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Abstract: Self-supervised deep learning methods for joint depth and ego-motion
estimation can yield accurate trajectories without needing ground-truth training
data. However, as they typically use photometric losses, their performance can
degrade significantly when the assumptions these losses make (e.g. temporal illu-
mination consistency, a static scene, and the absence of noise and occlusions) are
violated. This limits their use for e.g. nighttime sequences, which tend to contain
many point light sources (including on dynamic objects) and low signal-to-noise
ratio (SNR) in darker image regions. In this paper, we show how to use a com-
bination of three techniques to allow the existing photometric losses to work for
both day and nighttime images. First, we introduce a per-pixel neural intensity
transformation to compensate for the light changes that occur between successive
frames. Second, we predict a per-pixel residual flow map that we use to correct
the reprojection correspondences induced by the estimated ego-motion and depth
from the networks. And third, we denoise the training images to improve the ro-
bustness and accuracy of our approach. These changes allow us to train a single
model for both day and nighttime images without needing separate encoders or
extra feature networks like existing methods. We perform extensive experiments
and ablation studies on the challenging Oxford RobotCar dataset to demonstrate
the efficacy of our approach for both day and nighttime sequences.

1 Introduction

An ability to capture 3D scene structure is crucial for many applications, including autonomous
driving [1], robotic manipulation [2], and augmented reality [3]. Many methods use LiDAR or fixed-
baseline stereo to acquire the depth needed to reconstruct a scene, but researchers have also long been
interested in estimating depth from monocular images, driven by the ubiquity, low cost, low power
consumption and ease of deployment of monocular cameras. By contrast, LIDAR can be power-
hungry, and stereo rigs must be calibrated and time-synchronised to achieve good performance.

Multi-view monocular depth estimation approaches have long used variable-baseline stereo over
multiple images to recover depth [4, 5]. Meanwhile, progress in deep learning has opened up the
additional possibility of estimating depth from a single monocular image. Deep learning methods
for depth estimation can be broadly divided into two types, namely supervised methods [6, 7], and
self/unsupervised methods [8, 9, 10]. Typically, supervised approaches have achieved very good
results for the dataset(s) on which they are trained, but their need for ground-truth information
during training has often hindered their deployment in new domains.

By contrast, self/unsupervised methods have typically adopted the use of a geometry-based loss
function, inspired by the strong physical principles of traditional methods [11, 12]. This loss function
is commonly referred to as the photometric or appearance loss, and is based on the assumptions that
(1) the scene is static (i.e. contains no moving objects), (ii) the illumination in the scene is diffusive
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Figure 1: (a) The challenges posed by nighttime images: (1) low visibility and noise (patch en-
hanced for better readability); (2) moving light sources with saturating image regions; (3) point light
sources; (4) extreme motion blur. (b) Despite these adverse conditions, which violate the assump-
tions made by the photometric loss, our method can successfully estimate accurate depth maps.

(i.e. there are no specular reflections) and temporally consistent (i.e. the pixels to which any scene
point projects in any two consecutive frames have the same intensity), and (iii) the images are free of
noise and occlusions [11, 12, 13, 14]. In practice, many of these assumptions are at least partly false,
which can lead to errors in the estimated depth: scenes are quite likely to contain dynamic objects
(e.g. cars, cyclists and pedestrians, in an outdoor driving scenario), surface materials are rarely fully
diffusive, and occlusions are common. During the day, it is somewhat reasonable to assume that the
illumination is moderately temporally consistent for image sequences captured outdoors, as the sun
is by far the dominant light source in that case, and the light it casts changes only slowly over time;
however, at night, the numerous point light sources that are typically turned on after dark (e.g. car
headlights, lamp posts, etc.) can cause the illumination to change drastically from one frame to the
next. At night, also, the motion blur associated with the movement of dynamic objects in the scene
(including the ego-vehicle) becomes worse, owing to the longer exposure times typically used when
capturing nighttime images [15, 16], and the signal-to-noise ratio of the (darker) images becomes
much lower than it would be during daytime. Such issues, as illustrated in Figure 1, inhibit the
straightforward use of deep networks based on photometric loss for nighttime sequences.

