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Abstract
In generative diffusion, early stopping is widely
adopted as a criterion for minimizing the distance
between the generated and target distributions.
Yet, this benefit comes with no explicit guaran-
tee against memorization. In this work, we study
the distributional fidelity of denoising diffusion
probabilistic models in a controlled setup, a hi-
erarchical data model with tractable scores and
marginal probabilities. Tracking the generative
behavior through training, we identify a biased
generalization phase preceding the minimum of
the test loss, where the model increasingly favors
samples with anomalously high overlap to train-
ing data, without yet reproducing them exactly.
Our results highlight a subtle failure mode of dif-
fusion training dynamics, suggesting that standard
early stopping might be insufficient to prevent dis-
torted generalization, well before the emergence
of overt memorization.

1. Introduction
Generative AI can now produce text, images, and videos
with a level of realism that was hardly imaginable only a
few years ago, an achievement that also introduces profound
societal challenges. Whatever the medium, two questions
stand at the center of current research: (i) does the generated
content possess sufficient quality to appear authentic, and
(ii) is it truly novel rather than a near-duplicate or patch-
work of examples from the training set? More precisely,
considering the task of learning to generate from a target dis-
tribution P0 : Rd → R given n fair samples {xµ}µ=1,...,n,
one should ensure that the generative process (i) samples
according to a distribution P̃ θ

0 that has a small distance to
P0, i.e., appears to achieve genuine generalization; and (ii)
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does not generate individual samples x that are anomalously
close to one of the training points {xµ}, displaying some
form of memorization. The interplay between generaliza-
tion and memorization is particularly relevant in the context
of generative diffusion (Sohl-Dickstein et al., 2015). There,
as neural networks are usually trained at denoising a finite
number of training samples—and not generation itself—,
the minimum training loss is necessarily achieved by mem-
orizing training examples (Gu et al., 2023). Understanding
the crossover between good generalization and inevitable
overfitting is therefore essential to ensure that trained mod-
els are sufficiently performant while not violating privacy or
copyright-related constraints in relation to the training data.

Despite the necessity of avoiding memorization, many ad-
vances in generative modeling focus on minimizing, e.g.,
the Kullback-Leibler divergence between the true data distri-
bution P0 and the learned model distribution P̃ θ

0 . However,
this objective alone does not, in fact, preclude biased gener-
ation towards training examples. Indeed, as demonstrated
by Carlini et al. (2023), even models that appear to general-
ize well and are reported not to overfit in training such as
Imagen (Saharia et al., 2022) can reproduce exact training
samples under certain conditions. This disconnect, which
was already identified in van den Burg and Williams (2021)
in the context of variational autoencoders, highlights the
need to move beyond aggregate generalization metrics and
examine more localized signs of memorization or training
data bias in generative diffusion.

In this paper, we tackle this issue in denoising diffusion
probabilistic models (DDPM) (Ho et al., 2020) trained on
well-controlled models of structured data. Most efforts to
understand the transition from generalization to memoriza-
tion in generative diffusion have focused either on analyti-
cally tractable but much simplified models (Li et al., 2023;
George et al., 2025), or on empirical studies using real-
world datasets (Gu et al., 2023; Ross et al., 2024). Here, we
place ourselves in an intermediate regime of data complexity
by considering discrete sequences with tunable, potentially
long-range, correlations. This setting offers a middle ground
between idealized theoretical models and fully empirical
data, while still granting access to ground-truth quantities
and allowing us to identify even subtle biases.
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Figure 1. (a) Illustration of the bias in generalization occurring prior to the minimum of the test loss during the training dynamics. (b)
Evolution of the losses of a toy model of regularized memorizing denoiser (Sec. 4.1) and of the Kullback-Leibler divergence measuring the
distance in training nearest-neighbor overlaps defined in Sec. 4 (right vertical axis), training time substituted by a parameter ε controlling
the bias towards training data, averaged over 12 draws of data. (c) Identical to (b) for a transformer denoiser model trained on n = 212

samples of synthetic hierarchical data, averaged over 30 training runs. (d) Identical to (b) for a transformer denoiser model trained on
n = 210 samples of a discretized version of FashionMNIST, averaged over 12 training runs. In (b), (c) and (d), the increase of the DKL

after its minimum signals the generation of data that is anomalously close to training examples, which systematically occurs before the
minimum of the test loss in our experiments. Errorbars show the std. dev. for losses and std. error. for the KL divergence. Losses in the
figure are evaluated for fixed t = 100 to limit variability, although results are strictly analogous when averaging over all diffusion steps.

