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Abstract

Multi-modal reasoning plays a vital role in001
bridging the gap between textual and visual002
information, enabling a deeper understanding003
of the context. This paper presents the Fea-004
ture Swapping Multi-modal Reasoning (FSMR)005
model, designed to enhance multi-modal rea-006
soning through feature swapping. FSMR lever-007
ages a pre-trained visual-language model as an008
encoder, accommodating both text and image009
inputs for effective feature representation from010
both modalities. It introduces a unique fea-011
ture swapping module, enabling the exchange012
of features between identified objects in im-013
ages and corresponding vocabulary words in014
text, thereby enhancing the model’s compre-015
hension of the interplay between images and016
text. To further bolster its multi-modal align-017
ment capabilities, FSMR incorporates a multi-018
modal cross-attention mechanism, facilitating019
the joint modeling of textual and visual infor-020
mation. During training, we employ image-text021
matching and cross-entropy losses to ensure022
semantic consistency between visual and lan-023
guage elements. Extensive experiments on the024
PMR dataset demonstrate FSMR’s superiority025
over state-of-the-art baseline models across var-026
ious performance metrics.027

1 Introduction028

With the rise of social media, online news, and029

other multimedia platforms, textual information of-030

ten coexists with information from other modalities031

like images. Multi-modal information processing032

has emerged as a crucial research direction in the033

field of natural language processing, regarded as a034

foundational and long-term task in both academia035

and industry (Yu et al., 2021; Chen et al., 2020).036

Inspired by visual commonsense reasoning and037

textual inference, Dong et al. (2022) introduced038

the PMR (Premise-based Multi-modal Reasoning)039

dataset. In this task, models are required to use040

textual information (from the premise) and visual041

cues (from the image) to infer whether the hypoth- 042

esis is true or not. Figure 1 illustrates an example 043

from the PMR dataset. In this example, the model 044

should recognize from the image that <person0> 045

and <person1> are sitting together and conversing. 046

Based on the textual premise, “<person0> and <per- 047

son1> are talking about business”, the model needs 048

to determine whether the four hypotheses are true 049

or not. 050

Compared to pure textual reasoning, multi- 051

modal reasoning is more complex because it re- 052

quires models to establish deep semantic connec- 053

tions between various modalities. To better fuse 054

multi-modal inputs, researchers have designed self- 055

supervised learning frameworks based on multi- 056

modal encoders (Alberti et al., 2019; Li et al., 2019; 057

Tan and Bansal, 2019). In recent years, given the 058

outstanding performance of Pre-trained Language 059

Models (PLM) in the field of natural language pro- 060

cessing, many researchers have shown significant 061

interest in Visual-Language Models (VLM) (Li 062

et al., 2020). Although these methods have shown 063

promise in reasoning tasks that heavily rely on vi- 064

sual cues, they still face challenges in aligning 065

multi-modal data. For example, textual descrip- 066

tions may zoom in on specific details of a scene, 067

while the corresponding image may present an over- 068

all view of that scene. These differences can make 069

it difficult for models to effectively merge infor- 070

mation from two modalities when performing rea- 071

soning tasks. To address this problem, Li et al. 072

(2023) designed a multi-modal contextual reason- 073

ing framework. Unlike traditional models, this 074

framework incorporates a prefix for aligning im- 075

ages with text in pre-trained language models, en- 076

abling context semantic learning for both language 077

and vision. However, the mentioned approaches 078

do not delve into the fine-grained fusion of words 079

in the premise and hypothesis with objects in the 080

image, lacking granularity in multi-modal informa- 081

tion integration. 082
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Premise: <person0> and <person1> are talking about business.

Hypothesis:
A. <person0> and <person1> are sitting on the chair under the umbrella talking business.
B. <person0> and <person1> sit by the pool ready to go swimming as the sun goes down.
C. <person0> and <person1> sit in the pool ready to go swimming as the sun goes down.
D. <person0> and <person1> are sitting on the chair up above the umbrella talking business.