In this paper, we address this problem by directly targeting violations of the temporal illumination
consistency, static scene and noise-free assumptions on which the photometric loss relies. As shown
by our day and night results in Table 1, these three together account for much of the discrepancy in
performance between daytime and nighttime. A lack of temporal illumination consistency caused
by point light sources in the scene can cause pixels to be incorrectly matched between consecutive
frames. To rectify this, we propose a novel per-pixel neural intensity transformation that learns to
compensate for these light sources (see §3.2). Whilst conceptually straightforward, this approach
is surprisingly effective, as our results in §4 demonstrate. Interestingly, they also show that it is
able to operate well over wide (motion parallax) baselines, allowing us to leverage the better depth
estimation performance that wider baselines offer. To correct for dynamic objects in the scene, as
well as motion blur, we predict a per-pixel residual flow map (see §3.3) that we use to correct the
reprojection correspondences induced by the estimated ego-motion and depth from the networks.
This improves depth estimation performance at any time of day (see §4), but has additional theoret-
ical benefits for nighttime sequences because of the greater motion blur from which they typically
suffer. Lastly, we robustify our approach against noise by incorporating Neighbour2Neighbour [17],
a state-of-the-art denoising module, in our photometric loss formulation (see §3.4).

2 Related Work

Estimating depth from images has a long history in computer vision. Several methods use either
stereo images [18, 19, 20], or two or more images taken from different viewing angles [21, 22, 23].
We try to solve this problem using a single monocular image, without any constraints on the scene of
interest. Various methods have addressed this problem using supervised learning [6, 7, 24, 25, 26].
However, it is infeasible to have ground-truth depth maps for training on every scene, which limits
the application of these methods and helps motivate unsupervised solutions to this problem.



Unsupervised Methods: Garg et al. [8] proposed a geometry-based loss function to train a network
in a completely unsupervised fashion using a pair of stereo images. Monodepth [27] improved this
by using differentiable image warping [28] and structural similarity-based [29] image comparison
loss. StMLearner [30] used only monocular images to jointly learn depth and ego-motion. It was
further improved by combining stereo and monocular losses [31, 32]. GeoNet [33] and EPC [34]
learnt per-pixel optical flow maps along with depth and ego-motion to mitigate the effect of moving
objects. Some GAN-based methods also exist [10, 35, 36]. Monodepth2 [37] extended Monodepth
to the temporal domain, and proposed architectural changes and robust loss functions. More broadly,
recent years have also seen a wide range of other advances in depth estimation, e.g. changes to the
network architecture [38, 39, 40, 41], changes to the training strategy [42], the addition of extra loss
functions [43], and better handling of dynamic objects [44].

Ilumination-Invariant Feature Learning: Illumination inconsistency is a broader problem, e.g.
in visual relocalisation [45] and 3D reconstruction [46]. In [47], a canonical reference image is
estimated using image translation and used in a downstream pose estimation task. In [48], a sparse
set of keypoints with illumination-invariant descriptors are learned from images captured at different
times of day or in different weather conditions. In [49], learnt illumination-invariant features are
used to compute an error metric for optimising the camera pose. Recently, many other methods
[50, 51, 52, 53, 54] have targeted sparse keypoint-based relocalisation using learnt illumination-
invariant feature descriptors. By contrast, in this work, we aim to solve the per-pixel depth estimation
problem. Dense feature learning is also used for daytime depth estimation by [43].

Nighttime Methods: All the methods above are trained using photometric loss as the main supervi-
sion signal, and with an assumption of temporal illumination consistency, which is not valid at night.
A few methods, such as DeFeat-Net [55], ADFA [56] and Nighttime stereo [14], have explored how
to estimate depth from nighttime RGB images. DeFeat-Net [55] learns n-dimensional deep feature
representations (assumed to be illumination-invariant) using a pixel-wise contrastive loss. The fea-
ture maps are simultaneously used along with the images for photometric loss calculation during
training. ADFA [36] mimics a daytime depth estimation model by learning a new encoder that can
generate ‘day-like’ features from nighttime images using a domain adaptation approach. Instead of
feature translation as in [56], the authors in [14] propose a joint network for image translation and
stereo image-based depth estimation. Recently, photometric loss has again been used in RNW [57]
with an image enhancement module and a GAN-based depth regulariser. Liu et al. [58] divided the
day and nighttime images into view-invariant and variant feature maps using separate encoders, and
used the view-invariant information for depth estimation. All these methods either need two sepa-
rate encoders for day and nighttime images [56, 58, 57], or need to learn an illumination-invariant
feature space [55]. By contrast, our method learns to estimate depth in a completely self-supervised
fashion, without needing stereo images, ground-truth depth or any additional feature learning.

