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ABSTRACT

As large language models scale to longer contexts, attention layers suffer from
a fundamental pathology: attention scores collapse toward uniformity as context
length n increases, causing tokens to cluster excessively, a phenomenon known
as rank-collapse. While attention scaling effectively addresses this deficiency by
rescaling attention scores with a polylogarithmic factor (,,, theoretical justifica-
tion for this approach remains lacking.

We analyze a simplified yet tractable model that magnifies the effect of atten-
tion scaling. In this model, attention exhibits a phase transition governed by the
scaling factor (3,,: insufficient scaling collapses all tokens to a single direction,
while excessive scaling reduces attention to identity, thereby eliminating mean-
ingful interactions between tokens. Our main result identifies the critical scaling
Br < logn and provides a rigorous justification for attention scaling in YaRN
and Qwen, clarifying why logarithmic scaling maintains sparse, content-adaptive
attention at large context lengths.

1 INTRODUCTION

The attention mechanism is a cornerstone of modern transformer architectures on which Large Lan-
guage Models (LLMs) rely. Mathematically, an attention layer is a nonlinear operator ATT that

maps a collection of tokens {x1,...,2,} from R? to R?. This operator is parametrized by three
(possibly sparse) d by d matrices K, @, and V and maps {x1,...,2,} to {z],..., 2]} using the
following formula. Define the normalization operator N(x) = z/||«| and forany i = 1,...,n

define ¢; = QN (z;), k; = KN (z;). Then o} = ATT(z1,...,zy); is defined as

#p=VY N(zj)Aiy, Ay=

=1

etii

Do €k

(D

where the terms a;; = ¢, k; are called attention scores.

A recent line of theoretical work has demonstrated that attention acts as a contractive operator that
tends to cluster tokens together; see/Dong et al.| (2021)); Geshkovski et al.| (2024bj 2025)); Karagodin
et al.[ (2024); \Geshkovski et al.[ (2024a); Bruno et al.| (2025); Polyanskiy et al.| (2025); (Chen et al.
(2025a); |Cowsik et al.|(2024)); |Giorlandino & Goldt| (2025). This clustering effect is also known as
“rank-collapse” or “token uniformity” and arises because the distribution of attention scores tends to
flatten as the sequence length n grows, causing each token to disperse its attention across too many
other tokens rather than focusing selectively.

Various practical solutions have been proposed to curb this clustering behavior. In this work, we
focus on simple context-length-aware modifications of the attention mechanism following ideas
practically implemented as YaRN (Peng et al., [2023)), Qwen (Bai et al., 2023)), SSMax (Nakanishi,
2025)), and SWAN-GPT (Puvvada et al.| [2025). These methods employ a straightforward strategy
that rescales attention scores a;; by a single poly-logarithmic factor 3,,; see Table[I| Our goal in
this paper is to answer the following fundamental question:

What is the optimal order of magnitude of the [3,, scaling?



Under review as a conference paper at ICLR 2026

To address this question, we propose a highly simplified Method P scaling
yet completely tractable model for attention. This model YaRN (logn)?
exhibits a phase transition governed by the parameter 3, Qwen logn
as n — oo: when 3, is below a critical threshold, atten- SSMax logn
tion becomes overly contractive and collapses all tokens SWAN-GPT logn

to a single direction, while when (3, is too large, atten-
tion acts as an identity operator and fails to process in- Table 1: Attention scaling factors for
formation effectively. More precisely, we establish that various methods. The standard atten-
the critical parameter (3,, scales as logn, which corrob- tion score exp( k;Zqu) is replaced with
orates the empirical guidelines underlying YaRN, Qwen, exp(CBuk] ;). C > 0.

SSMax, and SWAN-GPT. v

Our work is intimately connected to the recent contributions of |Giorlandino & Goldt (2025)
and |Cowsik et al.| (2024), who investigate the contractive effects of attention mechanisms with
random key and query matrices K and () to establish proper initialization schemes for these pa-
rameters. A crucial insight from |Cowsik et al.| (2024)) is that analyzing the evolution of symmetric
token configurations provides a more mathematically tractable framework compared to the generic
input distributions considered in|Geshkovski et al.|(2025). This symmetric setting, while simplified,
captures essential dynamics of the attention mechanism and enables rigorous theoretical analysis;
see also|Karagodin et al.| (2025)).

The choice 3,, = vlogn appears natural in retrospect. As noted in Nakanishi| (2025)), with such a
scaling the attention weights A;; in Equation (T) become

nY%ij
Aij = m
k

_ Y%k :

To illustrate the resulting dynamics, consider a simplified regime where all attention scores a;; are
of order one: specifically, let a;; = 1 and a;; = p > 0 for ¢ # j. In this setting, the off-diagonal
weights satisfy

A — nP 1/n ify < 1i,,
T (= Dnoe | Yo iy >

This analysis reveals two distinct regimes. When + is small (subcritical regime), attention weights
are asymptotically uniform, resulting in diffuse attention that, as we demonstrate below, leads to
severe token contraction. Conversely, when y is large (supercritical regime), off-diagonal weights
become negligible with respect to the diagonal ones so that the attention mechanism is effectively
suppressed.

The critical regime emerges at the phase boundary v = ﬁ where attention can concentrate on a

sublinear yet nontrivial number of tokens so as to maintain sufficient connections to facilitate in-
formation flow from a small set of important tokens. This sparse attention is related to structured
attention mechanisms employed in long-context architectures such as Longformer (Beltagy et al.,
2020) and SWIN (Liu et al., [2021) which implement a sliding window over k < n-nearest neigh-
bors but where proximity is measured in terms of token position rather than embedding. Unlike these
structurally constrained approaches that rely on fixed positional neighborhoods, the logarithmic scal-
ing enables the attention pattern to be entirely content-adaptive, allowing each token to dynamically
select its most relevant context based on semantic similarity rather than positional proximity.

Following similar motivations, Giorlandino & Goldt|(2025) establish a compelling analogy between
attention dynamics and the random energy model from statistical physics (Derridal [1981). Using
the replica method—an analytical heuristic from statistical physics—they identify a phase transition
occurring at f3,, ~ +/logn, which differs from the scalings presented in Table [1] This result repre-
sents a significant discrepancy from our findings and highlights fundamental differences in modeling
assumptions. More specifically, their approach assumes that the attention scores a;; are correlated
Gaussian random variables. This assumption effectively induces a random geometry on the token
space, where similarity between tokens is treated as fundamentally random. In this sense, their
model bears closer resemblance to recent Kuramoto models on random graphs studied in |Abdalla
et al.| (2022)); Jain et al.|(2025)), where the authors investigate the synchronization of oscillators inter-
acting across the edges of a (sparse) Erd6s—Rényi random graph with unit edge weights. However,
in the case of |Giorlandino & Goldt| (20235)), the random graph is both directed and dense, with the
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edge pointing from token j to token ¢ having weight given by

eBnaij
Mg e

where a;; are Gaussian random variables. While |Giorlandino & Goldt| (2025) assumes a specific
correlation structure between the Gaussian random variables, the phase transition they uncover is
expected to be universal within a large class of random matrices including Wigner ones. Crucially
though, in such models, the interaction strength A;; is independent of the positional relationship be-
tween tokens ¢ and 7, making this model qualitatively different from standard attention mechanisms
where attention is focused on few (or all) of the preceding tokens.

