
VideoCAD: A Dataset and Model for Learning
Long-Horizon 3D CAD UI Interactions from Video

Brandon Man∗ Ghadi Nehme∗ Md Ferdous Alam Faez Ahmed
Department of Mechanical Engineering, Massachusetts Institute of Technology

Cambridge, MA 02139, USA
{bm557, ghadi, mfalam, faez}@mit.edu

Abstract

Computer-Aided Design (CAD) is a time-consuming and complex process, re-
quiring precise, long-horizon user interactions with intricate 3D interfaces. While
recent advances in AI-driven user interface (UI) agents show promise, most exist-
ing datasets and methods focus on short, low-complexity tasks in mobile or web
applications, failing to capture the demands of professional engineering tools. In
this work, we introduce VideoCAD, the first attempt to model UI interactions for
precision engineering tasks. Specifically, VIDEOCAD is a large-scale synthetic
dataset consisting of over 41K annotated video recordings of CAD operations,
generated using an automated framework for collecting high-fidelity UI action data
from human-made CAD designs. Compared to existing datasets, VIDEOCAD
offers an order-of-magnitude increase in complexity for real-world engineering
UI tasks, with time horizons up to 20× longer than those in other datasets. We
show two important downstream applications of VIDEOCAD: (1) learning UI
interactions from professional 3D CAD tools for precision tasks and (2) a visual
question-answering (VQA) benchmark designed to evaluate multimodal large lan-
guage models (LLMs) on spatial reasoning and video understanding. To learn
the UI interactions, we propose VIDEOCADFORMER, a state-of-the-art model
for learning CAD interactions directly from video, which outperforms existing
behavior cloning baselines. Both VIDEOCADFORMER and the VQA benchmark
derived from VIDEOCAD reveal key challenges in the current state of video-based
UI understanding, including the need for precise action grounding, multi-modal
and spatial reasoning, and long-horizon dependencies. The dataset and code are
available at: https://github.com/ghadinehme/VideoCAD

1 Introduction

Designing most physical products—from cars to airplanes—relies on professional engineering CAD
software such as SolidWorks, Autodesk Inventor, and PTC Onshape. These platforms, with their
hundreds of toolbars and menu options, pose significant challenges for users due to their complex
interfaces, intricate workflows, and the high degree of precision required to create accurate 3D
geometries [1, 2]. Unlike typical consumer applications, where tasks are completed through simple
User Interface (UI) interactions, CAD operations require structured, multi-step processes involving
3D spatial understanding and parametric modeling. Mastery of these tools often requires years
of experience, and automating their use remains a formidable challenge [3]. While recent AI-
based approaches aim to automate parts of the CAD workflow, most are limited to text or image
modalities [4, 5] and fail to learn from the dynamic, video-based nature of CAD interfaces. The
absence of large-scale, annotated datasets capturing such interactions further constrains progress in
this area.

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/ghadinehme/VideoCAD

Prior research on UI navigation has primarily focused on web and mobile applications, where tasks
are short, low in complexity, and require no 3D reasoning. Benchmarks such as MiniWob++ [6]
and RICO [7] have provided valuable insights into learning from user interactions, yet they fall
short of capturing the complexity of CAD environments—where tasks involve nested dependencies,
geometric constraints, and tool-based operations that go far beyond simple button clicks. While
behavior cloning from video has shown promise in robotics and gaming, its application to software
UI understanding remains largely unexplored due to the lack of large-scale, video-annotated datasets.

To address this gap, we introduce VIDEOCAD, a large-scale synthetic dataset containing over 41K
video demonstrations of CAD modeling tasks with fine-grained action annotations. VideoCAD is
generated from a public dataset of parametric CAD models, DeepCAD [8], originally authored by
human designers in Onshape [9]—a professional browser-based CAD platform (see Appendix A).
We map the construction sequences of these CAD models into executable UI actions within Onshape,
producing realistic, temporally aligned video–action pairs.

To demonstrate the effectiveness of our dataset, we provide two important downstream applications
of VIDEOCAD. First, we develop a transformer-based model, VIDEOCADFORMER, that predicts
UI interactions, given a single input image of target CAD model. We benchmark our model against
state-of-the-art behavior cloning baselines and show that VIDEOCADFORMER outperforms them by
up to 20% in learning from rich user interactions for CAD design, demonstrating superior reasoning
over long-horizon UI interaction tasks involving 3D understanding. Second, we also introduce
VIDEOCADQA, a synthetically generated multiple-choice VQA dataset derived from VIDEOCAD
that includes questions that evaluate 3D reasoning and video understanding in LLMs. Our benchmark
helps uncover a critical gap in spatial reasoning of current LLMs in precise engineering tasks.

VIDEOCAD has the potential to serve as a valuable benchmark for advancing research in AI-driven
UI navigation, software automation, and CAD generation. By providing an open-source dataset
with rich annotations, we aim to facilitate breakthroughs in learning from software demonstrations
and bridging the gap between computer vision, reinforcement learning, and CAD modeling. More
specifically, our contributions can be summarized as follows:

• A large-scale, high-fidelity CAD interaction dataset: VIDEOCAD consists of over 41K
annotated videos, capturing diverse CAD workflows with both low-level UI actions and high-
level modeling operations.

• Behavior cloning benchmarks and a state-of-the-art model: We evaluate multiple base-
lines on VIDEOCAD and propose VIDEOCADFORMER, a transformer-based architecture that
achieves state-of-the-art performance on long-horizon CAD action prediction.

• A VQA benchmark for 3D and spatiotemporal reasoning: We present a case study that
extends VideoCAD into a VQA benchmark, introducing 1,200 visual questions that probe LLMs’
fine-grained 3D reasoning and temporal understanding over CAD videos.

2 Related works

Research on automating software understanding spans UI navigation, learning from demonstrations,
and 3D CAD generation. We situate our work at the intersection of these areas—linking long-horizon
UI modeling with spatially grounded CAD reasoning.

User Interface Navigation. Automating user interface navigation has been a long-standing challenge
in AI research. Works such as MiniWob++ [10] and Android In The Wild (AITW) [11] introduced
datasets for web and mobile UI interaction, allowing agents to learn structured policies for performing
simple tasks. However, these datasets focus on relatively simple tasks with short time horizons.
More recent works, such as WebShop [12], have extended these capabilities to complex real-world
scenarios where an agent must reason over long sequences of actions to achieve its goal.

UI Agents and Behavior Cloning from Videos. Learning from demonstrations has been widely
applied to UI interaction. Behavioral cloning, where an agent learns from human demonstrations, has
been successfully applied in robotic manipulation [13] and game environments [14]. However, its
application to GUI-based tasks is still underexplored. Recent studies, such as ActionBert [15] and
AssistGUIs [16], explored using large-scale datasets for predicting UI interactions from multimodal
inputs. Our work extends these efforts by introducing a dataset specifically tailored for CAD
interactions, where the action space is significantly more complex.

2

CAD Datasets for Learning-Based Modeling. Parametric CAD datasets remain scarce compared
to mesh or point cloud collections. The ABC dataset offers 1 million B-rep models with precise
geometry but lacks procedural data [17]. DeepCAD supplements this by providing 178K models with
full construction histories, enabling sequence-based generative modeling [8]. Fusion 360 Gallery
contributes 8.6K human-authored CAD programs, capturing sketch-extrude workflows and assembly
hierarchies [18]. MFCAD and MFCAD++ focus on machining feature recognition, supplying labeled
B-rep models for supervised learning [19, 20]. However, there is a lack of datasets capturing fine-
grained UI interactions or the visual and geometric reasoning needed to model 3D CAD workflows.
VIDEOCAD addresses this gap by providing video demonstrations of CAD construction, offering
temporally grounded UI actions and visual context to support multimodal learning of design behaviors.

AI-Driven CAD Generation. Generative modeling of CAD has been an active research area in
3D vision [21, 5, 22, 23]. DeepCAD [8] introduced one of the first deep learning models capable
of generating parametric CAD sequences, while subsequent works such as SketchGraphs [24] have
provided datasets for learning structured CAD designs. Recent advances in generative AI, such as
transformer-based models for sketch generation [25], conditional latent diffusion model for CAD
sequence generation from images [26] and direct CAD construction [27], highlight the potential for
learning CAD from visual demonstrations. VIDEOCAD complements these efforts by providing an
extensive dataset of video demonstrations, enabling new paradigms in learning CAD construction
from human-like video demonstrations.

3 VIDEOCAD Dataset

I. Human-made CAD models on
Onshape

III. Rule-based UI Automated
Method

IV. Raw Recordings of Onshape CAD User Interface VI. Final Dataset

⋮

⋮

Videos

Mouse and
Keyboard

logs

VideoCAD Image

Extracted key frames

UI Actions

Video Captions

Video
Captions

V. Quality Control + Filtering

DINOv2

Target CAD
Image

Shape similarity?

Cosine Similarity

+

Extracting key frames

Extrusion 1

=
⋮

Drawing Line Drawing Line Drawing Arc Drawing Circle

Extrusion 2
Drawing Circle

⋮

E1

E2

⋮

L1

L2

A1

C1

⋮

II. JSON UI Instructions

Final UI
Image

UI CAD Image

VII. Samples from VideoCAD, showing the last frame of the video

Figure 1: Illustration of the VIDEOCAD dataset pipeline: human-authored CAD sequences are
converted into UI instructions and executed via a rule-based automated method to record videos.
Quality filtering, keyframe extraction, and action alignment produce structured video-action pairs.

VIDEOCAD is a large-scale dataset comprising 41,005 synthetic videos of 3D CAD model construc-
tion, generated from human-authored designs. Each data sample consists of a multiframe video of

3

an automated agent interacting with the Onshape CAD interface [9], a free, browser-based CAD
platform, accompanied by two levels of timestamped action annotations and a ground-truth target
rendering in isometric view. The annotations consist of low-level actions and high-level actions. Low-
level actions capture UI interactions such as clicking, typing, and mouse movements, with timestamps
marking when each action occurred. These low-level actions correspond to the action space discussed
in section 4. High-level actions align with CAD modeling operations, recording when primitives
such as extrusions and loops are constructed. High-level actions correspond to the CAD primitives
found in DeepCAD. More specifically, VIDEOCAD consists of the following, D = {(Xi, Ii,ai)}Ni=1

where Xi ∈ Rt×H×W×C is the video frame, Ii ∈ RH′×W ′×C′
is the corresponding image of the

target shape, and ai ∈ Rt×d is the corresponding action vector that represents the UI actions taken to
create the CAD with the desired shape.

