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Abstract

Before deploying machine learning models it is
critical to assess their robustness. In the context
of deep neural networks for image understanding,
changing the object location, rotation and size
may affect the predictions in non-trivial ways. In
this work we perform a fine-grained analysis of ro-
bustness with respect to these factors of variation
using SI-SCORE, a synthetic dataset. In particu-
lar, we investigate ResNets, Vision Transformers
and CLIP, and identify interesting qualitative dif-
ferences between these.

1. Introduction
In practice we would like to deploy models which are ro-
bust to certain changes in their input. For some of these
factors, such as weather conditions, compression artifacts,
or even different object orientations, existing datasets can be
readily applied to quantify models’ robustness, e.g. Barbu
et al. (2019); Hendrycks & Dietterich (2018). However, for
other important factors such as object size or location, the
effect on model performance had not yet been quantified
prior to our work. This is particularly concerning because
many popular image datasets suffer from photographer’s
bias (Torralba & Efros, 2011), where objects appear mostly
in the center of the image.

In previous work (Djolonga et al., 2021), we open-sourced
a synthetic dataset for fine-grained evaluation: SI-SCORE
(Synthetic Interventions on Scenes for Robustness Evalua-
tion). In a nutshell, we paste a large collection of objects
onto uncluttered backgrounds (Figure 1, Figure 2), and can
thus conduct controlled studies by systematically varying
the object class, size, location, and orientation. We also
provided extendable code for researchers to generate similar
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synthetic datasets and analyse the results. 1

In this work, we take a step forward and identify interesting
qualitative differences between model classes. In particular,
we investigate how models based on convolutions (ResNets
(He et al., 2016)) compare to models based on attention,
specifically Vision Transformers (ViT) (Dosovitskiy et al.,
2021). Moreover, we evaluate CLIP (Radford et al., 2021),
a model trained jointly on text and images on large-scale
web data and evaluated zero-shot.

Related work Creating synthetic datasets by pasting ob-
jects onto backgrounds has been used for training (Zhao
et al., 2020; Dwibedi et al., 2017; Ghiasi et al., 2020) and
evaluating models (Kolesnikov et al., 2020), but previous
works do not systematically vary object size, location or
orientation, or analyse translation and rotation robustness
only at the image level (Engstrom et al., 2017). GANs have
also been used to generate counterfactual images to detect
bias, specifically to evaluate the effects of features such as
makeup or beards on classifiers (Denton et al., 2020).

We include further related work on synthetic data generation
and robustness datasets in Appendix A.

2. Synthetic dataset details

To construct our datasets, we paste foreground images (im-
ages of objects) on uncluttered background images in a
precise way according to what we wish to study. The fore-
grounds are extracted from OpenImages (Kuznetsova et al.,
2020) using the provided segmentation masks. We include
only object classes that map to classes. We also remove
all objects that are tagged as occluded or truncated, and
manually remove highly incomplete or inaccurately labeled
objects. We manually filter the backgrounds to remove those
with prominent objects, such as images focused on a single
animal or person. This results in 614 object instances across
62 classes and 867 backgrounds.

We construct three subsets for evaluation, one corresponding

1The synthetic dataset and code used to generate the dataset are
available on GitHub, Tensorflow Datasets and the Shift Happens
package.

https://github.com/google-research/si-score
https://www.tensorflow.org/datasets/catalog/siscore
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Figure 1. Sample images from our synthetic dataset. We paste
the same foreground-background combination with the object in
different sizes, locations and rotation angles.

Figure 2. Sample images from our synthetic dataset. We consider
614 foreground objects from 62 classes and 867 backgrounds, and
vary the object location, rotation angle, and object size for a total
of 611608 images.

to each factor of variation, as shown in Table 1. We provide
further details in Appendix B.

3. Results
Using this dataset, we quantify fine-grained model robust-
ness and uncover insights about models. Here we discuss
three main groups of models we investigated: ResNets, Vi-
sion Transformers and CLIP. We investigate robustness to
different object locations, sizes and rotation angles and in-
clude only highlights in the main paper. For full results,
please see Appendix C.

3.1. ResNets

ResNets (He et al., 2016) are commonly-used architectures
in computer vision. There are many decision choices in-
volved, one of which is the normalisation method. The first
widely adopted version used BatchNorm (Ioffe & Szegedy,

F.O.V. DATASET CONFIGURATION IMAGES

SIZE Objects are in upright orientation,
centered, sizes range from 1% to
100% of the image area.