Figure 1: An example from PMR dataset

Our paper introduces a Feature Swapping Multi-083

modal Reasoning (FSMR) model for multi-modal084

reasoning.1 The model utilizes a pre-trained visual-085

language model as an encoder, taking both text086

and image inputs to effectively represent features087

from both modalities. FSMR employs a unique088

feature swapping module that swaps the features089

of identified objects in the image with correspond-090

ing vocabulary words in the text, such as <per-091

son0> and <person1> in Figure 1. The swapped092

features are then incorporated into a prompt tem-093

plate and input into the language model, allowing094

the model to understand the context information095

fused between images and text. To further enhance096

the multi-modal alignment capability, FSMR in-097

troduces a multi-modal cross-attention mechanism,098

enabling joint modeling of textual and visual infor-099

mation. We adopt image-text matching loss and100

cross-entropy loss during training to ensure seman-101

tic consistency between vision and language. Ex-102

tensive experiments on the standard PMR dataset103

for multi-modal reasoning validate the approach.104

Results demonstrate that FSMR outperforms state-105

of-the-art baseline models across various perfor-106

mance metrics.107

The main contributions of this paper can be sum-108

marized as follows: (1) We introduce the Feature109

Swapping Multi-modal Reasoning (FSMR) model110

to address multi-modal reasoning tasks; (2) We in-111

1The code is available at
https://anonymous.4open.science/r/FSMR-8CED.

troduce a multi-modal cross-attention mechanism 112

that allows for joint modeling of textual and vi- 113

sual information; (3) To substantiate our approach, 114

we conducted extensive experiments on the PMR 115

dataset. These experiments clearly demonstrate 116

that FSMR surpasses state-of-the-art baseline mod- 117

els across various performance metrics. 118

2 Related Work 119

To better fuse multi-modal inputs, researchers 120

have designed self-supervised learning frameworks 121

based on multi-modal encoders. Specifically, de- 122

pending on the construction of the encoder, these 123

multi-modal learning frameworks can be catego- 124

rized into two types. The first framework uses a 125

unified encoder to directly process multi-modal 126

inputs (Sun et al., 2019; Alberti et al., 2019; Li 127

et al., 2019). The second one initially employs 128

two separate encoders to process textual and image 129

data independently and then uses a joint encoder 130

to integrate the representations obtained from both, 131

achieving the goal of merging multi-modal infor- 132

mation (Lu et al., 2019; Tan and Bansal, 2019). 133

Among these, Cui et al. (2020) introduced a multi- 134

modal alignment contrastive learning decoupled 135

network. This approach introduces multi-modal 136

contrastive losses between the text encoder and the 137

image encoder, ensuring a high semantic match be- 138

tween the textual description and the corresponding 139

image. 140

In recent years, given the outstanding perfor- 141
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mance of Pre-trained Language Models (PLMs) in142