Aij ()

The remainder of the paper is organized as follows. Section [2] provides a precise mathematical for-
mulation of the phase transition phenomena for the rescaled attention layer. We begin by analyzing
token angles and the contractive behavior of tokens under two settings: an idealized but intuitive
simplex model (Section and a more realistic model with the simplex constraint relaxed (Sec-
tion 2.2). In both cases, we identify three distinct regimes of the scaling parameter, each leading
to qualitatively different contrastive behaviors of the self-attention layer. Section [2.3]turns to the
gradient norm of the rescaled attention operator. Because rank collapse is often accompanied by
vanishing gradients, we characterize the gradient dynamics across scaling regimes and show when
gradients vanish, or stabilize to non-trivial limits. Section [3] presents our numerical experiments,
which validate these theoretical predictions.

Throughout this paper, when we denote a quantity as o, (1), where n is the number of tokens,
we mean there are positive constants C, Cy independent of the dimension d, such that |0, (1)| <
C1n~C2. The constants C, Cy depend on the assumptions in theorems.

2 A PHASE TRANSITION FOR ATTENTION

In this section, we establish the main theorem of this paper, namely a phase transition for the con-
tractive properties of the attention layer when 3,, = -y log n for some v > 0.

Following |Geshkovski et al.[ (2025), we study a simplified version of the attention layer with pre-
layer norm that is described in the introduction by assuming that K = @ = V = I;. More
specifically, the model we study is given as follows.

For any two points =,y € R%, let (z,y) = 2 Ty denote the standard Euclidean inner product in R,
and ||z|| = v/{x, x). Finally, recall that N (x) := z/||z||.

For any collection of tokens {1, ..., z,} in R, define y; = N(x;) € S~ fori =1,...,n and
& aik et
Z; = Ze i Ayj = 7 aij = B Vi, yj) » 3)
k=1 ’

fori,7 =1,...,n. We then define
n
ATT(yi) =Y Aijy;. (4)
j=1

Since the seminal work of [He et al.| (2016)), residual connections are added to modern architectures
and naturally act as a regularization scheme of the attention map towards the identity; see|Chen et al.
(2025b). With said residual connections, each token z; is mapped to «/ using the following update
rule

x; = ATT(y;) + az;, a>0. (5)

Our first goal is to understand where the angle £(z},z’) compares to £(z;, ;). If £(z},2}) <
L(z;,zj)—or equivalently (y;,y;) > (yi,y;), with yi = N(x})—we say that attention is contrac-
tive.

The nonlinear update rule (3)) can produce complex dynamics, in which some pairs of tokens move
closer together while others drift apart. This diversity of motion is in fact the most desirable outcome



Under review as a conference paper at ICLR 2026

in practice, and it emerges precisely at the phase transition identified in this study. Beyond this
critical regime, the tokens exhibit an unexpectedly cohesive behavior. To delineate the boundaries of
the critical regime, we assume that the size and relative positions of the initial tokens are governed
by constants independent of the number n of tokens. As an analytically tractable extreme of this
assumption, we first consider the case in which the tokens form a regular simplex in R as in Cowsik
et al.| (2024). Despite its symmetry, this configuration is sufficient to capture and predict the onset
of the phase transition. We subsequently relax this constraint in Section [2.2]to show that the same
phase transition occurs in more realistic configurations.

2.1 THE SIMPLEX CASE

The following assumption was made in |[Cowsik et al.| (2024) and subsequently in |Giorlandino &
Goldt| (2025). While rather stringent—in particular, it requires d > n—it turns out to provide a
tractable yet predictive setup to study the contractive properties of attention.

Assumption 1 There exists nonnegative constants ¢ > 0 and p € (0,1) such that ||z;||> = q and
(Yi,yj) = p foranyi,j=1,...,nandi # j.

Under Assumption itis easy to see that there are positive constants p’ and ¢’ such that (y;, y) = o’
for all i # j and ||2}||?> = ¢’ for all 4. This simplification gives rise to a tractable phase transition.

Theorem 2.1 Under Assumption |l| there is a p' € (0,1) such that (y;,y;) = p' for all i # j.
Moreover, if B = vlogn where 7y is a positive constant, then for any i # j, it holds

playg+1)? ; 1
T30 apTp v <1
: AR p((x\/&+1)2 . 1
Jm W Yi) =\ e = (6)
p ifv> 15

Note that when v < lflp, the right hand sides of Equation (@) are strictly larger than p for any o > 0.
In other words, in the critical and subcritical regimes attention is contractive even in the presence
of a residual connection. Of course, when o — o0, the effects of attention dissipates and the limit
tends to p for all phases. This is expected as the update from y; to y; tends to the identity map, an
effect known to mitigate oversmoothing” in residual neural networks; see [Chen et al.| (2025b).

Note also that for o = 0, that is in absence of residual connections, the limit in Equation @ reduces
to

1 if y < =

1—p?
4p 1

p if y > 1.

In the subcritical case, the tokens contract in one step towards a single cluster when n — oo while in
the supercritical case, their inner product does not change. In fact, a careful inspection of the proof
reveals that in this supercritical regime the attention operator converges to the identity as n — oo.
When o > 0, the subcritical case is mitigated by the residual connection which prevents token to
collapse to a single point in one step. Nevertheless, this singular behavior reveals a major limitation
in the simplex case: since the tokens are equidistant the phase transition reveals an all-or-nothing
phenomenon where attention transitions from A;; ~ 1/n so that ATT(y;,) = § = % Z;L:1 y; for
all i to A;; = d;; so that ATT(y;) = y; for all 4. In the next section, we present a similar result
Theorem where the simplex assumption is relaxed.

