPISODE TRANSFORMER: MODEL-BASED EPISODIC
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Episodic Reinforcement Learning (ERL) with movement primitives (MPs) has re-
cently achieved significant success, especially in sparse and non-Markovian re-
ward scenarios. By reasoning directly at the trajectory level via MPs, ERL results
in smoother, energy-efficient policies and improved exploration capabilities for
many real-world tasks. However, these black-box optimization approaches have
very poor data-efficiency making them impractical for real-world applications. To
mitigate this drawback, we propose Episode Transformer, a model-based ERL al-
gorithm. Here, we learn a transformer-based episodic world model. To perform
control we train a policy, with trust region constraints, purely in the world model’s
imagination. We compare our approach to state-of-the-art step-based and episodic
RL methods on a variety of challenging robotic tasks under dense, sparse, and
non-Markovian reward settings. The results show that the Episode Transformer is
able to learn high-quality policies that retain all the benefits of previous deep ERL
methods while requiring up to 5x fewer environment samples.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has recently made some major breakthroughs in the field of
artificial intelligence (Silver et al., 2016; Berner et al., 2019; Akkaya et al., 2019). Most recent
advances in RL use step-based algorithms which means they repeatedly decide at each time step,
which action to take given the state of the environment. When applied to robotic control, a step-
based agent’s policy is thus trained in raw action spaces like torques, joint angles, or end-effector
positions, which forces the agent to make decisions at each time step of the trajectory. Consequently,
step-based RL requires Markovian reward definitions. However, there are a lot of everyday tasks that
require the agent to reason at a trajectory level rather than low-level raw step-based actions and that
are difficult to describe as a dense, Markovian reward.

The field of Episodic reinforcement learning (ERL) tackles this problem of reasoning at an episode
level by training policies that output parameterizations of an entire trajectory rather than each indi-
vidual time step. Concretely, an ERL agent learns to select parameters for a high-level trajectory
generator, such as a Movement Primitive Schaal et al. (2005); Paraschos et al. (2013), given a task
description called the context. By directly reasoning at the trajectory level, ERL offers a powerful
approach to addressing scenarios with sparse rewards, which are often easier and more intuitive to
define. For example, if we want to achieve energy-efficient, time-optimal reaching motions, a sparse
reward that only penalizes the distance to the goal in the last time step can be used. Since ERL
allows for exploration directly in the trajectory space, and thus reasoning about the global episode-
level task objective, the learning process is accelerated in such scenarios. In contrast, traditional
step-based RL must explore a vast action space without receiving intermediate rewards and may
struggle in sparse reward settings.

Similarly, ERL is more naturally suited for tasks with non-Markovian rewards. Consider for example
the task of a robot throwing objects into bins placed at different locations. Here the agent needs to
reason about the whole trajectory that it should take such that the object is imparted with the correct
momentum to reach the bin. This task would require a non-Markovian reward definition because
once the object is in the air, the robot can’t influence its trajectory. Thus the reward received by
the agent would depend on the entire trajectory and exploration at the trajectory level can result in
smooth, energy-efficient policies. The same holds true for any task with inherent non-Markovian

1

Under review as a conference paper at ICLR 2024

optimality descriptors, resulting in non-Markovian rewards e.g., the maximum height during a jump
or the minimum distance of a bat to a ball.

Recently, Deep Model-Free ERL (Bahl et al., 2020; Otto et al., 2023a) has shown superior perfor-
mance over state-of-the-art step-based methods in solving sparse and non-Markovian reward tasks.
However, data efficiency is a major downside for all of these methods. For instance, the approach
described in Otto et al. (2023a) requires an excessive number of interactions with the robot, as many
as 3 · 108 environment transitions for some tasks, which is often impracticable without informative
prior knowledge.

Model-based reinforcement learning methods (Chua et al., 2018; Robine et al., 2023) have shown the
potential to significantly reduce the sample complexity of model-free methods in step-based RL. In
this work, we propose a model-based Episodic Reinforcement Learning algorithm, namely Episode
Transformer, which learns a policy purely in the imagination of a transformer-based episodic world
model. Our experiments on several challenging environments with different reward modalities
(dense, sparse, and non-Markovian) show that the proposed approach can result in improved policies
with up to 5x fewer environment interactions.

2 PRELIMINARIES

2.1 MOVEMENT PRIMITIVES

Movement Primitives (MPs) are commonly used for representing and learning basic movements in
robotics, e.g., hitting and batting, grasping, etc. MP formulations allow for compact parameteriza-
tions of the robot’s control policy, usually in the form of a weight vector w. Given the compact
representation w, we use a trajectory generator ψ(w) to transform from the parameter space to a
trajectory τ . Modulating the MP parameters permits imitation and reinforcement learning as well as
adapting to different scenarios. There are several variants of MPs but they can be roughly split into
two categories: Dynamic Movement Primitives (DMPs) (Schaal, 2006) and Probabilistic Movement
Primitives (ProMPs) (Paraschos et al., 2013). The former uses a nonlinear dynamical system to
represent the mean of a trajectory, while the latter represents not just a single trajectory but a proba-
bility distribution over trajectories by using a linear Gaussian basis function model. We use ProMP
in this work to ensure a fairer comparison with ERL baselines, which use the same. However, DMP,
ProMP, or more recent deep variants (Sekar et al., 2020; Li et al., 2023) of these can be used as
abstract representations of trajectories in future extensions.