3 Method

3.1 Baseline Method

Existing photometric loss methods typically use two networks, a depth network (or DepthNet) and
a motion network (or MotionNet). The DepthNet takes an individual colour image as input, and is
used to predict a depth image D, for each colour image I; in the input sequence. The MotionNet
takes a consecutive pair of images I; and I;1 1 as input, and is used to output the ego-motion T ;1
of the camera between them. The estimated depth and ego-motion can be used to reproject a pixel
u = [u,v] " in frame I; into I, via Vt(u) = KTy 4+1D;(u) K11, in which 11 is the homogeneous
form of u, K € R3*3 encodes the camera intrinsics, and V;(u) € R? is the homogeneous form of
V;(u) € R?, a 2D point in the image plane of I;; (which may or may not lie within the bounds of
the actual image). This can be used to reconstruct an image I; by sampling from I;; around the
reprojected points, using bilinear interpolation [28] to achieve a smoother result. Formally,

., _ [interpolate(l; 11, Vi(u)) ifue M,
fi(w) = {0 otherwise, M
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Figure 2: The architecture of our proposed method (see §3 for details).

in which M; = {u : p(Vi(u)) € Q(I;11)} is the set of pixels whose reprojections into I;y1, when
rounded to the nearest pixel using p, falls within the image domain 2(I;;1). The reconstructed
image I can then be compared to the original image I; to calculate the loss values needed for
training. The loss we target, namely photometric loss, has been used by many recent deep learning-
based depth estimation techniques such as, [8, 31, 30, 36]. It is normally calculated as a convex
combination of pixel-wise difference and single-scale structural dissimilarity (SSIM) [29], via

1—-SSIM (1, I,
B = g Saea, (XSG (1) - H@)) @

Most existing unsupervised methods (e.g. [30, 31, 37, 38]) use this as the backbone of their formu-
lation. To ensure a fair comparison with current nighttime state-of-the-art methods [55, 58, 57], we
base our modifications in this paper on Monodepth2 [37], a commonly used baseline.

3.2 Lighting Change Compensation

The numerous point light sources that are typically turned on after dark (e.g. car headlights, lamp
posts, etc.) can cause the illumination of a scene to change significantly from frame I; to frame I, ;.
Moreover, when a light source moves with the camera (e.g. car headlights), this can lead to large
holes in the estimated depth in front of the ego-vehicle [55, 58]. To compensate for the illumination
changes, we estimate a per-pixel transformation that, when applied to /;, can mitigate the changes
in lighting that have occurred since I;. We draw some inspiration from [59, 60, 61], which use a
single whole-image transformation based on two scalar values to compensate for the difference in
exposure time between a pair of images, as this creates roughly uniform intensity changes over the
entire image. However, in our case, the intensity changes are far from uniform over the image, owing
to both the motions of the ego-vehicle and other objects in the scene, and the distances between the
ego-vehicle and static point light sources. For this reason, we propose a per-pixel formulation here.

Our approach starts by passing the features produced by the last convolutional layer of the Motion-
Net through a lighting change decoder” to estimate two per-pixel change images, C; and B; (see
Figure 2). These (respectively) aim to capture the per-pixel changes in contrast (scale) and bright-
ness (shift) that have occurred between the two input frames. As shown in Figure 4, the brightness
image B; broadly captures the extra light added to the image by e.g. vehicle headlights, and the con-
trast image C; broadly captures the changes in ambient light due to the motion of the ego-vehicle
towards or away from point light sources such as street lamps. We use these images to transform the
reconstructed image I} via L =C ol 1 + B, in which ® denotes the Hadamard product.

2Similar to the DepthNet decoder, but without skip connections. See supplementary material for details.



3.3 Motion Compensation

The standard photometric loss makes use of correspondences {u < Vi(u) : u € M,;} between
consecutive frames that have been established via reprojection, based on the estimated ego-motion
and depth. Assuming that (i) the ego-motion and depth have been estimated well, (ii) the scene is
static, and (iii) there is minimal motion blur, these correspondences will broadly match those that
would have been established had we used the ground-truth optic flow ®;(-) from frame ¢ to frame
t+1. However, if objects move with respect to the background scene, or anything visible in the image
moves with respect to the ego-camera (which can cause motion blur), then these correspondences
may be incorrect. To correct them, we predict a residual flow map R;, such that for each pixel u,
R;(u) € R? is an estimate of (u + ®;(u)) — V;(u). We can then add R;(u) to V;(u) to obtain a
potentially more accurate correspondence for use in reconstructing I; via Equation 1.

