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Abstract

We propose Layer Decomposition of Graphic
Designs (LDGD), a novel vision task that con-
verts composite graphic design (e.g., posters) into
structured representations comprising ordered
RGB-A layers and metadata. By transforming vi-
sual content into structured data, LDGD facilitates
precise image editing and offers significant advan-
tages for digital content creation, management,
and reuse. This task presents two core challenges:
(1) predicting the attribute information (metadata)
of each layer, and (2) recovering the occluded
regions within overlapping layers to enable high-
fidelity image reconstruction. To address this, we
present the Decompose Layer Model (DeaM), a
large unified multimodal model that integrates a
conjoined visual encoder, a language model, and
a condition-aware RGB-A decoder. DeaM adopts
a two-stage processing pipeline: first generates
layer-specific metadata containing information
such as spatial coordinates and quantized encod-
ings, and then reconstructs pixel-accurate layer
images using a condition-aware RGB-A decoder.
Beyond full decomposition, the model supports in-
teractive decomposition via textual or point-based
prompts. Extensive experiments demonstrate the
effectiveness of the proposed method. The code
is accessed at https://github.com/witnessai/DeaM.

1. Introduction

In the era of digital media production, multi-layer composite
images serve as a fundamental structure in visual design,
enabling the conveyance of rich and complex information
through the integration of visual elements and text. In digital
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image editing, layers are employed to isolate different com-
ponents of an image, functioning analogously to transparent
sheets that can be stacked to achieve various visual effects
or construct new compositions. Understanding the under-
lying layer structure of such images is essential for a wide
range of applications, including content editing, material
archiving, and image reconstruction. However, despite sig-
nificant progress in computer vision and computer graphics,
automatically decomposing a composite image into its con-
stituent layers remains a challenging and largely unsolved
problem.

This paper introduces Layer Decomposition of Graphic
Designs (LDGD), as shown in Figure 1. The goal is to
decompose a composite image into a set of semantically
meaningful and individually discernible layers with a well-
defined order—akin to peeling back the layers of an onion.
Each layer, whether it represents the background, primary
imagery, atmospheric elements, text, or other visual com-
ponents, is annotated with structured metadata, including
attributes such as position, size, and text color. The primary
challenge of this task lies in the intricate visual overlap
and interdependence among layers, which makes single-
purpose vision models such as standard image segmentation
inadequate for achieving accurate and structured layer de-
composition.

We introduce Decompose Layer Model (DeaM), a purpose-
built framework for this challenging task, inspired by the
success of large unified multimodal models in understand-
ing complex visual patterns and generating multimodal out-
puts. The DeaM incorporates three critical components: a
conjoined visual encoder, a comprehensive large language
model, and a sophisticated condition-aware RGB-A decoder.
The conjoined visual encoder is designed to perceive and
integrate visual information across different semantic hierar-
chies. The large language model then processes this visual
information along with textual instructions to execute layer
decomposition tasks. Following this, the condition-aware
RGB-A decoder takes the tokens associated with the im-
age layers derived from this decomposition, producing the
relevant visual outputs. DeaM operates by producing meta-
data for each dissected layer, represented as a JSON format.
In Figure 2, DeaM demonstrates the ability to forecast a
wide variety of details for the textual layers, such as font
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Figure 1. We introduce a new task, Layer Decomposition of Graphic Designs (LDGD), which involves decomposing a composite image
into multiple layers (including the background, primary imagery, atmosphere graphics, text, etc.) in a logical layer order. To address this
task, we develop a decomposition model, DeaM, which supports both full-layer decomposition and selective layer extraction guided by
diverse forms of input, including textual prompts and point-based instructions.

style, color palette, textual content, alignment, and so forth,
thereby facilitating text layer reconstruction and secondary
edits. For the image layers, DeaM predicts an additional
field, capturing the visual tokens’ indices essential for the
decoder to regenerate RGB-A images.