92884

LOCATION 441 locations corresponding to
the cross-product of 21 uniformly
spaced coordinates along both axes.
Size is fixed to 20% of the image
area.

479184

ROTATION Objects rotated at angles ranging
from 1 to 341 degrees counterclock-
wise in 20-degree increments. Ob-
jects located in the center, sizes are
20%, 50%, 80% or 100% of the im-
age area.

39540

Table 1. Synthetic dataset details. The relevant factor of variation
(F.O.V.) is in the first column.

2015), but GroupNorm (Wu & He, 2018) has also been a
popular choice since. We analyse ResNet-50 models pre-
trained on that use BatchNorm and GroupNorm respectively,
and find three qualitative differences between them. First,
the model that uses GroupNorm has higher accuracy on
smaller objects, whereas the model that uses BatchNorm
has higher accuracy on objects that take up at least 40% of
the image (Figure 3 left). Note that most objects usually
take up less than 40% of the image - for example, in a self-
driving scenario, each object of interest in the driver’s field
of view typically occupies less than 40% of it. Because of
this, this tradeoff would generally be more favorable for the
ResNet-50 that uses GroupNorm. Second, the model that
uses BatchNorm is less robust to changes in location than
the model using GroupNorm (Figure 3 right). For this exper-
iment we use objects occupying 20% of the image. Thirdly,
it seems that ResNets using GroupNorm are also slightly
more robust to changes in object orientation (rotation angle)
(Figure 3 bottom). Note that we measure the robustness
relative to the model’s best accuracy across locations or ro-
tation angle respectively, so differences in absolute accuracy
are accounted for. In future work, we hope to investigate
whether these differences are present at scale when training
on larger datasets and architectures.

3.2. Vision Transformers

Recently, Dosovitskiy et al. (2021) showed that Transform-
ers can be effective for image classification. Since the Vi-
sion Transformer (ViT) models use image patches as input,
a natural question is whether they are robust to changes in
object location, and whether they exhibit a grid-like pattern
in per-location accuracy. We compare Vision Transformer
models with convolutional neural networks with similar ac-
curacy. Specifically, we use BigTransfer (BiT) (Kolesnikov
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Figure 3. Top: We find that a ResNet-50 using GroupNorm has
higher accuracy on smaller objects, whereas the one using Batch-
Norm has higher accuracy on large objects. Middle: The ResNet-
50 using BatchNorm is less robust to changes in location than
the one using GroupNorm. Each pixel represents the average nor-
malised top-1 accuracy of the model on images where the object is
centered at that location. The accuracy is shown as a percentage of
the maximum accuracy across all locations. Bottom: The ResNet-
50 using BatchNorm seems to be slightly less robust to changes in
rotation angle than the one using GroupNorm.
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Figure 4. For each location on the grid, we compute the average
accuracy on images with the object centered at that location. We
show the accuracy as a percentage of the maximum accuracy across
all locations. The third column indicates the difference between
the second and first column. Blue indicates an improvement of the
second column over the first column. This shows the difference
in robustness to changes in object location between the pairs of
models. Note that we compare models that have similar accuracy.
Rows 1 and 2: We observe that the ViT models are more robust
to location near the edges than the BiT ResNet models, as shown
by the dark blue edges. We use a finer grid to investigate whether
ViT models have grid-like patterns in location robustness, and do
not find such patterns. Row 3: We observe that the CLIP model
is slightly more robust to location despite having much lower
accuracy than the vanilla ResNet-50 model.

et al., 2020) models, which are ResNets using GroupNorm
that were pre-trained on the same datasets and fine-tuned
on with high resolution. Absolute robustness is highly cor-
related with accuracy (Taori et al., 2020; Djolonga et al.,
2021), therefore, we compare models with similar accuracy
to account for this confounder.

First, we find that ViT models have much higher relative
accuracy when the object of interest is placed close to the
edges of the image (Figure 4 rows 1 and 2). One potential
explanation is that BiT models have zero padding in the
convolutions, whereas ViT models do not have such padding.
At the same time, in non-central, non-edge parts of the
image, ViT models seem to be slightly more location-robust
than BiT models in most but not all locations.