Some methods [34, 33, 44] already exist that predict residual flow for daytime images by using a
separate encoder-decoder network or computationally intensive image warping-based bilinear inter-
polation for supervision. By contrast, we estimate residual flow using an efficient sparsity-based
formulation. This involves introducing a residual flow decoder that takes the features of the final
convolutional layer of the MotionNet as input and the features of previous layers in the MotionNet
via skip connections, and outputs residual flow maps {R; s : s € {0, 1,2, 3}} at four different scales
(each Ry ; has a width and height that is 1/2° that of I;, and R, o = Ry).

There is no direct supervision available to learn the residual flow maps. For this reason, we choose
instead to encourage sparsity in the residual flow estimates, so that the estimated depth and ego-
motion can explain the majority of the scene, and the left-over can be explained by the residual flow
maps. To achieve this, we adopt the sparsity loss from [44], i.e.

LY =522 (1 Resl)/2* Tucar, ) VI + Res W/ ReD), )

in which I; ; is a downsampled version of I at scale s, and (| R 4|) is the spatial average of the abso-
lute residual flow map |R; ;|. By contrast with [44], here we introduce a normalising factor of 1/2°
at each scale, since the original loss was for scene flow, where the flow magnitude is independent of
the resolution of the flow maps, which is not the case for the 2D residual flow we consider.

3.4 Image Denoising

Image noise is yet another key factor that affects the performance of the photometric loss, especially
in darker regions of the image that typically have a low SNR. Handling this noise is crucial, as photo-
metric loss is the only training signal. To denoise the images, we used Neighbour2Neighbour [17], a
state-of-the-art unsupervised model trained on ImageNet with zero-mean Gaussian noise. The stan-
dard deviation was varied from 5 to 50 during training. We denoise the images before feeding them
to the network. This can either be done at both training and test times, or solely at training time (for
calculating the loss). We chose the latter, as the former has two potential disadvantages: (i) it can
significantly add to the computational burden at runtime, slowing down the depth estimation, and
(ii) any errors in the denoising process can lead to downstream errors in the depth maps, even though
the depth estimation model itself might have been trained well. By contrast, restricting denoising
to training time has the advantage of allowing us to make the depth and motion networks robust to
noise by training them on the original noisy images, but supervising with the denoised images.

3.5 Full Pipeline

We can now formulate our full pipeline, which takes two consecutive images I; and I;1, as

Dt = D(It), fn = Mgl:n([lialt+1])a T17t+1 = MD(fN)
Re = RFD({fn:1<n<N}), (Ci,B:) = LCD(f)

Tt = DN (It), Ziy1 = DN (I14+1), Z; = reconstruct(Zit1, Vi + Ry), I, =C, 0TI+ B, 4
Ly — 1 Cuenr, (aw +(1-a)|T(u) - ft(u)D 7



where D is the DepthNet, ME1.,, denotes the first n layers of the N-layer MotionNet encoder, MD
is the MotionNet decoder, RFD is the residual flow decoder, LCD is the lighting change decoder,
and DN is the denoiser [17]. The reconst ruct function reconstructs Z; as per Equation 1, and V;
denotes the reprojected pixels from I; to I;4 ;. At frame ¢, the DepthNet is applied to I; to estimate a
per-pixel depth map Dy, and the MotionNet is applied to both I; and I; 1 to estimate the ego-motion
T} t++1 from frame ¢ to frame ¢ 4 1. During training, the features from the last convolutional layer
of the MotionNet are passed through the lighting change decoder to estimate the per-pixel lighting
changes that have occurred between the frames (see §3.2). A separate residual flow decoder takes
both these last layer features and the features of earlier layers in the MotionNet (via skip connec-
tions) to estimate a per-pixel residual flow map R; (see §3.3) that we use to correct the reprojection
correspondences induced by the estimated ego-motion and depth from the networks. To calculate
the photometric loss, we (i) denoise I; and I;; with a state-of-the-art denoising module [17] to
produce Z; and Z;1; (ii) reconstruct Z; from Z;, using reprojection correspondences that have
been corrected using the residual flow; (iii) correct Z] for the estimated lighting changes between
the frames to produce 7:}; and then (iv) calculate the usual photometric loss between 7:} and Z,;.

