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Abstract

Remote photoplethysmography (rPPG) is an innovative
method for monitoring heart rate and vital signs by record-
ing a person with a simple camera, as long as any part of
their skin is visible. This low-cost, contactless approach
helps in remote patient monitoring, emotion analysis, smart
vehicle utilization, and more. Over the years, various tech-
niques have been proposed to improve the accuracy of this
technology, especially given its sensitivity to lighting and
movement. In the unsupervised pipeline, it is needed first to
select skin regions from the video to extract the rPPG signal
from the skin color change. We introduce a novel skin seg-
mentation technique that is robust for real-world scenarios
and prioritizes skin regions to enhance the quality of the ex-
tracted signal. It can detect areas of skin all over the body,
making it more resistant to movement, while removing areas
such as the mouth, eyes, and hair that may cause interfer-
ence. Our model is evaluated on two public datasets, and
we also present a new dataset called SYNC-rPPG to better
represent real-world conditions. The results indicate that
our model demonstrates a prior ability to capture heart-
beats in challenging conditions, such as talking and head
rotation, and maintain the mean absolute error (MAE) be-
tween predicted and actual heart rates, while other region
of interest (ROI) selection methods fail to do so. In addi-
tion, it delivers comparable results in static scenarios and
demonstrates high accuracy in detecting a diverse range of
skin tones, making it a promising technique for real-world
applications.

*Contributed equally to this work

1. Introduction

Remote photoplethysmography (rPPG) is an advanced non-
contact technique that enables the measurement of vital
physiological signals [49], such as heart rate (HR), respi-
ration frequency (RF) and heart rate variability (HRV), by
analyzing a video captured from any part of the skin sur-
face. The light reaching the camera sensor has a periodic
component that reflects variations in light absorption caused
by changes in arterial blood volume [13, 17, 36]. This tech-
nology holds significant promise for applications in remote
healthcare and emotion analysis [44], as it can capture data
from any exposed area of skin without physical proxim-
ity. The extraction of the rPPG signal generally follows un-
supervised methods that rely on a structured pipeline[26],
where the area of the skin that is most likely to produce
high-quality signals [18] is isolated using computer vision
techniques [7, 18, 22, 37, 38, 46, 47, 51, 56]. Then conven-
tional algorithms are applied to convert the RGB signal into
the rPPG signal, such as LGI [35],POS [48], CHROM [11],
PBV [14], PCA [21], OMIT [7], GREEN [29, 45], to ex-
tract the rPPG and estimate the heart rate. However, deep-
learning based approaches have taken over many parts of
processing. They either combine conventional techniques
with deep learning models or provide end-to-end solutions
[9, 12, 19, 25, 27, 32, 34, 40, 42, 53–55]. Unsupervised
approaches tend to offer better generalization in different
applications [24]. On the other hand, end-to-end super-
vised approaches predominantly learn to recognize facial
noise patterns associated with the reference signal [10] and
require dataset-specific training, which result in a lack of
understanding of the underlying physiological mechanisms
and are computationally expensive [56]. These limitations

1



Figure 1. Unsupervised pipeline for heart rate estimation from video. (a) Data acquisition. (b) Video dataset collection synchronized with
PPG signals. (c) Skin segmentation or ROI selection process. In this work, we compare two state-of-the-art models with our proposed
segmentation approach. (d) RGB signal extraction by averaging skin pixels. (e) rPPG signal extraction methods are applied to the RGB
signal. (f) Comparison of the extracted rPPG signal (orange) with the reference PPG pulse (blue). (g) Heart rate estimation. (h) Heart rate
analysis over time. (i) Evaluation of our estimation using statistical metrics.

restrict their applicability in healthcare and real-time de-
ployment on mobile devices.