3.1 Dataset Generation Pipeline

CAD Construction Sequence. To create the VIDEOCAD dataset, we leverage the DeepCAD
sequence representation [8], which models CAD construction as a sequence of sketches and extru-
sions. Each 2D sketch consists of one or more closed loops formed by geometric primitives—lines,
arcs, and circles—parameterized by their spatial properties (e.g., start/end points, midpoints, radii).
These sketches are extruded using parameters such as orientation (Euler angles θ, ϕ, γ), 3D offsets
(px, py, pz), scale s, bidirectional depths (e1, e2), and Boolean operations β (e.g., join, cut). This
design framework is visualized in Figure 2.

Sketch 1 Extrusion 1 Sketch 2 Extrusion 2 Sketch 3 Extrusion 3

Sketch 4 Extrusion 4 Sketch 5 Extrusion 5 Sketch 6 Extrusion 6

Target
CAD Image

Figure 2: Example of intermediate modeling stages in VIDEOCAD. A sequence of snapshots
illustrating the progressive construction of a CAD model through successive sketching and extrusion
operations.

From Human-Created CAD Models to UI Instructions. We systematically convert these sequences
of human-made CAD models into executable sequences of UI actions compatible with Onshape’s
interface. To automate CAD modeling within Onshape, we developed a hybrid UI interaction
framework driven by a rule-based automated method. Each CAD model is built incrementally
by defining sketch planes, either default or custom offset planes, followed by drawing geometric
primitives (lines, arcs, circles), and performing extrusion operations with specified parameters.
Further details on the translation from DeepCAD sequences to CAD UI actions are described in
Appendix L. A complementary discussion on the difference between high-level CAD sequences and
low-level UI sequences can be found in Appendix O

Rule-based UI Automated Method. We execute the UI instructions within the Onshape interface
using a hybrid rule-based method. The mapping from high-level UI instructions to low-level UI
actions is detailed in Appendix M. The method combines Selenium for Document Object Model
(DOM)-level automation and PyAutoGUI for pixel-level input, enabling end-to-end sketching and ex-
trusion without requiring Onshape’s internal API (Appendix K). To enhance realism and downstream
learnability, we inject human-like heuristics, including randomized delays, surface point sampling,
and zooming on small features—simulating natural user behavior in long-horizon CAD modeling
tasks [28]. During execution, we record the full screen to capture the visual feedback of the automated
construction of the CAD model, and we log both the low-level UI actions and the corresponding
high-level CAD commands as structured video captions.

Quality Control and Filtering. To ensure high-quality reconstruction, we render the final CAD
model from an isometric view and compare it with the human-authored reference using DINOv2

4

vision embeddings. A cosine similarity threshold is applied to automatically discard inaccurate
reproductions. We manually verified that this metric correlates with geometric correctness (see
Appendix N). After filtering, keyframes are extracted for each UI action based on the logged frame
index, yielding a sequence of temporally aligned image–action pairs.

3.2 Dataset Composition and Statistics

We focus exclusively on multi-extrusion sequences from the DeepCAD dataset to create VIDEOCAD.
Multi-extrusion sequences involve substantially longer action sequences (Figure 12) and multi-surface
operations–making them more challenging for learning-based models. Each episode includes: 1)
A rendered target image of shape 3 × 224 × 224, in isometric view, 2) A full-resolution video at
1600×1000, recorded at 60 FPS, 3) A sequence of action tuples aligned with the video timeline.
Figure 3 shows the action commands distribution. Appendix J provides additional plots on dataset
statistics and representative CAD examples across complexity levels.

a b

Figure 3: Statistical distributions of CAD UI actions and UI sequence lengths. a. Action command
frequencies. b. UI sequence length frequencies.

3.3 Benchmarking

Engineering UI is often more complex than traditional UI due to the necessity of many operations
for precision control of the user. This can be seen in CAD software due to the complexity of the
UI needed for precise spatial reasoning. To show this complexity, we benchmark VIDEOCAD
extensively against other existing UI-agent datasets from the literature in Table 9 (Appendix I).

Environment # Samples Time Horizon 3D Reasoning Precise Elements Avg. # Elements

OSWorld [29] 369 15∗ ✗ ✓ –
Mind2Web [30] 2,350 7.3 ✗ ✗ 1,135
WebShop [12] 12,000 11.3 ✗ ✗ 38
WebLinx [31] 2,337 43 ✗ ✗ 1,849
AITW [11] 715,142 6.5 ✗ ✗ –
MMINA [32] 1,050 12.9 ✗ ✓ 601
MetaGUI [33] 1,125 – ✗ ✗ 79
MoTIF [34] 4,707 4.4 ✗ ✗ 188
GUI-WORLD [35] 12,379 10.97 ✓ ✓ –
VIDEOCAD 41,005 186 ✓ ✓ 6,740

Table 1: Comparison of multi-environment benchmarks for GUI interaction. ∗ The max is used
instead of the average as the average is not reported.

We compare dataset complexity across five metrics: # Samples – total number of samples; Time
Horizon – number of UI actions per task; Requires 3D Reasoning – whether tasks involve manipu-
lating 3D coordinates; Precise Element – whether agents must act via xy coordinates (e.g., canvases)
rather than DOM selectors, requiring spatial and visual reasoning; and Average UI Elements – mean
number of HTML elements per interface (reported only for datasets with HTML tree access).

As shown in Table 1, VIDEOCAD stands out across multiple dimensions. It features the longest
time horizon—4× that of the next closest dataset (WebLinx)—and is the second-largest dataset after
Android in the Wild, with over 50× more samples than the median (812). It is one of only two
datasets requiring 3D spatial reasoning and pixel-level xy interactions, challenging AI models to
operate beyond text-based commands. For datasets with DOM access, VIDEOCAD also contains 6×
more UI elements than the average web page in Mind2Web.

5

4 VideoCADFormer: An Autoregressive Transformer to Predict CAD Actions
Commercial CAD Software as an Environment. We model CAD construction as a sequential
decision process, where an agent observes UI frames and predicts low-level actions to recreate a
target 3D model. Each trajectory in VIDEOCAD is a sequence τ = {(I,ot,at)}Tt=0, where I is a
fixed image of the target shape, ot is the UI frame at timestep t, and at is the expert action. The agent
learns a policy πθ(at | ot−k:t, I) via behavior cloning, trained to minimize a supervised loss over
expert demonstrations LBC = Eτ∼D

∑
t ℓ (πθ(ot−k:t, I),at) , where ℓ is a structured prediction loss

over commands and parameters. Our setup can be extended to reinforcement learning with rewards
based on geometric similarity (see Appendix C for Chamfer Distance reward details).

Observation Space. At each timestep t, the model observes a grayscale UI image ot ∈ R224×224×1

representing the current design state, and a target CAD image I ∈ R224×224×1, which remains fixed
throughout the episode. Together, these visual inputs provide both local progress and global goal
context, enabling the model to ground its predictions in both current and intended geometry.

Action Space. To interact with the CAD interface, the agent issues low-level UI commands. Each
action at is a structured tuple: at = (ct, p

1
t , . . . , p

dt
t), ct is the command type index, dt is the number

of parameters for command ct, pit is the i-th parameter for command ct. Each action is a fixed-length
vector: at = (ct, xt, yt, kt, nt, st, vt), where each field corresponds to the parameter(s) used by one
or more commands. Table 2 is the set of low-level UI commands and their associated parameters.
Unused fields are padded with −1. All parameter values are discretized into 1000 classes, enabling
the action prediction task to be cast as a multi-class classification problem. At the end of each CAD
video, we set the part in isometric view; this action serves as our end-of-sequence command.

Command Description Parameters

MoveTo Move pointer to screen coordinate xt, yt : pointer location
PressKey Press keyboard key(s) kt : key index, nt : press count
Scroll Scroll to zoom or pan st : scroll amount
Type Enter numerical value vt : typed value
Click Left mouse click ∅

Table 2: Structured action representation in VIDEOCAD. Each command type is mapped to a
consistent 7D vector used for classification. Unused fields are set to −1.

4.1 Model Architecture

UI Image
Encoder

Parameters
MLP

Observation o0:t-1

Transformer Decoder Block ✕ L

Cross-Attention FFN

MHA

Command
MLP

Target CAD
Image I

⋮

 a0
 a1

 at-1

Past Actions a0:t-1
Linear

Projection

Timestep
embedding

+

~ +

Environment

CAD Image
Encoder

…
…

Concatenate

Linear
Projection …

K

V

Q

⋮

 a1
 a2

 at

Predicted Actions a1:t

Generated CAD
Model on Onshape

+

Context

Inputs

Inputs processing

Figure 4: Overview of VIDEOCADFORMER for CAD UI action prediction. The model encodes the
target image and past UI frames via ViT, fuses them with projected past actions using a cross-attention
decoder, and predicts the next action to iteratively build the CAD model in Onshape.

6

We propose VIDEOCADFORMER, an autoregressive transformer tailored for CAD UI modeling
(Figure 4). The model predicts low-level actions conditioned on a target CAD image (sketch, kernel-
rendered, or realistic), past UI-rendered frames, and prior actions. Visual inputs are processed by
separate ViT encoders and fused via linear projection with timestep embeddings, capturing static
goals and canvas evolution. Action tokens are embedded and passed to a causal transformer decoder
with two key inductive biases: a causal mask to enforce autoregressive prediction, and a window
mask to focus attention on recent context—reflecting the short-term dependency of UI commands.
The decoder outputs command and parameter logits through two heads, with command-dependent
masking to suppress irrelevant parameters. Full training details and ablation studies are in Appendix B.

Input Representation. At each timestep t, the model receives: a target CAD image I ∈ RH×W×1,
a sequence of past UI-rendered frames ot−k:t−1 ∈ Rk×H×W×1, a sequence of previous actions
a0:t−1 ∈ Rk×d, and timestep embeddings ϕtime(t) ∈ Rh.