In addition to fully automated layer decomposition, DeaM
supports interactive prompts, including both text instruc-
tions and point-based inputs, allowing users to selectively
guide the decomposition of specific layers.

To support the LDGD task, we construct an in-house dataset
named CreatiLLD, comprising over 200,000 poster images
annotated with rich information necessary for layer decom-
position. To further enhance the model’s capabilities, we
leverage the linguistic proficiency of GPT-4 to generate
open-ended instruction-tuning data, thereby broadening the
model’s understanding of diverse user queries.

Our contributions are multifold:

* We formalize the novel and practical task, LDGD,
which aims to decompose a composite image into in-
dividual and complete RGB-A layers with metadata,
even if the layers are obstructed by each other.

* We present the DeaM, a large unified multimodal
model that performs end-to-end decomposition of an
image. DeaM also accommodates user interactions,
allowing for the targeted decomposition of layers spec-
ified through text or point-based prompts.

* Our DeaM achieves consistently superior results com-
pared to the baseline and a variety of existing ap-
proaches, highlighting its effectiveness in the challeng-
ing task of layer decomposition.

2. Related Work
2.1. Layered Image Decomposition

Earlier work (Monnier et al., 2021; Sbai et al., 2018; Du
et al., 2023) explored similar tasks of decomposing images
into layers by learning object prototypes along with param-
eters for occlusion and transformation, combining them
to reconstruct complete images. While these studies have
made notable progress, their problem formulations fall short
of capturing the complexity and diversity inherent in real-
world scenarios. To address these limitations, we extend
their task definition and propose a new formulation that is
more aligned with practical applications.

Our task setting differs in several key aspects: (1) Our input
images contain text, which is typically not regarded as an
object. We explicitly decompose the text as a separate visual
layer. (2) Our output includes not only the image of each
individual layer but also associated metadata for each layer.

Overall, our formulation represents a unified understanding
and generation task, making it inherently more challenging
than previous approaches.

In addition, existing derendering methods (Ma et al., 2022;
Rodriguez et al., 2025) typically convert images into SVG
format. However, SVG representations struggle to capture
complex visual details, and these methods are generally lim-
ited to decomposing simple graphical content while lacking
the ability to accurately decompose the text.

2.2. Large Multimodal Models

Over the recent year, there has been a notable surge in in-
terest surrounding large language models (LLMs) (Devlin
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etal., 2019; Radford et al., 2019; Raffel et al., 2020; Ouyang
et al., 2022; Zhang et al., 2022; Zeng et al., 2023; Chiang
et al., 2023) in the realms of natural language processing
and computer vision. This surge is attributable to the supe-
rior capabilities of LLMs, which have demonstrated excel-
lence in multifaceted applications, notably their comprehen-
sively detailed global knowledge base and multifunctional
utilities. Large multimodal models (LMMs) (Team et al.,
2023; Zhang et al., 2024a; OpenAl, 2023; Wang et al., 2023;
Alayrac et al., 2022; Li et al., 2025; Gong et al., 2023; Huang
et al., 2023; Dai et al., 2023; Zhu et al., 2024; Driess et al.,
2023; Ye et al., 2023; Bai et al., 2023; Wang et al., 2024a)
integrate the powerful linguistic capabilities of LLMs and
extends its multimodal processing abilities, breaking down
barriers between visual and linguistic modalities, and even
more beyond. Two notable contributions in vision-language
learning are BLIP-2 (Li et al., 2023) and LLaVA (Liu et al.,
2023). BLIP-2 integrates a frozen image encoder with large
language models using a lightweight Q-Former for efficient
cross-modal alignment. LLaVA pioneers the use of GPT-
4 (OpenAl, 2023) to generate instruction tuning data for
multimodal tasks. In multimodal localization, Shikra (Chen
et al., 2023) excels at spatial reasoning, while Graphist
(Cheng et al., 2025) extends localization to poster layout de-
sign, showcasing strong structural understanding. Recently,
emerging unified multimodal models (UMM) (Zheng et al.,
2023; Zhan et al., 2024; Sun et al., 2024; Zhou et al., 2025;
Xie et al., 2025; Wu et al., 2024c; Wang et al., 2024b; Fang
et al., 2024; Wu et al., 2024a; Ma et al., 2024; Qu et al.,
2024; Wu et al., 2024b; Li et al., 2024; Shi et al., 2024;
Tong et al., 2024) have demonstrated the ability to jointly
generate text and images, enabling unified multimodal gen-
eration. Inspired by these advances, we explore leveraging
a UMM for layer decomposition of graphic designs, aiming
to simultaneously generate textual elements and multiple
visual layers.

