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Abstract

Self-Supervised learning (SSL) with Joint-Embedding Architectures (JEA) has led
to outstanding performances. All instantiations of this paradigm were trained using
strong and well-established hand-crafted data augmentations, leading to the general
belief that they are required for the proper training and performance of such models.
On the other hand, generative reconstruction-based models such as BEIT and MAE
or Joint-Embedding Predictive Architectures such as I-JEPA have shown strong
performance without using data augmentations except masking. In this work, we
challenge the importance of invariance and data-augmentation in JEAs at scale. By
running a case-study on a recent SSL foundation model – DINOv2 – we show that
strong image representations can be obtained with JEAs and only cropping without
resizing provided the training data is large enough, reaching state-of-the-art results
and using the least amount of augmentation in the literature. Through this study,
we also discuss the impact of compute constraints on the outcomes of experimental
deep learning research, showing that they can lead to very different conclusions.

1 Introduction

Self-supervised learning (SSL) has significantly improved performance across various tasks. Despite
not requiring supervision, SSL heavily depends on carefully selected data augmentations [9, 11–13,
35]. Previous experimental literature has shown that removing even one augmentation such as random
rescaling or color jittering reduces linear evaluation performance on ImageNet1k [15, 41] by at least
10 points [1, 11, 39]. But reliance on image-specific data augmentations limits the generalizability of
self-supervised approaches. How can this be applied to graph, time-series or, for example, medical
imaging with totally different channels and characteristics? According to multiple studies [1, 5, 21,
37], the best data augmentations are dependent on the target tasks, and no set of hand-crafted data
augmentations can solve them all. But is this the case?

The problem is the following: SSL methods that do not build on such augmentations are based
on image reconstruction, and are able to achieve competitive results, though only through fine-
tuning ([4, 25]). On the other hand, joint-embedding architecture (JEA) methods, delivering strong
results without fine-tuning and producing linearly separable features, seem largely reliant on data
augmentations in light of the seminal SimCLR [11, 12] study. I-JEPA [2] was the first method to
challenge this assumption, but the authors still show a significant performance gap when compared to
their augmentation-based alternatives. Therefore, one can reasonably believe that the core principles
driving JEA methods towards great performance are inherently dependent on data augmentation,
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Table 1: Comparison of our model trained using RandomCrop, without random resizing nor other
photometric augmentations against SSL models that do not leverage hand-crafted augmentations.
All other models are reconstruction based, in the pixel space or in the latent space, and use more
augmentations than our setup. We only use RandomCrop without resizing, and masking.

ImageNet-1k Other Classif. Segm. Depth

Method Data Arch. val V2 real Places205 iNat18 ADE20k NYUd ↓
AIM DFN-2B+ H/14 70.0 43.7 64.4 51.7 64.0 13.2 0.862
BEIT INet-1k L/16 73.5 59.0 78.3 57.9 40.8 6.4 0.544
MAE INet-1k H/14 78.0 66.5 83.7 56.0 42.2 33.3 0.482
I-JEPA INet-1k H/14 79.3 66.0 83.8 58.4 47.6 31.1 0.537
I-JEPA INet-22k g/16 71.3 59.7 78.6 59.1 55.3 32.0 0.521

Ours INet-22k L/14 84.0 74.8 88.6 65.1 75.1 43.5 0.411

and the underlying invariance learning that it entails. As a side-effect, JEA setups have been
extensively tuned to work with augmentations [9, 13, 35], cementing this belief in the community.
In this context, the present paper successfully disproves the assumption that these augmentations
are necessary. We show that it is possible to train state-of-the-art joint embedding architectures
without augmentations other than crops without random rescaling, and optionally masking. To the
best of our knowledge, we train such model using the least amount of data-augmentations in the
literature. Data cropping without rescaling, along with masking, might be considered two of the
only universal data augmentations that can be applied on a broad number of modalities by just using
the properties of the data. We show that building such SoTA model simply requires a larger amount
of diverse data, a longer training schedule, and more careful optimization.

For most methods, data augmentations prevent model collapse on trivial solutions such as color
histogram [1, 7]. They can also enhance performance by artificially increasing the diversity and size
of datasets using multiple crops per image [9, 10]. While preliminary work has attempted to explain
the theory behind data augmentations and self-supervised learning or have conducted experimental
analysis of their impact and necessity in SSL [1, 5, 11, 21, 37], such analysis has not been conducted
on large-scale SSL pretraining with newer methods, restricting the conclusions that can be drawn
from their results.