2.2 EPISODIC REINFORCEMENT LEARNING

In the contextual episodic reinforcement learning (ERL) framework, the agent is designed to solve
a task at a trajectory level. Given a context c, the goal of ERL is to learn a policy that maximizes a
reward function R(τ, c). However, as opposed to traditional step-based RL that outputs a low-level
action, the ERL policy is optimized over a distribution of movement primitive (MP) parameters
w. Since the MP parameter compactly represents an entire trajectory τ , this provides a powerful
mechanism to search directly over distributions of trajectories. The policy output πθ(w|c), is thus a
desired trajectory represented by the MP parameter, which is then executed in the actual environment
by a tracking controller without any further agent input.

Here, the context vector c characterizes the given task, for instance, given by a goal location or the
location of an object, and the tracking controller can be implemented as a simple PD controller. The
learning objective can thus be expressed as

argmax
θ

Ep(c)

[
Eπθ(w|c)[R(w, c)]

]
, (1)

where p(c) denotes the context distribution given by the task. Since there is no interaction or replan-
ning by the agent during the episode, this setting is also referred to as black-box RL (BBRL). The
return functionR(w, c) is not subject to any structural assumptions, and it can be any non-Markovian
function of the resulting trajectory due to the black-box nature of the problem.

2

Under review as a conference paper at ICLR 2024

Figure 1: Schematic of Episode Transformer. We learn an episodic world model g(c, ψ(w)), which
maps a context c and abstract high-level action in the form of movement primitive weights w to an
imagination of the world states, τ̂ = ê1:T , along with an estimation of the cumulative returns (R̂)
over an entire episode. The context c is usually a descriptor of the starting conditions in an episode
along with the final goal.

3 THE EPISODE TRANSFORMER

Recent advances in model-free deep ERL algorithms (Bahl et al., 2020; Otto et al., 2023a), though
powerful, come at the cost of sample inefficiency, making them impracticable for real-world robot
learning. To mitigate this, we propose a model-based alternative, namely Episode Transformer.

Model Based ERL Objective As opposed to the model-free ERL objective in Equation 1, which
assumes the cost/reward function R(w, c) is a black box and unknown, we learn a model corre-
sponding to the episodic reward Rϕ(w, c), where ϕ corresponds to the parameters of the learned
model. The learned model should approximate the true environment dynamics and the tracking con-
troller behaviour to make reliable predictions of the episodic returns. We use a Transformer variant
to learn this dynamics model and name the proposed method Episode Transformer. Given access to
a parameterized model Rϕ(w, c), the policy learning objective for model-based ERL is given as:

argmax
θ

Ep(c)Eπθ(w|c) [Rϕ(c,w)] . (2)

Agent components Similar to Hafner et al. (2019a), our agent learns behaviours purely in the imag-
ination of the learnt model and has three components, (i) model learning, (ii) behaviour learning,
and (iii) environment interaction. As detailed in Algorithm 1, Episode Transformer performs the
following operations throughout the agent’s lifetime, either interleaved or in parallel:

• Learning a model to predict the episodic cost/reward function Rϕ(w, c), which implicitly re-
quires knowledge of the forward dynamics of agent-environment interaction and low-level
tracking controllers. We use a transformer-based non-autoregressive architecture to achieve
this. The model objective and architecture are detailed in Section 2.2.

• Learning to reason with abstract high-level actions at a trajectory level using movement prim-
itive based policies πθ(w|c), as described in Section 3.2. The episodic policy is updated by
propagating gradients of episodic cost/reward estimates back through the transformer dynam-
ics.

• Executing the learned policy in the environment to collect new experiences and expand the
model dataset.

3

Under review as a conference paper at ICLR 2024

3.1 EPISODIC WORLD MODELS WITH TRANSFORMERS

Model Architecture We use a Transformer (Vaswani et al., 2017) to build the episodic world model,
gϕ(c, ψ(w)), and name it Episode Transformer. As opposed to traditional step-based world mod-
els (Deisenroth and Rasmussen, 2011; Hafner et al., 2019a), which work with low-level actions, the
episodic world model makes predictions about the reward/states of the world as a function of abstract
representations w of the desired episodic trajectory τ and context c. Concretely, the transformer
model is tasked to predict a scalar corresponding to the cumulated episodic return R̂ = Rϕ(w, c)
and a vector of the actual environment states τ̂ = ê1:M , given the context c and agent’s desired
trajectory, τ , where τ = ψ(w) = s1:N . Thus we learn a model,

R̂, τ̂ = gϕ(c, τ). (3)

Here êt corresponds to the prediction of the actual state of the environment at time t, which may
include actual states of both the agent and objects in the environment. st corresponds to the desired
trajectory of the agent at time t and comprises the joint positions (qt) and velocities (q̇t) at time t.

The mapping in Equation 3 is, in essence, a sequence-to-sequence learning problem similar to the
machine translation domain for which the original autoregressive version of the Transformer was
proposed. Thus, it would only be natural to adopt their encoder-decoder (ED) architecture to our
problem. However, since we evaluate the model for every policy update, fast inference is crucial to
the wall-clock speed of the algorithm. The autoregressive prediction of the ED architecture needs
one forward pass of the encoder but T forward passes of the decoder. Since the dot-product attention
operation itself already scales quadratically in T , the overall inference has a complexity of O

(
T 3

)
.