2.3. Image Editing

Although contemporary studies have not yet concentrated
on the concurrent decomposing of multiple image layers, a
subset of prevalent image generation and editing techniques
demonstrates partial capability in isolating and decompos-
ing individual layers. Instruction-based image editing: In-
structPix2Pix (Brooks et al., 2023), HIVE (Zhang et al.,
2024b), MGIE (Fu et al., 2024), SmartEdit (Huang et al.,
2024), and SEED-X (Ge et al., 2024) can sometimes achieve
layer decomposition effects by facilitating editing of des-
ignated layers. However, these methods are unable to well
decompose multiple elements of an image. Several inpaiting
methods (Liu et al., 2024; Lugmayr et al., 2022; Yang et al.,
2023b; Corneanu et al., 2024) can modify the specified re-
gions in image with extra mask condition. These methods
only sample the masked regions from a pre-trained diffusion

model, while keeping the unmasked areas the same in each
denoising step. Another kinds of inpainting methods (Xie
et al., 2023a;b; Yang et al., 2023a; Yu et al., 2023) fine-tune
a specially designed image inpainting model to integrate
corrupted image and mask. However, these methods cannot
decompose multiple layers simultaneously and struggle to
handle cases where layers occlude each other.

3. Task Formulation

Given a composite image x € X' that includes various
image elements (such as the background, primary imagery,
decorations, and text), the goal of Layer Decomposition of
Graphic Designs (LDGD) is to decompose the image into an
ordered series of RGB-A layers 7 = {I; € Rtixwix4in
with their metadata (such as position, text color and so on)
from the original image. We hope that each layer is as
close as possible to the corresponding part in the original
image and that re-rendering these layers in accordance with
their metadata will yield the original picture. For the sake
of simplicity, we treat text elements as RGB-A images,
because once our model recognizes the text, color, font, and
size, we can render them into RGB-A images. The position
information for each layer contains five numerical elements
(4, yi, wi, by, 1;), where x; and y; denote the coordinates of
the upper left corner of the layer in relation to the original
image, w; and h; represent the width and height of the layer
within the original image, and /; indicates the layer order. If
the ordering of the layers is illogical, then re-rendering the
image using the obtained layers would result in implausible
occlusions (Cheng et al., 2025).

4. Baseline

Layer decomposition of graphic designs is a novel and un-
derexplored task for which no existing methods provide a
satisfactory solution. For example, traditional image seg-
mentation can separate foreground objects but fails to re-
cover occluded background content, and often treats text as
non-editable image regions. Similarly, image inpainting is
typically limited to generating a single-layered output, such
as simply erasing text, without structural decomposition.

To create a basic approach to this task, we develop a baseline
combining image inpainting, matting, and OCR. We first
extract text data, font attributes, and bounding boxes using
OCR, then form a mask for inpainting. Image matting
separates the primary imagery, whose mask aids in further
inpainting to restore the background via the Volcano Engine
API. This method can only decompose the input image
into three layers: background, primary imagery, and
text. It cannot decompose the image into more layers.
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Figure 2. DeaM Pipeline. The training process of DeaM consists of three phases: (1) VQ-GAN Training: Train an RGB-A VQ-GAN,
then use it to encode all image layers with “quant” annotations. (2) Instruction Tuning: Train DeaM to generate detailed image
descriptions (metadata), performing layer decomposition tasks including element positions, layer order, indices in the VQ-GAN codebook,
and so on. (3) Decoder Training: Train a condition-aware RGB-A decoder using ResNet as the condition encoder, keeping the VQ

encoder frozen. This phase is decoupled from the instruction tuning.