Making the Pipeline Bidirectional. Monodepth2 [37] calculates its photometric loss not only
forwards, from I; to Iy, but also backwards, from I; to I;_;, before combining the losses. This
allows us to use the idea of minimum reprojection error to account for occluded pixels, and so we do
the same. We also adopt the auto-masking losses from Monodepth2 [37], which we call Lgt) , as even
though our method can cope with moving objects, it is very difficult to use parallax to disentangle
the motion of objects that are moving in the same direction and at the same speed as the ego-vehicle.
We further include the commonly used edge-aware gradient smoothing loss Lgt) [27] to maintain
spatial smoothness over the estimated depth maps. Our final loss L(*) then becomes

L0 = min (L, L8, L0 L)+ A (L2 4+ 1)) 4+ AL, 5)

in which +/— denote the forward/backward versions of the losses, and A, A\, € R are the weights.

4 Experiments

In §4.1, we compare our depth estimation performance to a number of state-of-the-art approaches
in a variety of different daytime and/or nighttime contexts. In §4.2, we present a study on the effect
of parallax to help explain the importance of our neural intensity transformation module. Finally,
in §4.3, we perform an ablation study to analyse the contributions made by the three individual
components of our approach. Further experiments can be found in the supplementary material.

4.1 Depth Evaluation

We compare with 4 state-of-the-art unsupervised monocular methods: Monodepth2 [37], DeFeat-
Net [55], ADDS-Depth-Night [58] and RNW [57] (see Figure 3 and Table 1). The quantitative
evaluation uses the error and accuracy metrics from [6], as detailed in the supplementary material.
We tested our model with 3 different data variations: day only (d), night only (n), and a mix of
day and night (d&n). Monodepth2 [37] can be trained with all 3 configurations, but has already
been outperformed by DeFeat-Net [55] in the d&n setting. For the d and n settings, we outperform
it by a significant margin in both error and accuracy (see Table 1). DeFeat-Net [55] and ADDS-
Depth-Night [58] were originally trained with a d&n configuration. We evaluated the pre-trained
models they released on our test split. Our method outperforms both methods by a significant
margin on the nighttime sequences (see Table 1). Please note that we do not use any additional
feature representation-based losses as used in DeFeat-Net [55], or paired day and night images
as used in ADDS-Depth-Net [58]. RNW [57] is also built on Monodepth2, but targets nighttime
data only. As per Figure 3, our depth estimation results are sharper and better able to preserve
edges than the competing methods. We also found that using a longer baseline improves depth
estimation performance. However, naively using a wider baseline without also using our neural
intensity transform can lead to a severe decrease in accuracy, particularly for nighttime images.



Test Method Train ~ Abs. Rel. Sq. Rel. RMSE Log RMSE &< 1.25 §<1.252 §<1.253

Monodepth?2 [37] d 0.219 4.525 7.641 0.285 0.679 0.862 0.930

Ours d 0.191 1.710 6.158 0.253 0.713 0.904 0.962

Q@ DeFeat-Net [55] d&n 0.247 2.980 7.884 0.305 0.650 0.866 0.943
RNW [57] d&n 0.297 2.608 7.996 0.359 0.431 0.773 0.930
ADDS-Depth-Night [58] d&n 0.239 2.089 6.743 0.295 0.614 0.870 0.950

Ours d&n 0.176 1.603 6.036 0.245 0.750 0.912 0.963

Monodepth2 [37] n 0.453 21.310  11.420 0.444 0.700 0.873 0.930

RNW MCIE + SBM [57] n 0.350 7.934 8.994 0.407 0.674 0.861 0.922

= Ours n 0.186 1.656 6.288 0.248 0.728 0.919 0.969
%0 DeFeat-Net [55] d&n 0.334 4.589 8.606 0.358 0.586 0.827 0911
ADDS-Depth-Night [58] d&n 0.287 2.569 7.985 0.339 0.490 0.816 0.946
RNW [57] d&n 0.185 1.710 6.549 0.262 0.733 0.910 0.960

Ours d&n 0.174 1.637 6.302 0.245 0.754 0.915 0.964

Table 1: A quantitative comparison of our method. The results of Monodepth2 [37] are reported
after retraining it. Those of DeFeat-Net [55] and ADDS-Depth-Night [58] are reported using the
checkpoints from their public repositories. The evaluation uses a maximum depth of 50m. Under-
lined methods use daytime images as main supervision or for regularisation losses.
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ﬁ -
T -
i S v —
L < S T O
I T

Figure 3: A qualitative comparison of our proposed method with the state of the art.
4.2 Effect of Parallax

To better understand how depth estimation performance is affected by increasing the average paral-
lax (metric separation) between the images we use to calculate the photometric loss, we constructed
a new nighttime training split by increasing the intra-triplet stride (see supplementary material) to
2, which increased the average parallax between the images from 0.353m to 0.706m. Without our
neural intensity transformation, the depth estimation performance significantly decreased compared
to the original nighttime training split (see the difference between the RMSEs of the baseline in the
top and bottom parts of Table 2). A key cause of this in night images is likely the headlights of the
ego-vehicle, which can cause the pixel intensities to change drastically between frames. However,
with our neural intensity transformation, the depth estimation performance was found to instead in-
crease, which we hypothesise to be because by compensating for the lighting changes, we make it
possible to exploit the stronger supervision that can be offered by a wider baseline.