Many similar studies proposing new unsupervised algo-
rithms use face detection in combination with spatial av-
eraging over the entire skin area as the region of interest
(ROI). Color thresholding methods, such as YCbCr or HSV
[20, 37], are also viable options when combined with face
detection, although they are less effective in handling vari-
ous skin tones and harsh lighting conditions. Face2PPG [7]
has been introduced as a method to stabilize movement and
facial expressions. However, this approach requires skin de-
tection and geometric segmentation and remains limited to
the face area and restricts the available skin regions. Many
rPPG signal extraction algorithms rely on a well-defined,
dynamic, weighted skin mask to improve rPPG signal re-
liability and robustness, and spatially-based techniques of-
ten prove to be effective [47]. There is a lack of research
on dynamic approaches that utilize skin regions throughout
the face and body, enabling a more robust signal extrac-
tion. This would reduce reliance on specific areas that can
be blocked or compromised due to factors such as facial
expressions, occlusions, or challenging lighting conditions
[6, 33], ultimately offering a more versatile and reliable ap-
proach for the extraction of signals.

A key requirement for validating the robustness of rPPG
methods is applying the pipeline to more realistic datasets.
Although existing datasets provide video and ground truth

signals [5, 30, 35, 39, 41], they often lack real-world com-
plexity, such as significant head movements, dynamic fa-
cial expressions, varying lighting environments, and diverse
physiological states. Some are limited to static scenar-
ios with high-contrast backgrounds and require high-quality
cameras for data acquisition, making them less accessible.
In addition, the reference signal and the captured video are
not synchronized in these datasets. Developing a dataset
that incorporates diverse conditions while using affordable
and widely available cameras would enhance the practical
evaluation of rPPG signal extraction methods in more real-
istic cases.

Contributions
The contribution of this paper falls into two categories:
• We introduce novel skin segmentation model called Skin-

Map, capable of extracting both facial and body skin
areas, generating a weighted mask that assigns higher
weights to regions likely to produce higher-quality sig-
nals based on fundamental knowledge of rPPG signals,
considering factors such as lighting and angle, without
relying on any face detection or face landmark detection.
The model is fine-tuned on a synthesized image dataset.

• We present a new dataset called SYNC-rPPG that cap-
tures data in four real-world scenarios. Data collection
was done using an affordable camera and sensor with syn-
chronized sampling rate.
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Figure 2. Illustration of our dataset and segmentation results. (a)
Frame samples from the rotation task of our dataset. (b) Segmen-
tation results using Face Landmark Detection, where white areas
indicate detected ROIs. In some frames, the Landmarker failed
to detect a face. (c) Segmentation results using the Multi-Class
Selfie Segmentation, where white areas represent detected skin re-
gions. (d) Heat-map visualization of the output of our segmenta-
tion model.

This work strives to improve accuracy while ensuring ro-
bustness, simplicity, and accessibility, making it applicable
in real-world scenarios.

2. Methodology

As shown in Fig. 1, the unsupervised pipeline for extracting
rPPG signals typically involves the following steps:
1. Dataset Collection and Pre-processing: This step in-

volves collecting video data synchronized with a ref-
erence signal and providing the necessities to read and
manage the available or collected dataset.

2. Video Processing: In this step, a skin segmentation or
ROI selection technique is applied, followed by calculat-
ing the average or weighted average of the pixel values
within the skin region to obtain the RGB signal through-
out the video.

3. RGB to rPPG conversion: This step transforms skin
color variations into physiological signals using algo-
rithms that combine the RGB channels, signal process-
ing, band-pass filtering, and de-noising to extract the
rPPG signal.

4. Heart Rate Estimation: The heart rate is estimated by
performing frequency analysis on the rPPG signal and
comparing it with the reference signal.

5. Evaluation of results: The extracted rPPG signal is eval-
uated based on various metrics and statistical analysis to
assess its accuracy and robustness.

Figure 3. Model output on a random sample from the COCO [23]
dataset, showcasing its reliability in real-world applications.