In this work, we aim to determine the role of data augmentations at scale by training models using
DINOv2 [35] on multiple datasets of varying sizes (from 1M to 140M images), on multiple model
sizes (from Small to Large), and using diverse data augmentation combinations.

Contributions. By doing a rigorous experimental analysis through this paper, we are the first to
prove two counter-intuitive claims that go against most previous assumptions:

(i) We show that the impact of data-augmentations invariance enforcement in self-supervised learning
is secondary to the impact of their artificial increase in dataset size and distribution.

(ii) We explore when and why we can remove hand-crafted data augmentations with minor impact on
performance by looking at all scaling aspects of deep learning: data, compute and model size.

In the process, we also provide two by-products on top of our claims:

(iii) We show through our experimental setup that scaling laws are ethereal and that practitioners
optimizing for different compute and data budget might find very different conclusions.

(iv) We achieve state-of-the-art performance on extensive evaluations for a model trained without
hand-crafted augmentations. This result is an existence proof that joint-embedding architecture
methods do not inherently rely on learning invariances defined by data augmentations, challenging
the prior beliefs in the community and prompting a new theoretical understanding of SSL.

2 Related Work

Data augmentation in SSL practice. Data augmentations have been a key component of most
self-supervised works, including the early Exemplar-CNN [18]. The network would be trained
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Figure 1: Top: Visual description of pretraining losses. In blue: the local to global DINO
loss, in red: the global to global DINO loss and in green the latent masked token predic-
tion (iBOT) loss. Bottom: Our different augmentation strategies. ’Original’ uses sev-
eral augmentations (RandomResizedCrop, ColorJitter, RandomGrayscale, GaussianBlur,
RandomHorizontalFlip and RandomSolarize), ’Shared’ uses the same augmentations but shares
them between each view of the same image obtained with RandomResizedCrop. The ’Crop + Resize’
setting only uses RandomResizedCrop. We also introduce a ’Crop’ setup which uses RandomCrop
without random rescaling and that is visually similar to ’Crop + Resize’.

using a classification objective, with each class corresponding to data augmentations of one image
in the dataset. In the context of early pretext-task-based SSL, when training convolutional neural
networks by predicting relative location of patches, Doersch, Gupta, and Efros [16] have observed
trivial solutions. The network was overfitting to chromatic aberrations, and the authors used data
augmentations to counter this effect. In a similar way, Bojanowski and Joulin [7] have observed that
their discriminative model would emphasize trivial factors of variation such as colour. The solution
proposed in this work was to discard color information and take the output of Sobel filtering as an input
to the algorithm, along with image jitter and flipping. In 2018, the community observed a jump in
performance when evaluating on Pascal VOC 2007 image classification [8, 22], the implementation of
both works leveraging RandomResizedCrop instead of RandomCrop. The authors of SimCLR [11]
carried out the first extensive ablation of the impact of data augmentation on performance, and
many of the conclusions from this work serve as standard in follow-up SSL work [10, 24, 26, 35]:
most modern joint-embedding self-supervised models learn using at least one loss term that pushes
together the representation of two augmented views of the same image. By applying different data
augmentations to the two views, they force the model to map the augmented characteristics to the
same point, enforcing invariance in the model representation.

Sensitivity of learning to data augmentation. With the widely accepted view of the importance
of invariance learning for SSL models, several works have studied the impact of the choice of
data augmentations on downstream performance: Xiao et al. [52] show that the wrong choice of
augmentations can have a detrimental effect; Tian et al. [46] consider data augmentations as a way to
reduce the mutual information between different views of an image to improve results. Bendidi et al.
[5] show through experiments that the choice, amplitude and combination of transformations effects
the learnt representation performance in downstream tasks and that the benefit of data-augmentations
depend on each specific class. Purushwalkam and Gupta [37] show that a poor choice of cropping
parameters can harm performances.

At the same time, self-supervised learning algorithms based on image reconstruction don’t use many
data augmentations. Models trained to reconstruct missing patches directly in the pixel space [4, 25,
33] have led to significantly lower linear-evaluation performance but did not leverage any photometric
or hand-crafted augmentations. El-Nouby et al. [32] show that BEIT is more robust to smaller dataset
size. Recently, I-JEPA [2], based on reconstruction in the feature space obtained strong performance
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without using photometric augmentations. The authors split the comparison against other SSL
frameworks according to the type of augmentations used (see Table 1 in [2]), suggesting data
augmentations make for an unfair advantage in SSL training. It is worth noting that reconstruction
based methods still use random resizing in their augmentations.