This massively slows down inference speed. Furthermore, when using the reparameterization trick
as explained in 3.2, the analytical gradients from the reward prediction need to be propagated through
the entire autoregressive inference in ED architecture. This essentially leads to a backpropagation-
through-time (BPTT) scheme that further slows down the training and suffers from problems like
vanishing gradients as well as local optima (Pascanu et al., 2013).

For these reasons, we instead implement our model as an encoder-only non-autoregressive archi-
tecture, i.e. we predict the entire output sequence at a single shot and do not employ any causal
masking. This leads to significantly faster training and inference as we only need one forward and
one backward pass during the policy update. The architecture is shown in Figure 1.

Input Transformation We project states at each time step st from the desired agent trajectory, τ ,
to an embedding dimension dmodel using a learned linear projection. We use a learned embedding
matrix (Radford et al., 2018) as positional encodings of the time steps and add them to the state
embeddings. Finally, we normalize the inputs using layer normalization and prepend the likewise
projected context c. The transformed inputs are passed to the Transformer encoder.

Prediction Head and Loss Functions The model uses two different heads to predict its outputs. The
environment state prediction head is implemented as a two-layer MLP that predicts the trajectory of
actual environment states, τ̂ = ê1:M . We use a smooth L1-loss between the prediction and ground
truth for this head, as shown below

lsmooth
1 (x, y) =

{
0.5(x− y)2, if |x− y| < 1,

|x− y| − 0.5, else

The smooth L1-loss combines a quadratic loss (if the prediction is close to the target) with a linear
one (if they are further apart. It is less sensitive to outliers compared to MSE Loss and results in
stabler training. For the reward prediction head, we predict the entire episode return at once using
and MLP. The network consists of one hidden layer of size dmodel and two layers that aggregate the
transformer outputs of shape (T, dmodel) to a scalar, first over the model dimension, then over the
sequence length. We use lsmooth

1 as a loss function here as well. The model learning loss for a single
episode/trajectory is thus formulated as follows:

Lmodel = lsmooth
1 (R̂, R) +

T∑
t=1

lsmooth
1 (êt, et). (4)

Here, R is the ground truth episodic returns, while et is the ground truth environment states at
time t. The extension to multiple trajectories is straightforward and omitted to keep the notations
uncluttered.

4

Under review as a conference paper at ICLR 2024

Figure 2: The policy update in the proposed model-based ERL framework. Episode Transformer
learns an MP-based episodic policy by propagating analytic gradients of the predicted negative re-
turns back through the learned transformer-based episodic dynamics model.

3.2 POLICY LEARNING

Given that we have access to the model of episodic returnsRϕ(w, c), we learn a contextual controller
that maximizes the expected return based on objective 2. To solve this objective, model-free deep
ERL Otto et al. (2023a); Bahl et al. (2020) methods rely on policy gradient methods, that use the log-
ratio trick to estimate the gradients of the objective. However, since in our case the model Rϕ(w, c)
is known and differentiable, the gradients can be estimated via the reparameterization trick (Kingma
and Welling, 2013). This enables us to learn the policy in an end-to-end manner similar to Hafner
et al. (2019b), where the analytic gradients of the estimated returns are propagated through the
transformer dynamics and back into the policy. The end-to-end learning also results in a stronger
learning signal with less variance as opposed to high-variance policy gradient objectives based on
log-ratio tricks, which we verify empirically in an ablation in Section 5.3.

Concretely, during the policy learning stage, we sample a batch of contexts as inputs to the policy
which outputs a Gaussian distribution over MP-parameters πθ(w|c). We sample from this distribu-
tion using the reparameterization trick and unroll the sampled MP parameterw to a desired trajectory
using trajectory generator τd = ψ(w). Theoretically, it would also be possible to sample multiple
trajectories from each policy distribution in the batch, effectively multiplying the batch size. How-
ever, we found this extension to not have much effect in practice while significantly reducing the
training speed due to the additional computation. We then estimate the episodic return using the
model Rϕ(w, c), given the context and desired trajectory (τd) as input. We use the negative return
as a loss, which is back-propagated through the transformer model, back into the policy in an end-
to-end manner. Policy learning thus does not involve any direct environment interactions and purely
happens in the imagination of the learned model.

Trust Region Constraints Training this type of episodic policy in compact parameter (w) spaces
poses unique challenges not present in the step-based RL methods. In the step-based case, smaller
errors during action selection can still be corrected at a later time step. In ERL, however, since we
only select one parameter vector w per episode (and execute the corresponding trajectory with a
low-level controller), no error correction of these parameters is possible. This necessitates policies
with a higher level of precision. Thus, we build on the insights and method of Otto et al. (2023a)
and enforce context-wise trust-region constraints via differentiable trust region layers (Otto et al.,
2021). Since we learn from off-policy data, we do not have a sampling policy which we could as the
natural choice for the constraining distribution πold. Instead, we adopt an idea from Nachum et al.
(2017) and keep a copy of the policy network whose parameters θold are a lagged geometric mean
of the actual policy parameters θ that are updated after each training step

θold ← αθold + (1− α)θ, (5)

where α is the rate of exponential decay. Thus, the TRPL penalizes divergence from a policy that is
on average 1/(1− α) training steps in the past. The full objective of our algorithm is given as

argmin
θ

Ep(c)

[
Eπ̃(w|c,θ)

[
−Rϕ(c, w)

]
+ βKL(π̃(·|c, θ)||πθ(·|c)

]
, (6)

where π̃(w|c, θ) is the TRPL-projection of the policy distribution πθ(w|c) and β is the weight of the
trust region loss. We empirically find this extension to be crucial for successful learning and present
an ablation in Figure 5.