We achieve the weighted average of skin areas by adopt-
ing a variant of the well-established DeepLabV3 archi-
tecture with a ResNet-50 backbone, leveraging its proven
performance in semantic segmentation [8]. We expect a
weighted average of skin areas to obtain the RGB signal.
We replace the final layer of the default and auxiliary clas-
sifier of DeeplabV3 with a single channel convolutional
layer. A sigmoid activation function is attached to the fi-
nal layer to confine the output values between 0 and 1. Af-
ter fine-tuning the model on a large and suitable dataset,
we expect it to effectively segment all available skin areas
while assigning the best possible weights based on the sub-
ject’s position and lighting conditions in each frame of the
video dataset. In the process of training and evaluating our
model, we use two state-of-the-art MediaPipe skin segmen-
tation methods: MediaPipe Face Landmark Detection [16],
a real-time model that predicts 468 3D facial landmarks,
and MediaPipe Multi-Class Selfie Segmentation, a Vision
Transformer-based model designed for real-time segmenta-
tion of human subjects. It outputs segmentation masks that
include the classification of background, hair, body skin,
face skin, clothing, and accessories. However, it does not
explicitly differentiate non-skin facial areas, such as the
eyes, mouth, or glasses [28]. A comparison of the results
from MediaPipe Land-marker, Multi-Class Selfie Segmen-
tation, and our trained model is illustrated in Fig. 2. As
shown, the Landmarker failed to detect the face at harsh an-
gles and when it was not fully visible.

Training our segmentation model requires a diverse
dataset of human images under various environmental con-
ditions. Although there are some public skin segmentation
datasets [1, 15, 52], they contain a very limited number of
precise samples and are not suitable for our training [31].
To address this, we created a custom dataset by extracting
human images from the COCO dataset [23], which offers a
wide variety of real-world scenes with diverse backgrounds
and skin tones. In the process of signal extraction, the eye
region is prone to excessive movement, which introduces
noise into the signal [18, 20]. Meanwhile, the cheeks and
forehead exhibit the highest amplitude of the pulse signal
[18]. Therefore, prioritizing the segmentation of these re-
gions over other skin areas is essential for accurate signal
extraction. We assign a weight to each region based on its
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angle relative to the camera and its biological priority. By
combining the MediaPipe models, we generate this compre-
hensive skin mask that includes all available skin regions
relevant to pulse extraction. The proposed methodology
uses MediaPipe models only to generate synthetic training
data with weighted skin segmentation, which no existing
photo dataset provides.

In the first step of generating our training dataset, we
extract images containing humans with fully visible faces
from COCO dataset using the MediaPipe Face Landmark
Detector to identify and select relevant images. As de-
scribed in Methodology, prioritizing the segmentation of
some regions over other skin areas is essential for accurate
signal extraction. To assign importance to different facial
regions, we classify them into three priority levels: Priority
1 (forehead and cheeks, providing the highest-quality pulse
signals), Priority 2 (other facial regions, excluding the eyes,
eyebrows, and lips), and Priority 3 (other skin surfaces on
the body). Regions with higher priority are given greater
weight in the final skin mask. We introduce a weighting
mechanism based on the angular orientation of the skin rela-
tive to the camera and the priority level. We assign a weight
to each region based on its angle relative to the vertical axis.
For Priority 1 regions, the weight varies between 4 and 2
depending on the angle, while Priority 2 and 3 regions are
assigned fixed weights of 2 and 1, respectively. When the
camera is perpendicular (90°) to the face, specular reflec-
tions are minimized [50]. we use facial landmarks to esti-
mate the orientation of the face. The weighting function for
Priority 1 regions is defined in equation Eq. (1). To explain
Eq. (1) for the weighting of priority 1 regions in our synthe-
sized photo dataset, we assign a weight Pi to each region
based on its angle θi relative to the vertical axis. A lower
angle between the surface’s normal vector and the camera
improves signal quality. We adjusted the ROI weighting
so that smaller angles increase the weight, and if the angle
exceeds the threshold, the weight matches the surrounding
area. This results in a weight curve ranging from 2 (fa-
cial areas) to 4, with a 45 degree angle increasing to 3 [50].
The cosine function, used for the effective area, smooths the
curve and minimizes noise in challenging poses.

Pi =

{
3 +

(
2 cos

(
3
2θi

)
− 1

)
, if |θi| < π

3

2, otherwise
(1)

After that, the assigned weights are normalized between
0 and 1 to maintain consistency with the network output
scale. We apply this process to selected human images from
COCO, creating a suitable dataset for training that consists
of 8,000 images with reliable ground-truth masks for skin
segmentation and weighting. This dataset is used to train
our model for accurate skin segmentation.