Before we end this section, we present the proof for Equation (7) as a special case of Theorem [2.1]
The detailed proof for Theorem [2.1] and the later Theorem [2.2] in Section [2.2] is included in Ap-

pendix

Proof 1 (Proof of Equation (7)) In_Equation (E]) when o = 0, we have that x, = ATT (y;) for
eachi =1,2,...,n. In Equation , under Assumption |l} we notice that the quantity ZZ:I etk
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in the denominator of A;; is independent of the choice of i, and equals to e? + (n — 1)ePP. Denote
this as Z = €® + (n — 1)e”P. Then Equation (EI) and (l) become

= ATT(y;) = Py + Z LT
m#i
Under Assumption[l} a direct computation shows that for any i = 1,2,...,n,

() = 5 (% 200 = 1pe 4 (n =11+ (0 = 2)p)e7)

72
and for any two differenti,j = 1,2,...,n

1
(], x}) = 7 (pew +2(1+ (n—2)p)eP+r) 4 ((n—2) 4 (n* = 3n+3)p) €2ﬁp> .
See also Lemma A.3|and LemmalA.4|for more detailed computations for (z}, z}) and (x;, ;).

For Z = P + (n— 1)epﬁ, when we let § = vlogn, we see that €® = n" and ne?® = n'*tP7 in Z.
The largest term in Z then depends on the relation between v and 1 + py: when v < ﬁ, nitey

is the largest term; when y > ﬁ—p, n7 is the largest term. We then directly get the following three
phases for Z from the above arguments:

(1+0,(1) -ne?? ify < 115,
Z=3@+ou)- ¢ ify=rl, ®)
(L+on(1)-¢"  ify> L,
where the terms 0, (1) go to 0 as n — +o0. Similarly, we can get the the following three phases for
(@}, )
P Y <1
Jim (@ af) = 52 iy =, ©)
1 ify > ﬁl,f

For (x}, "), we always have that lim,, , y oo (x, ;) = p for v in these three different regimes. Then
Equation @followsfrom these two limits because (y;, y;) = (x;/||z; |, 25 /[|2]])-

2.2 THE ALMOST-SIMPLEX CASE

In this section, we relax Assumption [I]to allow pairwise angles and lengths to vary slightly. This
relaxation makes it possible for tokens to lie in a dimension d < n. Although the resulting bounds
are not as sharp as those obtained under Assumption [T} they demonstrate that the critical scaling
Brn = ©(logn) is intrinsic and not merely an artifact of a particular geometric construction.

Assumpt10n2 There exist constants q1,q2 € (0, 00), p1,p2 € (0,1) such that q1 < ||7;]]? < g2
and p1 < (y;,yj) < pa, foranyi,j =1,...,nandi # j. Moreover, p1 = (y;,y;) for some i, j.

It is easy to see using standard probabilistic tools that Assumption 2] holds with high probability
when the y;’s are independent random vectors uniformly distributed on a half-sphere for example.

Theorem 2.2 Under Assumption |2| we have the following phase transition when 8 = ~logn for
some fixed v > 0.

Ifv < 17—%1, then there is a constant € > 0 depending on «, ps, q1, q2, such that

lim n;zn(y“yﬁ >p1+e>p1, (10)

n——+oo ?

which implies that the angle between tokens becomes strictly smaller after an attention layer Equa-

tion (3).
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If v > ﬁ, then for any i € [1,n],
ATT(y;) = yi + 0n(1), and hence ', = y; + ax; + 0,(1), (11)

where the term 0,,(1) goes to 0 as n — +o0 with a speed uniform in i. Hence, when y > ﬁ, for
any two different i, j € [1,n],

im (y;,y5) = (¥, yj)- (12)

n—+oo

which implies that the angle between tokens does not change after an attention layer Equation ({3).

The proof for Theorem [2.2] is included in Appendix [A]l but the general intuition is similar to the
proof for Equation in Section 2.1} As we have seen in that proof, the first step to build up
phase transition regimes for (y;, ") is to study the phase transition regimes for Z; in Equation (3).
Adjusting the logarithmic scaling factor « causes different phase transition regimes for Z; first.
When ~ is small enough, the weights e®i* consisting of Z; are asymptotically uniform, and each
token almost equally interacts with the other tokens. When + is large enough, each token mostly
focuses on itself.

Building on this observation, Theorem [2.T]and Theorem [2.2]together demonstrate that -y controls the
effective interaction range of each token In particular, we have seen in Theorem [2.1] the existence
of the critical regime when v = p In this case, although the tokens continue to contract, their

rate of shrinkage is evidently slower than in the subcritical regime, as shown in Equation (6) and
Equation (7).

It is hence natural to ask whether further regimes emerge when + is varied between the supercritical
and subcritical threshold. Indeed, in Appendlx! we prove the existence of a nontrivial middle phase
when 7 is between the two extrema =1 and , under a refined assumption on the distribution of
tokens, which allows for a sharper characterlzatlon of the transition. Under this refined assumption,
Theorem show the existence of ~y1, 72 such that Equation (5) presents three different phases:
v < 71,71 <7y < e, and vy > 5. In the extreme regimes, when v < 1, each token interacts with
almost all the remaining tokens, while when v > +-, each token only focuses on itself, consistent
with Theorem [2.2] In the intermediate regime ; < v < 72, however, the weights e concentrate
on only a small subset of tokens, so that each Z; and hence the update in Equation (3] is dominated
by a few highly relevant interactions. This shows that the logarithmic scaling enables each token to
dynamically select its most relevant context.

We conclude by noting that those o, (1) terms in our theorems satisfy the bound |o,,(1)| < C;n~=¢2
for some positive constants C, C5 that are independent of d (though varying across theorems). As
a result, the simplex configuration (Assumption [I)) and the almost simplex configuration (Assump-
tion [2) remains valid under repeated application of the ATT operator up to poly(n) iterations. In
particular, the accumulated error remains negligible at this scale, so our theorems and arguments
extend to transformers with many layers.

2.3 PROPAGATION OF GRADIENTS UNDER ATTENTION LAYER

In previous section we established how attention scaling affects propagation of token representa-
tions. This corresponds to running Transformer in the forward (inference) direction. During training,
however, Transformer is also run in “backward” direction for the purpose of computing gradients
(i.e., backprop (Rumelhart et al., |1986)). In this section we show that a similar phase transition
occurs in the backward pass as well: in the subcritical regime (where tokens quickly collapse in the
forward pass) the gradients also collapse, while in supercritical they maintain scale. Similar analysis
(without attention scaling) was previously undertaken in (Cowsik et al.| (2024); Dong et al.| (2021);
Noci et al.[(2022).

Let the input token configuration be denoted as X (0) and let X (¢) be the positions of all tokens at
the output of transformer layer ¢. For the purpose of computing gradients, one needs to evaluate the
end-to-end input-output Jacobian for L-layers of transformers, which via chain-rule can be derived
as

OX(L)  9X(L) oX(L—-1) 0X(1)
0X(0)  OX(L—1)0X(L—2) 8Xx(0)
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Thus, the end-to-end Jacobian can be computed by recursively computing layer-wise Jacobians and
multiplying them. This procedure is known as adjoint method (Lions}|1971)) in the dynamical system
theory, and as backprop in the machine learning community.