5

Under review as a conference paper at ICLR 2024

4 RELATED WORKS

4.1 EPISODIC REINFORCEMENT LEARNING

Episodic RL has been popular in the robot learning community since it enables the learning of
smooth, safe, reusable and energy-efficient skills. These properties are critical in real-world robot
learning and control. Furthermore, they offer superior performance in several commonly used
tasks in robotics that involve sparse and non-Markovian rewards compared to step-based counter-
parts (Schulman et al., 2015; 2017; Haarnoja et al., 2018; Otto et al., 2021). Most existing works
in ERL (Schaal et al., 2005; Schaal, 2006; Peters et al., 2010; Abdolmaleki et al., 2015; Bahl et al.,
2020; Otto et al., 2023a) focus on model-free versions where the forward dynamics and reward/cost
function are assumed to be unknown and suffer from the major drawback of sample inefficiency and
hence making them impractical in real robot learning. Kupcsik et al. (2013) proposed using Gaus-
sian Process-based episodic forward models to learn model-based alternatives to ERL. However,
unlike Kupcsik et al. (2013), we use much more expressive and generic Transformer world models
and update our neural network policy using stochastic backpropagation instead of stochastic search.
Moreover, these approaches only consider a linear mapping from context to parameter space while
our method models a highly nonlinear context-parameter relationship using deep learning.

4.2 MODEL-BASED REINFORCEMENT LEARNING

The idea of training policies in a learned world modelwas first investigated in tabular environ-
ments (Sutton and Barto, 2018). There have been several advances since then that learn policies
in the imagination of deep learning-based dynamics models (Ha and Schmidhuber, 2018; Hafner
et al., 2019a) to learn sample efficient policies compared to their model-free counterparts. However,
most of these models work at the level of fine-grained low-level actions, both in terms of dynamics
and policy learning. Thus, they suffer from the same drawbacks as model-free step-based RL. In
contrast, we learn an episodic world model with a powerful Transformer architecture that allows
reasoning at a trajectory level using movement primitives. Thus, we combine the sample efficiency
of model-based methods with improved exploration and reasoning in parameter space.

4.3 REINFORCEMENT LEARNING WITH TRANSFORMERS

There has been exciting progress recently in treating RL as a sequence modelling problem. Tra-
jectory Transformer (Janner et al., 2021) use GPT-like autoregressive transformers to continuous
control problems by discretizing state and action spaces and predicting the next states, actions and
rewards in a sequence. They do not use any planning methods but utilize the beam search algorithm
(Freitag and Al-Onaizan, 2017) from NLP domain instead. Decision Transformer (Chen et al., 2021)
uses the same idea but only predicts the next actions and does not rely on discretization. Both these
methods exhibit state-of-the-art performance on several standard offline RL benchmarks. Zheng
et al. (2022) extended Decision Transformers to online settings. However, our method, Episode
Transformer poses unique advantages that render them much more suitable for real-time robotic
control. (i) As opposed to Janner et al. (2021); Chen et al. (2021) we do not rely on Transformer
models during inference, thus allowing for computationally efficient and lightweight deployment
during real-time inference. (ii) As opposed to working with low-level actions we reason with move-
ment primitives giving them unique advantages of model-based Episodic RL like inducing smooth
and energy-efficient control which is critical for robotics.

5 EXPERIMENTS

For our evaluation, we begin by demonstrating the effectiveness of our method in handling sparse
rewards with significantly fewer environmental interactions. Afterwards, we show its ability to solve
more challenging control problems that are difficult to solve in the step-based setting. Lastly, we
validate the design decisions of our algorithm through ablations. We compare Episode Transformer
to three main categories of algorithms: (i) Episodic RL methods like BB-TRPL, BB-PPO (Otto
et al., 2023a) as well as the linear adaption method CMORE (Tangkaratt et al., 2017). (ii) Step based
RL methods including PPO (Schulman et al., 2017), TRPL (Otto et al., 2021) and SAC (Haarnoja
et al., 2018). (iii) Methods that combine episodic and step-based RL like NDP (Bahl et al., 2020)

6

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Environment Interactions (×107)

50

40

30

20

10

0

R
ew

ar
d

0.0 0.2 0.4 0.6 0.8 1.0
Environment Interactions (×107)

50

40

30

20

10

0

R
ew

ar
d

a) 5D Reacher - Dense b) 5D Reacher - Sparse

Figure 3: Learning curves for the 5D reacher with dense (left) and sparse (right) rewards. Episode
Transformer is more sample efficient than BB-TRPL and BB-PPO in both reward settings while also
achieving a better final performance on dense rewards.

from recent literature, which embed the structure of dynamical movement primitives (DMPs) into
deep policies by reparametrizing action spaces via second-order differential equations. For all pure
Episodic RL baselines, we use ProMPs as movement primitives to ensure a fair comparison.