Second, we do not find evidence for a grid-like pattern in
per-location accuracy in ViT. To investigate this, we use
a finer 56 × 56 grid compared to the 20 × 20 grid in the
previously open-sourced dataset. The ViT-*/16 models use
image patches forming a 14× 14 grid, so each patch would
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correspond to a 4 × 4 patch on this grid (Figure 4 row 1).
The ViT-*/32 models use a 7× 7 grid, so each patch would
correspond to a 8 × 8 patch on this grid (Figure 4 row
2). When looking at the absolute values and differences in
accuracies, we do not see grid-like patterns. Thus, it seems
that there are no significant grid-like patterns in per-location
accuracy in ViT.

3.3. CLIP

One model that has received a great deal of attention is
CLIP (Radford et al., 2021). It stands in contrast to other
considered models since it was trained jointly on images and
language input. Furthermore, in contrast to other models,
CLIP is not fine-tuned to , but is evaluated in the label space
in a zero-shot setting. As a result, its accuracy — at least of
the small published models and without prompt ensembling
— is significantly lower than that of the other models in this
paper. Notably, even when we compare CLIP models to a
standard ResNet-50 that has over 10% higher top-1 accuracy
on , the CLIP model seems to be more robust to different
object locations (Figure 4 row 3). This is perhaps surprising
since robustness is often correlated with ImageNet accuracy,
but is in line with its improved relative performance on
robustness benchmarks, as reported in Radford et al. (2021).

4. Discussion and Conclusion
We investigated robustness of ResNets, Vision Transformers
and CLIP to changes in object location and size. Additional
results on robustness with respect to object rotation can be
found in Appendix C.

We note that there could be potential differences and con-
founding factors when evaluating the performance on syn-
thetic data. We apply the following steps to mitigate the
risk: Firstly, we use cut-and-pastes of real data instead of
fully synthetic data. Notably, Ghiasi et al. (2020) success-
fully trained state-of-the-art object segmentation models on
such data, which lends evidence that related artifacts may
not significantly affect behaviour. Secondly, we average
across over 1000 object and background combinations to
minimize the effect of the choice of object or background
on the results. Finally, we consider relative performance
between models as opposed to absolute numbers.

We hope that the insights presented in this study will influ-
ence research on the use of synthetic data for stress-testing
deep learning models.
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A. Further Related Work
In this section, we describe related work on synthetic data generation and datasets to measure robustness.

Other efforts on synthetic data generation include CLEVR (Johnson et al., 2017), which aims to evaluate compositional gen-
eralisation, dSprites (Matthey et al., 2017), which aims to evaluate disentanglement of latent features, or smallNorb (LeCun
et al., 2004), which is also an object classification dataset, albeit with different factors of variation except rotation. These
datasets use rendered shapes or models of geometric shapes or toys instead of realistic photos of ImageNet classes with
photo backgrounds.

Our work focuses on synthetic data to analyse specific factors of variation. Other datasets to analyse robustness mostly
include natural datasets. For example, ImageNet-R presents a dataset of alternatively rendered imagery ranging from
cartoons to origami (Hendrycks et al., 2020). ImageNet-Vid (Russakovsky et al., 2015) uses frames from video sequences,
and ImageNet-Vid-Robust measures whether model predictions are correct and consistent across similar frames (Shankar
et al., 2019). Finally, ImageNet-C (Hendrycks & Dietterich, 2018) uses synthetic image-level perturbations on natural
images to analyse robustness with respect to perturbations such as Gaussian noise, JPEG compression, variations in image
brightness or motion blur. SI-SCORE focuses on object-level as opposed to image-level factors of variation.

B. Synthetic dataset details
We include further details on the synthetic dataset in this section.

The dataset consists of three subsets, one for each factor of variation (size, location, rotation), see Table 1. Each object
instance appears on two randomly sampled backgrounds. For each object-background combination, we take a cross product
over all the factors of variation. The datasets with multiple values for more than one factor of variation, contains the full
Cartesian product of all values in each variation. For example, the rotation variant has 72 values, obtained from 4 object
sizes and 18 rotation angles. For the object size and rotation datasets, we only exclude images where objects fall more than
5% outside the image. For the location dataset, such filtering would remove almost all objects near the edge of the image, so
we do not do such filtering. Note that since we use the center coordinates of objects as their location, at least 25% of each
object is in the image even if we do not do any filtering.