Visual Encoding. Each input image (target CAD and UI-rendered frames) is processed through a
ViT encoder followed by a linear projection into a hidden dimension h. We define:

vI = ϕCAD(I) ∈ Rh, vot = ϕUI(ot) + ϕtime(t) ∈ Rh

The sequence of UI frame embeddings is concatenated with the static CAD embedding and projected:

zimage
t = ϕproj([v

I ; vot]) ∈ Rh.

Action and Timestep Embeddings. Each previous action aτ ∈ Rd is projected to the hidden
space:

zact
τ = ϕact(aτ) + ϕtime(τ), zact

τ ∈ Rh.

All inputs are activated using tanh and passed to the transformer decoder.

Transformer Decoder. We use an L-layer causal transformer decoder with hidden size h and n
attention heads. The decoder operates over a sequence of action embeddings Zact ∈ RT×h (target)
and visual memory Z image ∈ RT×h (source):

Ht = TransformerDecoder(Zact, Z image,Mcausal,Mwindow).

We use two attention masks: a causal mask Mcausal ∈ RT×T is an upper-triangular matrix with −∞
in positions where future tokens should be masked and 0 elsewhere

Action Prediction. The hidden states Ht ∈ RT×h are decoded into actions using two heads:
ĉt = softmax(WcHt + bc), ĉt ∈ R5, p̂t = softmax(WpHt + bp), p̂t ∈ R6×1000.

Command-dependent masks Mĉt ∈ {0, 1}6 are applied to suppress unused parameter outputs. Invalid
values are set to −1.

4.2 Evaluation Metrics

Command and Parameter Accuracy. We report the classification accuracy of predicted commands
ĉt and parameters p̂t across the entire test set. Command accuracy measures the fraction of correctly
predicted command types. Parameter accuracy is computed per action, conditioned on correct
command prediction.

Offline Closed-Loop Execution Performance. We evaluate the stability of models under full-
sequence autoregressive rollouts by computing the percentage of perfectly predicted actions—defined
as exact matches with the ground truth—across all sequences in the test set. We report the mean,
minimum, and maximum values of this percentage per method and breakdowns by sequence length.
Sequences are categorized into short (0–120), medium (120–200), and long (200+) bins based on test
set percentiles.

Geometric Fidelity. We evaluate geometric accuracy by executing model-predicted actions in
Onshape and rendering the resulting CAD models. On 200 test sequences, we compute mean
bidirectional Chamfer Distance (CD) after PCA alignment (Appendix C). A sequence is considered
successful if CD < 0.02, a threshold chosen empirically based on human evaluation, where shapes
below this value are visually indistinguishable (Appendix C). Invalid sequences (i.e., those failing to
mesh) are also reported.

7

5 Results

Accuracy and Perfect Sequences. We use Video Pre-training (VPT) [14] (a leading method in
offline behavior cloning for Minecraft), Pix2Act [36] and Pearce et. al. [37] as baselines. As shown
in Table 6, VIDEOCADFORMER achieves the highest command and parameter accuracy across all
evaluated models, outperforming VPT, Pix2Act, and Pearce et al. It also leads across all metrics
of perfect action sequence prediction. The model shows consistent improvements over VPT across
all levels of task difficulty. These results highlight VIDEOCADFORMER’s robustness in executing
complete CAD sequences without error, particularly in long-horizon settings where small mistakes
compound. The increasing performance gap with task difficulty indicates better generalization under
growing complexity.

Geometric Fidelity. Table 4 evaluates the final CAD quality by executing the predicted sequences
in Onshape. VIDEOCADFORMER outperforms VPT in both short and long sequences in terms of
Chamfer-based success rate, while VPT performs slightly better on medium sequences. Overall,
VIDEOCADFORMER achieves a lower Chamfer distance and a lower proportion of invalid CAD
models. These results suggest that stronger sequence-level prediction directly translates to more
accurate 3D model reconstruction.

Table 3: Evaluation metrics across task difficulty levels.

µcmd
(%)

µparam
(%)

Perfectly Predicted Actions (%)

Mean Max Min Short Medium Long

Pix2Act [36] 20.44 2.61 2.84 22.03 0.00 2.28 2.63 3.60
Pearce et al. [37] 42.60 0.55 0.68 10.80 0.00 0.83 0.69 0.51

VPT [14] 96.25 78.72 83.81 100.00 43.59 88.51 82.77 80.12
VIDEOCADFORMER 98.08 82.35 87.54 100.00 65.67 90.08 87.08 85.46

Table 4: Performance by sequence length on Chamfer success rate (<0.02 ↑), mean Chamfer distance
(↓), and invalid sample rate (↓). Overall metrics are averaged across categories.

Method Success Rate (%) ↑ Mean CD ↓ Invalid (%) ↓Short Medium Long Mean Short Medium Long Mean

Human Expert 85.0 96.7 82.8 88.2 0.0097 0.0067 0.0112 0.0092 0.0
Random 2.5 0.0 0.0 0.8 0.1038 0.1075 0.0972 0.1028 –
VPT 43.9 36.4 5.9 28.5 0.0260 0.0290 0.0856 0.0473 39.5
VIDEOCADFORMER 60.6 37.9 25.0 41.0 0.0238 0.0286 0.0592 0.0374 26.0

5.1 Goal-Driven CAD Generation and Autocompletion

Shape Generation from Scratch. Conditioned only on a target CAD image, our model can generate
full action sequences that construct the corresponding geometry from an empty canvas. As shown
in Figure 5, the predicted low-level UI actions reliably recreate complex multi-step CAD models.
This demonstrates the model’s capacity to plan and execute long-horizon sequences that align with
spatial goals purely from visual context. Furthermore, we train models to take any of the three image
types—sketch, kernel-rendered, or realistic—as input representations of the target CAD geometry
(see Appendix B for details).

CAD Model Autocompletion. Beyond generation from scratch, our model can also autocomplete
a partially built CAD model when conditioned on both the current intermediate state and a target
final image. Given a prefix of UI actions (e.g., an initial sketch and extrusion), the model predicts the
remaining sequence needed to match the final design. As shown in Figure 5, this enables intelligent
continuation of in-progress designs and assistive AI behavior in iterative modeling workflows.

Failure Cases and Limitations. Model failures are primarily due to inaccurate (x, y) predictions that
cause open or slightly distorted sketch loops, preventing valid extrusions. Misclassification between
lines and arcs also occurs, especially when curvature is ambiguous. These errors (Figure 10) are often

8

minor and correctable, but they highlight the limitations of image-only supervision and suggest the
need for topological constraints or interactive fine-tuning. More details in Appendix F.

a b

Figure 5: Predicted CAD models from VIDEOCADFORMER, conditioned on (a) a target image for
generation from scratch, and (b) a partial UI state for autocompletion.

5.2 Case Study: Evaluating LLMs on 3D Reasoning and CAD Understanding

Video Understanding for Precision Engineering 3D Shape Understanding

How many extrusions were used in
this image?
(a) 2 (b) 3 (c) 4 (d) 5 (e) 6

(c) 4

Extrusion number Extrusion depth comparisonFrame ordering CAD Action Recognition

What is the order of the frames?
(a) 1-2-3 (b) 1-3-2 (c) 2-1-3
(d) 2-3-1 (e) 3-1-2 (e) 3-2-1

(d) 2-3-1

Which frame best matches the
description 'Drawing Line'?
(a) 1 (b) 2 (c) 3

(b) 2

Is the second extrusion longer than
the first one?
(a) Yes (b) No

(a) Yes

1 2 3

Figure 6: Example questions from the VIDEOCAD VQA benchmark.

Model Action
Recognition

Frame
Ordering

Extrusion
Number

Extrusion
Comparison

gpt-4.1-2025-04-14 [38] 84.1 36.0 47.0 73.5
claude-3-7-sonnet-20250219[39] 80.1 23.0 37.5 80.0
qwen2.5-vl-72b-instruct[40] 78.6 32.5 47.0 62.0
o3-2025-04-16 [41] 75.1 80.0 45.0 71.5
gemini-2.5-pro-preview-05-06 [42] 82.6 73.2 38.0 71.0
random 40.3 17.4 21.4 49.1

Table 5: Comparison of models on CAD reasoning tasks. Metrics are in %.

LLMs Struggle with 3D Reasoning and CAD Video Understanding. A key capability for AI
models to create 3D CAD designs is to excel in 3D reasoning. To evaluate the limits of modern
multimodal LLMs in spatially grounded engineering domains, we construct a VQA benchmark,
VIDEOCAD VQA, which is derived from VIDEOCAD. This benchmark contains multiple-choice
multimodal questions that probe fine-grained understanding of both temporal video sequences and
3D geometric properties—tasks essential for CAD modeling. It includes four task types: action
recognition, frame ordering, extrusion counting, and depth comparison. Questions are generated
automatically from ground-truth UI logs and CAD geometry (Appendix H).

We perform zero-shot evaluation on VIDEOCAD VQA by feeding a template followed by the prompt
to each LLM. If there is no valid answer in the model’s response, we perform random selection as a

9

remedy. We evaluate the model three times for each question. Table 5 shows results across multimodal
LLMs. Despite their strong performance on general VQA benchmarks, current models underperform
across most categories. For instance, GPT-4.1 achieves only 47% accuracy on extrusion counting and
18% on depth estimation, which highlights persistent challenges in grounded visual reasoning and
geometry-aware token alignment. These results underscore a critical gap in LLMs’ ability to interpret
complex video-based modeling workflows. Importantly, this VQA benchmark serves as a case study
showcasing how VIDEOCAD enables rigorous evaluation of spatial and procedural understanding
in LLMs. Many additional multimodal tasks—such as symmetry detection, subpart recognition, or
parameter estimation—can be derived from the same dataset and are discussed in Appendix H.