Our main result states that when (5, = 7logn for subcritical v, the typical singular values of

62()(;;;)1) are almost zero (apart from the residual connection contribution), whereas for supercritical

values of v, contribution of the attention part to the Jacobian is non-trivial and is the same as a
normalization map.

We proceed to formal definitions. For an z € R?, (), denotes its u-th coordinate for u =

1,2,...,d; the stacking X = (z1,22,...,2,) € R™ corresponds to token configurations; nor-
malization map is defined as
N(X)=N(z1,x2,...,2,) = (N(z1), N(z2),..., N(xy)) (13)
and the attention map is given as
ATTY) = ATT (y1,92, -, yn) = (ATT(y1), ATT (y2),...,ATT(yn)), (14)

where ATT (y;) is defined in (@), and Y = (y1,...,y,). We notice that the dynamics (5) can be
written as

X' = ATTN(X)) + aX, (15)

for X' = (2,2}, ..., 2}). In the following, we define the nd x nd Jacobian matrix as

o(x"),
VX = (a( ) > ’ (16)
(@i)u/ (o) i
fori,j=1,...,nandu,v = 1,...,d. Also, ||VxX'|| is the matrix norm of V x X’ and is defined
by
112 NT l a(ﬂf;)v 2
IVxX'|]* =t (VxX) TV X = D Y 3. ) (17)
1,j=1u,v=1 U

Assume the singular values for the nd x nd matrix Vx X’ are 01,09, ...0,4, then the quantity
L ||V x X'||? represents the mean of the sum of their squares, i.e.,

nd 2
Zi=1 g;
nd

Before we state our results on % |V x X'||?, we first notice that Vx X’ can be decomposed into
the residual part al,,q and the attention part Vx (AT T (N (X))). As we have seen in Theorem
and Theorem[2.2] the residual part al,,q actually does not influence the phase transition phenomena.
Hence, to keep the results clean, we only study the phase transition phenomena for the attention
part Vx (AT T (N(X))) by fixing @ = 0 in Equation (15). We have the following theorems for
L|IVxX'||* when o = 0.

1 2 __
—[IVxX'|2 = (18)

Theorem 2.3 Adopt Assumption [I| and Equation with o = 0. Then, we have the following
phase transition phenomenon: let 3 = y1og n where ~ is a positive constant.

va<1f1p,

VXX =0+ 0,(1). (19)

Ify=14
Vs X =4 (1= 1) +ou(a) 0)

Ify> 14
Sl FxX P =1 (1= 3) a0 @

In both cases, the terms 0, (1) go to 0 as n — +o00, with speeds depending on v, p, q.
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The results of the previous theorem show that under the simplex assumption, the phase transition in
the backward dynamics (for gradients) is as sharp as for the forward pass: for small ~, gradients do
not flow through the attention block.

We can also extend the analysis for Theorem [2.3]to the relaxed Assumption 2]

Theorem 2.4 Adopt Assumption 2] and Equation with o = 0. Then, we have the following
phase transition phenomenon: let 3 = ~ylogn where -y is a positive constant.

Iy < =5

1 22 (log(n))?
VX' <420 1 22
vy < aZ0EOE ), @)
1
If’y>1—f)2’
1 1 1
VX = (1= 2) 40,01 23
VX2 = (12 2) +outh) 3

1

which is away from 0 even when d,n is very large. Indeed, when v > T=ps

[1,n],

, for any fixed i,j €

(8(ATT(N($J')))U

dij T
= 20 (I = yyT) + 0n(1) + 0n(1) - L, 24
ok ) P (=) + 0u(1) + ou(1) - o 24)

where the leading order term is exactly W as shown in Proposition Here, I is thed x d

identity matrix, the term 0,,(1) (0, (1), respectively) is a d x d matrix (constant, respectively) with
matrix norm as defined in Equation (value, respectively) going to 0 as n — +o00, with a speed
independent of v, j but only depending on vy, p2, q1.

We present the proofs for Theorem and Theorem in Appendix [B| Note that the % term
in equation [22]is small for typical values of n and d used in Transformers. Theorem [2.3]and Theo-
rem [2.4] also corroborate the fact that tokens collapse fast when 7 is in the subcritical regime, while
each token only focuses on itself when + is in the supercritical regime.

3 NUMERICAL EXPERIMENTS

This section reports numerical experiments designed to corroborate our theoretical predictions. In
the following numerical experiments, we test the phase transition in the almost-simplex case as
Section We generate samples {x1,...,2,} C R? such that the expectations E||z;||*> = 1 and
E(x;,x;) = p € [0, 1] for i # j. More precisely, we generate x; according to

i =+/pzo++/1—pz, (25)

where 29, 21, - . . , 2, are i.i.d. standard Gaussian vectors in R<. The generated samples satisfy the
Assumption[2] with high probability.

In Figure|l} we plot the input-to-output angle ratio A, defined as

1=

n(n=1) | = 1=y

for samples processed through a single self-attention layer with different v and of different dimen-
sions d. Consistent with our theoretical predictions, the layer acts as a contraction mapping when
v is small, reducing pairwise output angles, whereas for large - the output angles remain nearly
unchanged from the input. Moreover, in the large d regime the angle between input tokens (y;, y;)
(i # j) concentrate near p, so that the simplex Assumption [I]is effectively satisfied. In this set-
ting, we observe a sharp phase transition in agreement with Theorem In the small d regime,
however, the input tokens (y;,y;) randomly distributed in an interval (p1, p2), and an intermediate
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0.0 0.2 0.4 0.6 0.8
I

(@d=2 (b)d =32 (c)d =512

Figure 1: Plots of the input-to-output angle ratio A, defined in Equation (26), as a function of p
and 7. The tokens are first normalized by a pre-layer normalization and then passed through a
single self-attention layer (@), with residual connections and MLP layers omitted. The dashed curve
corresponds to vy = —p which approximates the actual phase transition with increasing accuracy

as d grows, as implied by Theorem@

phase emerges in which the contraction is only partial: some angles shrink significantly while others
remain close to their original values, which smooths out the transition.

In Figure we plot the normalized matrix norm for the nd x nd matrix V x X’, defined as

1
n=—VxX"|?, 27)

for samples passed through a single self-attention layer with varying - and dimension d. Across all
three plots, the normalized gradient norm remains close to 0 when -y is small, while for large ~ it
approaches 1 — 1/d, consistent w1th Theorem- Similar to the token-angle behavior, a sharp phase
transition emerges near y = fp in the large-d regime, in agreement with the predictions under
the simplex assumption. In lower dimensions, fluctuations in the pairwise angle prevent perfect
concentration, and the transition is smoothed into an intermediate regime where the gradient norm
only partially stabilizes.