We report results based on the total number of environment interactions for fair comparisons of their
sample efficiency. Episodic approaches receive the context vector c as a descriptor of the starting
conditions and the goal of the episode. More concretely, the context consists of a subset of the
observation space that is randomly initialized at the beginning of the episode, such as object and
goal positions. The performance metric used is the undiscounted return over a full trajectory. We
assessed our approach across 12 distinct random seeds, periodically calculating metrics by averaging
the results over 10 evaluation episodes. We follow Agarwal et al. (2021) in reporting the interquartile
mean (IQM) with a 95% stratified bootstrap confidence interval. For detailed descriptions of the
environments and hyperparameters used, please refer to Appendix B and C, respectively.

5.1 REINFORCEMENT LEARNING UNDER DENSE AND SPARSE REWARDS

We start by benchmarking our approach to a simpler task on a modified version of the reacher agent
from OpenAI Gym (Brockman et al., 2016). The agent uses 5 actuator joints but a limited context
space, i.e. the location of the goal is restricted to y ≥ 0. We investigate two types of rewards: a
dense reward equivalent to the original reacher and a sparse reward that only provides the distance
to the goal in the last episode time step. Although the reacher task has been solved by traditional
step-based RL methods with a dense reward, the sparse reward setting has some advantages. (Otto
et al., 2023a) argues for the use of sparse rewards, since they induce policies that are slower, precise
and energy-efficient as opposed to dense rewards policies that encourage high-energy motions, and
sacrifice accuracy for speed.

Figure 3 shows that Episode Transformer is more sample efficient than their model-free ERL coun-
terparts like BB-TRPL and BB-PPO in both dense and sparse reward settings. Our method also
achieves a better final performance on dense rewards. Step-based baselines like PPO and TRPL
achieve a slightly better asymptotic performance than ours in the dense setting but are unable to
consistently reach the goal with sparse reward signal. SAC solves the task partially in the dense
setting but fails in the sparse setting. CMORE performs reasonably well, however, is able to cover
only part of the context space due to its linear adaption strategy. Notably, NDP fails in both dense
and sparse reward settings.

Now we demonstrate the utility of the proposed method in a more complex setting of a box-pushing
task with a 7 DoFs robot arm. Here, the robot is tasked to precisely push and rotate a box to a goal
position and orientation. As shown in Figure 4, under dense rewards, all methods except for SAC
and NDP manage to solve the task eventually but Episode Transformer completes the task with fewer
environment interactions and achieves a higher success rate. When it comes to the sparse reward
setting, conventional step-based methods like PPO, TRPL and SAC show a significant degradation
in performance as expected, while model-free ERL methods maintain a reasonable performance.
Episode Transformer clearly outperforms all baselines both in terms of sample efficiency and success

7

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
Environment Interactions (×107)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

0.0 0.5 1.0 1.5 2.0
Environment Interactions (×107)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

a) Box Push - Dense b) Box Push - Sparse

Figure 4: Under dense rewards (left), all methods except for SAC and NDP manage to solve the task
at least partially but Episode Transformer needs fewer interactions to do so. Step-based methods
struggle under sparse rewards (right). Episode Transformer achieves the highest success rate while
needing the fewest interactions.

0 2 4 6 8 10
Environment Interactions (×107)

1.5

1.6

1.7

1.8

1.9

2.0

M
ax

im
um

 H
ei

gh
t i

n
[m

]

0 2 4 6 8 10
Environment Interactions (×107)

0.0

0.2

0.4

0.6

0.8

1.0

G
oa

l D
is

ta
nc

e
in

 [m
]

a) Hopper Jump - Max Height b) Hopper Jump - Goal Distance

Figure 5: The maximum jumping height of the hopper’s center of mass (left) and the target distance
(right). ERL methods using the non-Markovian reward are able to jump up to 20cm higher than
step-based methods. Episode Transformer only needs a fifth of the environment steps that BB-
TRPL needs to reach the same maximum height.

rate. By learning a model of the environment and training the policy in its imagination, we can
significantly reduce the number of environmental interactions required to solve the task making it a
viable option for real-world robotics tasks.

5.2 DEALING WITH NON-MARKOVIAN REWARDS

Non-Markovian rewards are particularly useful for complex robot learning tasks, where the whole
trajectory history is needed to provide feedback to the agent. We use a modification of the hopper
from OpenAI Gym (Brockman et al., 2016), where we aim to jump as high as possible and land at
a target location. The non-Markovian reward is defined as the maximum height and the minimum
distance to the target achieved during the episode. Since step-based RL methods cannot handle such
a reward formulation, we train them with a Markovian version of the reward that provides height and
goal distance in each time step. While most methods manage to jump close to the target, only the
ERL methods trained with the non-Markovian reward reach a good jumping height (Figure 5). Since
the Markovian reward incentivizes height at each time step, step-based methods try to maximize it
with multiple small jumps. In contrast, reasoning over the entire trajectory allows ERL methods to
charge up for one big jump that achieves a higher maximum height. Among ERL methods, Episode
Transformer and BB-TRPL reach the highest jumping height. However, our method achieves similar
quality results with 5x fewer environment interactions.