The key takeaway of our paper may be summarized as: In
diffusion models, biased generation towards training data
can emerge before overfitting manifests itself through an
increasing test loss. Indeed, while early-stopping at the
minimum of the training loss maximizes the generalization
capabilities (Song et al., 2021; Li et al., 2023), we argue
that bias towards training data may be present earlier if the
test loss significantly departs from the training loss, as il-
lustrated in Fig. 1(a). We illustrate this phenomenon in a
a controlled setting, first on a minimal toy model of regu-
larized memorizing score, see Fig. 1(b). We then show that
biased generalization is also measurable for trained trans-
former denoisers, as shown in Fig. 1(c). We finally verify
that the effect may still be present in other data models, here
a discretized version of FashionMNIST, see Fig. 1(d).

2. Related work
Generalization-to-memorization transition in genera-
tive diffusion. While perfectly trained denoisers on finite
datasets are expected to memorize the training set (Gu et al.,
2023), the success of diffusion models suggests a regime
of apparent generalization preceding overt memorization.
On the theoretical side, George et al. (2025) analyze the
behavior of train and test losses in a random-feature model
trained on Gaussian data, connecting them to the emergence
of memorization, while Li et al. (2023) propose a bound
relating generalization capabilities to the training loss and
training time, highlighting the potential role of early stop-
ping to prevent memorization. On the empirical side, Carlini
et al. (2023) and Somepalli et al. (2023a;b) show that large-
scale diffusion models can memorize and leak individual
training examples, raising strong privacy-related concerns.

Memorization versus overfitting. Surprisingly, little at-
tention has been given to the distinction between memoriza-
tion and overfitting in generative models. Feldman (2020)
argues that memorization may be a prerequisite for gener-
alization in high-capacity models in the supervised setting,
challenging the classical view that memorization and gener-
alization are opposed. van den Burg and Williams (2021)
builds on this by proposing a memorization score to quan-
tify how well-generalizing variational autoencoders may be
sensitive to their training set, even when individual exam-
ples are not explicitly memorized. Both works, however,
do not address the issue in generative diffusion. Yoon et al.
(2023) on the other hand, propose that memorization and
generalization are mutually exclusive in diffusion models,
which we challenge by pinpointing the existence of a biased
generalization phase.

Generative diffusion for hierarchical data. We study
generative diffusion in the hierarchical data model of
Garnier-Brun et al. (2024), which is structurally similar
to the random hierarchy model of Cagnetta et al. (2024).
Prior works have used this framework to study various as-
pects of the reverse diffusion process: Sclocchi et al. (2025a)
and Sclocchi et al. (2025b) highlight the role of hierarchi-
cal structure in shaping the reverse dynamics, while Favero
et al. (2025) connect training set size to the model’s capacity
to represent hierarchical rules. These works differ from
the present study as they do not consider the transition to
memorization or the bias induced by training samples.

3. Background
Denoising Diffusion Probabilistic Models. We follow
the diffusion setup introduced in Ho et al. (2020). The for-
ward process is a Markov chain, Pt(xt | xt−1) = N (xt |
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√
1− βtxt−1, βtId), which gradually introduces Gaussian

noise of variance βt. As customary, the shorthand notation
N (x | µ,C) indicates a multivariate Gaussian probability
density with mean µ ∈ Rd and covariance C ∈ Rd×d. Af-
ter t steps of the process, it follows that xt =

√
αtx0 +√

1− αtξt, with αt =
∏

s≤t(1 − βt) and ξt ∼ N (0, Id).
The reverse process, conditioned on the starting point x0, is
given by Pt(xt−1 | xt,x0) = N (xt−1 | µ̃(xt,x0), β̃tId),

parametrized by µ̃(xt,x0) =

√
αt−1βt

1−αt
x0+

√
αt(1−αt−1)

1−αt
xt

and β̃t =
1−αt−1

1−αt
βt. When generating new data, one needs

to estimate the posterior mean, x̂0(xt) = E [x0 | xt] . In
the data model considered in this work, this object can be
computed exactly (see below), but we will agnostically train
a neural network to approximate it.