5. Proposed DeaM

As shown in Figure 2, Decompose Layer Model (DeaM)
comprises three key components: a conjoined visual en-
coder, a large language model backbone, and a condition-
aware RGB-A decoder. The conjoined visual encoder is
capable of encoding semantically multi-layered visual infor-
mation. The large language model processes the input visual
and textual instruction information and generates layer de-
composition results. The condition-aware RGB-A decoder
then decodes the tokens corresponding to the image layers in
the decomposition results to produce the respective images.

5.1. RGB-A VQ-GAN.

We modify the RGB VQ-GAN into an RGB-A VQ-GAN by
changing the number of channels in the convolutional ker-
nels of the first and last layers from 3 to 4 to accommodate
the alpha channel. When using the default training strategy
(Esser et al., 2021), there is ambiguity in the model’s encod-
ing of RGB-A images. For instance, the model produces the
same encoding for some black lines that are similar but not
identical. We found that this issue arises because the model
treats the reconstruction of the alpha channel and the RGB
channels as equally important during training, which is not

the case in reality. The RGB information is actually more
important. To eliminate the model’s encoding ambiguity,
we adjusted the VQ-GAN reconstruction loss by applying
different weights to the RGB and the alpha channel. The
training data of RGB-A VQ-GAN includes image layers
from all poster images, the ImageNet training set (Deng
et al., 2009), and a subset of several million images from
LAION (Schuhmann et al., 2021; 2022).

5.2. Conjoined Visual Encoder.

Visual images contain visual elements with different levels
of semantic information, such as object categories with pro-
nounced semantic information (e.g., people, watches) and
decorative elements with less semantic information (e.g.,
geometric element patterns). Existing LMMs (Liu et al.,
2023) typically employ CLIP as the sole visual encoder,
encoding generally higher-level semantic information. To
enable the model to focus on both high-level semantic ob-
ject categories and lower-level visual elements, we design a
conjoined visual encoder. And we utilize two different types
of visual encoders: the CLIP Vision Encoder (Radford et al.,
2021), and DINO v2 (Oquab et al., 2024). After encoding,
we concatenate the visual features along the channel dimen-
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sion, thereby obtaining visual features with dimensions of
N x (1024 x 2). Both visual encoders here use an input
resolution of 336 x 336 to ensure a consistent number of
tokens after encoding.

5.3. Large Language Model Backbone.

Vocabulary Expansion. In the architectural design of
our model, a crucial component involves the utilization of
semantic tokens transformed by the VQ-GAN model (Esser
et al., 2021). This architecture integrates an encoder and
a decoder, augmented by a specialized quantization layer
whose role is to translate image information into a sequence
of tokens predefined in a codebook. Both the encoder and
the decoder adopt convolutional layer structures to effec-
tively process images of varying resolutions. Specifically,
the encoder compresses the spatial dimensions of the in-
put image through a series of downsampling operations,
while the decoder reconstructs the image back to its orig-
inal size via matching upsampling operations. To purely
represent the image information of each layer and avoid the
generated layer images containing meaningless background
information, the model training utilizes images with four
channels, namely RGB-A. That is, areas not associated with
this layer will be transparent. This RGB-A image format
(Zhang & Agrawala, 2024) can support the re-rendering
of decomposed layers and facilitate a range of subsequent
applications such as more sophisticated image editing and
creation. We trained the VQ-GAN model with a downsam-
pling ratio of f = 16. Higher image resolutions lead to
clearer reconstructions, but they also make the training se-
quences of the model much longer and significantly increase
computational cost. Given the limitations on the length of
the model’s output tokens, when VQ-GAN generates tokens
for each image layer, we set the input resolution for semanti-
cally rich natural images to 192 x 192 and for semantically
sparse decorative elements to 128 x 128. In the end, we
obtain either 144 or 64 tokens. In our method, the VQ-GAN
encoder is employed to encode the image layers (i.e., not
text layers), and the obtained codebook IDs serve as the
ground truth for training. Subsequently, we incorporate an
equivalent number of special tokens like ‘<vt-{number}>’
to the LLM, reflecting the size of the VQ-GAN’s code-
book. The number represents the index of the VQ-GAN
codebook embedding. In this work, we use InternLM2-7B
(Team, 2023) as the LLM backbone.