the field of natural language processing, many re-143

searchers have shown significant interest in Visual-144

Language Models (VLMs) (Krojer et al., 2022; Li145

et al., 2020; Wang et al., 2022). Lu et al. (2019)146

introduced a pre-trained model called VL-BERT147

for visual-language tasks. This model extends the148

Transformer encoder to accept visual and textual149

features as inputs. Still, in this process, context150

learning based on the multi-modal semantics of lan-151

guage and vision is often overlooked. To address152

this problem, Li et al. (2023) designed a multi-153

modal contextual reasoning framework. However,154

the mentioned approaches do not delve into the155

fine-grained fusion of words in the premise and156

hypothesis with objects in the image, lacking gran-157

ularity in multi-modal information integration. In158

this paper, we proposes a Feature Swapping Multi-159

modal Reasoning (FSMR) model for multi-modal160

reasoning to tackle this problem.161

3 Architecture162

The overall structure of the FSMR model is de-163

picted in Figure 2. The FSMR model utilizes a164

pre-trained Visual Language Model as an encoder165

to obtain representations of text and images. We166

introduce a feature swapping layer that swaps the167

features of objects in the image with corresponding168

word representations in the text. After obtaining169

these new representations, they are filled into a pre-170

designed prompt template and fed into a language171

model to compute cross-entropy loss. Additionally,172

FSMR incorporates a multi-modal multi-head at-173

tention module to integrate information from both174

text and images. The model employs an image-text175

matching loss to align text and image representa-176

tions in the semantic space.177

3.1 Encoder178

In the PMR taspremise-based multi-modal reason-179

ing task, each instance consists of two sentences180

(premise and hypothesis), an image denoted as V ,181

and a label representing the relationship between182

the sentences (entailment or contradiction). The183

image input is denoted as V . An instance in a batch,184

denoted as I, is represented as (X(p), X(h), V, y)i,185

where i = {1, . . . ,K} is the sample index, and K186

is the batch size. The goal is to learn a mapping187

function f on the training data, which predicts the188

category y based on the input.189

The FSMR model utilizes the pre-trained ViL-190

BERT as its encoder. To process complex inputs 191

that combine text and images, FSMR employs a 192

special concatenation method. The format is as 193

follows: “[CLS] X(p) [SEP] X(h) [IMG] V ”. The 194

embeddings for text and images are obtained from 195

the encoder: 196

hCLS,wi,vj ,hIMG = ViLBERT(X(p), X(h), V )
(1) 197

Where {wi|i = 1, 2, · · · , n} represents word rep- 198

resentations in the premise and hypothesis. , with 199

n = l1 + l2. {vj |j = 1, 2, · · · ,m} represents ob- 200

jects in the image, with m denoting the number of 201

objects. For [CLS] and [IMG], the encoder outputs 202

are denoted as hCLS and hIMG, respectively, rep- 203

resenting the overall representations for text and 204

image. 205

3.2 Feature Swapping Layer 206

In order to enhance the model’s understanding of 207

multi-modal contexts, we introduce an innovative 208

mechanism called Feature Swapping. For each 209

object in the image, when a corresponding word is 210

mentioned in the text, the embeddings representing 211

that object in the image and the corresponding word 212

in the text are swapped. Figure 3 displays an image 213

with objects outlined in boxes. This image contains 214

11 objects (person0, person1, person2, person3, 215

person4, tie, chair, chair, chair, chair, chair). Both 216

“person0” and “person1” are mentioned in both the 217

premise and hypothesis. 218

For the example in Figure 2, the hypothesis de- 219

scribes that “person0” and “person1” are discussing 220

business, which aligns with the meaning described 221

in the premise. The goal of the Feature Swapping 222

Layer is to ensure that the model correctly aligns 223

words in the text with corresponding image objects 224

in the semantic space. The exchanged embeddings 225

for word representations {wi|i = 1, 2, · · · , n} and 226

object representations {vj |j = 1, 2, · · · ,m} are 227

denoted as hw and hv, respectively: 228

hw = (w1, · · · ,wi−1, [v]j ,wi+1, . . . ,wn) (2) 229

hv = (v1, · · · ,vj−1, [w]i,vj+1, · · · ,vm) (3) 230

In the above equations, [v]j and [w]i represent the 231

swapped features vj and wi, respectively, and their 232

corresponding words and objects actually represent 233

the same entity. 234

For the overall text representation hCLS and the 235

overall image representation hIMG, FSMR designs 236

an aligner module to tightly integrate them, form- 237

ing a fused representation of the image and text. 238
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Premise: <person0> 
and <person1> 
are talking about
business.