LLMs Fail as UI Agents for Precision CAD Tasks. We also benchmark LLMs as UI agents
in complex engineering software. Using BrowserGym [43], we prompt models to perform CAD
construction tasks within Onshape based only on a target screenshot. Each agent is given 200 steps
and must produce xy coordinates corresponding to UI actions (e.g., drawing, extrusion). Tasks are
drawn from the 10 shortest sequences in VIDEOCAD, with early termination if no meaningful canvas
modification occurs. All LLMs—including GPT-4.1, Claude-3.7, and Gemini-2.5—fail to complete a
full CAD construction (Appendix). We anticipate that this happens due to the need for pixel-level
precision, long-horizon spatial planning, and consistent 3D reasoning capabilities for CAD modeling
unlike web tasks (e.g., spreadsheets or browser automation [44]).

6 Limitations and Future Work

While VIDEOCAD offers a high-fidelity benchmark for CAD UI modeling, it has several limitations.
All trajectories are synthetically generated by a rule-based bot, and despite human-inspired heuristics,
they lack natural variability in timing, errors, and strategy. The dataset focuses solely on sketch-
extrude operations, omitting operations like fillets, sweeps, and lofts. Interactions are limited to a
single platform—Onshape—raising concerns about generalization to other CAD software. Finally,
our current end-to-end benchmarks are only validated on a small subset due to the high cost of CAD
rendering and geometric comparison. To address these gaps, future work will: (1) incorporate human
demonstration data (e.g., from YouTube CAD tutorials), (2) extend coverage to assemblies and
more advanced CAD features, (3) support additional CAD platforms (e.g., Fusion 360, FreeCAD),
(4) collect multiple trajectories per CAD target to capture variation across users, (5) introduce
extrusion-by-extrusion text prompts to enable natural interaction between users and AI agents in
CAD softwares.

7 Conclusion

In this work, we introduced VIDEOCAD, a dataset for evaluating agents on utilizing complex
computer software. Our dataset is significantly more complex than other datasets in number of action
sequences and number of elements, as well as requiring agents to reason about 3D geometric spaces.
VIDEOCAD extends beyond imitation learning and 3D reasoning to serve as a versatile benchmark
across machine learning subfields. Its long, fully-observed action sequences support reinforcement
learning and planning methods. The alignment between video, symbolic actions, and 3D outputs
enables large-scale multimodal pre-training, which can be fine-tuned for tasks like action prediction,
video segmentation, and shape retrieval. Its structured, geometry-changing workflows also make it
valuable for research in computer vision (e.g., goal inference), HCI (e.g., tutorial generation), robotics
(e.g., skill learning), and NLP (e.g., grounding language in actions). VIDEOCAD offers a foundation
for developing generalist agents that can perceive, act, and reason in complex software environments.

10

References
[1] Les A Piegl. Ten challenges in computer-aided design. Computer-aided design, 37(4):461–470,

2005.

[2] Aman Mathur, Marcus Pirron, and Damien Zufferey. Interactive programming for parametric
cad. In Computer graphics forum, volume 39, pages 408–425. Wiley Online Library, 2020.

[3] Sora Lee-Remond, Sylvain Sagot, and Egon Ostrosi. A new design framework for comprehen-
sible graphical user interfaces for parametric computer-aided design tools. Comput.-Aided Des.
Appl, 22:150–179, 2025.

[4] Yang You, Mikaela Angelina Uy, Jiaqi Han, Rahul Thomas, Haotong Zhang, Yi Du, Hansheng
Chen, Francis Engelmann, Suya You, and Leonidas Guibas. Img2cad: Reverse engineering
3d cad models from images through vlm-assisted conditional factorization. arXiv preprint
arXiv:2408.01437, 2024.

[5] Mohammad Sadil Khan, Sankalp Sinha, Talha Uddin Sheikh, Didier Stricker, Sk Aziz Ali, and
Muhammad Zeshan Afzal. Text2cad: Generating sequential cad models from beginner-to-expert
level text prompts, 2024.

[6] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of
bits: An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 3135–3144. PMLR, 06–11 Aug 2017.

[7] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li,
Jeffrey Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven
design applications. In Proceedings of the 30th Annual Symposium on User Interface Software
and Technology, UIST ’17, 2017.

[8] Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 6772–6782, 2021.

[9] PTC Inc. Onshape. https://www.onshape.com.

[10] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations (ICLR), 2018.

[11] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android
in the wild: A large-scale dataset for android device control, 2023.

[12] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2023.

[13] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ
Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion,
2024.

[14] Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos, 2022.

[15] Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu, Lijuan Liu, Nevan Wichers, Gabriel
Schubiner, Ruby Lee, Jindong Chen, and Blaise Agüera y Arcas. Actionbert: Leveraging user
actions for semantic understanding of user interfaces, 2021.

[16] Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu,
Weichen Zhang, Peiyi Wang, Xiangwu Guo, Hengxu Wang, Luowei Zhou, and Mike Zheng
Shou. Assistgui: Task-oriented desktop graphical user interface automation, 2024.

11

https://www.onshape.com

[17] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny
Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model dataset for
geometric deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9601–9611, 2019.

[18] Karl D.D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando
Solar-Lezama, and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for
programmatic cad construction from human design sequences. ACM Transactions on Graphics,
40(4):54:1–54:24, 2021.

[19] Weijuan Cao, Trevor T. Robinson, Yang Hua, Flavien Boussuge, Andrew R. Colligan, and
Wanbin Pan. Graph representation of 3d cad models for machining feature recognition with deep
learning. In ASME International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, 2020.

[20] Andrew R. Colligan, Trevor T. Robinson, Declan C. Nolan, Yang Hua, and Weijuan Cao.
Hierarchical cadnet: Learning from b-reps for machining feature recognition. Computer-Aided
Design, 147:103226, 2022.

[21] R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero, Niloy J.
Mitra, and Daniel Ritchie. Shapeassembly: learning to generate programs for 3d shape structure
synthesis. ACM Transactions on Graphics, 39(6):1–20, November 2020.

[22] Karl D. D. Willis, Pradeep Kumar Jayaraman, Hang Chu, Yunsheng Tian, Yifei Li, Daniele
Grandi, Aditya Sanghi, Linh Tran, Joseph G. Lambourne, Armando Solar-Lezama, and Wojciech
Matusik. Joinable: Learning bottom-up assembly of parametric cad joints, 2022.

[23] Negar Heidari and Alexandros Iosifidis. Geometric deep learning for computer-aided design: A
survey, 2024.

[24] Ari Seff, Yaniv Ovadia, Wenda Zhou, and Ryan P. Adams. Sketchgraphs: A large-scale dataset
for modeling relational geometry in computer-aided design, 2020.

[25] Wamiq Reyaz Para, Shariq Farooq Bhat, Paul Guerrero, Tom Kelly, Niloy Mitra, Leonidas
Guibas, and Peter Wonka. Sketchgen: Generating constrained cad sketches, 2021.

[26] Md Ferdous Alam and Faez Ahmed. Gencad: Image-conditioned computer-aided design
generation with transformer-based contrastive representation and diffusion priors. arXiv preprint
arXiv:2409.16294, 2024.

[27] Pradeep Kumar Jayaraman, Joseph G. Lambourne, Nishkrit Desai, Karl D. D. Willis, Aditya
Sanghi, and Nigel J. W. Morris. Solidgen: An autoregressive model for direct b-rep synthesis,
2023.

[28] Jeffrey Buckley, Niall Seery, and Donal Canty. Heuristics and cad modelling: An examination of
student behaviour during problem solving episodes within cad modelling activities. International
Journal of Technology and Design Education, 29(4):939–956, 2018.

[29] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments, 2024.

[30] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

[31] Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue, 2024.

[32] Ziniu Zhang, Shulin Tian, Liangyu Chen, and Ziwei Liu. Mmina: Benchmarking multihop
multimodal internet agents, 2024.

[33] Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
multi-modal conversational agents on mobile gui, 2022.

12

[34] Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A. Plum-
mer. A dataset for interactive vision language navigation with unknown command feasibility.
In European Conference on Computer Vision (ECCV), 2022.

[35] Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang, Liuyi Chen, Yilin Bai, Zhigang He,
Chenlong Wang, Huichi Zhou, Yiqiang Li, Tianshuo Zhou, Yue Yu, Chujie Gao, Qihui Zhang,
Yi Gui, Zhen Li, Yao Wan, Pan Zhou, Jianfeng Gao, and Lichao Sun. Gui-world: A video
benchmark and dataset for multimodal gui-oriented understanding, 2025.

[36] Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu,
Urvashi Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to ui actions: Learning
to follow instructions via graphical user interfaces, 2023.

[37] Tim Pearce and Jun Zhu. Counter-strike deathmatch with large-scale behavioural cloning, 2021.

[38] OpenAI. Introducing gpt-4.1 in the api, April 2025.

[39] Anthropic. Claude 3.7 sonnet and claude code, February 2025.

[40] Qwen Team. Qwen2.5-vl technical report. arXiv preprint arXiv:2502.13923, 2025.

[41] OpenAI. Introducing openai o3 and o4-mini, April 2025.

[42] Google. Gemini 2.5 pro | generative ai on vertex ai, May 2025.

[43] Thibault Le Sellier De Chezelles, Maxime Gasse, Alexandre Drouin, Massimo Caccia, Léo
Boisvert, Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi Shayegan, Lawrence Keunho
Jang, Xing Han Lù, Ori Yoran, Dehan Kong, Frank F. Xu, Siva Reddy, Quentin Cappart, Graham
Neubig, Ruslan Salakhutdinov, Nicolas Chapados, and Alexandre Lacoste. The browsergym
ecosystem for web agent research, 2025.

[44] Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei
Ji, Shaoguang Mao, et al. Taskmatrix. ai: Completing tasks by connecting foundation models
with millions of apis. Intelligent Computing, 3:0063, 2024.