Enhancing Prediction Regularity. We have discovered
that predicting the output image VQ-GAN codebook index
‘<vt-{number} >’ can be lengthy (for instance, semantically
rich images or graphic elements may have 144 tokens, while
semantically sparse decorative elements might have only
64). This poses a substantial challenge for unified multi-
modal models, which struggle to accurately infer the precise
number of indices in a single forward pass. Without the

correct number of indices, these index sequences cannot be
reshaped into a two-dimensional matrix (12 x 12 or 8 x 8),
and thus, we would be unable to decode and generate images
using the decoder. To address this issue, when constructing
training image token data for the layer, after encoding with
VQ encoder to get a two-dimensional matrix of indices, we
append a learnable newline token (‘\n’) at the end of each
row of indices before flattening the sequence. This approach
introduces more regularity to the sequence, thereby reducing
the prediction difficulty for the unified multimodal model.

5.4. Condition-Aware RGB-A Decoder

After obtaining the output of the decomposing results,
for image layers containing the image tokens ‘<vt-
{number}>’, we reshape them into a 12 x 12 or 8 x 8
two-dimensional array based on the length of the image to-
kens. We can retrieve the corresponding index’s VQ-GAN
codebook embedding and use the VQ decoder to decode
and restore them back into images. However, we found that
directly using the pretrained VQ decoder to decode the gen-
erated images results in less clarity. To further enhance the
quality of decoded images, we designed a Condition-Aware
RGB-A Decoder, as shown in Figure 3. Motivated by the
observation that the input images are of high clarity, but not
utilized during decoding, we aim for the decoder to lever-
age the input images as conditional information to enhance
image generation quality as much as possible. The decoder
takes two types of inputs: one is the original layers, and the
other is the corresponding regions of the input images asso-
ciated with these layers. We noted that the unobscured parts
of the layer images are relatively easy to restore, while the
obscured parts are more challenging. To focus the model’s
attention on the obscured regions, we force the model to
learn the mask of the obscured areas. Simultaneously, to
reduce the impact of unnecessary foreground information
in the occluded regions on the final reconstruction quality,
we multiply the predicted mask with the features of the con-
ditional information, thereby erasing the information of the
occluded areas. Finally, these modified data are concate-
nated with the latent features to serve as the input for the
next part of the network. The training loss for the decoder
is the same as that for VQ-GAN(Esser et al., 2021). During
inference, we use the features indexed by the codebook from
the special token predicted by the unified multimodal model
as the features encoded by the VQ-Encoder, combined with
the images of the crop areas corresponding to the modified
layer as input.