5.3 ABLATIONS

Our ablation study evaluates our the design decisions and aims to answer the following questions:

8

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0 2.5
Environment Interactions (×107)

1.5

1.6

1.7

1.8

1.9

2.0

M
ax

im
um

 H
ei

gh
t i

n
[m

]

0.0 0.5 1.0 1.5 2.0 2.5
Environment Interactions (×107)

1.5

1.6

1.7

1.8

1.9

2.0

M
ax

im
um

 H
ei

gh
t i

n
[m

]

0.0 0.5 1.0 1.5 2.0
Environment Interactions (×106)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Figure 6: Ablations for the Episode Transformer: Without carefully constraining the policy learning
with a trust region, the Episode Transformer converges to sub-optimal policies (left). Prediction
of the trajectory of actual states does not improve performance in comparison to purely predicting
the episode return (middle). Using the same model but training the policy with BB-TRPL with
REINFORCE gradients lowers the success rate on box pushing.

1. Can we learn policies without Trust Region Constraints? We train the Episode Transformer
without the trust region constraint imposed by the TRPL (Otto et al., 2021). In order to encourage
sufficient exploration, we instead add an entropy regularization term to the policy objective. The
results shown in Figure 6 (left) indicate that trust region constraints are crucial for stable learning.
Without trust regions, the agent initially learns to achieve a decent height more quickly but converges
to a sub-optimal solution. Additionally, the wider confidence interval indicates unstable learning and
a higher variance across random seeds.

2. What is the impact of the auxiliary state trajectory prediction objective? We compare the
effect of predicting the trajectory of actual environment states e1:T as an auxiliary objective to a
version that only predicts the episode return. As Figure 6 (middle) demonstrates, the impact of
the additional state prediction on the agent’s performance is minimal. This result suggests that the
information contained in the return signal and the desired trajectory τd is enough to learn a good
mapping from the desired trajectory to episode return.

3. Is there a benefit in using stochastic backpropagation over REINFORCE-style gradients?
We learn the same Transformer-based episodic world model described in Section 3.1 but update
the policy on imagined trajectories using the on-policy BB-TRPL algorithm Otto et al. (2023a)
that uses REINFORCE style gradient computation. As seen in Figure 6 (right) our end-to-end
learnt method using stochastic backpropagation results gives better performance as opposed to high-
variance policy gradient methods based on log-ratio tricks.

6 CONCLUSION AND LIMITATIONS

In this work, we proposed a model-based Deep ERL algorithm named Episode Transformer. We
learn episodic policies with MPs purely in the imagination of a Transformer-based episodic world
model. This allows us to keep all the benefits of deep ERL approaches yet significantly improve
the data-efficiency making them a promising candidate for real-world robot learning tasks. Our
experiments on a variety of benchmarks validate our hypothesis that Episode Transformers can
learn high-quality policies both under dense and sparse reward settings. The utility of our approach
is more pronounced under sparse and non-Markovian rewards where we achieve similar or higher
quality solutions with 5x fewer environment interactions compared to model-free ERL methods.

The main limitation of our method is that the desired trajectory is planned in advance at the beginning
of the episode, and hence, cannot be altered during the execution. This might be problematic for
unforeseen events or perturbations, i.e. highly complex or reactive behaviour that cannot directly be
modelled with the current motion representation. Recent work by Otto et al. (2023b) addresses this
limitation by using a more sophisticated MP (ProDMPs, Li et al. (2023)) that allows for changing
parameters during execution to incorporate replanning into ERL. We believe that integrating this to
our approach would be a natural extension of our work. For future work, we will also investigate
sequencing multiple MPs to solve complex long-horizon tasks involving sub-goals.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Abbas Abdolmaleki, Rudolf Lioutikov, Jan R Peters, Nuno Lau, Luis Pualo Reis, and Gerhard
Neumann. Model-based relative entropy stochastic search. Advances in Neural Information Pro-
cessing Systems, 28, 2015.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 2021.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Shikhar Bahl, Mustafa Mukadam, Abhinav Gupta, and Deepak Pathak. Neural dynamic policies
for end-to-end sensorimotor learning. Advances in Neural Information Processing Systems, 33:
5058–5069, 2020.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11),
pages 465–472, 2011.

Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. arXiv
preprint arXiv:1702.01806, 2017.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pages 2555–2565. PMLR, 2019b.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

A Kupcsik, MP Deisenroth, J Peters, and G Neumann. Data-efficient contextual policy search
for robot movement skills. In Proceedings of the National Conference on Artificial Intelligence
(AAAI). Bellevue, 2013.

10

Under review as a conference paper at ICLR 2024

Ge Li, Zeqi Jin, Michael Volpp, Fabian Otto, Rudolf Lioutikov, and Gerhard Neumann. Prodmp:
A unified perspective on dynamic and probabilistic movement primitives. IEEE Robotics and
Automation Letters, 8(4):2325–2332, 2023.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Trust-pcl: An off-policy
trust region method for continuous control. arXiv preprint arXiv:1707.01891, 2017.

Fabian Otto, Philipp Becker, Ngo Anh Vien, Hanna Carolin Ziesche, and Gerhard Neumann. Dif-
ferentiable trust region layers for deep reinforcement learning. arXiv preprint arXiv:2101.09207,
2021.

Fabian Otto, Onur Celik, Hongyi Zhou, Hanna Ziesche, Vien Anh Ngo, and Gerhard Neumann.
Deep black-box reinforcement learning with movement primitives. In Conference on Robot
Learning, pages 1244–1265. PMLR, 2023a.

Fabian Otto, Hongyi Zhou, Onur Celik, Ge Li, Rudolf Lioutikov, and Gerhard Neumann. Mp3:
Movement primitive-based (re-) planning policy. arXiv preprint arXiv:2306.12729, 2023b.

Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. Probabilistic move-
ment primitives. Advances in neural information processing systems, 26, 2013.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pages 1310–1318. Pmlr, 2013.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 24, pages 1607–1612, 2010.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training, 2018.

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world mod-
els are happy with 100k interactions. arXiv preprint arXiv:2303.07109, 2023.

Stefan Schaal. Dynamic movement primitives-a framework for motor control in humans and hu-
manoid robotics. Adaptive motion of animals and machines, pages 261–280, 2006.

Stefan Schaal, Jan Peters, Jun Nakanishi, and Auke Ijspeert. Learning movement primitives. In
Robotics Research. The Eleventh International Symposium: With 303 Figures, pages 561–572.
Springer, 2005.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In ICML, 2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Voot Tangkaratt, Herke Van Hoof, Simone Parisi, Gerhard Neumann, Jan Peters, and Masashi
Sugiyama. Policy search with high-dimensional context variables. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033,
2012.

11

Under review as a conference paper at ICLR 2024

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In International
Conference on Machine Learning, pages 27042–27059. PMLR, 2022.

12

Under review as a conference paper at ICLR 2024

A PSEUDOCODE

�
def train():

Dmodel = collect_episodes_randomly(nseed)
for npretrain:

update_model(Dmodel)
for ntrain - nseed:

Dmodel += collect_episodes(ncollect)
for nupdates:

episode_batch = Dmodel.sample_batch_uniformly()
update_model(episode_batch)
update_policy(episode_batch.context)

def update_policy(c):
action_dist = policy(c)
old_action_dist = old_policy(c)
action_dist, LKL = kl_projection(action_dist, old_action_dist)
w = action_dist.rsample()
τ = get_trajectory(w)
R = model(c, τ)
loss = −R + βLKL

loss.mean().backward()
old_policy.update_params(policy.params())

def update_model(episode_batch):
c, s1:T , e1:T , R = episode_batch
context_emb = embed_context(c)
state_emb = embed_state(s_{1:t})
time_enc = embed_time(range(0, T))
input_embeds = concat(context_emb, state_emb + time_enc)
hidden_states = transformer_encoder(input_embeds)
ê1:T = states_head(hidden_states)
R̂ = reward_head(hidden_states)
loss = Lstates(ê1:T , e1:T) + LR(R̂, R)
loss.mean().backward()�

Listing 1: Training procedure of the Episode Transformer in pseudocode.

B ENVIRONMENTS

In order to demonstrate the effectiveness of our algorithm, we designed a series of experiments in
three challenging robot control environments using the physics simulation MuJoCo (Todorov et al.,
2012). The environments are the same ones as used in Otto et al. (2023b) but we include them here
for completeness’ sake.

B.1 5D-REACHER

Task Description. For the Reacher task, we modified the original OpenAI gym Reacher-v2 by
adding three additional joints, resulting in a total of five joints. The task goal is still to minimize
the distance between the goal point pgoal and the end-effector p. We, however, only sample the goal
point for y ≥ 0, i. e. in the first two quadrants, to slightly reduce task complexity while maintaining
the increased control complexity. The setup is shown in Figure 7 (top). The observation space
remains unchanged, unless for the sparse reward where we additionally add the current step value to
make learning possible for step-based methods. The context space only contains the coordinates of
the goal position. The action space is the 5d equivalent to the original version. For the reward the
original setting leverages the goal distance

Rgoal = ||p− pgoal||2, (7)

13

Under review as a conference paper at ICLR 2024

and the action cost

τt =

K∑
i

(ait)
2. (8)

Dense Reward. The dense reward in the 5d setting stays the same and the agent receives in each
time step t

Rtot = −τt −Rgoal. (9)

Sparse Reward. The sparse reward only returns the task reward in the last time step T and addition-
ally adds a velocity penaltyRvel =

∑K
i (q̇iT)

2, where q̇ are the joint velocities, to avoid overshooting

Rtot =

{
−τt t < T,

−τt − 200Rgoal − 10Rvel t = T.
(10)

B.2 BOX-PUSHING

Task Description. The goal of the box-pushing task is to move a box to a specified goal location and
orientation using the seven DoF Franka Emika Panda robotic arm. The basic setup is shown in Figure
7 (middle). The context space for this task is the goal position x ∈ [0.3, 0.6], y ∈ [−0.45, 0.45]
and the goal orientation θ ∈ [0, 2π]. In addition to the contexts, the observation space contains
information about joints and the end-effector as well as the current box location and orientation.
In each time step, we add gravity compensation to the original torque from the policy. The task
is considered successfully solved if the position distance is ≤ 0.05m and the orientation error is ≤
0.5rad.