[45] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models, 2023.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We perform extensive baselines against state-of-the-art benchmarks and models

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

14

Justification: We do not include theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full architectural and training details in Appendix B and action
format details in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]
Justification: We publicly release the dataset and code at https://github.com/
ghadinehme/VideoCAD, with instructions for training and evaluating the model.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix B
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not include statistical confidence intervals or error bars, primarily due
to the high computational cost.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://github.com/ghadinehme/VideoCAD
https://github.com/ghadinehme/VideoCAD
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix B
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics. The dataset is
synthetic, derived from public CAD models in DeepCAD, and poses no identifiable human
data or privacy risks.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss societal impacts in Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the DeepCAD dataset, which is publicly available and credited ap-
propriately. Onshape is used under its standard terms of service without scraping internal
APIs.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

18

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: VideoCAD is a new dataset released with full documentation and is hosted on
Harvard Dataverse Repository.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

19

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Table of Contents for Appendices

A CAD Software 22

B Model Architecture and Ablation Studies 23

C Evaluation Metrics for CAD Generation 26

D Uncertainty Quantification and Structural Fidelity of VideoCADFormer 27

E Image-Conditioned Generated CAD models using VideoCADFormer 28

F Failure Analysis of VideoCADFormer 29

G Conducting a Failure Analysis on LLM Agents on CAD Design Tasks 30

H Benchmarking LLMs’ 3D Reasoning Capabilities 31

I Positioning VideoCAD Within the Landscape of GUI Interaction Datasets 33

J Dataset Statistics 34

K Dataset Generation Procedure 36

L CAD Construction from DeepCAD Sequences 37

L.1 General Process Overview . 37

L.2 DeepCAD Representation . 37

L.3 Normalization . 37

L.4 Plane Basis and Extrusion Plane Parameters . 37

L.5 Point Transformation to Pixel Space . 37

L.6 Primitive-Specific Parameter Computation . 38

L.7 Extrusion Parameters . 39

L.8 Final Representation . 39

M Detailed Onshape UI Action Procedure 40

M.1 Plane Creation Procedure . 40

M.2 Sketch Creation and Loop Building Procedure . 40

M.3 Visibility and Navigation . 40

M.4 Extrusion Execution Procedure . 41

M.5 End-of-Sequence Token . 41

N Ablation on Vision Models for CAD Image Similarity 42

O Temporal Abstraction and Causal Structure in VideoCAD 43

21

A CAD Software

We use Onshape [9], a cloud-native CAD platform, as the environment for our task of learning
CAD UI for creating and editing 3D models of mechanical parts and assemblies. Note that unlike
traditional desktop-based CAD software, Onshape runs entirely in the browser and supports real-time
collaboration, version control (similar to Git), and parametric design. We chose Onshape as it is
free, platform agnostic (a majority of CAD software run on Windows), and highly accessible via the
browser. In addition, Onshape contains most of the CAD operations used in standard commercial
CAD software. We choose to use Google Chrome as the browser of choice as it is available on all
main operating systems.

Figure 7: Onshape user interface

22

B Model Architecture and Ablation Studies

Input Representation. At each timestep t, the model receives: a target CAD image I ∈ RH×W×1,
a sequence of past UI-rendered frames ot−k:t−1 ∈ Rk×H×W×1, a sequence of previous actions
a0:t−1 ∈ Rk×d, and timestep embeddings ϕtime(t) ∈ Rh.

Visual Encoding. Each input image (target CAD and UI-rendered frames) is processed through a
ViT encoder followed by a linear projection into a hidden dimension h. We define:

vI = ϕCAD(I) ∈ Rh, vot = ϕUI(ot) + ϕtime(t) ∈ Rh

The sequence of UI frame embeddings is concatenated with the static CAD embedding and projected:

zimage
t = ϕproj([v

I ; vot]) ∈ Rh.

Action and Timestep Embeddings. Each previous action aτ ∈ Rd is projected to the hidden
space:

zact
τ = ϕact(aτ) + ϕtime(τ), zact

τ ∈ Rh.

All inputs are activated using tanh and passed to the transformer decoder.

Transformer Decoder. We use an L-layer causal transformer decoder with hidden size h and n
attention heads. The decoder operates over a sequence of action embeddings Zact ∈ RT×h (target)
and visual memory Z image ∈ RT×h (source):

Ht = TransformerDecoder(Zact, Z image,Mcausal,Mwindow).

We use two attention masks: a causal mask Mcausal ∈ RT×T is an upper-triangular matrix with −∞
in positions where future tokens should be masked and 0 elsewhere

Action Prediction. The hidden states Ht ∈ RT×h are decoded into actions using two heads:

ĉt = softmax(WcHt + bc), ĉt ∈ R5, p̂t = softmax(WpHt + bp), p̂t ∈ R6×1000.

Command-dependent masks Mĉt ∈ {0, 1}6 are applied to suppress unused parameter outputs. Invalid
values are set to −1.

For VPT, we feed the UI Images into the CNN layer proposed by the paper, and then concatenate
the output representation, the CAD image representation and the past actions and feed them into a
feed forward network to get the command and parameters. For Pix2Act, we concatenate the CAD
image and the past 10 images into a single image and feed it into the model, we then take the final
hidden representation from the decoder and feed them into two linear layers that predict command
and action parameters. For Pearce et. al., we do not modify the architecture.

All models were trained using 4 NVIDIA H100 GPUs. VPT and VideoCAD required 4 days of
training, while Pix2Act and Pearce et al. converged in 1 day. Quantitative results are summarized in
Table 6.

We train VIDEOCADFORMER on the VIDEOCAD dataset with a 90/5/5 train/val/test split. At each
step, the model autoregressively predicts the next action given a window of k = 10 past UI frames
and actions. Outputs are treated as classification tasks and trained using cross-entropy loss with
inverse-frequency class weighting. For pointer and typed parameters (x, y, v), we apply soft targets
over a ±2 bin window to account for geometric tolerance.

Ablation Studies To investigate the contribution of various modeling components and hyperparam-
eters, we perform an extensive ablation study covering 16 model variants. These ablations isolate
specific architectural and input conditioning factors that influence performance in long-horizon CAD
action prediction. For these models, we train our ablations on a 90/5/5 split on 2500 samples of data.

First, we vary the model capacity, examining small versus large hidden dimensions (hidden size
∈ {512, 1024, 2048}) and feedforward projection sizes (feed forward ∈ {512, 1024, 2048}). Results
show that increasing hidden size improves performance.

23

Table 6: Ablation results showing the impact of input types, image modalities, and architecture choices
on command accuracy, parameter accuracy, and perfect action prediction across task difficulties.

µcmd
(%)

µparam
(%)

Perfectly Predicted Actions (%)

Mean Max Min Short Medium Long

Base model 94.90 71.55 79.27 97.21 54.24 83.88 76.94 76.03

Model Inputs

No action 88.92 65.11 73.11 96.59 40.34 81.15 68.07 68.52
No state 94.34 68.07 77.86 97.73 56.36 82.90 75.76 73.85

No action and state 17.35 3.80 5.59 25.52 0.00 2.30 7.78 7.32
No timestep 95.03 70.97 79.39 95.81 57.58 83.85 77.52 75.85
Color jitter 94.82 71.03 79.24 96.65 51.53 84.03 77.00 75.68

Images

Base model (kernel-generated image) 94.90 71.55 79.27 97.21 54.24 83.88 76.94 76.03
Realistic Images 94.05 68.50 77.62 95.45 56.57 83.20 74.86 73.64

Sketches 95.04 71.32 79.31 98.32 59.39 83.44 77.44 76.20

Window Size

Past 5 actions and states 94.97 72.22 79.86 97.73 58.64 84.49 77.78 76.35
Base model (Past 10 actions and states) 94.90 71.55 79.27 97.21 54.24 83.88 76.94 76.03

Past 15 actions and states 94.17 69.10 77.88 95.45 54.24 82.90 75.72 73.96

Feed Forward (FF.) Dim

FF. dim=512 94.63 70.38 79.08 96.59 55.93 84.04 76.80 75.36
Base model (FF. dim=1024) 94.90 71.55 79.27 97.21 54.24 83.88 76.94 76.03

FF. dim=2048 95.04 71.56 79.82 96.97 60.68 84.84 77.35 76.23

Hidden Size

Hidden size=512 94.32 70.02 78.56 97.73 57.97 83.63 76.02 74.98
Base model (Hidden size = 1024) 94.90 71.55 79.27 97.21 54.24 83.88 76.94 76.03

Hidden size=2048 95.11 71.49 79.67 96.79 58.38 83.85 77.74 76.55

Nhead

Nhead=4 94.54 70.06 78.84 96.37 57.29 83.56 76.99 74.96
Base model (Nhead = 8) 94.90 71.55 79.27 97.21 54.24 83.88 76.94 76.03

Nhead=16 95.70 72.19 79.96 98.04 62.37 84.43 77.51 77.03

Next, we assess the temporal window and attention configuration. Reducing or increasing the attention
window (window size ∈ {5, 10, 15}) and varying transformer depth and heads (nhead ∈ {4, 8, 16})
allows us to probe the role of long-range context. Similar to model capacity, we observe increasing
gains as we increase model capacity.

We also analyze the impact of input conditioning, disabling one or more context signals: past actions,
past states, and timestep embeddings. Removing either past states or past actions significantly
degrades performance, underscoring the importance of sequence memory in CAD modeling. The
worst-performing variant disables both, indicating that VIDEOCADFORMER’s success hinges on
leveraging temporal continuity.

Additionally, we introduce a color jitter variant to test robustness to visual perturbations. Adding jitter
slightly degrades performance, suggesting some sensitivity to pixel-space distortions and motivating
future robustness strategies.

24

Figure 8: Comparison of different CAD image inputs. From left to right: Sketches, Kernel and
Realistic

Finally, we explore VIDEOCADFORMER’s ability to generalize to different image types such as
realistic images and sketches (Figure 8). We first generated images from a DeepCAD sequence
using a geometry kernel. From this kernel-generated image, we constructed photo-realistic images
by passing the kernel-generated CAD images into ControlNet [45] . The sketches are generated by
applying canny line detection to the kernel-generated CAD images and then applying a Gaussian blur.
Among the three, the model performs best on sketches, followed by kernel-generated images, and
performs worst on photorealistic images, suggesting increased abstraction aids generalization.

We train a baseline model to act as a point of reference. The architectural parameters of the baseline
model are shown in the table. Additionally, the baseline model has access to all inputs and are trained
on grayscale isometric views of CAD images.