4.3 Ablation Study

Lighting Change Compensation. In Figure 4(a), we show several reference images and their light-
ing change maps. The intensity changes are non-uniform, so we cannot use the existing correction
approaches from [59, 60, 61]. We also observe that our method is able to clearly disentangle both the
changes in ambient light resulting from movement towards/away from point light sources (captured
by C}) and the additional light added to the road pixels in the images by the ego-vehicle headlights
(captured by B;). Our neural intensity transform significantly reduces the RMSE compared to the
baseline (see Table 2), and is also able to fill in holes in front of the ego-vehicle (see Figure 3).



Stride Method Abs. Rel.  Sq.Rel. RMSE  LogRMSE & < 1.25 &§<1.25%2 §<1.25%

Baseline 0.266 5.647 6.305 0.331 0.759 0.9013 0.947

1 w/ NIT 0.190 1.824 4.848 0.257 0.763 0.919 0.965
w/ Denoising 0.163 1.256 4.193 0.224 0.801 0.935 0.973

Full Model 0.154 1.174 4.120 0.216 0.811 0.939 0.976
Baseline 0.602 63.914 14.726 0.467 0.785 0.902 0.939

2 w/ NIT 0.169 1.727 4.693 0.236 0.812 0.929 0.967
Full Model 0.131 0.926 3.731 0.188 0.852 0.949 0.980

Table 2: Ablation study showing the importance of different modules in our system where NIT
stands for neural intensity transformation. The maximum evaluation depth was set to 30m for this
study. ‘Stride’ denotes intra-triplet stride (see supplementary material).
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Figure 4: Visualisations of (a) estimated light changes; (b) residual flow and estimated depth; (c) the
effects of denoising on the training loss over time. Please refer to §4.3 for more details.

Motion Compensation. In Figure 4(b), we show several reference images and their residual flow
and depth maps. In the second column, one can clearly see that our method is able to distinguish
pixels on moving objects such as cars and pedestrians from static pixels. This effect can be observed
for both daytime and night-time images, showcasing the generality of our approach through a single
unified training pipeline. In Table 2, it can be seen that correcting the reprojection correspondences
using the residual flow map we predict leads to a significant improvement in accuracy.

Image Denoising. Denoising the images while calculating the training loss should ideally reduce
the ambiguity in establishing pixel correspondences between the images, giving a robust supervision
signal for training our system and thereby achieving lower errors and higher accuracy. This effect
can be clearly seen in the training error plot shown in Figure 4(c), where we compare our base-
line+NIT model with and without denoising. The denoising results in much more accurate depth
maps, improving both the RMSE and accuracy metrics as shown in Table 2

5 Limitations

Like most stereo approaches (variable-baseline like ours, or fixed-baseline with a rigid stereo rig),
our method struggles to preserve the detail of distant parts of the scene because of limited parallax.
It also struggles to recover structural detail from very dark image regions (e.g. see Figure 1(b)).
Furthermore, we currently approximate the relationship between pixel intensities and light intensity
as linear for simplicity. This can be better approximated by using the inverse camera-response
function. Finally, whilst our method copes with most motion patterns, it can struggle to estimate the
motion of objects moving with the same speed as the ego-vehicle and in the same direction.

6 Conclusions

In this paper, we propose a self-supervised method to learn a single model to estimate depth maps
from monocular day and nighttime RGB images. By compensating for the illumination changes
that can occur from one frame to the next, we enable accurate nighttime depth estimation in non-
uniform lighting conditions. Moreover, by predicting per-pixel residual flow and using it to correct
the reprojection correspondences induced by the estimated ego-motion and depth, we improve our
method’s ability to cope with both moving objects in the scene and motion blur. Finally, by denoising
the input images prior to calculating the photometric loss, we improve the loss’s ability to provide a
strong supervision signal, making the entire system more robust and accurate.
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