Reward Formulation. For the total reward we consider different sub-rewards. First, the distance to
the goal

Rgoal = ||p− pgoal||, (11)
where p is the box position and pgoal the goal position. Second, the rotation distance

Rrotation =
1

π
arccos |r · rgoal|, (12)

where r and rgoal are the box orientation and goal orientation as quaternions, respectively. Third, an
incentive to keep the rod within the box

Rrod = clip(||p− hpos||, 0.05, 10), (13)

where hpos is the position of the rod tip. Fourth, a similar incentive that encourages maintaining the
rod in a desired rotation

Rrod rotation = clip(
2

π
arccos |hrot · h0|, 0.25, 2), (14)

where hrot and h0 = (0.0, 1.0, 0.0, 0.0) are the current and desired rod orientation as quaternions,
respectively. Lastly, we utilize the following error

err(q, q̇) =
∑

i∈{i| |qi|>|qbi |}

(|qi| − |qbi |) +
∑

j∈{j| |q̇j |>|q̇bj |}

(|q̇j | − |q̇bj |). (15)

Here, q, q̇, qb and q̇b are the robot joint’s position and velocity as well as their respective bounds.
Additionally, we apply an action cost at each time step t

τt = 5 · 10−4
K∑
i

(ait)
2, (16)

where K = 7 is the number of DoF. In total we consider three different rewards:

Dense Reward. The dense reward provides information about the goal and rotation distance in each
time step t on top of the utility rewards

Rtot = −Rrod −Rrod rotation − 5e−4τt − err(q, q̇)− 3.5Rgoal − 2Rrotation. (17)

14

Under review as a conference paper at ICLR 2024

Temporal Sparse Reward. The time-dependent sparse reward is similar to the dense reward, but
only returns the goal and rotation distance in the last time step T

Rtot =

{
−Rrod −Rrod rotation − 0.02τt − err(q, q̇), t < T,

−Rrod −Rrod rotation − 0.02τt − err(q, q̇)− 350Rgoal − 200Rrotation, t = T.
(18)

B.3 HOPPER-JUMP

Task Description. In the Hopper jump task the agent has to learn to jump as high as possible and
land on a certain goal position at the same time. We consider five basis functions per joint resulting
in a 15-dimensional weight space. The context is four-dimensional consisting of the initial joint
angles θ ∈ [−0.5, 0], γ ∈ [−0.2, 0], ϕ ∈ [0, 0.785] and the goal landing position x ∈ [0.3, 1.35].
The full observation space extends the original observation space from the OpenAI gym Hopper
by adding the x-value of the goal position and the x-y-z difference between the goal point and the
reference point at the Hopper’s foot. The action space is the same as for the original Hopper task.

Non-Markovian Reward. In each time-step t we provide an action cost

τt = 10−3
K∑
i

(ait)
2, (19)

where K = 3 is the number of DoF. In the last time-step T of the episode we provide a reward
which contains information about the whole episode as

Rheight = 10hmax,

Rgdist = ||pfoot,T − pgoal||2,
Rcdist = ||pfoot,contact − pgoal||,

Rhealthy =

{
2 if zT ∈ [0.5,∞] and θ, γ, ϕ ∈ [−∞,∞]

0 else
,

where hmax is the maximum jump height in z-direction of the center of mass reached during the
whole episode, pfoot,t is the x-y-z position of the foot’s heel at time step t, pfoot,contact is the foot’s
heel position when having a contact with the ground after the first jump, pgoal is the goal landing
position of the heel. Rhealthy is a slightly modified reward of the healthy reward defined in the
original hopper task. The hopper is considered as ’healthy’ if the z position of the center of mass is
within the range [0.5m,∞]. This encourages the hopper to stand at the end of the episode. Note that
all states need to be within the range [−100, 100] for Rhealthy. Since this is defined in the hopper
task from OpenAI already, we haven’t mentioned it here. The total reward at the end of an episode
is given as

Rtot = −
T∑

t=0

τt +Rheight +Rgdist +Rcdist +Rhealthy. (20)

15

Under review as a conference paper at ICLR 2024

Figure 7: Example episodes for the 5D Reacher (top), Box Push (middle) and Hopper Jump tasks
(bottom).

16

Under review as a conference paper at ICLR 2024

C HYPERPARAMETERS

In this appendix we list the hyperparameters we used. The baseline results were taken from Otto
et al. (2023b) and we thus refer to their paper for the corresponding hyperparameters. Unless noted
otherwise, the same hyperparameters were used for all experiments.

Table 1: Hyperparameters for experiments with the Episode Transformer.

Hyperparameter 5D Reacher Box Push Hopper Jump

batch size 64 64 64
nseed 500 500 500
npretrain 1000 1000 1000
ncollect 1 1 1
nupdate 5 5 5

trust region loss weight β 10 25 25
trust region mean bound ϵµ 0.05 0.005 0.005
trust region covariance bound ϵΣ 5e-4 5e-5 5e-5
old policy decay rate τ 0.995 0.995 0.995

model learning rate 1e-4 1e-4 1e-4
model activation function ReLU ReLU ReLU
model hidden size 128 128 128
number of Transformer blocks N 4 4 4
number of multi-head attention heads h 4 4 4

policy learning rate 1e-4 1e-4 5e-5
policy activation function ReLU ReLU ReLU
policy hidden layers [128, 128, 128] [128, 128, 128] [128, 128, 128]
policy initial std bonus 1.0 1.0 1.0

17

	Introduction
	Preliminaries
	Movement Primitives
	Episodic Reinforcement Learning

	The Episode Transformer
	Episodic World Models With Transformers
	Policy Learning

	Related Works
	Episodic Reinforcement Learning
	Model-based Reinforcement Learning
	Reinforcement Learning with Transformers

	Experiments
	Reinforcement Learning under Dense and Sparse Rewards
	Dealing with Non-Markovian Rewards
	Ablations

	Conclusion and Limitations
	Pseudocode
	Environments
	5D-Reacher
	Box-Pushing
	Hopper-Jump

	Hyperparameters