Overall, these ablations demonstrate that model performance is heavily influenced by temporal
conditioning, architecture depth, and memory of past actions/states. These insights can guide the
design of future agents operating in long-horizon, precision-driven software environments.

25

C Evaluation Metrics for CAD Generation

Chamfer Distance after PCA Alignment. To quantitatively evaluate the geometric similarity
between generated and ground truth CAD models, we begin by sampling point clouds uniformly from
the surface meshes of each model. Let P ⊂ R3 denote the ground truth point cloud and P̂ ⊂ R3

denote the point cloud sampled from the generated CAD model. Because these models may differ in
scale, orientation, or position, we first apply a similarity transformation to P̂ that aligns it with P
before computing the metric.

This transformation consists of a rotation R ∈ SO(3), uniform scale s ∈ R, and translation t ∈ R3,
obtained via principal component analysis (PCA) alignment and RMS-based scale matching. Among
all 48 possible PCA axis permutations and sign flips, we select the transformation that minimizes the
Chamfer Distance between the aligned prediction and the ground truth.

Formally, we define the aligned predicted point cloud as:

P̂aligned =
{
sRp̂+ t

∣∣∣ p̂ ∈ P̂
}
,

and compute the symmetric Chamfer Distance as:

CD(P, P̂aligned) =
1

|P |
∑
p∈P

min
p̂∈P̂aligned

∥p− p̂∥2 + 1

|P̂aligned|

∑
p̂∈P̂aligned

min
p∈P

∥p̂− p∥2.

We report the mean Chamfer Distance after this alignment as a measure of geometric fidelity.

Command and Parameter Accuracy.

µcmd =
1

T

T∑
t=1

1[ĉt = ct], µparam =
1

T

T∑
t=1

1

dt

dt∑
i=1

1[p̂
(i)
t = p

(i)
t] · 1[ĉt = ct]

26

D Uncertainty Quantification and Structural Fidelity of VideoCADFormer

Measured Uncertainty Validates Significance of Results. To quantify uncertainty, we estimate the
standard error of the success rate using:

σ =

√
p(1− p)

n
, n = 200

For the Medium-length category:

VPT: p = 0.364 ⇒ σ ≈ 3.4%

VideoCADFormer: p = 0.379 ⇒ σ ≈ 3.4%

VideoCADFormer Excels in Structural Fidelity and Robustness. The modest difference between
VPT and VideoCADFormer in medium-length sequences falls within statistical uncertainty, even
after increasing the sample size. However, our model consistently outperforms across short and long
sequences, achieving lower Chamfer Distance and generating fewer invalid CAD models across all
sequence lengths.

We hypothesize that VPT tends to produce sequences that initially resemble the ground truth,
performing adequately on medium-complexity cases. As sequence complexity increases (Long
category), however, VPT fails to preserve structure and parametric correctness, leading to sharp drops
in geometric fidelity. In contrast, VideoCADFormer maintains spatial and parametric consistency
over longer horizons, demonstrating stronger generalization and robustness.

27

E Image-Conditioned Generated CAD models using VideoCADFormer

Figure 9: Some perfect samples generated using our trained model on Onshape

28

F Failure Analysis of VideoCADFormer

While our model demonstrates robust 3D reasoning from low-level UI actions, several failure
cases persist. The most common error arises from inaccurate (x, y) coordinate predictions during
sketching, which often produce open loops that prevent successful extrusion. In some cases, these
predictions result in closed loops with slight geometric inaccuracies—yielding extrusions that produce
shapes visually similar to the target but with subtle deformations. These failures, as illustrated in
Figure 10, are typically correctable with minor user intervention. Another frequent source of error
is misclassification between line and arc primitives, especially in cases where curvature is visually
ambiguous in the rendered images. These issues highlight the difficulty of resolving fine-grained
geometric distinctions from image supervision alone and suggest that incorporating topological
constraints or fine-tuning with interactive feedback could further improve model robustness.

Figure 10: Failure cases

29

G Conducting a Failure Analysis on LLM Agents on CAD Design Tasks

Our current failure analysis of LLM agents is qualitative, as all of the tested agents were unable
to make meaningful progress during evaluation. We have enclosed several thought trace samples
to better illustrate the observed failure modes. As these models improve, we anticipate that more
quantitative benchmarking will become meaningful.

We identify two common failure modes: (1) a lack of domain understanding of Onshape, and (2)
grounding or perception issues.

Addressing Domain Understanding Challenges

For issues pertaining to limited Onshape understanding, we commonly observe traces such as the
following:

Action: It looks like my previous attempt to click the "Restore" button failed
because it might not have been correctly identified. Given that the current
context is focused on the "Sketch 1" with the message that it has been canceled,
the next logical step is to see if I can find the "Restore" button again or use
another strategy to re-engage with the sketch. I’ll check for available buttons
or features related to the sketch in the current interface. Since there’s no
immediate visible button to "Restore," I might try searching for features related
to the sketch or navigating through the interface. Next, I will scroll to see if
more options or buttons become visible.
scroll(0, 100)

In this case, the model attempted to restore a sketch by identifying alternative UI elements. However,
it failed to recognize that the correct action was simply Ctrl+Z, instead issuing a scroll command on
the sketch plane of the UI.

Addressing Grounding Challenges

For issues related to grounding, we observe traces such as:

Action: Given the current context and the recurring issues with previous actions,
it’s important to strategize the next step carefully:
1. Challenges Encountered: There have been errors when attempting to click
specific features, indicating either hidden elements or overlapping actions.
2. Current Focus: I’m in the Onshape part studio, where the workspace is largely
empty, with no parts created and the "Origin" feature hidden.
3. Goal: I need to find a way to effectively manipulate the sketch or geometry.

Strategy:
To move forward, it seems prudent to start by resetting my focus within the
workspace. Ensuring that my interaction is centered correctly might open up
further possibilities for manipulating features.

Next Action:
I will attempt to click on the "Sketch" section to see if that allows me to
access or reveal any relevant tools or options moving forward.
click("34")

Here, the model attempts to select the sketch section by referencing an internal element ID. How-
ever, in this case, "34" corresponds to a navigation bar element, not the intended sketch section,
highlighting a fundamental grounding failure between perceived and actual interface elements.

30

H Benchmarking LLMs’ 3D Reasoning Capabilities

To assess LLMs’ capabilities in spatial reasoning within CAD environments, we construct a synthetic
Visual Question Answering (VQA) benchmark using the VIDEOCAD dataset. Each question is
designed to probe specific aspects of geometric, temporal, and procedural reasoning essential for
understanding 3D modeling workflows. The benchmark spans the following questions:

Table 7: Questions from our CAD-VQA dataset.

Evaluation Type Question Content Choice Type

Extrusion Shape Predic-
tion

You are given a completed sketch in Onshape. If the
next command is Extrude, which image among the
following will result from it?

Select correct image from 4 op-
tions

Num. Extrusion Estima-
tion

How many extrusions were used in the provided CAD
image?

Multiple choice (integers)

Extrusion Difference Pre-
diction

You are given two extrusions for the same CAD model
and the image of the CAD model. The second extrusion
happens later than the first. Is the second extrusion
deeper than the first?

Binary (Yes/No)

Sketch Ordering Given these sketches from the video, order them to
build the CAD object.

Identify correct sequence of
sketches

Sketch Identification Given an isometric view of a CAD model, select a
sketch that was used to build this shape.

Select correct image from 4 op-
tions

Plane Identification Given the following sketch and CAD image, which
plane are you currently looking at?

Multiple choice: Top / Front /
Right

CAD Primitive Identifica-
tion

Which frame best matches the description of a given
CAD primitive (arc, line, circle, extrude)?

Select correct image from 3 op-
tions

Sequence Prediction What is the next primitive to draw (e.g., line, arc, etc.)
given this CAD image and UI image?

Categorical multiple choice

Video Frame Sequencing You are given 3 frames from the same video. What is
the order of the frames?

Permutation over 3 items (6 op-
tions)

Hole Detection Given this CAD image, is there a hole? Binary (Yes/No)

Symmetry Detection You are given an image of a CAD model. Across which
planes is this CAD model symmetric?

Permutation over 3 planes (x,y,z)
for a total of 8 options

Evaluation Type gpt-4.1
[38]

claude-3-7
[39]

qwen2.5-vl
[40]

o3
[41]

gemini-2.5
[42] random

Extrusion Shape Prediction 27.0 22.5 19.5 22.5 25.5 29.0
Number of Extrusion Estimation 47.0 37.5 47.0 45.0 38.0 21.4
Extrusion Difference Prediction 73.5 80.0 62.0 71.5 71.0 49.1
Sketch Ordering 37.5 29.5 41.0 37.0 61.0 35.0
Sketch Identification 62.0 48.5 43.5 48.5 59.0 21.5
Plane Identification 87.0 86.5 86.0 91.5 89.5 34.0
CAD Primitive Identification 84.1 80.1 78.6 75.1 82.6 40.3
Sequence Prediction 81.0 68.0 70.5 77.5 79.2 36.5
Video Frame Sequencing 36.0 23.0 32.5 80.0 73.2 17.4
Hole Detection 92.0 53.5 79.5 88.4 81.0 50.0
Symmetry Detection 18.5 19.0 12.0 27.9 27.0 12.5

Table 8: Performance of various vision-language models on the CAD-VQA benchmark across 11
evaluation tasks. Metrics are accuracy (%).

31

Collectively, these questions exercise geometric recognition, viewpoint awareness, forward simulation,
temporal planning, and numeric inference — topics that are rarely interrogated simultaneously by
existing VQA benchmarks. We generated 200 samples for each question for a total of 2,200 samples,
though this question generation process can be easily scaled to the entire dataset. We provide the full
benchmarking results on the questions below (Table 8).