Theoretical studies. Furthermore, a series of theoretical works have been studying the apparently
critical data augmentation for SSL algorithms. For example, Kügelgen et al. [30] prove, under some
assumptions, that data augmentations allow isolating content from style, when using InfoNCE as an
objective, as in SimCLR. Eastwood et al. [19] follow up on this work, and propose using a structured
data augmentation framework in order to disentangle content from style in the learnt representations;
the goal is to avoid discarding style information during the learning process. Zhang and Ma [53]
propose splitting the multiple operations involved in data augmentation pipelines in order to produce
a hierarchy of augmentations: invariance to each augmentation is translated into a loss applied at
different stages of the backbone, leading to accuracy improvements. Notably, they mention that

“The most indispensable process in contrastive learning is the data augmentation module.” Saunshi
et al. [42] propose seeing data augmentations as inductive biases applied to the learning algorithm,
and derive theorems valid in the case of linear representations, in order to further understand the
principles driving the success of contrastive learning.

In this work, we provide a critical result regarding the importance of data augmentation, that
dramatically improves our understanding of the core principles of self-supervised learning, prompting
renewed theory: data augmentations are not necessary and only cropping without resizing is
sufficient to train strong SSL joint-embedding architecture models.

3 Approach

The goal of this work is to study the importance of data augmentation for training joint embedding
architectures. In this section, we provide a quick recap of the SSL training algorithm that we use for
our study. We then provide a precise description of the experimental setup, with details about the
training regimes and data augmentation strategies.

3.1 Short description of the DINOv2 algorithm

We tailor our study around the algorithm that was used for training the recently proposed DINOv2 [35]
models. We hypothesize that learnings from this study should apply to other SSL methods, but we
chose to focus our experimental work on the best modern JEA method. That way, we can provide
a strong counter-argument to the assumptions used in previous literature. We briefly summarize
the components of the DINOv2 learning algorithm, and for more details, we point to the original
publication [35]. Figure 1 provides a schematic diagram of the loss terms used for training the model.

Global DINO loss. The DINOv2 training loop is largely based on the DINO algorithm [9]. Given a
student (s) and a teacher (t) network, and two views of the same image v1 and v2, the student network
is trained by minimizing a loss between the two representations:

ℓ(s(v1), t(v2)). (1)

The teacher network, is taken as a moving average of the student. We refer the reader to [9] for more
details about the definition of ℓ.

Local reconstruction-based iBOT loss. DINOv2 models were trained using an additional local
masked-image reconstruction loss. As opposed to MAE or BEIT, the reconstruction task in iBOT
happens in the latent space, not in the pixel input space. Given a view v1 as used in the DINO loss,
we create an impaired version ṽ1 by replacing a fixed percentage of patches with a [MASK] token.
The target is to reconstruct the value of masked features using the remaining context:

ℓ(s(ṽ1), t(v1)). (2)

If several views are used, the iBOT loss can be applied to every such view. The strategy for choosing
the masked patches is a hyper-parameter of the method.

Multicrop and data augmentations. In practice, one does not use only two views v1 and v2.
Following [10], DINOv2 uses Multicrop, with two global crops and eight local crops. Global crops
are obtained using RandomResizedCrop with a scale parameter of [0.32, 1.0], then resized to 224
pixels. For local crops we used [0.05, 0.32] resized to 98 pixels instead. Each crop, be it global
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or local, undergoes a series of photometric augmentations: ColorJitter, RandomGrayscale,
GaussianBlur, RandomHorizontalFlip and RandomSolarize. We refer to the official DINOv2
repository for the exact implementation details.1

3.2 Experimental setup

Hyperparameters and training regimes. The original DINOv2 repository proposes two sets of
hyperparameters for training SSL models. The first set (that we refer to as the low-compute regime)
corresponds to a setup for fast experimental iterations, designed to run for 100 epochs (125k iterations)
with a batch size of 2048. This setup is optimized for performance on the ImageNet-1k dataset
(corresponding to the low-data regime). The second set (high-compute regime) is designed for longer
training runs of 500 epochs (625k iterations) and is optimized for performance on larger datasets,
such as ImageNet-22k (the high-data regime). These two sets differ in many values, including notably
the learning rate schedule and warmup, weight decay, batch size, patch size. In our experiments,
we use both sets to compare the behavior of the algorithm against data augmentation. We provide a
detailed empirical discussion of the differences in Sec. 4.3.

Modifications applied on data augmentation. In our study, we apply different configurations of
data augmentations. We provide here the details of the four configurations that we consider.

• Original: we use all the data augmentations, exactly like in the original DINOv2 work. Each
crop is passed through a series of random photometric augmentations independently.