1.0

0.0

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
o o

(@)d=2 (b)d = 32 (¢)d =512

Figure 2: Plots of the normalized norm 7 of the gradient, defined by Equation , as a function of p
and ~. The tokens are first normalized by a pre-layer normalization and then passed through a single
self-attention layer (@), with residual connections and MLP layers omitted. The dash curve shows
lflp, which approximate the actual phase transition with increasing accuracy as d grows, as implied
by Theorem The matrix norm 7 is computed by the Hutchinson trace estimator
, based on the definition in Equation @
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A PROOF OF THEOREM AND THEOREM [2.2]

In this section, we adopt Assumption [2] and prove Theorem [2.2]first. Then, we prove Theorem [2.1]
To simplify notations, we define [[1,n] := {1,2,...,n} forany n € Z.

/.
J

Z; = Zn: etk = ef 4 Z ek, (28)
k=1 ki

We study the asymptotics of the quantity (z, ;) as n — +o00. We use the notation

Lemma A.1 Let 3 = ~logn where  is a positive constant. Under Assumption[2|and Equation (),
foranyi € [1,n],

7, = {(1 +o,(1)) - (Zk# eaik) ify < 15 00

.eB ; _1
(14 0u(1) - >

where the terms 0, (1) go to 0 as n — +oo with speeds independent of i but only depending on
Y5 P15 P2-

Proof 2 (Proof of Lemma[A.d) We notice that

Z;i=¢e’ + Z ek, (30)
ki
We also notice that €%t = n* for any t. It then holds that ¢® = n" and
nP(n—1) <> etk <n?(n—1). (31)
ki

Hence, when v < ﬁ, nY < nttrP the leading order term in Z; is Zk# e®*  We also see that

8
Zi=| 1| [ Do |, (32)
(Zk#i 6“'”“) Wi
with
ef n?

(o) =m0

which goes to 0 as n — 400, and is independent of i but only depending on v, p1. Similarly, when
v > ﬁ, nY > n' T2 the leading order term in Z; is €°, and similar arguments hold true.

11
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Lemma A.2 Let 3 = vlogn where v is a positive constant. Under Assumption[2]and Equation (),
ify > ﬁ, then for any i € [1,n],

ATT(y;) = yi + on(1), and hence x; = y; + oz + on(1), (34)

where the term 0,,(1) goes to 0 as n — +o00 with a speed independent of i but only depending on
Y5 P2-

. A 1 0%
Proof 3 (Proof of Lemmal[A.2) According to Lemma we see that when v > ——, n7 >
ntP2 and hence,

ATT(y;) = Z;7 ' | Py; + Ze“”yj =(1+0,(1) [yi+e” Ze“”yj . (35)
J#i e
Because ||y;|| =1,
eI ety S ey et ST (n = 1), (36)
J#i J#i

which goes to 0 as n — 400, and is independent of i but only depending on ~, pa. This shows that
when v > %
—p2

ATT(yi) = (1 + 0n(1))(yi + 0n(1)) = yi + 0n(1). (37)

Lemma A.3 Under Assumptionand Equation (EI), Sforanyi € [1,n],

20| | ai;
(a}, x7) :OZQHJ%HQ‘*‘TiZ €ﬂ+;€ {Yi, Yj)
J#
(38)
1 aqq a;q Ak
+ 7 26 4 908 Ze i (s, ;) + Zze itk (g )
i j#i J#i ki

Let B = ~ylogn where vy is a positive constant. When v < ﬁ,
Dot € Wi k) D ki Dot €T (ks )
; 2
Do € (Zk?fi eaik)

(xh, 2ty = o[z ||> + 20|24 +o0,(1). (39)

(2 2

When y > 1~

1—p2’
(@i, 25) = (allz]| +1)% + 0a(1). (40)
In both cases, the terms 0,(1) go to 0 as n — +o0o with speeds independent of i but only depending
on -y, pi, p2, .
Proof 4 (Proof of Lemma[A.3) According to Equation (3, we see that
(af, 27) = a?[lai|® + 20(as, ATT (32)) + (AT T (y:), ATT (). (41)

Equation (38)) follows from direct computations. Two phase transitions Equation (39) and Equa-
tion ([@0) follow from similar arguments as in Lemmal[A]]

Lemma A.4 Under Assumptionand Equation (EI) Sor any two different i, j € [1,n],

AT v oz _
(@, 25) :a2<xi,azj>+% €5<yjayi>+zea”‘<yjayk> +% eB<y,-,yj>+Zeaﬂ(yi7yl>
i ki J I#]
1 _ . ta
to e (i, ys) + €7D e (i) + €Y e )+ D e Ty, )
Y i 1] ki 1]

(42)

12
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Let B = v logn where v is a positive constant. When vy < ﬁ,

Dk € (Ui Ur) D1z ¢ (Y ur)
ain + 0‘”37:”—(”
2 i € 2z €Y 43
D o1y €T ko i) (43)

on(1).
(Zk#i 6“'”“) : (Zz#j eaﬂ) :

(2}, %) = o®(wi, ;) + allzy]|

1
When v > 10’
(2}, 25) = (eflzill + 1) (allz;ll + 1) (Y, y;) + on(1). 44)
Proof 5 (Proof of Lemma[Ad) According to Equation (B), we see that for two different i,j €
[1, 7],
(w7, 25) = o®p + alwy, ATT (y;)) + alz, ATT (y:)) + (ATT (y,), ATT (7)) (45)

Equation ([#2)) follows from direct computations. Two phase transitions Equation {#3) and Equa-
tion (#4) follow from similar arguments as in Lemmal[AZ]

Next, we prove Theorem [2.2]

Proof 6 (Proof of Theorem[2.2) We first discuss the case when v < ﬁ According to Equa-
tion [@3) and Assumption[2] we see that

(w5, 25) = &[|lzil|llzsll o1 + allzyllpy + allzllpr + p1 + 0a(1)
= pr(allzl| + 1) (allz; || + 1) 4 on(1).
By Equation ([39), we see that

(46)

(), 25) < &®l|lzi||® + 2al|zi| p2 + p2 + on(1)
= ||z |” + 2allzi + 1 — (1 — p2) (1 + 2a[z;]]) + on(1) (47)
< (allzil + 1) = (1 = p2)(1 4 2aq1) + 0, (1).

We have a similar inequality for (', x;). So, there is a constant > 0 depending on pa, a, q1, q2
and independent of n, such that

1 146 1 1+6
> + 0,(1), and > + 0,(1). (48)
il — aflaill +1 25l — allal| +1
Hence,
(Wi, y5) = pr(1+68)* +0,(1) = p1 +e +0u(1), (49)

Sore = p1(1+ 20)d > 0 independent of n.