Fig. 3 presents the results of the trained model on ran-
domly selected images from the COCO dataset [23]. The

results demonstrate robustness to skin tone variations and
model capability to produce a normalized full-body skin
mask based on the proposed priority-based weighting. We
trained our DeepLabV3-ResNet50 model for 30 epochs, us-
ing 90 percent of the data for training and 10 percentage for
validation. The final RGB signal of each video is processed
using five commonly used rPPG algorithms, following their
implementations in [26]. The extracted rPPG signal is then
used to estimate heart rate. Heart rate is determined us-
ing the Fourier transform (FFT), and band-pass filtering,
which extracts frequency components within the physiolog-
ical heart rate range (0.5 to 3.2 Hz). The strongest frequency
in this range is identified as the heart rate in beats per minute
(BPM).

3. Experiments
We apply the pipeline illustrated in Fig. 1 to the three in-
troduced segmentation models, including SkinMap, Me-
diaPipe Selfie Segmentation (MCSS) and Face Landmark
Detection. The comparison is conducted on our dataset
( SYNC-rPPG), UBFC-rPPG [5], and UBFC-PHYS [30].
Data were collected from 20 individuals, each video lasting
30 seconds. Each subject participated in four different sce-
narios. In the first, the subject remains calm with no move-
ment. In the second, the subject is asked to read something
emotional out-load or talk about an important memory of
them. In the third, the subject performs rapid head rotations.
In the fourth, the recording takes place after three minutes
of exercise. As shown in [7], the PPG signals of fingertip in
public datasets can flip due to movement or disconnections,
causing heart rate errors. Our dataset uses two sensors, aver-
aging their signals for reliability. If one sensor disconnects,
we discard its data to avoid affecting the results. In Tab. 1
in supplementary material, we compare SYNC-rPPG with
existing datasets. We should note that age is less critical for
rPPG extraction than the BPM range [2, 3, 43]. We offer a
wider variation of BPM by including the post-exercise re-
covery task. SYNC-rPPG includes luminosity variations to
account for changes in lighting conditions.

To evaluate the extracted heart rate, we use the mean ab-
solute error (MAE), the root mean square error (RMSE),
and the mean absolute percentage error (MAPE) [20]. Since
the PPG signal at fingertip has a natural delay compared to
the face and neck rPPG signals [4], the Pearson Correlation
Coefficient (PCC) may not be meaningful. Therefore, we
compute PCC across all time shifts within one second and
define MPCC as the maximum value obtained.

One way to evaluate models is by measuring the average
frames where they fail to adjust a mask. This issue is more
common with ROI-based models during head rotation, as
seen in Fig. 2. In our dataset, Face Landmark Detection
misses the average of 0.75 frames in talking and 118 frames
in rotation tasks in each video, while SkinMap and MCSS
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Figure 4. Extracted signals using models, up: Face Landmark
Detection, middle: Multi-Class Selfie Segmentation, down: Skin-
Map. Black line: ground truth. Red line: prediction

perform flawlessly. As illustrated in Fig. 4, extracted signals
from one of the samples in our dataset are shown. For the
rotation task, it is evident that our model could reconstruct
the true shape and peaks of the signal much better, whereas
in several cases the Face Landmark failed to detect the face
as shown in Fig. 2.

SkinMap outperformed other methods in SYNC-rPPG
dataset and UBFC-PHYS, which contain more real-life sce-
narios. Meanwhile, the Landmark Detection and Multi-
Region [7] performed better in UBFC, which consists of
more static cases. SkinMap maintains precision and low
error margins in challenging scenarios, where MCSS (rep-
resenting face skin without weight) and Landmarker (ROI
selection) fail. In talking and rotation scenarios, our model
outperforms others in both RMSE and MPCC. A higher
MPCC value indicates similarity between the extracted
pulse signal and ground truth. This evaluation suggests that,
while simple ROI selection suffices for static conditions, it
is insufficient for real-life applications. For practical use,
models must use all available sources of information to be
reliable. In addition, some approaches, including Multi-
Region, integrate several components, including face detec-
tion, face alignment, and landmark detection, before ROI
selection [7]. However, our model does not require any ad-
ditional face detection or extensive pre-processing.