Hypothesis:
<person0> and 
<person1> are 
sitting on the chair 
under the umbrella 
talking business. VLM

IMG

v1

vm

CLS

wn

w2

w1

v2
Filling
Prompt
Template

Align
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A
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A
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Figure 2: Overall Architecture of the FSMR Model
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Figure 3: Example of objects in the image

This aligner module is not complex, consisting of239

linear layers and the Tanh activation function. The240

fused representation A is calculated by:241

A = tanh(W ∗ concat(hCLS,hIMG) + b) (4)242

W and P are trainable parameters used for linear243

transformation.244

3.3 Prompt Template245

After obtaining the aforementioned embedding246

representations, this section employs the widely247

adopted technique of prompt engineering to inte-248

grate the encoded information and fill it into a care-249

fully designed prompt template. The predefined250

prompt template is as follows: “[CLS] Given an251

image with feature <hIMG>, the alignment feature252

is <A>, objects identified as <hv> [SEP] <hw>”.253

This template is then input into a pre-trained lan-254

guage model (RoBERTa (Liu et al., 2019)). By255

constructing such prompt templates, existing im-256

age representations are embedded into the language257

model, transforming the multi-modal reasoning258

task paradigm into a purely language model rea- 259

soning paradigm. The output of RoBERTa’s [CLS] 260

representation, denoted as SCLS, is used for infer- 261

ence. 262

3.4 Multi-Head Attention Module 263

To effectively fuse language and visual informa- 264

tion, this model introduces a multi-head attention 265

module after the feature fusion layer. Given inter- 266

mediate representations for vision and language, 267

denoted as hv and hw respectively, separate linear 268

layers are used to compute the query, key, and value 269

matrices. In the traditional way, the query, key, and 270

value matrices all originate from the same input. 271

However, we adopt a cross-modal multi-head at- 272

tention mechanism in FSMR. Specifically, the key 273

and value matrices for the language modality are 274

provided to the multi-head attention component for 275

the vision modality as input, and vice versa, the 276

key and value matrices for the vision modality are 277

provided to the multi-head attention component for 278

the language modality. The representations output 279

by the two multi-head attention components are 280

denoted as Ow and Ov, computed as follows: 281

Ow = Multi-Head(Qw,Kv, Vv) (5) 282

Ov = Multi-Head(Qv,Kw, Vw) (6) 283

After obtaining the outputs of the two multi-head 284

attentions, dimension reduction and capture of their 285

main features are achieved first through a pooling 286

layer (e.g., average pooling or max pooling). Let 287
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Pw and Pv be the representations of Ow and Ov,288