For the case when v < ﬁ, Equation and Equation follow directly from Lemma
LemmalA3] and Lemma@

Proof 7 (Proof of Theorem2.1) We notice that Assumption[I|corresponds to the special case when
g1 =q2=qandp; = ps = pin Assumption Clearly, Z; is independent of the choice of i € [1,n]
by its definition Equation (28). According to the explicit forms Equation (38) in Lemma [A.3] and
Equation in Lemma one directly sees that both (x;,x;) and (x;, x;) are independent of the
choices of 1, j € [1,n]. We can further compute that for any i € 1, n],

a?q+2a,/gp + p ify < 1%,
lim (a5, 07) = § 0%+ /a1 +p) + 572 ify = 75, (50)
n oo
(aya+1? i1 >
and for any two different i, j € [1,n],
: / I\ __ 2
nll)r—&l-loo<xi’ ) = plon/q +1)°. D

13
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Equation ([6) follows from Equation (30) and Equation (51).

1
When v < 1=, We see that

plag+1)*  playg+1)?

li AT = 52
n—l>I4I-loo<y“ s) a?q+20/qp+p  aPq+2a/q+1 P (52)
where the strict inequality is because p < 1. When v = 1T1p’ we can similarly show that

limy, s oo (Yi> Y;) > p. This completes the proof for Theorem 2.1

B PROOF OF THEOREM [2.3] AND THEOREM [2.4]

We prove Theorem first. We need to explicitly compute terms in W, for which we

need the following lemmas.

B.1 PROOF OF THEOREM [2.4]

Lemma B.1 Forany i,k € [1,n] and u,w € [1,d],

(N (z1))w dwullzrll® = (@r)w (@r)u
I P PR Y
Proof 8 (Proof of Lemma[B.1)
(Tk)u
OWN (@) _ Awnu -l ™) _ ; Swullzell = (edu - iy 54
@i)u @i)u [k 12

Lemma B.2 Foranyk,j € [1,n] and w,v € [1,d],

I(ATT(y;))
a(yk)w

= [ (%—5 (Z eﬂ<yj,ym>(ym)w(ym)v> + ) (B(y; ) (yn o + 5%)) . (Z eﬁ<yj,yl>>
. =1
_ <6kj[3 <Z eﬁ<y]‘,yz>(yz)w> +ﬁeﬂ<yj’yk>(yj)w> ) <Z eﬂ<yj,ym>(ym)v> ]
=1 —

n -2
. <Z eﬂ(?/j#}z)) )
=1

(535
Proof 9 (Proof of Lemma[B.2) By Equation ({),

S ePWiym) (g ),

(ATT(y;))0 = S eflviun

(56)

14
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A direct computation shows that
O(ATT (y;))v
a(yk)w

= |: <Z (&c]ﬂ(ym)w(ym)v + 6km6(y])w(ym)v + 6km6wv) 6,8<yj7ym>

m=1

- < (O (Y1) w +5kl(yj)w)5€5<yj’yl>> : <Z emyj’y””(ym)uﬂ
=1

m=1
—2
( eBlyiu >
=1

< ki Z B (Y ym) Yoo (Ym o + eﬂ@j’yk)(@(yj)w(yk)v + 5wv)> . <Z eﬂ(.w,yﬁ)

1 =1
- <6k_]/8
l

PV (1)), + BePVivr) ) (Ze Yioym) (y, U)]
1

n —2
. (Z eﬁ(?!j’yz)) )
=1

For z,y € R?, we use x ®y to denote the d x d matrix with (u, v)-th element (x ®@Y)yy = ()0 (Y)o,
i,z ®y = xy’. We then have the following proposition.

N——
P
I
(9]
@®
g
:
N————

=%

3
Il

<

1

(57)

Lemma B.3 Adopt Assumptionand Equation (EI) Foranyi,j € [1,n], consider the d x d matrix

formed by W,for u,v € [1,d]. Denote y,, = N(xy) for each k € [1,n]. Then, this
matrix has the following form:
O(ATT(N(x;)))w 1 _
( ( 8((35)( ]))) ) = ||SUZ|| ; [(Rl + RQ)Zj — (Ul + UQ) & VJ] ' Zj 2, (58)
u dxd

where Z; = 2?21 ePiv) gs in Equation (@),
Ri=0;;8(W; —y; ® (W;y;)), Ro= el (—y; + BP,y;) @ yi + 1a), (59
and
Uy =068 (P, V,), Uz = e’ wv) (Pyy;). (60)
In Equation (59) and Equation ({60),
V; = Z AWivmly W = Z Py @y, Poy =y — (y, o). (61)
m=1

Proof 10 (Proof of Lemma[B.3) By chain rule and Proposition[B.1| we have that

IATT(N())s = o= OATT(y;))o O(N (1)) w
d
zmw%mwwgym—memfﬂﬁmﬂymm
i )u w—1 1w =
et (PATTw)e N AATT (),
- ” z” ( 8(yz)u (yl)u wz::l(yl)w 6(yz)w ) —N(X)
(62)
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According to Propositionand the notation Z; = Y_,"_, €', we see that

d O(ATT(y
S () Z()w))
w=1
{( i (Z eﬁ<yﬂ"ym><ym,y¢>(ym)v> + PV (Bly; i) + 1)(%)@) +Zj
_ (51.].5 <Z eﬁ<yf’yl><yl,yi>> + Be? (5, y],yi ) (Z eﬁ(uj,yNL v)} .ijz.
=1 63)
Hence,
! a(ml)
ATTW)e | ¥ ATT( i)o
B ( O(Yi)u g O(Yi)w > Y=N(X)
- Hémﬂ (Z P (g () — <ym,yi><ym>y<yi>u>)
m=1 (64)

+ emyj’yi)(ﬂ(yj)u(yi)v + Ouw — (5<yj,yi> +1) (yz)v(yl)U)} - Zj

[W (Ze <yl,yz><yi>u>>
+ 5€B<yj:yi> ((Yj)u — <yj7yi>(yi)u):| . (Z eﬁ<yj,ym>(ym)v> } .Zj—2.

m=1

We then adopt the notation Equation ([61)), i.e.,

V; = Z eB(yj,ym>ym7 W, = Z eﬁ(yj,ymym @ Ym, Poy=y— (y,z)z. (65)

m=1

So, the matrix form of Equation (64) becomes
H%ﬂ (W — 4 @ (W) + "9 (By; @ yi + Ta — (Blyj, ui) + 1) yi ® yi):| - Zj