• Shared: each view of an image is obtained using a different crop, but apply the exact same
photometric augmentation to all views. Two images in the batch will have different photometric
augmentations applied to them.

• Crop + Resize: we create views with no photometric augmentations at all, only
RandomResizedCrop.

• Crop: we create views without any photometric augmentations at all. We also don’t use
RandomResizedCrop. Instead, we use a Resize to 256 × 256 pixels and Crop to 224 or
98 pixels, leading to views with the exact same aspect ratio and zoom, with no random resizing.
This setup is very close to a masking strategy where different sets of tokens would be dropped, up
to pixel alignment to patch boundaries.

Figure 1 provides an illustration of the images that we obtain by applying these configurations.
We omit the ’Crop’ setting from the illustration given that the ’Crop’ and ’Crop+Resize’ provide
images that are hard to qualitatively differentiate with a naked eye, even if they differ in term of final
performances. In the end, our ’Crop’ strategy only applies two augmentations between generated
views: cropping without random resizing and random patch masking, which are two very similar
augmentations (the cropping drops pixels outside of a field-of-view, and masking inside of it). We
chose to keep those two specific augmentations as we think that they can be generalized to nearly all
kind of data, from graphs to 3D medical images and time-series.

Implementation details. For our study, we use the standard ImageNet-1k [41] and ImageNet-
22k [15] datasets, as well as the LVD-142M dataset originally used in DINOv2 [35]. The selection
of these datasets allows us to benchmark the impact of their size in the trainings. The pre-training
code performs 100 epochs in 27 hours on 5 compute nodes of 8 A100-80GB GPUs each, where 1
epoch is set to 1250 iterations. For evaluations, we follow DINOv2 linear evaluation protocol on
multiple different tasks including classification (ImageNet-1k [41], Places205[55], ImageNet-v2 [38],
ImageNet-Real [6], iNaturalist’18 [49], FlickrLogos32 [40], GTSRB [45], RP2K [36], Products-
10k [3], FireRisk [43], RESISC [14], MIMIC [28], CheXpert [27], VinDr [31], NIH-14 [51]),
segmentation (ADE20k [55]) and depth estimation (NYU-Depth v2 [44]).
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Table 2: New domains classification results of DINOv2 ViT-L trained on ImageNet-22k when
varying data augmentations. None of those domains were used in the pretraining data of the models.

Domain (Metric) Remote Sensing (Acc.) Medical Imaging (AUROC)
Dataset FireRisk RESISC MIMIC CheXpert VinDr NIH-14

Original 59.0 = 91.9 = 75.3 = 83.3 = 80.0 = 72.5 =
Shared 60.8 ↑ 1.8 91.6 ↓ 0.2 75.8 ↑ 0.5 85.6 ↑ 2.3 81.0 ↑ 1.0 74.4 ↑ 1.9
Crop+Resize 60.7 ↑ 1.7 91.1 ↓ 0.8 75.8 ↑ 0.5 84.1 ↑ 0.8 80.8 ↑ 0.8 73.7 ↑ 1.2
Crop 60.9 ↑ 1.9 92.3 ↑ 0.4 75.5 ↑ 0.2 83.0 ↓ 0.3 82.5 ↑ 2.5 74.2 ↑ 1.7

4 Experiments and discussion

4.1 Why do we need augmentations?

The first question we want to answer is: why do we need data augmentations? Are they systematically
needed, because they constitute a core component of the modeling? Are they a trick that facilitates
the optimisation of deep neural networks, exactly like in supervised learning?

The role of data-augmentations. In the context of supervised learning, data augmentations have
been used as a means of virtually augmenting the training dataset [21]. That way, additional training
samples could be obtained, reducing the risks of overfitting and improving the robustness of the
models trained. In self-supervised learning however, data-augmentations have been usually modeled
as a way to enforce representations to be invariant toward specific image’s characteristics, such as
color or scale [46, 52, 53].

Invariance can be harmful. Most of the self-supervised methods and their data-augmentations have
been optimised on ImageNet. While DINOv2 has probably been optimised on more benchmarks,
some tasks and domain are missing. In Table 2 we show the results of removing hand-crafted
data-augmentations on new domains (not used for training) and in Table 3 (left) on new tasks (in
the training set but not used for hyperparameter search). We can see that data-augmentations are
actually harmful on most of those, meaning that understanding the real impact of augmentations and
invariance while removing them is very important to increase SSL robustness.