32

I Positioning VideoCAD Within the Landscape of GUI Interaction Datasets

Environment # Samples Time Horizon 3D Reasoning Precise Elements Avg. # Elements

OSWorld 369 15∗ ✗ ✓ –
Mind2Web 2,350 7.3 ✗ ✗ 1,135
WebArena 812 – ✗ ✗ –
VisualWebArena 910 35∗ ✗ ✗ –
TheAgentCompany 175 40 ✗ ✗ –
WorkArena 33 15 ✗ ✓ –
WebShop 12,000 11.3 ✗ ✗ 38
OmniAct 9,802 – ✗ ✓ –
WebLinx 2,337 43 ✗ ✗ 1,849
AITW 715,142 6.5 ✗ ✗ –
MMINA 1,050 12.9 ✗ ✓ 601
MetaGUI 1,125 – ✗ ✗ 79
PixelHelp 187 4.2 ✗ ✗ –
AndroidWorld 116 18.1 ✗ ✓ –
AgentStudio 304 30∗ ✗ ✓ –
MoTIF 4,707 4.4 ✗ ✗ 188
AndroidArena 116 11.4 ✗ ✗ –
WindowsAgentArena 154 8.1 ✗ ✓ –
MiniWoB++ 125 3.6 ✓ ✗ 28
GUI-WORLD 12,379 10.97 ✓ ✓ –
VideoCAD 41,005 186 ✓ ✓ 6,740

Table 9: Full Comparison of multi-environment benchmarks for GUI interaction
∗ The max is used instead of the average as the average is not reported

The description of the metrics used to compare dataset complexity is explained in the following: #
Samples: number of samples in the dataset, Time Horizon: number of UI interactions needed to
complete the task, Requires 3D Reasoning: we look through every app used in each dataset. We
determine whether the app requires the agent to reason about 3D coordinates to manipulate UI-state.
Contains Precise Element: many benchmarks ground agents by leveraging the Document Object
Model (DOM), enabling agents to select UI elements without needing to specify xy coordinates.
However, some elements such as canvas elements cannot be interacted via the DOM. We define a
precise element as an element that requires an agent to manipulate via xy coordinates, which require
a higher level of reasoning as agents must rely on spatial and visual reasoning skills to click on the
correct buttons. To check whether a benchmark requires a precise element, we look through every app
used in each dataset and determine whether the agent is required to interact with a precise element
such as a canvas, Average UI elements: To show that Onshape’s complexity as a GUI, we measure
the number of elements as described in Mind2Web. We only report the average number of elements
for datasets that include the HTML tree in the dataset.

33

J Dataset Statistics

a b c

d e

Figure 11: (a) Overlaid kernel density estimates for the X- and Y-coordinate distributions of mouse
movements. (b) Kernel density of numeric values entered via the “Type” action. (c) Relative
frequencies of scroll directions (up vs. down). (d) Frequency of individual key presses, sorted from
most to least common. (e) Histogram of the number of times the “tab” key is pressed.

Figure 12: Sequence length distribution of DeepCAD samples. Histogram showing the normalized
frequency of sequence lengths for single-extrusion (dark blue) and multi-extrusion (light blue) CAD
sequences. The vertical dashed lines mark the mean sequence lengths (8.32 and 23.04, respectively).

34

(a) 25th percentile samples; sequence length 109.

(b) 50th percentile samples; sequence length 157.

(c) 61st percentile samples; sequence length 186.

(d) 75th percentile samples; sequence length 239.

(e) 90th percentile samples; sequence length 337.

Figure 13: Representative CAD models across sequence complexity percentiles. For each
percentile p ∈ {25, 50, 61, 75, 90}, we show three random samples. These examples illustrate the
increasing structural complexity and diversity across the dataset distribution.

35

K Dataset Generation Procedure

CAD uses a sequence of parametric commands to create the shape step by step from scratch. Although
there are a lot of CAD operations in existing commercial platforms, the two most widely used CAD
operations are sketch and extrusion [8]. The purpose of the sketch command is to create the 2D
sketch on a plane and then the extrusion command extrudes the sketch to create a 3D shape. To
create complex and realistic 3D shapes, multiple sketches on different planes and multiple extrusion
operations are required.

In the original DeepCAD dataset, 39.87% of the samples are multi-extrude samples which is 71, 424
out of 179,133 shapes. After a filtering process described in section 3.1, we are left with 41, 005
samples. For the CAD sketch dataset, we create a synthetic sketch image of each CAD model sketch
dataset by taking the Canny edge of an isometric CAD image and then adding a Gaussian blur.

Rule-Based UI Automated Method. We use a hybrid rule-based automated method to execute
the instruction sequences within Onshape. The method uses: Selenium for DOM-level browser
automation, such as opening sketch menus, toggling extrusion modes, or navigating dialog boxes.
PyAutoGUI for low-level pixel-based interactions within the sketch canvas, including drawing curves
and typing parameter values. Since Onshape does not expose a public sketching API, this low-level
simulation is essential.

All (x, y) interactions are normalized to the (0, 1) screen space to ensure scale invariance. A timeout-
based retry mechanism (3 retries, 5s each) is used for all UI actions. Episodes are terminated after
three consecutive failures—most frequently caused by interface lags or rendering issues. During
execution, we record high-resolution video at 60 FPS and log every UI action with sub-second
alignment, deploying the system across 64 cloud VMs. In total, our automated method successfully
reconstructed 44,292 CAD models out of 71,424 attempts (62.0%).

Screen Recording and Logging. While the automated CAD construction is executed, we record
high-resolution screen captures at 60 FPS using a custom Python video recorder. Simultaneously, we
log every executed UI action (mouse event, keyboard press, selection change), each tagged with its
precise frame index. This produces action–video alignment at sub-second granularity. The system is
deployed across 64 Google Cloud VMs using ‘Xvfb’ to simulate GUI displays. Videos and logs are
streamed to Google Cloud Storage. In total, over 118 days of screen recordings were generated in
under one week.

Introducing Human-like Heuristics to VideoCAD To balance realism and learnability in the
presence of long-horizon 3D reasoning tasks (see Section 3.3), we introduce a few lightweight human-
inspired heuristics into VideoCAD. First, we add randomized delays (0.2–0.5 seconds) between
actions—mimicking human hesitation. Additionally, surface selections during sketching are made by
randomly sampling a point on the surface, rather than always selecting the center. Finally, to emulate
the need for precision, the automated method performs zoom actions when small features are hard to
select, replicating how humans zoom in to refine their input.

36

L CAD Construction from DeepCAD Sequences

This appendix describes the complete process used to convert DeepCAD sequences [8] into executable
CAD modeling instructions for Onshape, forming the backbone of our VideoCAD dataset.

L.1 General Process Overview

For each CAD model, we iterate through the DeepCAD sequence and construct a list of extrusions.
Each extrusion is defined by a 2D sketch, which contains a list of loops, and each loop is a
sequence of geometric primitives—lines, arcs, or circles. After constructing the sketch, we
extract extrusion parameters and store the full operation as a structured command.

L.2 DeepCAD Representation

The DeepCAD sequence [8] represents modeling operations as a sequence of the form:

[ti, x, y, α, f, r, θ, ϕ, γ, px, py, pz, s, e1, e2, u, b]

Each segment corresponds to a command: - ti: command type (0: line, 1: arc, 2: circle, 4: loop
separator, 5: extrusion) - x, y: points - α, f : arc angle and direction - r: radius (for circle) - θ, ϕ, γ:
plane angles - px, py, pz: sketch origin offset - s: sketch scale - e1, e2: extrusion extents - u, b:
extrusion operation type and symmetry

L.3 Normalization

All values from the DeepCAD sequences are in [0, 255] and are normalized using:

N (p) =
p− 128

128

Used for coordinates, angles, plane offsets, and extrusion parameters.

L.4 Plane Basis and Extrusion Plane Parameters

The sketch plane is defined by normalized angles (θ, ϕ, γ) and a 3D offset (px, py, pz). Using:

(θ, ϕ, γ) = π · N ([θ, ϕ, γ]), o = N ([px, py, pz])

we compute an orthonormal basis (n,x,y), where:

n = polar-to-cartesian(θ, ϕ, γ), y = n× x

The sketch plane is mapped to an integer ID:

plane_id ∈ {0 : Right, 1 : Front, 2 : Top}
The final extrusion plane offset is:

offset = 0.5 · o[plane_id]

L.5 Point Transformation to Pixel Space

Every geometric point in a sketch (e.g., endpoints, centers, midpoints) is transformed into 2D pixel
coordinates through the following steps:

1. Normalization:
pnorm = N ([x, y]) =

[x, y]− 128

128

2. Rotation and Offset:
prot = R · pnorm · s+ o

where R = [x,y]T is the rotation matrix derived from the sketch plane basis, s is the global
scale, and o is the origin offset.

37

3. Projection: We project the rotated 3D point to 2D by dropping the axis corresponding to
the sketch plane’s normal direction.
Define a binary vector mask ∈ {0, 1}3 that keeps the two in-plane components:

mask[i] =
{
0 if i = plane_id
1 otherwise

The 2D projected point becomes:

pproj = prot[mask]

4. Pixel Alignment:
ppixel = 0.5 · pproj +C

where C is the pixel-space origin of the Onshape canvas.

This transformation is consistently applied to all sketch entities including:

• Line endpoints

• Circle centers

• Arc midpoints, center, start and end points

L.6 Primitive-Specific Parameter Computation

Each loop in the sketch is composed of geometric primitives: lines, circles, and arcs, each defined by
a set of transformed parameters. Below, we define each primitive mathematically using pixel-space
coordinates.

Lines

A line segment is defined by its start and end points. Let pstart,pend ∈ R2 be the 2D pixel coordinates
after projection:

Line = {pstart,pend}

Each point is obtained by:

p = 0.5 · (R · (N ([x, y]) · s) + o) [mask] +C

Circles

A circle is defined by its center and radius. Let c ∈ R2 be the projected center and r the scaled radius:

r =
rseq

128
· s · 0.5

Circle = {c, r} , with c = 0.5 · (R · (N ([x, y]) · s) + o) [mask] +C

Arcs

An arc is defined by its start point pstart, end point pend, center carc, midpoint pmid, and radius r.

Angle and Direction.
α = 180 ·

αseq

128
, f ∈ {0, 1}

Chord Geometry.

v = pend − pstart, L = ∥v∥, pchord =
pstart + pend

2

38

Radius and Offset.
r =

L

2 sin(α/2 · π/180)
, h =

√
r2 − (L/2)2

Center and Midpoint.

v⊥ =
[−vy, vx]

∥v∥
, carc =

{
pchord + h · v⊥, if f = 1

pchord − h · v⊥, if f = 0

The angular midpoint is computed as:

θstart = atan2(pstart,y − cy, pstart,x − cx)

θmid = θstart ±
α

2
· π

180

pmid = carc + r ·
[
cos(θmid)
sin(θmid)

]
Representation.