6,8V, = (V) + pelwm) <yj<yj,yi>yi>}®vj]~zf
(66)
_ HW (W, — ys ® (W,3)) + P09 (< + BP,55) @ i + m] 7

=[50 L+ s (R | @ V] 277,

We further use the notations in Equation (59) and Equation (60), i.e.,
Ry = 6;8e™ (W; — 4 ® (Wiwi)), Ro=ePW¥) (—y; + BPyy;) @ yi + La),  (67)
and
Uy =056 (Py, V), U= 5€5<yj’yi> (Pyy;) - (68)
Finally, the matrix form of Equation (64) becomes
[(R1+R2)Z — (U1 +Uy) @ V|- Z;72. (69)

16
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Lemma B 4 Let 3 = ylogn where 7 is a positive constant. Under Assumption[2]and Equation (3],

if v > 1=, then for any fixed i, j € [1,n], the d x d matrix satisfies
3(ATT(N(~’L’J')))U) 9ij
= (La = yi ® yi) + 0n(1) + 0n(1) - L, (70)
( O(:)u axa @il e ! "
where the leading order term is exactly w The term 0,,(1) (0,,(1), respectively) isa d x d

matrix (constant, respectively) with matrix norm as defined in Equation ({I7) (value, respectively)
going to 0 as n — 400, with a speed independent of i, j but only depending on 7, p2, q1.

Proof 11 (Proof of Lemma|[B.d) We frequently use this formula: for two vectors Vi, Va, the matrix

norm of Vi ® Va as defined in Equation (ﬂ) is |[Vi|||| V2. When v > ﬁ n' > nlter and

we know from Lemma- A.1|that Z; = (1 + 0,(1)) - € for any j € [1,n]. Adopt the notations in
Proposmon. we then show the following facts when v > 1

2
Rlzfl =on(1), R2 —5”( Yi @y + 1g) + 0,(1) + 0,(1) - 14, (71)
and

(U1 +Up) @ V,]- Z;7% = 0,(1). (72)

First, for RiZ _1, when i # j, we have that Ry = 0 by its definition. When i = j, Ry =
By eﬁ<ywym> (Ym @ Ym — (Ym, Yi)¥i @ Ym ) and we notice that the term when m = i is 0. So,
because Hym ® Ym = (Yms Yi)¥i @ Y|l < Ny > + NymlIPlvil> = 2, € = n7,

IR1 (127" < B(n—1)e? - 227 < 2ylog(n) - 0?2177 (1+ 04(1)), (73)
which goes to 0 with a speed independent of i, j, because yps +1 — v < 0.

ForRyZ; ', we notice that when i # j, e%Wi-v3) 771 < eP(P2=1 (140, (1)) = n(P2=1) (140, (1)),
which goes to 0 with a speed independent of i, j. So, RQZJ_ = 0,(1) + 0, (1) - Iy when i # j.
When i = j, Ry = € (—y; @ y; + 1), and so R2Z._1 =(—y;i @y + 13) + 0,(1) + 0,(1) - 1.

For (U1 +Uz)®V,]- Z , we see that when © # j, Uy = 0, and so

(U1 +U) @ V|- 272 < 2728 ePlusvmtu)

oo (74)
< Zﬂﬁeﬁ(l-&-pz)n - vlog(n)n'y("?_l)ﬂ(l + on(l)),
which goes to 0 with a speed independent of i, j because v > 1——. Wheni = j, Uy = 0, and so
(U +U2) 0 V|- 272 < Zf/@nPyiviunwn
<7728 BYivm)p oy ][ ef + Biym P gy
j mz;ez 1Py, Y| mz#:l 1Py, Yl (75)

< Z;Qﬁ (eﬂpzn) i (e,@ =+ eﬁpzn)

— 710g(n)n7<p2_1)+1(1 + n'y(pz—l)+1)(1 + 0n (1)),
which goes to 0 with a speed independent of i, j because v > ﬁ Hence, [(U; + Uy) ® V] -
Z;z = 0,(1).

Lemma B 5 Let 3 = ylogn where vy is a positive constant. Under Assumption[2land Equation (3],

if vy < 1=, then for fixed i, j € [1,n], the d x d matrix satisfies
I(ATT(N (z)))v -1 - ai; 7—1
H< 0(xi)u )dxd < Jlll = (2B6” 28+ Ve ;i ) ' (76)
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Proof 12 (Proof of Lemma|[B.5) According to Lemma when v < 17—1}“, Z; = (14 0,(1)) -

(Zk# eafk)foranyj € [1,n], and Z; > nP1 T (140,(1)) > n?(1+0,(1)), because yp1 +1 >
1
1—p1

~. Adopt the notations in Proposition we then show the following facts when v <
IRIZ7 <08, IRo|IZ5" < 27 (B4 VA1), (77)
and

(U1 +U) @ Vyl - 272 < B (85 + e Z71). (78)

First, for RlZ]-_l, when i # j, we have that Ry = 0 by its definition. When i = j,

R, =8>"_, eBYisym) (Ym @ Ym — Ym, Yi)Yi @ Ym ). So, because we have that ||Ym & ym —
<ymayi>yi Y yw” = ”P’yiyn ® ym” = ||Pyri3/nH||ym” <1

IRl Z; <BZ; -2 = . (79)
For Rng_l, because || — y; ® y; + 14| = v/d — 1, we have that

IR2(| 27t < Z; e (ﬁ+\/d— 1). (80)

For [((Uy + U) ® V,| - Z72, we see that | V|| < S0 _ efWivm) = 7. Also, ||U1||Z;1 <

i

6i;BIIVi1Z; 1 < 6458, |[U2|| Z; 1 < Be®i Z 1. Hence, we have that
(U1 +U2) @ Vil - 27 < B (33 + e 257 @1
Proof 13 (Proof of Theorem2.4) Theorem [2.4|follows directly from Lemma|B.4|and Lemma[B.3]

B.2 PROOF OF THEOREM [2.3]

The proof for Theorem requires more delicate arguments. The part when v > 1%p in Theo-
rem |2.3|directly follows from Lemma , so we only focus on the part when v < ﬁ—p. We remark
that when v < 1T1p7 our result is that —||Vx X'||*> = 0 + 0,,(1), which is a better estimate than
Equation (22)) in Theorem [2.4]

We first have the following lemma which replaces Lemma[B.3]when we adopt Assumption|[T}

Lemma B.6 Adopt Assumpti()nand Equation (EI) Foranyi,j € [1,n], consider the d x d matrix

formed by Wd‘or u,v € [1,d]. Denote y, = N(xy) for each k € [1,n]. Then, this
matrix has the following form:
O(ATT(N(x;)))v 1 _
( ( 8((.13)( j))) > =q 2 [(Rl + RQ)Z — (Ul + U2) ® (U3 + U4)] -7 2, (82)
vu dxd

where 7 = e + (n — 1)ePP,
Ry = 0;; e (W — 4 @ (Wy;)), Ry =Wt (—y; + BPyy;) @i+ Ia),  (83)
and