We analyze the segmentation accuracy of our model and
its diversity with and without weights in different skin tones
using [57], which provides annotations (light, dark, unsure,
nan) for the COCO dataset. We used 10 % of our synthe-

Figure 5. Evaluating skin segmentation by skin tone. Top left:
accuracy (Weight Error within 0.12). Top right: F1 score (Overall
Skin Area). Bottom left: standard deviation (AE with GT). Bottom
right: IoU (Overall Skin Area)

sized dataset for validation. The weighted mask achieves
a mean accuracy of 0.97 and a mean F1 score of 0.924 for
overall skin detection, as shown in Fig. 5.

4. Conclusions and Future Works

We present a full-body weighted skin segmentation model
designed to utilize all available skin regions while intelli-
gently and selectively adjusting weights for different areas
suitable for unsupervised rPPG signal extraction pipelines.
We collect a new video-PPG dataset, synchronized at the
same sampling rate, containing four distinct real-world sce-
narios. Our model is trained on a synthesized dataset with
image-mask samples. The results demonstrate the model’s
ability to accurately detect all available skin regions with
strong generalization across a wide range of skin tones
while distinguishing accessories and hair. Compared to pre-
vious methods, our approach achieves comparable results
without requiring additional processing, outperforming ex-
isting methods in non-static scenarios. In the future, we will
work to reduce the size of our full-body segmentation model
to make it efficient for mobile devices. In addition, we will
optimize the model for samples with lower resolutions to
improve accessibility and reliability.
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Figure 6. Extracted masks from samples of datasets.

Attribute UBFC-rPPG UBFC-PHYS SYNC-rPPG
Sample count 50 168 80
Scenarios rest rest, talk, exercise rest, talk, rotation, exercise
Video (FPS) 30 35 30
Sensor (Hz) 60 64 30
Resolution 640×480 1024×1024 1280×720
Age Range 18–25 not specified 18–25
Lighting perfect perfect day-light + artificial
Sensor count 1 1 2

Table 1. Comparison of rPPG Datasets

4.1. Dataset
Our dataset (SYNC-rPPG) has been approved for public
availability by each subject. Our institution does not re-
quire additional approval. For data acquisition, shown in
Fig. 1 (a), we use a Raspberry Pi 4B with a 1.5 GHz proces-
sor, 8 GB of RAM, running Raspberry Pi OS and Python.
For video capture, we employ the Raspberry Pi Camera V2.
To capture heart pulse data, we integrate a MAX30102 sen-
sor using I2C, with an ESP32 development board acting as
a bridge to relay data to the Raspberry Pi and add a second
MAX30102 sensor to capture pulse data from both hands,
with each sensor connected to four ESP32 pins for simul-
taneous I2C connections. The sensors and camera are syn-
chronized at 30 FPS to ensure accurate timing. A compar-
ison of our dataset with existing ones that are used in this
paper is reported in Tab. 1.

4.2. Mask illustration
Some of the more interesting masks generated by the model
are illustrated in Fig. 6. (a) A bald subject where the en-
tire head is correctly detected. (b) Even with only one side
of the face visible, the mask is generated perfectly, with a
higher weight on the cheeks than the forehead due to the an-

Figure 7. Train and validation loss of the model during training.

gle. (c) The subject’s hands and body skin are accurately ex-
tracted, while the glasses are excluded. (d) Both hands and
the neck are included. (e) The subject is looking up, mak-
ing the forehead and cheeks less visible, yet the model still
performs well by detecting the neck. (f) A woman whose
hair and necklace are successfully excluded.

4.3. Training
The train and validation loss are visualized in Fig. 7. The
training was conducted on an RTX 4090 GPU with 20GB of
VRAM usage, supported by 198GB DDR5 RAM and an In-
tel i7-14700K CPU, running Python 3.10 with CUDA 12.4
on Linux Kernel 6.8. The training took approximately 4
hours. During training, the training loss steadily decreased
and converged, and the validation loss, despite initial fluc-
tuations, trended downward. We stopped at epoch 30, en-
suring effective learning and generalization.
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