respectively, after pooling processing:289

Pw = Pooling(Ow) (7)290

Pv = Pooling(Ov) (8)291

Next, the two pooled representations are con-292

catenated to obtain the overall multi-head attention293

representation Sattn:294

Sattn = Concat(Pw,Pv) (9)295

Pooling represents a pooling function (e.g., average296

pooling, max pooling, etc.), and Concat denotes the297

vector concatenation operation.298

3.5 Objective Function299

Image-Text Matching Loss In this section, we300

introduce the image-text matching loss function301

specifically designed for FSMR, aiming to ensure302

the effective alignment of visual and textual infor-303

mation. This loss function is denoted as LITM. Af-304

ter obtaining the overall representation Sattn from305

multi-head attention, it is first passed through a306

linear layer. Subsequently, it is transformed into a307

probability pITM within the range of [0,1] using the308

sigmoid activation function:309

pITM = sigmoid(W · Sattn + b) (10)310

W and b are trainable parameters, and y is the311

ground truth label for the example. Next, we calcu-312

late the loss function LITM as follows:313

LITM = − (y log pITM + (1− y) log(1− pITM))
(11)314

Cross-Entropy Loss In addition to the image-315

text matching loss, the [CLS] representation SCLS316

generated by RoBERTa utilizes a softmax-based317

Cross-Entropy loss function for classification:318

LCE = CrossEntropy(W · SCLS + b, y) (12)319

W and b are trainable parameters, and y represents320

the annotated label for this example.321

Overall Loss Function The overall training ob-322

jective of the FSMR model, denoted as L, is the323

weighted average of the cross-entropy loss and the324

image-text matching loss, represented as:325

L = αLCE + βLITM (13)326

α and β are hyperparameters used to balance the327

loss functions.328

4 Experimental Setup 329

4.1 Benchmark Dataset 330

To validate the effectiveness of the proposed model, 331

experiments were conducted on the high-quality 332

PMR dataset (Dong et al., 2022). These samples 333

were created through a multi-stage crowd-sourcing 334

process. Crowd-workers, guided by predefined 335

categories, selected high-quality movie screenshots 336

and manually curated premise templates to write 337

a genuine hypothesis along with three distractor 338

options in a cross-checking procedure, based on 339

the provided premise and the image. Classification 340

accuracy is used as the evaluation metric in the 341

experiments. 342

4.2 Implementation Details 343

The model is implemented using PyTorch. We 344

utilize Faster R-CNN (He et al., 2017) as the image 345

feature encoder for extracting visual regions. For 346

visual-linguistic alignment, we employ Oscar as 347

the visual language aligner, and RoBERTa serves 348

as the multi-modal context network. The training 349

details can be found in Appendix A. 350

4.3 Baseline Models 351

We compare FSMR with pre-trained language mod- 352

els and multi-modal models as follows:(1)BERT 353

(Devlin et al., 2019) and RoBERTa (Liu et al., 354

2019) are large-scale language models based on the 355

Transformer architecture; (2)ViLBERT (Lu et al., 356

2019) is a cross-modal pre-trained model with dual 357

data streams; (3)ERNIE-VL (Yu et al., 2021) uses 358

a single-stream fusion encoder and leverages struc- 359

tured knowledge obtained to learn joint represen- 360

tations; (4)UNITER (Chen et al., 2020) integrates 361

visual information and utilizes joint multi-modal 362

embeddings to support heterogeneous downstream 363

visual language tasks; (5) Oscar (Li et al., 2020) is 364

a single-stream fusion encoder model that simpli- 365

fies alignment learning by using object labels de- 366

tected in images as anchors; (6) OFA (Wang et al., 367

2022) is a sequence-to-sequence cross-modal learn- 368

ing framework that unifies various cross-modal and 369

uni-modal tasks; (7) MVPTR (Li et al., 2022) is 370

a pre-trained cross-modal model that introduces 371

multi-level semantic alignment between vision and 372

language; (8) CALeC (Yang et al., 2022) is a uni- 373

fied prediction and generation model for certain 374

visual-language tasks; (9) PromptFuse (Liang et al., 375

2022) is a prompt-based learning approach to in- 376

corporate visual information into language models; 377
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(10) ModCR (Li et al., 2023) is a multi-modal con-378

textual reasoning framework that incorporates a379

prefix capable of learning alignment between im-380

ages and text into pre-trained language models.381

5 Experiment Results382

5.1 Main Results383

Method ↓ Types → Validation Testing

BERT-B - 65.2
VL-BERT-B - 75.4
ERNIE-VL-B - 79.0
UNITER-B - 77.4
Oscar-B 77.7 76.1
RoBERTa-L 77.3 75.0
PromptFuse 77.4 76.5
VL-BERT-L - 79.3
ERNIE-VL-L - 79.9
UNITER-L - 77.0
OFA-L 79.9 79.1
MVPTR 79.5 78.9
CALeC 80.1 78.7
ModCR 85.0 83.6
FSMR 86.4 84.8

Table 1: Model Performance (accuracy) on the PMR
dataset. The results of BERT, VL-BERT, ERNIE-VL
and UNITER are reported by Dong et al. (2022). For
baselines, “B” and “-L” indicate the base and large
version, respectively. The underscore and bold indicate
the second highest value and best performance(same as
following tables).