Disambiguating the impact of data augmentation in self-supervised learning. We developed the
’Shared’ configuration that still applies augmentations to artificially increase the number of training
samples but doesn’t enforce invariance to those augmentations. We compare invariance in Table 3
(right) and show that the ’Shared’ setup has effectively lower invariance than the ’Original’ one. We
quantify it using the average cosine similarity of 16 augmented views of the same image, repeated on
100 images from different classes. Higher cosine similarity means higher invariance. We also report
a mean/std normalized similarity, computing the metrics using negative pairs’ cosine similarity.

Enforcing invariance losses its usefulness at scale. By comparing the ’Shared’ and ’Original’ results
in Fig. 2, we can see that both setups reach way above 80% linear-probe accuracy on ImageNet1k
when trained on all three datasets. While the ’Original’ setup gets better performances, we can see

1https://github.com/facebookresearch/dinov2 (Apache-2.0 license)

Table 3: (left): New task classification results of DINOv2 ViT-L trained on ImageNet-22k when
varying data augmentations. None of those tasks were used to tune DINOv2’s hyperparameters.
(right): Measure of invariance toward augmentation. Higher cosine similarity means higher
invariance as the model embeds multiple augmentations of the same image to closer vectors.
Task Logos Signs Products
Dataset FlickrLogos32 GTSRB RP2K Products-10k

Original 80.1 = 80.3 = 92.8 = 66.5 =
Shared 78.2 ↓ 1.9 78.9 ↓ 1.4 93.4 ↑ 0.6 68.1 ↑ 1.6
C+R 80.8 ↑ 0.7 76.3 ↓ 4.0 93.3 ↑ 0.5 67.7 ↑ 1.2
Crop 76.9 ↓ 3.2 85.1 ↑ 4.8 93.4 ↑ 0.6 67.3 ↑ 0.8

Metric Cosine Normalized
Similarity Cos. Sim.

Original 0.69 2.69
Shared 0.64 2.62
C+R 0.58 2.47
Crop 0.56 2.44
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Figure 2: Impact of dataset size when varying data augmentations. Results of ViT-L on linear
evaluation benchmarks, including classification (ImageNet1k, Places 205 and INaturalist18), depth
estimation (NYU-Depth) and segmentation (ADE20k). Cropping without resizing (’Crop’) reaches
very high performances on a wide variety of benchmarks, given that the dataset size is large enough.

that the gap decreases with the amount of data, from −1.3% when trained on ImageNet1k and −1.0%
with ImageNet22k, to −0.4% with LVD-142M. As we show in Fig. 3 (left), the gap between the
’Shared’ and ’Original’ setups also decreases with the number of training epochs. According to
experiments in prior literature [1, 11, 39], data augmentations are required at the sample level to
enforce invariance and obtain competitive performance. For example, when trained and evaluated
on ImageNet1k, SimCLR and BYOL respectively lose 27.6 and 13.1 points of accuracy in the
’Crop+Resize’ setup [39]. In contrast, our ’Shared’ setup only loses 1.2%, disproving this view.

Increasing the sample count is the key to strong SSL. We know that reconstruction-based models
like BEIT, MAE or I-JEPA don’t need handcrafted data-augmentations on ImageNet1k, and according
to El-Nouby et al. [32], "denoising autoencoders are more sample efficient than joint embedding
techniques". Those findings led us to conjecture that the real impact of data-augmentation is to
artificially increase the number of samples and allow JEA to reach good performance with less data.

To assess this, we compare the ’Crop + Resize’ and the ’Shared’ settings. Both settings do not enforce
invariance, but they differ because the ’Shared’ method artificially increases the sample count of
the pretraining dataset. We show in Fig. 2 that the gap with respect to the ’Original’ setting is way
bigger for ’Crop + Resize’ setting the compared to the ’Shared’ one when we use ImageNet1k to
pretrain our models. Without the sample count increase of data-augmentations, DINOv2 reaches
lower performance on all five benchmarks when pretrained on a small dataset (Fig. 2).

Data-augmentations play the same role in supervised and self-supervised learning. All those
results lead to the same conclusion: invariance is useful but not necessary for the learning of JEA,
and augmentations artificially increase the number of samples in the pretraining dataset. This also
explains why reconstruction-based methods do not need as many augmentations: they are more data
efficient [32]. But this is not their only role, as data-augmented setups perform better in shorter
trainings (Fig. 3, left). Since setups eventually converge to the same result with sufficient data, this
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Figure 3: Impact of data augmentations when we scale the number of training epoch (left) or
the ViT architecture size (right) on the accuracy of a linear probe on ImageNet1k for a ViT-L when
pretraining on ImageNet1k, ImageNet22k and LVD-142M. The ’Original’ and ’Shared’ setups scale
with the number of epochs for all datasets, but the ’Crop’ and ’Crop+Resize’ setups only scale with
larger datasets.
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suggests data augmentations are likely linked to easier optimization rather than to a core learning
signal. They are just another hyper-parameter.