5.5. Training Strategy

The training process of DeaM is divided into three phases:
VQ-GAN training, instruction tuning, and decoder training.
In the first phase, we train an RGB-A VQ-GAN. After the
training is complete, we use this VQ-GAN to encode all im-
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Figure 3. Condition-Aware RGB-A Decoder. During the training, the decoder utilizes the VQ-GAN decoder for initialization and accepts
images corresponding to the poster areas of the layers as conditional information to further enhance the image generation quality. To
ensure that the decoder concentrates on generating the occluded regions, the model is compelled to predict the mask of the occluded areas.
During inference, the features encoded by the VQ-Encoder are replaced with the quantized encodings predicted by the DeaM.

age layers, adding annotations for the ”quant” field. In the
second phase, we focus on training DeaM to generate de-
tailed descriptions of images (metadata), that is, to perform
the layer decomposition task, which includes the positions,
layer order, corresponding indices of image elements in the
VQ-GAN codebook and so on. By providing the model with
specific task instructions and images, DeaM learns to au-
toregressively generate the JSON structure information for
each layer, encompassing all the details necessary to render
the different image elements. We also include text-guided,
point-guided, and GPT-4 generated instruction-tuning data
for training. In the third phase, we train a condition-aware
RGB-A decoder. Here, we use ResNet as the condition
encoder and keep the VQ encoder frozen during training,
only training the decoder and condition encoder. Addition-
ally, the training of the decoder module is decoupled from
the training of the unified multimodal model. We use 16
NVIDIA A800 GPUs for training.

6. Training Datasets
6.1. Human-Annotated Data

We curate a large-scale in-house dataset of over 200,000
multi-layer structured poster images, containing layer se-
quences, category labels, and coordinate information. This
dataset, named CreatiLLD, is collected from the internet and
comprises 224,054 graphic designs with complete layer-
level annotations. The majority of samples are posters cov-
ering domains such as holiday events, retail, dining, and
corporate communications. On average, each sample con-
tains 10.30 layers, with an approximate image-to-text ratio
of 6.3:3.7. To support the LDGD task, we enrich the dataset
with additional annotations. For image layers, a captioning
model is employed to generate descriptive captions, and

color statistics are extracted. For text layers, we apply Opti-
cal Character Recognition (OCR) to extract textual content,
use a font classification model to identify typefaces, and
compute font sizes based on the layer coordinates. During
training, each input consists of a single-layer poster image,
and the model is trained to output detailed metadata and a
structured representation for each corresponding layer.

6.2. Instruction Data

The construction of instruction data aimed to enable the
DeaM to adhere to user instructions and accurately decom-
pose one or more layers in alignment with user requirements.
We contemplate how to design user instructions with greater
freedom to support a broader range of application scenarios.
We crafted two types of instruction-tuning data with consid-
erable flexibility, and in addition, we employed GPT-4 to
collect a large corpus of open instruction-tuning data.

Text-Guided Instruction-Tuning Data. We curated a
set of instruction data for each layer endowed with a cap-
tion. Adhering to the specified format, each instruction
read: “Please decompose the layer that manifests as follows:
[caption].”. The ‘[caption]’ was replaced with a descrip-
tion pertinent to a specific layer, which the model was then
tasked to decompose. Ultimately, we collected 200,000
annotated data entries.

Point-Guided Instruction-Tuning Data. To facilitate a
wider range of interactive modalities, we have also gathered
instruction-tuning data based on point interactions. Users
input points at various locations on an image, and the model
then interprets which layer corresponds to each specified
point. Expanding upon this, our approach allows for a
more intuitive user experience, enabling individuals to en-
gage with the visual content directly and receive immediate,
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context-aware feedback from the model. In the end, we
collected 100,000 annotated data entries.

GPT4-Generated Data. Drawing inspiration from the
LLaVA (Liu et al., 2023) and Shikra (Chen et al., 2023)
models, we employed the GPT-4 model to generate a more
versatile collection of instructions, catered to address open-
ended user inquiries. By inputting the JSON format infor-
mation (including information on the types and positions of
each layer) of posters into GPT-4, the model autonomously
devised five question-answer pairs relevant to each poster’s
content. Model-generated questions were constrained to
those answerable with the metadata, ensuring the identifi-
cation of related layers was possible. We collected 15,000
question-answer pairs through GPT-4 for the fine-tuning of
the model.

7. Experiments
7.1. Test Datasets

To facilitate a more open and transparent comparison with
other methods, we utilize a publicly available academic
dataset Crello for evaluation.