We conducted experiments on the PMR dataset384

to evaluate the model’s performance. Table 1 dis-385

plays the results of FSMR and other baseline mod-386

els on both the validation and test sets. All results387

are the averages of five runs with different ran-388

dom seeds, and the best results are highlighted in389

bold. Some models, such as BERT-B, VL-BERT-B,390

ERNIE-VL-B, VL-BERT-L, and UNITER-L, were391

evaluated only on the test set, and validation set392

data were not provided in the original work.393

From the test set data, it is evident that most394

models perform in the range of 75% to 80%. This395

demonstrates that the multi-modal natural language396

reasoning task on the PMR dataset is indeed chal-397

lenging. FSMR excels, achieving the best perfor-398

mance on both the validation and test sets, with399

accuracy rates of 86.4% and 84.8%, respectively,400

significantly outperforming other baseline models.401

Compared to the state-of-the-art baseline model402

ModCR, FSMR exhibits a substantial improvement, 403

increasing accuracy by 1.4% on the PMR valida- 404

tion set and 1.2% on the test set. This improve- 405

ment is relatively significant in natural language 406

processing tasks. The performance of BERT-B and 407

RoBERTa (text input only) suggests that reason- 408

ing based solely on the premise text can lead to 409

correct choices, but with lower accuracy. FSMR, 410

using RoBERTa-L as its primary backbone, outper- 411

forms pre-trained VLM and LM models on both 412

datasets. This indicates that the FSMR approach 413

effectively integrates semantic information from 414

different modalities when performing inference. 415

Method ↓ Types → AT↑ D1↓ AF↓ D2↓

BERT-B 65.2 19.8 19.6 4.5
Oscar-B 76.1 10.2 12.1 1.7
RoBERTa-L 75.0 17.7 6.1 1.2
PromptFuse 76.5 16.5 5.9 1.2
ERNIE-VL-L 79.9 10.7 8.2 1.2
OFA-L 79.1 9.7 9.9 1.3
MVPTR 78.9 7.5 11.8 1.8
CALeC 78.7 8.6 10.9 1.8
ModCR 83.6 9.2 5.6 1.6
FSMR 84.8 8.4 5.9 0.9

Table 2: Detailed performance on the test set of PMR.
The results of BERT and ERNIE-VL are reported by
(Dong et al., 2022). AT, D1, AF, D2 represent the Action
True and Image True, Action True yet Image False,
Action False yet Image True, Action False and Image
False, respectively. “Action True or False” indicate the
answer whether meets the premise. Similarly, “Image
True or False” show the answer whether meets the image
information.

Table 2 provides a comprehensive overview of 416

the model’s performance on the PMR test set, aim- 417

ing to evaluate the model’s accuracy in reasoning 418

across different types of answer candidates. The 419

table presents the model’s reasoning distribution 420

across these categories, allowing for an in-depth 421

analysis of potential factors contributing to clas- 422

sification errors—whether they are due to seman- 423

tic disparities or deviations in image information. 424

Observing the table, FSMR exhibits superior over- 425

all performance compared to other baseline mod- 426

els, with error rates of 8.4%, 5.9%, and 0.9% in 427

D1, AF, and D2, respectively. Particularly in the 428

D2 category, FSMR outperforms all other models. 429

By combining RoBERTa as the context encoder 430

for prompts, FSMR successfully achieves precise 431
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alignment of textual and image semantics through432

feature swapping and cross-modal multi-head atten-433

tion mechanisms. This not only retains robust text434

reasoning abilities, as indicated by the AF results,435

but also significantly enhances the utilization of436

image information, as shown in the D1 results. In437

summary, adding a visual-language semantic align-438

ment mechanism to vision-augmented language439

models is crucial. Moreover, there is still room for440

optimization in the area of contextual reasoning in441

current Vision-Language Models.442

5.2 Ablation Study443

Model Validation Testing

FSMR 86.3 84.8
-Feature Swapping 85.8 84.4
-Prompt Template 84.5 83.4
-Multi-head Attention 85.3 83.9
-ITM loss 85.5 84.1
-CE loss 85.4 84.2

Table 3: The ablation results of FSMR on the test set of
PMR.