4.2 Can we remove hand-crafted augmentations totally?

We focused on what was the impact of data augmentations in modern self-supervised learning
using the ’Original’, ’Shared’ and ’Crop + Resize’ settings. We will now show that we can reach
state-of-the-art performance without hand-crafted data-augmentations and resizing.

Scaling dataset size. Given that DINOv2 is more robust than other methods when training on
ImageNet1k without handcrafted data-augmentations [39], and knowing from Sec. 4.1 that data
augmentations mainly increase artificially the dataset size, we hypothesize that a self-supervised
JEA can reach SOTA performance by increasing the size of the pretraining dataset used, even when
removing the random resizing. We can see in Fig. 2 that increasing the dataset size has a notable
property: all four settings converge to the same performances and the gap almost disappears between
settings with and without hand-crafted augmentations, displaying a non-decreasing scaling curve
with the number of samples. The linear-probe accuracy gap decreases below 1% on ImageNet1k and
remains small on other benchmarks.

Scaling pretraining epochs. The highest performances were obtained when we pretrained our
models for 500 epochs on larger datasets and 100 on the smaller one. However, a question arises:
what happens if we train for longer on ImageNet1k, and faster on ImageNet22k and LVD-142M.
In Fig. 3 (left) we show that the behavior of low and high data regimes differ. While the larger
datasets show non-decreasing scaling curves with respect to the number of epochs, ImageNet1k has
an uncoupling between the settings with and without data-augmentations. We notice that training
longer on smaller scale dataset is harmful for performances when we don’t use the dataset size
increase property of data-augmentations. This is probably a consequence of overfitting and another
proof of our first claim in Sec. 4.1. What is more compelling is that, following the ’Shared’ setting
scaling curve, the ’Crop+Resize’ and ’Crop’ settings’ performance increases with longer pretraining,
reducing the gap with the ’Original’ one and converging to the same performance.

Data augmentation and model capacity. In Fig. 3 (right), we report ImageNet1k linear results
when varying both data-augmentation strategies and model size. We can see that the gap between the
best setup without hand-crafted data-augmentations and the classical setup (’Crop+Resize’ or ’Crop’
versus ’Original’) increases when we use bigger model size, going from −0.6% for a ViT-S and
ViT-B to −1.1% for a ViT-L and −1.5% for a ViT-H. This means that as we scale our model, we need
more augmentation to increase the amount of data and reduce overfitting. This is in line with the most
common understanding of scaling laws in experimental deep learning [29]: we need to scale compute,
model size and data at the same time. This also explains why previous work [11, 39] had a hard time
scaling self-supervised JEA without data-augmentations. They needed larger dataset, more compute
and larger models, but all previous experimental studies on the impact of data-augmentations in SSL
were mainly applied to ImageNet1k with smaller ResNets. This also explains why data-augmentation
strategies became more aggressive during the evolution of self-supervised methods from its inception
to modern methods like DINOv2, when people were scaling models but not datasets.

Role of the ’reconstruction-based’ iBOT loss. While DINO and iBOT use the exact same loss, they
differ in terms of target. With DINO, the teacher and the student are looking at two different views of
the same image, with either different data augmentations in the ’Original’ setting, the exact same
in the ’Shared’ one, or no augmentation at all with the ’Crop’ one. In the iBOT case however, the
student and the teacher see the same exact augmented view, but the student has some masked tokens.

Table 4: Impact of the iBOT loss on linear evaluation for multiple datasets for a ViT-L trained for
500 epochs on LVD-142M. We compare results with and without using masking and the iBOT loss.

IN1k INat18 ADE20k NYU-Depth ↓
iBOT + masking ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

D
at

a
A

ug
. Original 84.0 84.4 74.7 73.6 41.4 45.6 0.430 0.413

Shared 82.6 84.0 74.1 73.6 40.7 44.8 0.448 0.414
Crop+Resize 82.6 83.5 71.3 71.1 40.3 44.4 0.437 0.415
Crop 82.1 83.4 69.8 71.4 40.6 43.5 0.445 0.417
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It means that regardless of the data-augmentation strategy we use, both the teacher and the student see
the same thing in the larger crops. Both settings are similar, and despite iBOT not using a conditional
latent variable, it is possible to see it as a masked image modeling task in latent space, which is more
akin to joint embedding predictive architecture (JEPA) than joint embedding architecture (JEA). To
remove all confounding factors, we ablate the iBOT loss by setting its weight to zero and by removing
the masking strategy in Table 4. We can see that it is still possible to train a very good model without
iBOT and masking even if we use a stricter definition of JEA. The gap between the ’Original’ and
’Crop’ settings increases slightly, eg. from 1.0% with iBOT to 1.9% without, for ImageNet1k linear
probing, or from 0.04 to 0.015 RMSE for NYUd, but the performances remain competitive; more
importantly, it is in fact possible to train DINO alone without hand-crafted data-augmentations.