Image licenses The backgrounds are images from nature taken from pexels.com. The license therein allows one to reuse
photos with modifications.
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C. Full results for model comparisons in the main paper
C.1. ResNet-50s with BatchNorm and GroupNorm

R50-BatchNorm (ImageNet) R50-GroupNorm (ImageNet) Relative: 2nd col - 1st col
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Figure 5. Heatmaps in the first and second column depict the average accuracy for images centered at the particular location. Accuracy is
normalized with respect to the maximum accuracy across all locations. The third column depicts the difference between the second and
first column. Blue color indicates an improvement of the second column over the first column. The ResNet-50 with BatchNorm (first
column) is less robust to location than the ResNet-50 with GroupNorm (second column).

Figure 5 shows the location robustness of two ResNet-50 models, trained with BatchNorm and GroupNorm respectively.
The corresponding diagrams for object size and rotation are in Figure 3 of the main paper.
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C.2. BiT (ResNet) vs ViT models

We compare BigTransfer (BiT) (Kolesnikov et al., 2020) and Vision Transformer (ViT) (Dosovitskiy et al., 2021) model
pairs that have similar accuracy. We include a ViT-L/32 model in the location study to investigate whether there is a grid-like
pattern in location robustness.
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Figure 6. In the first and second columns, for each location on the grid, we compute the average accuracy of the models on images where
the object is centered at that location. We show the accuracy as a percentage of the maximum accuracy across all locations. In the third
column, we compute the difference between the second column and the first column. Blue indicates an improvement of the second column
over the first column. This shows the difference in robustness to changes in object location between the pairs of models. We observe that
the ViT models are more robust to location near the edges than the BiT ResNet models, as shown by the dark blue edges in the third
column. We use a finer grid to investigate whether ViT models have grid-like patterns in location robustness, and do not find such patterns.
Note that we compare models that have similar accuracy.

The plots comparing the location robustness of BiT-R101x3 with ViT-B/16 trained on ImageNet, and BiT-R50x1 with
ViT-L/32 trained on ImageNet-21k are in Figure 4 (top, middle rows) in the main paper. We compare these pairs of models
that have similar ImageNet accuracy to control for differences purely due to different ImageNet accuracy.
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Figure 7. Left: We find that the BiT-R50x3 and ViT-B/16 models trained on ImageNet-21k seem to have similar robustness to changes
in object size. However, the BiT-R101x1 model trained on ImageNet seems to be slightly better at classifying smaller objects than
the ViT-B/16 model trained on ImageNet. Right: Conversely, the two BiT and ViT models trained on ImageNet seem to have similar
robustness to changes in rotation angles with the BiT model perhaps being slightly better. For the two models trained on ImageNet-21k,
however, the ViT model seems to be slightly more robust. The differences in both cases are quite small.
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C.3. CLIP models (Radford et al., 2021)
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Figure 8. In the first and second columns, for each location on the grid, we compute the average accuracy of the models on images where
the object is centered at that location. We show the accuracy as a percentage of the maximum accuracy across all locations. In the third
column, we compute the difference between the second column and the first column. Blue indicates an improvement of the second column
over the first column. This shows the difference in robustness to changes in object location between the pairs of models. We observe that
the CLIP model is slightly more robust to location despite having much lower accuracy than the vanilla ResNet-50 model, as can be seen
by the blue edges in the third column.

The plot comparing the location robustness of the ResNet-50 (GroupNorm) with the CLIP model using a ResNet-50
backbone is in Figure 4 (bottom row) in the main paper.
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Figure 9. Note that the CLIP models have lower ImageNet accuracy than the ResNet-50 model. We used the ResNet-50 model because we
were not able to find standard models with lower ImageNet accuracy. Given the large difference in ImageNet accuracy between these three
models, we plot the normalised accuracy (accuracy as a percentage of the highest accuracy per model across all sizes) as well (right). The
plots suggest that the CLIP models may be slightly more robust than the vanilla ResNet-50 on small objects, and the vanilla ResNet-50
may be more robust on medium-sized objects.
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Figure 10. The CLIP models are more robust to changes in object rotation angle than the ResNet 50, with the CLIP-R50 model being
more robust than the CLIP-ViT-B/32 model.