To gain a better understanding of the contribu-444

tions of each key component within FSMR, we445

conducts ablation studies on the PMR dataset. The446

results are presented in Table 3. Notably, removing447

the feature swapping layer results in a performance448

drop of 0.5% on the validation set and 0.4% on449

the test set, emphasizing its importance in enhanc-450

ing alignment between image objects and textual451

words. Removing the prompt template has a more452

significant impact, causing accuracy to decrease by453

1.8% on the validation set and 1.4% on the test set.454

This demonstrates that the prompt template plays a455

crucial role in incorporating image information into456

the language context, which is vital for reasoning457

accuracy. The removal of the multi-head attention458

module leads to a substantial performance drop,459

with accuracy decreasing by 1.0% on the validation460

set and 0.9% on the test set. This highlights the461

critical role of the multi-head attention module in462

aligning and fusing textual and visual information463

effectively. Removing the image-text matching loss464

alone results in a decrease of 0.8% on the validation465

set and 0.7% on the test set, underscoring its pos-466

itive impact on training the model to align image467

and text information. Finally, the removal of the468

cross-entropy loss has a relatively smaller impact,469

causing a decrease of 0.9% on the validation set470

and 0.6% on the test set. 471

5.3 Analysis of Feature Swapping 472

Method Val Test

Unidirectional (Image to Text) 85.9 84.4
Unidirectional (Text to Image) 84.7 83.8
Bidirectional 86.3 84.8
Hybrid 85.4 83.7

Table 4: Experimental Results with Different Feature
Swapping Strategies

Table 4 illustrates the experimental results of dif- 473

ferent feature swapping methods within the Feature 474

Swapping Layer. When replacing text features with 475

image features, the model achieves validation and 476

test set accuracy of 85.9% and 84.4%, respectively, 477

which exhibit a relatively modest decrease com- 478

pared to bidirectional swapping. However, when 479

replacing image features with text features, the 480

model’s performance is notably lower, with vali- 481

dation and test set accuracy of 84.7% and 83.8%, 482

respectively. 483

The model performs exceptionally well with 484

bidirectional feature swapping, achieving valida- 485

tion and test set accuracy of 86.3% and 84.8%, 486

respectively. In the case of hybrid swapping, which 487

involves randomly choosing one of the four meth- 488

ods (unidirectional image, unidirectional text, bidi- 489

rectional, or no swapping), the model’s perfor- 490

mance is slightly lower than bidirectional swapping 491

but falls between the two unidirectional methods. 492

The accuracy on the validation and test sets for hy- 493

brid swapping is 85.4% and 83.7%, respectively, 494

indicating that the hybrid swapping strategy indeed 495

leverages some of the advantages of bidirectional 496

swapping but may not consistently achieve optimal 497

performance under all conditions. 498

5.4 Analysis of Multi-Head Attention 499

Strategy Validation Testing

Visual Attention 86.1 84.1
Language Attention 84.5 82.8
Mixed Attention 86.3 84.8

Table 5: Experimental Results with Different Multi-
Head Attention Strategies

As shown in Table 5, this section analyzes the 500

impact of different multi-head attention strategies 501
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Premise: [person0] is thought to be a responsible doctor.

Prediction: ModCR: D1, FSMR: AT.

Hypothesis:

AT. Dressed in a white coat, [person0] is in the exam room telling his patient [1] what to do and 

reminding him that he must come back regularly. 

AF. It is nearly time to go home, so [person0], in his white coat, is perusing his last patient in the 

exam room. He doesn’t ask him about his illness but just gives him some medicine casually.

D1. Dressed in a blue coat, [person0] is in the exam room telling his patient [1] what to do and 

reminding him that he must come back regularly. 

D2. It is nearly time to go home , so [person0], in his blue coat, is perusing his last patient in the 

exam room. He doesn’t ask him about his illness but just gives him some medicine casually.