Comparison against other models. We compare our model trained on ImageNet22k with the ’Crop’
setting against other SOTA models trained without hand-crafted augmentations in Table 1. It’s worth
noting that our setup uses the smaller amount of augmentations: AIM [34] uses ’Crop+Resize’ and
RandomHorizontalFlip, BEIT [4, 50] uses ’Crop+Resize’ and ColorJitter, MAE [25] uses
’Crop+Resize’ and I-JEPA [2] uses ’Crop+Resize’. Our model outperforms alternatives on a wide
variety of tasks by a significant margin without hand-crafted data-augmentations.

4.3 Is scaling all you need in research?

45
55
65
75
85

To
p-

1 
Ac

c.

ImageNet1k

High ComputeLow Compute
20

30

40

m
Io

U

ADE20k

Original
Shared
Crop + Resize
Crop

Param. IN1k INat18 ADE20k NYUd ↓
High Compute 49.6 28.5 20.0 0.650

Layer Decay 47.6 26.8 20.7 0.693
# Prototypes 48.8 27.6 20.7 0.661
Head Dim. 49.0 27.8 17.7 0.654
Momentum 49.7 28.0 18.2 0.654
Warmup Epoch 51.3 26.0 24.4 0.605
Warmup Temp 51.3 28.5 22.1 0.627
Drop Path Rate 52.3 30.6 22.9 0.631
Weight Decay 53.4 30.5 21.7 0.646
LR 74.2 47.6 33.5 0.517

Low Compute 78.7 54.2 37.2 0.486

Figure 4: (left): Impact of hyper-parameter optimisation’s target compute on the accuracy of
a linear probe on ImageNet1k and ADE20k for models trained on ImageNet1k. We can see that
optimising for high compute leads to poor performances on the ’Crop’ and ’Crop+Resize’ settings,
which is the opposite of our findings when we optimize for low compute. (right): Impact of
hyperparameter tuning using ’Crop+Resize’ on ImageNet1k for 100 epochs. For each line, we
switch only one hyper-parameter from the configuration optimized on ImageNet22k for 500 epochs
(High compute) to the one optimized for ImageNet1k for 100 epochs (Low).

Same experiment, different outcomes. During this study, we used two sets of hyper-parameters
optimized for different use cases. One optimized for training our models on the smaller scale dataset
ImageNet1k during 100 epochs (low compute) that we used for all trainings on ImageNet1k, and
one for training those models on the larger datasets ImageNet22k and LVD-142M during 500 epochs
(high compute) that we used for all trainings on ImageNet22k and LVD-142M. Indeed, training on
ImageNet1k using hyper-parameters optimized on the larger datasets gives different conclusions.

We show in Fig. 4 (left) the ImageNet1k linear-probe accuracy and ADE20k linear segmentation
mIoU obtained after training a ViT-L on ImageNet1k when we use the ’Low Compute’ and ’High
Compute’ sets of hyper-parameters. Interestingly, DINOv2 doesn’t work when trained on ImageNet1k
using the ’Crop’ or ’Crop+Resize’ settings with the ’High Compute’ hyper-parameters. It reaches
only 46% linear accuracy, despite obtaining SoTA performances when trained on ImageNet22k and
LVD-142M with the exact same hyper-parameters, providing nice scaling curves in the process.
However, when we optimize the hyper-parameters for the specific scale of data (ImageNet1k) and
compute (100 epochs), we can see that it reaches 73.5% with a linear-probe, as presented before.
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With the ’High Compute’ hyperparameters, going from the ’Original’ to ’Crop+Resize’ setups makes
DINOv2 lose 29.1% on the linear-probe evaluation, which is in phase with previous literature [39].
This means that if our only goal was to get a scaling curve leading to SoTA models, without optimizing
for lower compute and data, we wouldn’t have been able to disprove the assumption from previous
studies that pretraining a strong JEA without data-augmentations with minimal loss in performances
is impossible when using ImageNet1k [11, 39]).