Crello dataset': Crello (Yamaguchi, 2021) is now referred
to as VistaCreate?, provides a collection of visual designs
originating from an online design tool. This comprehensive
compilation encompasses a wide variety of design types,
tailored for multiple uses such as infographics for social
platforms, digital advertising banners, headers for blogs,
and templates for print posters. Within this dataset, each
individual design is accompanied by intricate details specify-
ing the order of layers, the precise location of each element
within the space, and the classifications of the various de-
sign components. The test set of this dataset contains over
2,000 images.

7.2. Evaluation Metrics

In order to systematically evaluate the effectiveness of layer
decomposition, we have designed a comprehensive set of
evaluation metrics. We focus primarily on two aspects: (1)
the quality of the image reconstruction, (2) the prediction
accuracy of the layer position (that is, the planar position of
the layer on the original image and the order of the layers).
For assessing the quality of layer reconstruction, we refer to
the evaluation methods used for image reconstruction qual-
ity. We primarily utilize the image reconstruction quality
metric FID (Fréchet Inception Distance). Motivated by the
premise that if the method excels in decomposing all layers
with high fidelity, the composite image generated by merg-

"https://huggingface.co/datasets/
cyberagent/crello
https://create.vista.com/

ing all the layers would exhibit a high degree of similarity to
the original image. As for the prediction accuracy of bound-
ing boxes and the accuracy of layer order prediction, we
draw on the Hungarian matching algorithm used in object
detection (Carion et al., 2020) to view the problem as one
of predicting the accuracy between two sets of bounding
boxes. We denote the ground truth set of objects as b, and
the collection of N predictions as b; = {&;, 7, W, hi }. In
order to establish a bipartite matching between these two
groups, we look for a permutation of a € Py items that
yield the minimal cost:

N

& = arg minZCboz(b, Ea(i)), (H
aEPN i=1

where we define Lpoz (-, ) as Lion (b, f)a(i)), Liow 1s ToU
loss (Zhou et al., 2019) in this work. We use the mean IoU
(Intersection over Union) of the matched bounding boxes as
a metric Loc,, to measure the accuracy of the bounding box
prediction. Considering that there might be various ways to
decompose some decorative elements in an image, such as
two lines that could be decomposed either as two separate
layers or as a single layer, it is inconvenient to perform box
calculations. Therefore, we only focus on the box detection
capabilities of the core elements (such as primary imagery).

Con. Vis. Enc. Enh. Pre. Reg. Con. Dec.  FID]
105.524
v 101.132
v v 95.488
v v v 70.629

Table 1. Ablation Study. Here, Con. Vis. Enc. denotes the
conjoined visual encoder, Enh. Pre. Reg. stands for enhancing
prediction regularity, and Con. Dec. refers to the condition-aware
RGB-A encoder.

method FIDJ Locg 1
Baseline 99.603 0.7069
DeaM(ours) 70.629 0.7128

Table 2. Comparison with the baseline.

7.3. Quantitative Results

Ablation Study. We perform ablation studies on key com-
ponents and strategies of our model design, with results
summarized in Table 1. Using image reconstruction qual-
ity as the evaluation metric, we observe consistent perfor-
mance gains contributed by each component. Notably, the
condition-aware RGB-A decoder yields the most substantial
improvement, primarily by significantly enhancing image
clarity. Additionally, the conjoined visual encoder strength-
ens the model’s detection capability and reduces missed
detections, further boosting reconstruction quality.
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Figure 4. Layer decomposition results of DeaM on the Crello dataset.

Comparison of Baseline. As shown in Table 2, in terms
of image reconstruction quality, our method significantly
outperforms the baseline. Moreover, unlike the baseline
which only parses images into three layers (background,
main subject, and text), our method can parse to more layers,
enhancing its capability.
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Figure 5. Comparison with the reconstruction results of the base-
line.