Empirical denoising. Given n points {xµ
0}µ=1,...,n, the

forward process used for training the denoisers sam-
ples according to the empirical distribution: Pn

t (xt) =
1
n

∑n
µ=1 N (xt |

√
αtx

µ
0 , (1 − αt)Id), approximating the

expectation over P0 with an empirical average over train-
ing data. As highlighted in Gu et al. (2023) or Biroli et al.
(2024), this means that an architecture that perfectly mini-
mizes the training loss will strictly memorize. The posterior
mean x̂n

0 (xt) followed by such a model can be computed
straightforwardly with Bayes’ theorem.

Data model. Following Garnier-Brun et al. (2024), we
generate discrete sequences, sµ ∈ {1, . . . , q}2ℓ , through a
tree-based graphical model, specified by a transition ten-
sor M ∈ Rq×q×q

+ , known as the “grammar”. The grammar
assigns probabilities Mabc to all allowed production rules
a → bc. The generation process is then repeated over ℓ lay-
ers. Further details are provided in Appendix A. Thanks to
the tree-based structure of the graphical model, we can com-
pute exactly all relevant observables using Belief Propaga-
tion (BP) (Mezard and Montanari, 2009), which we detail in
Appendix A. To apply the formalism of continuous diffusion
to generate this discrete data, similarly to Li et al. (2022), we
one-hot encode the sequences xµ

0 = onehotq(s
µ), where

xµ
0 ∈ Rd and d = Nq.

4. Results
In diffusion models, early-stopping is motivated by the fact
that the distance between the target data distribution P0 and
the generated distribution P̃ θ

0 , measured as DKL(P0 || P̃ θ
0 ),

can be directly related to the magnitude of the test loss (Song
et al., 2021). Nonetheless, for any fixed parametrization
θ and sample size n, the distribution P̃ θ

0 that minimizes
DKL(P0 || P̃ θ

0 ) need not be sample-independent —that is, it
can still exhibit an explicit bias toward the training examples.
Such a phenomenon can for instance formally be shown to
occur when P̃ θ

0 is a simple kernel density estimator given
n = eαd Gaussian data samples (Biroli and Mézard, 2024),
and has also been identified in the context of variational

autoencoders (van den Burg and Williams, 2021).

In the following, we study this phenomenon with P0 de-
fined by the data model described above. To quantify bias
towards training data, we propose to rely on the distribution
of nearest neighbor overlaps to the training set: given a
newly generated one-hot encoded vector x0, we measure
the fraction of identical symbols it has to the closest training
example, M(x0 | {xµ

0}) = maxµ=1,...,n
1
dx0 · xµ

0 . For a
fixed number of generated samples, we denote with PM the
distribution of M obtained by a fair sampler and P̃ θ

M that
obtained after training on the empirical dataset. We then
quantify the distance between these distributions with the
Kullback-Leibler divergence DKL(P̃

θ
M || PM ).

4.1. From random generation to memorization

As discussed above, an infinitely expressive diffusion model
that begins with an uninformed, random-sequence initializa-
tion will asymptotically converge to the empirical denoising
score, collapsing onto pure memorization. For discrete val-
ued sequences, the empirical denoiser can be represented in
a BP formalism, replacing the binary tree structure of the
data model by a single BP “factor”

ϕ(s) =

n∑
µ=1

[
N∏
i=1

δsi,sµi

]
, (1)

i.e., a constraint on the sequence values which concentrates
the associated probability measure on the training sequences
{sµ}µ = 1, ..., n. An architecture-free toy model of the
progressive alignment with the empirical denoiser can be
obtained by considering a regularized version of the above-
defined factor:

ϕε(s) =

n∑
µ=1

[
N∏
i=1

(
δsi,sµi + e−ε(1− δsi,sµi )

)]
, (2)

i.e., a relaxation that allows deviations from the training
sequences, with exponentially suppressed probabilities. The
bias parameter ε thus emulates the training progress, bridg-
ing between a flat distribution over the sequences at ε = 0
and the empirical distribution at ε = +∞. What is missing
from this simple model is the inductive bias of the trained
architecture: the ε regularization is completely agnostic of
the data model, and the interpolation of P0 far from the
training points can be poor.