Arc = {pstart, pend, carc, pmid, r}

All points are transformed to pixel coordinates using the transformation pipeline from Section L.

L.7 Extrusion Parameters

Extrusion parameters are computed as:

u ∈ {0 : new, 1 : remove, 2 : union}, b ∈ {0 : one-sided, 1 : symmetric, 2 : two-sided}

e1 = 0.5 · N (e1), e2 = 0.5 · N (e2)

L.8 Final Representation

Each extrusion is encoded as:

Extrusion = {plane_id, offset, u, e1, e2, b, profile}

Where profile is a list of loops, and each loop is a list of geometric primitives: lines, arcs, and
circles with parameters as computed above.

39

M Detailed Onshape UI Action Procedure

This appendix provides a thorough description of our automated CAD modeling procedure within
Onshape, driven by our hybrid UI interaction framework based on rule-based commands. The
procedure systematically translates structured CAD command sequences (defined in Appendix L)
into executable UI interactions within Onshape.

M.1 Plane Creation Procedure

For sketches requiring custom-defined planes (offset from default planes), we follow these UI steps:

1. Activate the plane creation tool by clicking the plane icon.

2. Select one of the default reference planes (Top, Front, Right).

3. Navigate to the offset text box via successive presses of the Tab key.

4. Enter the desired offset value numerically.

5. Click the offset direction arrow to define plane offset orientation.

6. Finalize plane creation by pressing Enter.

M.2 Sketch Creation and Loop Building Procedure

Each sketch comprises loops defined by geometric primitives: lines, arcs, and circles. These loops
are drawn via the following UI actions:

General Sketch Setup:

1. Start a new sketch by pressing Shift+S.

2. Select the appropriate sketch plane (custom or default).

Drawing Geometric Primitives:

• Line: Press L, then click to specify start and end points.

• Circle: Press C, click to set the center point, move cursor outward to specify radius, then
click to finalize.

• Arc (3-point): Press A, sequentially click to set start, end, and midpoint.

Constraint Management: To ensure geometric accuracy, constraints are toggled dynamically:

• Press Shift key down to deactivate constraints.

• Press Shift key up to activate constraints (primarily when connecting loop endpoints).

Command Completion:

• Exit current geometric command (line, arc, circle) using Esc.

M.3 Visibility and Navigation

Visibility and navigation are managed to maintain clarity and prevent interference from previously
drawn elements:

• Toggle visibility of planes: Shift+P.

• Toggle visibility of sketches: Shift+H.

• Hide/show previously built parts: Y/Shift+Y.

• Navigate between default planes (Top, Front, Right) using key sequences: Shift
(down) → + → (Up/Right/Down/Left) → Shift (up).

40

M.4 Extrusion Execution Procedure

Extrusions convert sketch loops into 3D features through these UI steps:

1. Select sketch region(s) intended for extrusion.
2. Activate extrusion using Shift+E.
3. Choose extrusion type (New for adding material, Remove for material removal).
4. Navigate (using Tab) to set the extrusion depth numerically.
5. Navigate further (using Tab) to the symmetric option checkbox; press Space to toggle

symmetry on/off.
6. If performing material removal (Remove), navigate to and activate the “Merge with all”

checkbox.
7. Finalize extrusion by pressing Enter.

M.5 End-of-Sequence Token

We use the hotkey combination Shift+7 to set the camera view to an isometric perspective. This
action signifies the completion of the CAD modeling sequence and serves as our end-of-sequence
token.

41

N Ablation on Vision Models for CAD Image Similarity

Table 10: Comparison of CLIP and DINOv2 for CAD image similarity over 400 samples.

Metric CLIP DINOv2

Mean of correct scores 0.8576 0.7923
Median of correct scores 0.8587 0.8022
Std Dev of correct scores 0.0250 0.0488
Mean of incorrect scores 0.7931 0.6002
Median of incorrect scores 0.7947 0.6014
Std Dev of incorrect scores 0.0167 0.0440

Average rank of correct match 18.24 2.21
Median rank of correct match 6.00 1.00
Std Dev of rank 31.69 3.08

We conduct an ablation comparing DINOv2 and CLIP as image encoders for CAD shape comparison.
For each of 400 query samples, we compute the cosine similarity between features extracted from
a rendered UI isometric image and a set of 400 ground-truth isometric CAD images (including the
correct one). We define the correct score as the similarity between the UI image and its associated
CAD image, and the incorrect scores as the similarities with all other CAD images in the set. The
rank of the correct match is computed by ranking all 400 similarity scores in descending order.

Table 10 reports the results. Although CLIP yields slightly higher correct match scores on average,
its incorrect scores are also high, indicating limited discriminative power for geometric retrieval.
In contrast, DINOv2 achieves significantly lower similarity scores for incorrect matches (mean of
0.6002 vs. 0.7931 for CLIP), resulting in more robust separation and better retrieval accuracy. This is
reflected in the rank-based metrics: DINOv2 achieves an average correct match rank of 2.21 and a
median of 1.00, far outperforming CLIP (18.24 and 6.00, respectively), with far less variance (std dev
of 3.08 vs. 31.69).

This improvement can be attributed to the architectural and training differences between the models:
CLIP is optimized for semantic alignment between text and image—learning “what is this”—whereas
DINOv2 is trained in a self-supervised manner to model fine-grained visual structure, capturing both
local and global geometry. This makes DINOv2 naturally better suited for comparing CAD-like
images, where shape and spatial configuration are more critical than semantic labels.

Threshold Selection. We also use these similarity scores to define a threshold for dataset quality
control. Specifically, we set the threshold at 0.7, which corresponds to the average of the median
correct score (0.8022) and median incorrect score (0.6014). This ensures a conservative yet robust
filter for identifying high-quality image-CAD pairs.

42

O Temporal Abstraction and Causal Structure in VideoCAD

CAD Sequence Length vs. UI Sequence Length (Time Horizon). The difference between the
statistics in Figure 12 and Figure 3 arises from the distinct abstraction levels of the reported sequences.
Figure 12 shows the distribution of CAD sequence lengths derived from the DEEPCAD dataset,
representing the number of high-level design operations (e.g., Line, Extrude). These symbolic
commands reflect semantic modeling intent and typically average around 23 operations per design.

In contrast, Figure 3 reports the UI time horizon, corresponding to the number of low-level user
interactions (e.g., mouse clicks, key presses, and pointer movements) required to complete a CAD
model in the interface. These interactions capture fine-grained execution detail and are substantially
more numerous, particularly for complex or precise geometry. A single high-level CAD command,
such as an extrusion, can involve dozens of low-level UI actions including plane selection, primitive
drawing, parameter entry, and menu navigation. Consequently, CAD models with 20-30 symbolic
steps often result in approximately 150-200 UI actions on average, explaining the difference in
reported scales.

Intermediate Modeling Processes. VIDEOCAD explicitly captures intermediate modeling stages.
Each trajectory is recorded as a multi-frame video synchronized with both low-level UI events and
high-level CAD operations, providing aligned visual and symbolic representations of intermediate
construction states. This structure enables models to learn not only final outcomes but also the
step-by-step reasoning underlying geometric construction. A more complex example of intermediate
states leading to a target CAD model is shown in Figure 14.

Sketch 1 Extrusion 1 Sketch 2 Extrusion 2 Sketch 3 Extrusion 3

Sketch 4 Extrusion 4 Sketch 5 Extrusion 5 Sketch 6 Extrusion 6

Target
CAD Image

Figure 14: Example of intermediate modeling stages in VIDEOCAD. A sequence of snapshots
illustrating the progressive construction of a CAD model through successive sketching and extrusion
operations.

Causal Dependencies. CAD modeling exhibits strong causal dependencies, for example, a sketch
must be defined before an extrusion can be performed. Our autoregressive transformer explicitly
models these dependencies using causal masking and windowed attention (Section ??), ensuring that
each predicted action is conditioned on the full prior sequence and follows valid operation orderings.

Permutable Actions. Some modeling actions, such as drawing multiple disconnected primitives,
can be executed in different orders without altering the final geometry. The current dataset provides
a single reference trajectory per CAD model, assuming a unique canonical sequence. Extending
this framework to handle permutation-invariant or multi-trajectory supervision is a promising future
direction.

43

	Introduction
	Related works
	VideoCAD Dataset
	Dataset Generation Pipeline
	Dataset Composition and Statistics
	Benchmarking

	VideoCADFormer: An Autoregressive Transformer to Predict CAD Actions
	Model Architecture
	Evaluation Metrics

	Results
	Goal-Driven CAD Generation and Autocompletion
	Case Study: Evaluating LLMs on 3D Reasoning and CAD Understanding

	Limitations and Future Work
	Conclusion
	CAD Software
	Model Architecture and Ablation Studies
	Evaluation Metrics for CAD Generation
	Uncertainty Quantification and Structural Fidelity of VideoCADFormer
	Image-Conditioned Generated CAD models using VideoCADFormer
	Failure Analysis of VideoCADFormer
	Conducting a Failure Analysis on LLM Agents on CAD Design Tasks
	Benchmarking LLMs' 3D Reasoning Capabilities
	Positioning VideoCAD Within the Landscape of GUI Interaction Datasets
	Dataset Statistics
	Dataset Generation Procedure
	CAD Construction from DeepCAD Sequences
	General Process Overview
	DeepCAD Representation
	Normalization
	Plane Basis and Extrusion Plane Parameters
	Point Transformation to Pixel Space
	Primitive-Specific Parameter Computation
	Extrusion Parameters
	Final Representation

	Detailed Onshape UI Action Procedure
	Plane Creation Procedure
	Sketch Creation and Loop Building Procedure
	Visibility and Navigation
	Extrusion Execution Procedure
	End-of-Sequence Token

	Ablation on Vision Models for CAD Image Similarity
	Temporal Abstraction and Causal Structure in VideoCAD