7.4. Qualitative Results

Layer Decomposition. We present the results of layer
decomposition and composition as shown in Figure 4, indi-

cating that the reconstructed image is close to the original
image in terms of image quality. For each row in the figure,
the leftmost image is the input, the middle column shows
the reconstructed image based on the predicted layer order,
and the rightmost section displays the decomposed layers
of the input. These layers are arranged from left to right in
hierarchical order, where layers further to the left represent
lower levels in the visual hierarchy, with the leftmost layer
typically corresponding to the background. From these fig-
ures, it can be seen that the bounding box predictions for
each layer are quite accurate, and the text content is largely
correct, although the accuracy of the font prediction is not
exemplary. The example at the top of the Figure 4 is quite
interesting: when there are many decorative elements and
their spatial relationships lack a clear hierarchical order, the
model tends to predict them as being on the same layer.
Moreover, there is still room for improvement in our image
decoding and generation quality, which calls for a more
powerful image tokenizer.

Comparison of Baseline. As illustrated in Figure 5, we
compare the reconstruction quality between the baseline and
our proposed DeaM. DeaM exhibits strong performance in
reconstructing text regions, effectively recovering key de-
tails such as content, font, size, and color in most cases. In
contrast to the baseline’s inpainting-based approach, which
often introduces artifacts or unnatural patterns, DeaM sub-
stantially reduces these issues, resulting in cleaner and more
faithful reconstructions.

Text-Guided and Point-Guided Layer Decomposition.
As shown in Figure 6, we showcase the capabilities of our
model through the lens of point-guided and text-guided layer
decomposition, revealing its versatility and robust under-
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Figure 7. Comparison with LIVE. The first column shows the input
images, while the second and third columns present the reconstruc-
tion results from LIVE and our method DeaM, respectively.

standing of complex image structures. The first row presents
the inference results of the instruction-based image editing
method MGIE. In the second row, corresponding textual
prompts for text-guided layer decomposition are shown be-
neath each image. The third row visualizes the prompt
points used for point-guided layer decomposition on the
input images, indicated by red dots. The text-guided layer
decomposition outcomes illustrate the model’s adeptness

in differentiating between various layer types. It does not
merely recognize the presence of text or imagery; it under-
stands their distinct roles within a composite image. This
distinction is crucial for applications that demand selective
editing or targeted adjustments within an image. The il-
lustrative examples provided, particularly the image in the
third row, not only validate the model’s precision in pin-
pointing locations denoted by user-specified points but also
highlight its predictive prowess in envisioning the result-
ing image once certain layers are omitted. This is evident
in the model’s ability to infer what the image would look
like without the textual elements that overlay the picture, a
task that requires a nuanced understanding of both spatial
relationships and the hierarchy of visual elements.

Comparison with Image Vectorization Method. We com-
pare our approach with an image vectorization method,
LIVE (Ma et al., 2022), which generates compact SVG
representations featuring layer-wise structures that align se-
mantically with human perception. As shown in Figure 7,
LIVE tends to perform well on simple logo images but
struggles with more complex natural images.

8. Conclusion

In summary, we introduce the novel task of layer decom-
position of graphic design, and present DeaM, a dedicated
framework that achieves significant progress in automatic
layer decomposition, fine-grained image understanding, and
manipulation. Leveraging a novel RGB-A VQ-GAN, DeaM
effectively decomposes composite images into distinct lay-
ers, substantially improving both encoding and decoding
efficiency—crucial for high-fidelity image editing. The
model’s decomposing capability is further enhanced by the
integration of multiple carefully designed components and
strategies. DeaM also supports a more user-friendly inter-
action paradigm, allowing control via both point-based and
text-based instructions. In addition, we construct a new
dataset specifically for the layer decomposition task, which
facilitates future research in this area. Extensive experi-
ments demonstrate the effectiveness of DeaM, highlighting
its potential to inspire a wide range of computer vision
applications.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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