In Fig. 1(b), we show that while increasing ε the distribution
of the nearest-neighbor overlaps from this regularized mem-
orization score reaches a minimum distance to the ground
truth before the minimum of the test loss achieved with
the associated denoiser. The region in-between these two
minima may therefore be identified as one of biased general-
ization, where training examples are affecting the diffusion
process.
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Figure 2. Difference between the distribution of nearest neighbor
overlaps from 20k data generated by a trained model and that of
data generated by a fair sampler at two different epochs during
training, n = 212. Left: checkpoint minimizing the KL diver-
gence of nearest neighbor overlaps with the result expected from
fair sampling. Right: checkpoint minimizing the test loss of the
denoiser. Errorbars indicate the std. dev. of the difference over
5 generations of 20k samples, vertical dotted line showing the
ground truth expectation E[M ] estimated with the fair sampler.

4.2. Trained transformer denoisers

To lie closer to applications, we now turn to trained denois-
ers. Building on the findings of Garnier-Brun et al. (2024),
which showed that transformers have a good inductive bias
and can closely approximate BP in such tree-based data, we
adopt a vanilla transformer encoder architecture (Vaswani
et al., 2017) for the trained denoiser. We provide details on
our implementation in Appendix B.

Training such a transformer denoiser on our model of data,
we observe the following behavior for the distribution of
nearest neighbor overlaps P̃ θ

M . At very short training times,
the model denoises only with the marginal probabilities
E[x0], leading to a single identical sequence for all gener-
ation runs. As such, the distribution of nearest neighbor
overlap is a delta peak at a location which depends on the
training set. We discard this phase as it is trivial and the
model has not learned anything meaningful from the data.
After a small number of training epochs, the trained model
jumps to a better, yet still incomplete description of the
data distribution. The distribution P̃ θ

M is now unimodal and
systematically lies on the left of the ground-truth PM , as
the model has not implemented all the rules of the grammar
and outputs many out-of-distribution samples. As training
goes on, the match between the distributions improves until
the generation starts being biased towards the data. We then
observe a shift of the unimodal P̃ θ

M towards the right of
the support and higher values of overlap. Finally, when
the model strongly memorizes, we have a large mass at
M = 1 and the distribution becomes bi-modal, with an-
other maximum at finite M . We show this full sequence in
Appendix C.

The evolution of the distance DKL(P̃
θ
M || PM ), averaged

over independent training runs of randomly initialized mod-
els, is shown for n = 212 training samples in Fig. 1(c),
which also displays the test loss. The minimum of the KL
divergence of the distribution of nearest neighbor overlaps

is again reached significantly before that of the test loss. To
illustrate that this effect is caused by a bias towards training
data we show in Fig. 2 the difference between P̃ θ

M and PM

as function of M . The right-hand plot is taken with the
model obtained at the minimum of the test loss; we observe
a clear-cut shift of the mass of the distribution to the right
of its mean, which was naturally not present when using
the model trained at the minimum of DKL(P̃

θ
M || PM ) (left

curve). This proves the existence of the bias the model
usually considered as optimally generalizing.

4.3. Further experiments on real data

We now investigate whether the biased generation phe-
nomenon persists in a data model that differs substantially
from the synthetic hierarchical setting. For this, we turn to
the FashionMNIST dataset, composed of 28×28 grayscale
images. To allow for faster training, we first resize each
image to 20×20 using bilinear interpolation. To adapt the
data to our discrete modeling framework, pixel values are
then quantized into q = 6 discrete levels. We train a trans-
former on 210 training samples using the same denoising
objective as before. In Fig. 1(d), we track both the test loss
and the distance between generated and fair distributions
of training nearest-neighbor overlaps. We find that biased
generalization is still present: the minimum of this distance
occurs before the minimum of the test loss.