Figure 4: A case from the PMR Test Set. Blue indicates content that contradicts the textual premise, while
yellow marks content inconsistent with the image. Green and red emoticons signify correct and incorrect options,
respectively.

on model performance.502

From the table, it can be observed that when503

the model uses visual modality attention only, it504

achieves an accuracy of 86.1% on the validation505

set and 84.1% on the test set. In contrast, when us-506

ing language modality attention only, the model’s507

accuracy on the validation and test sets is 84.5%508

and 82.8%, significantly lower than the pure visual509

modality strategy. When both visual and language510

modality attention mechanisms are used simultane-511

ously, the model’s accuracy on the validation and512

test sets surpasses that of single modality strate-513

gies, reaching 86.3% and 84.8%, respectively. This514

demonstrates that combining visual and language515

information leads to better performance and under-516

scores the importance of multi-modal attention in517

understanding and integrating modality informa-518

tion.519

5.5 Case Analysis520

A case from the PMR test set is illustrated in Figure521

4. In this case, the textual premise states that "[per-522

son0] is considered a responsible doctor," and in523

the image, [person0] is seen wearing a white coat524

while sitting in a chair. Among the four options,525

the ’AT’ option conveys that "[person0] is wearing526

a white coat, providing guidance in the examina-527

tion room and reminding the patient to return for a528

follow-up," which aligns with both the image and529

the textual premise. The ’AF’ option suggests that530

"[person0] is about to finish work, did not inquire531

about the patient’s condition, and casually provided532

some medication," which contradicts the responsi-533

ble doctor mentioned in the premise. However, in534

the ’D1’ option, the blue coat contradicts the image535

information. The ’D2’ option combines elements536

from both ’AF’ and ’D1’ and is inconsistent with537

both the textual and image information. 538

For this example, the baseline ModCR model’s 539

inference results in ’D1,’ indicating that this model 540

failed to effectively integrate image information 541

for reasoning and did not recognize the contradic- 542

tion between the answer and the image content. In 543

contrast, FSMR can jointly model multi-modal in- 544

formation to infer the correct answer, identifying 545

inconsistencies with both the image and textual 546

premise. This demonstrates that FSMR, through 547

multi-modal attention mechanisms and alignment 548

loss, can fuse and comprehend textual and image 549

data, enabling cross-modal contextual semantic rea- 550

soning. 551

6 Conclusion 552

We propose a Feature Swapping Multi-modal Rea- 553

soning model named FSMR. The features that are 554

swapped are subsequently integrated into a prompt 555

template and fed into a language model. 556

To further enhance the alignment and comple- 557

mentarity between text and images, FSMR intro- 558

duces a multi-modal cross-attention mechanism, 559

which plays a pivotal role in deepening the integra- 560

tion of visual and language information. Addition- 561

ally, the model’s training strategy is meticulously 562

designed, ensuring that FSMR effectively aligns 563

and integrates visual and textual information in the 564

context of multi-modal reasoning tasks. Experi- 565

mental evaluations demonstrate FSMR’s superior 566

performance on the standard PMR dataset. Fur- 567

thermore, we delves into a comprehensive explo- 568

ration and analysis of the components of the FSMR 569

model. 570
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7 Limitations571

The FSMR model exhibits promising advance-572

ments in multi-modal reasoning, but certain limita-573

tions should be considered. Its performance heav-574

ily relies on diverse and high-quality training data,575

and generalization to different domains beyond the576

PMR dataset may be a challenge. Additionally,577

while superior on the PMR dataset, FSMR’s per-578

formance on other multi-modal datasets remains579

unexplored. Addressing these issues is crucial for580

enhancing the model’s practical applicability across581

various multi-modal reasoning tasks.582
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A Training Details700

During the model training process, we employ the701

RMSprop optimizer (Tieleman and Hinton, 2012).702

We train the model for 30 epochs with a batch size703

of 8. The base learning rate of the model is set704

to 4e-06, with a weight decay of 8e-05, ϵ set to705

5e-05, and it is adjusted using a linear scheduler.706

To ensure that the processed sequence information707

does not exceed the model’s capacity, we set the708

maximum sequence length to 150. The length of709

the visual prefix is set to 3, while the cross-modal710

alignment prefix is set to 5. The number of heads711

in the multi-modal multi-head attention module712

in the model is set to 16, with a dropout rate of713

0.2. All experiments are conducted 5 times using714

different random seeds, and the average results are715

reported. All methods select the best-performing716

model using the validation set. To ensure efficient717

computation, all experiments are carried out on718

GeForce GTX 3090Ti.719
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