The issue with high-scale experimental studies. In Fig. 4 (right), we show that it’s not trivial to go
from one hyper-parameter setup to the other, gains being non linear when tweaking parameters one at
a time. Such issue already arose previously in the literature. For example, it was originally thought
that ViT needed hundreds of millions of images to reach good performances [17], but such claim
has been proven false in later work [20, 48]. The same happened with Large Language Models, with
work scaling them to hundred of billions of parameters like OPT [54] reaching 175B before newer
methods showed improved performances with smaller sizes as in [23, 47].

5 Conclusion

In this work, we challenged the common belief that joint-embedding architectures require data
augmentations to deliver strong performance. The underlying interpretation of that belief, followed
by theorists, is that the core learning signal in these methods relies on mapping differently augmented
samples to the same embedding in the latent space. In particular, this reasoning implies expert
knowledge in the design of data augmentations. Also, the photometric augmentations of images (such
as blurring and color jittering) cannot be easily mapped to other modalities (such as speech or text).
As such, this belief restricts the scope of high-performance JEA methods to images.

Our experiments show that this is not true, as it is possible to achieve performance similar to data-
augmented pipelines with the DINOv2 SSL algorithm without using what is referred to, in prior
literature, as hand-crafted data augmentations. Therefore, our results prove that joint-embedding
architectures do not necessarily require domain knowledge during training to deliver state-of-the-art
performance. The data augmentations merely influence training by increasing the dataset size, as
shown by our ’Shared’ setup, which does not enforce the learning of invariances.

Additional experiments with even weaker data augmentations, such as the ’Crop’ setup, show that
given enough training iterations and data, the models will converge to comparable performance
as their stronger data-augmented counterparts. Our results suggest that prior conclusions largely
depended on the smaller scale of experiments. However, we note that strong data augmentations
lead to stronger performance in the case of shorter training, suggesting that they also help ease the
optimization process during learning. We hope future work can shed more light on that observation.

Limitations. Given the cost of pretraining models, we focused on the leading self-supervised
joint-embedding architecture, DINOv2, that provides strong performance at different data scales.
While the results might be different for other algorithms, in principle, the existence proof that we
offer in this work still holds. We noted that data augmentations tend to ease optimization, but the
underlying mechanism is not known at this point. We merely claim that handcrafted photometric
augmentations are optional for successful learning. While it has a measurable effect on some setups,
this does not invalidate our conclusions. For large architectures, there is still a tiny gap in performance
between augmented and non-augmented setups for long training. While we hypothesize that this
might be due to slight variations in the optimal hyperparameters, there could also be a deeper reason
that is not covered within the scope of this study.

Statement of Broader Impact. The total compute cost for this study was approximately 150k
GPU-hours. We used strong models to blur all human faces in our web-based image data pool.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide an existence proof that it is possible to train a self-supervised
joint-embedding architecture (based on DINOv2) that reaches state-of-the-art performance
without relying on invariance to data augmentations, as was previously deemed necessary.
Table 1 compares with alternative methods not using domain-specific data augmentations,
while Figures 2 show that the performance almost matches the data-augmented baseline.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: A "Limitations" paragraph is present at the end of the conclusion section. The
main limitation is in the generality of the claim regarding alternative methods. The existence
proof still holds true though, as the example we provide is sufficient to disprove prior
community belief that SSL joint-embedding architectures are based on learning invariance
between different domain-specific (hand-crafted) data augmentations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This is an experimental paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The hyperparameter sets and code are available publicly in the official DINOv2
repository. The ImageNet-1k and Imagenet-22k experiments are sufficient to support all the
claims in the paper, and these datasets are available publicly as well as the linear-probing
evaluation code and documentation to reproduce results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code, hyperparameters, and data sufficient to support our claims are available
for the main experimental results as mentioned above.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We employ the base settings provided in the DINOv2 repository, that we used
to produce the results in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [No]

Justification: The claims following our experimental results rely on the presence, or not, of
large differences in performance between the different setups that we used. During the study,
the authors did not observe variability in the evaluation results large enough to justify the
cost of running multiple model trainings to provide such bars, and believe that this tradeoff
is acceptable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a description of the setup (5 compute nodes of 8 A100-80GB
GPUs each) as well as its speed (125k iterations in 27 hours) in the Experimental Setup
section 3.2

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The authors believe this work does not have societal impact, as it focuses on
the understanding of SSL algorithms and builds on prior literature and code that is already
publicly available.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We don’t release such high risk information.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [No]
Justification: We did not include the licenses of the datasets. However, proper citations are
referenced for all datasets and code; in particular the code is Apache-2.0 as mentioned in
the corresponding footnote.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We don’t do such thing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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