5. Discussion & outlook
Our findings show that a form of memorization bias in the
generated samples of a diffusion model may occur despite
continuing improvements in the generalization performance.
We expect this phenomenon to be generic: minimizing the
test loss does not prevent an implicit overuse of training
examples. However, the strength and detectability of this
bias may strongly depend on the properties of the data dis-
tribution, the dimension of the data or even the trained
architecture. Our preliminary experiments on a discretized
version of FashionMNIST displays an analogous behavior,
although the clarity of the signal may depend on factors
such as the number of classes or the structure of the input
space. Nonetheless, empirical work such as Carlini et al.
(2023) highlight that well generalizing models do display
training-data bias, emphasizing that optimizing generaliza-
tion capabilities cannot provide guarantees on weak forms
of memorization.

Overall, unlike in supervised learning where better test per-
formance typically signals genuine improvement, in genera-
tive modeling this gain may come at the cost of fidelity to
the target distribution and very importantly genuine privacy-
related and legal risks. While the effect we identify is subtle,
we caution that when a gap exists between train and test
losses, one cannot assume it is benign.

4



Early-stopping Too Late? Traces of Memorization Before Overfitting in Generative Diffusion

References
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A. Further details on the data model
Production rules. In our study, we focus on grammars
with distinct production rules, Ma ∈ Rq×q

+ , for each an-
cestor symbol a, such that MabcMa′bc = 0∀a′ ̸= a. This
choice ensures that the data-generating process is unam-
biguous, i.e., that ancestor reconstruction is deterministic.
Moreover, only q′ < q transitions are allowed for each
ancestor, with an associated probability sampled from a log-
normal distribution. As a result, the generated sequences
have variable likelihoods, and some sequences are forbid-
den. These forbidden sequences can be exploited to flag
out-of-distribution generation from the trained network (i.e.,
to spot violations of the production rules (Cagnetta et al.,
2024)).

Settings. In this study, we consider a single transition
tensor with q = 6, q′ = 4 and entries randomly drawn from
a log-normal distribution of parameters µ = 0 and σ = 1.
We take trees of depth ℓ = 4, resulting in sequences of size
N = 16.

Belief Propagation. In a nutshell, BP is a dynamic pro-
gramming algorithm that relies on message-passing along
the edges of the tree to compute posterior distributions for
the symbols in the graph, given knowledge of the transition
tensor M, and of a prior on the values of the symbols.

In the context of generative diffusion, the prior is intro-
duced in the form of an external field, acting on the se-
quence elements, in the direction of a noisy observation
ht = softmaxq

( √
αt

1−αt
xt

)
. Here

√
αt

1−αt
is the signal-to-

noise ratio in the DDPM context, recovering the setup of
(Sclocchi et al., 2025b). At short times, this quantity di-
verges and the field pins the symbols to the value associated
to the largest entry in xt. At long times, on the other hand,
the signal to noise ratio will be close to zero, leading to an in-
put that is uniform over all possible symbols, inducing BP to
output the marginal probabilities x̂0(xT ) = E [x0], where
the expectation is obtained from the distribution P0(s) and
the one-hot encoding of s.

B. Further details on numerical experiments
We use a transformer-based denoiser with 8 layers, 4 at-
tention heads, and an embedding dimension of 512. The

MLP layers within each transformer block use a feedfor-
ward dimension of 1024 (i.e., twice the embedding size).
A standard learned positional embedding is added to the
input tokens. Diffusion timesteps are encoded using a sinu-
soidal embedding projected to the hidden size, following
the approach of DDPM (Ho et al., 2020). We take T = 500
diffusion steps under a linear noise schedule, and train the
model using full-batch optimization and the Adam optimizer.
The training loss is the cross-entropy between hard one-hot
targets and the predicted logits of the posterior mean.

C. Full sequence of nearest-neighbor overlap
distribution along training

We show a full sequence of the evolution of the training
nearest-neighbor overlap distribution for, along training de-
scribed in Sec. 4.2 in Fig. 3.
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Figure 3. Evolution of the training nearest-neighbor overlap along training for logarithmically spaced epochs τ for a trained model,
n = 212, illustrating the left to right shift of P̃ θ

0 described in Sec. 4.2. As in Fig. 2, histograms are obtained for 20k generated sequences,
and averaged over 5 such realizations, errorbars indicating the std. dev.
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