Uy = 6,;0¢7 (P, V), Up = pe’Wivi) (P y)),

(84)
Us = (e — PP)y;, Uy=ePV.
In Equation (83)) and Equation (84),
n n
V= Z Ym, W= Z Ym @ Ym, Pry=y— <y790>$ (85)
m=1 m=1
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Proof 14 (Proof of Lemma- We first apply Lemma B3| to get Equation (58). After replacing
(Yj, Ym) = pfor m # j, we can obtain Equation (ﬂ) The only remark is that the term 0;;(W; —
¥ ® (W,y;)) in Ry of Equation is nonzero when i = j. Then, when i = j, W; — y; ®

(Wiyi) = >om—q €798 (4, @ Yo — Yi @ Yo (Y, vi)). I m = i, the summand (Y © ym — y; @
Y (Ym, yi)) becomes 0. Hence, W;—y;@(Wiy;) = 32, ; 2V (4, @Y —yi @Y (Y, i) =
Y i (Ym @ Ym — Yi © Ym (Ym, yi)) = €77 (W — y; @ (Wyy)).

Next, to compute the matrix norm of Equation (82), we see that for any matrlx K, its matrix norm
square equals to Tr(K T K). Hence, the matrix norm square of Equatlon 2)) equals to

¢tz . <Tr [Z*(R1 + R2)" (R + Rs)] — 2Z(U;y + Us)"(Ry + Ro)(Us + Uy)
(86)
+ U1+ Ul U + U )

We then compute these terms separately, and sum them in ¢, j. We first have the following basic
equalities for the notations V; W in Equation (85)).

Lemma B.7 For the notations in Equation (83)), i.e.,

V= Z Ym, W= Z Ym @ Ym, Pry=y—(y,7)z, 87

m=1 m=1
we have that
Te(W?) = (ym, w1)* = n(np® + (1= p?)),
m,l (88)
T(W) =n, Te(Wyy])=np* +(1—p*), [Pyy;|*=1-p?
Also,

Z ym7yz m = (1 —P)yz +PV7

m=1
n

(V,yi) = Z Ym,Yi) = np+ (1 —p),
m=1 (89)
IVI* = Z Ym, Y1) =n+ pn(n—1) =n(np + (1 — p)),

[Py, VI? = VI* = (V,4:)* = (n = ) (np+ (1 = p))(1 = p),
[Wyi||? = n?p® 4+ 3np*(1 = p) + (1 + 2p)(1 — p)*.

Proof 15 (Proof of Lemma |[B.7) Direct Computations.

Lemma B.8 For terms Ry, Ry in Lemmal[B.6] we have that
> Tr[R:+Rs)" (R +Rs)]
i,J
= 32 [n?p* (1 = p) +n(1 — p)(1 4+ p—3p%) — (1 +2p)(1 — p)?] (90)
+ B n(n —1)(1 - p*)
+ €2 (d —1)n + e2P° [B2(1—p*) +d—1] n(n—1).
As a corollary, when we pick B = ~logn, we have the following phase transition limits as n — +00:
. B2p*(L—p)+on(l)  ify <1,
_ 2 2.4 .
— 3 > Tr[(Ri+ Ro) (Ry + Ro)] = § RO 40,(1) ify =14, O
ij d—1+0,(1) ifv> 15
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Proof 16 (Proof of Lemma[B.8) We first notice that W is a symmetric matrix and ||y;|| = 1. We
then expand each term in Lemma|B.8 and use Lemma[B.7}

ZTr [(R1)"Ry] = B Qﬁpz (Tr (W2 — 2Wy;(Wy,)") + llilI*[Wyi1?)
=ﬁ%ﬁ”§j'n“ﬂ—2MN%W+w“@M) ©2)

= 32e*Pn [n?p*(1 = p) + n(1 = p)(1 4+ p—3p*) — (1 +2p)(1 - p)*] .

Then,
D T [(R1) Ry] =Tr > 6587 (W — Wyiy") P W80 ((—y; + BPy,y;) @ yi + 1)
2 i3
=BV Yy (W = Wyiy[) (—yiy! +1a) = BTV Y (W — Wysy[)

= pe?P n(n —1)(1 - p%),
(93)

where the second equality is because P, y; = 0.

Z Tr [(R2)"R»] Z e*? y”y’>Tr —yi + BPyy) Yl + 1a) (vi(—yi + BPyy;)" + 14]
%,
=Y e [( 1+52(1—p ) —2+d] + > e*F(d-1)
i#j i
=e?(d—1)n+e*” [B*(1 - p*) +d— 1] n(n — 1).
(%94)

Next, we show the asymptotics Equation (91) as n — +oco. According to LemmalAZl} we have that

Z:{ﬂ+%ﬂﬂﬂﬁp#7<3w

(L+on(1) - ify> 4 (95)

That is, when v < ﬁ, the leading order terms are those terms involving nePP, and all the re-
maining terms go to 0 after dividing ne”?; when v > 1T1p’ the leading order terms are those terms
involving €®, and all the remaining terms go to 0 after dividing €®. Hence, when 7 < 1% the
leading order term in Equation is the term 32e2PPn3p%(1 — p); when v > ——, the leading

order term is €2°(d — 1)n. This proves Equation .
Lemma B.9 For terms Ry, Ry, Uy, Us, Us, Uy in Lemmal[B.6| we have that
> (U1 +Uy)"(Ry + Ry)(Us + Uy)
2]
= pB?e*?P(e” — PP)n(n — 1) (np+ (1 - p))(1 - p)
+ 8% n(n — 1) (np + (1 - p))*(1 - p) (96)
+ 8PP n(n — 1) (np+ (1 - p))(1 - p)
+ B2 (e” —e”P)(Bp + )n(n — 1)(1 - p?)
+ Be*Pn(n —1)(np+ (1= p))(B(1 = p*) + (1 = p)).
As a corollary, when we pick B = ~logn, we have the following phase transition limits as n — +00:
1 F0(=p) +0a(1) ifr < 1
2 2
— Z(Ul +U) "Ry + Ro)(Us + Uy) = 25020 4 (1) jfy =2 (97)
i,

P
04 0, (1) ify> .

A
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Proof 17 (Proof of Lemma[B.9) We expand each term in Lemmal|B.9and also apply Lemma|B.7|to
each term. We first estimate terms involving Uj.

SOUTRIUs = ) 627 (e — %) (P, V)T (W — i ® (W) s
i, i
= e (ef — 7)Y " (P, V)T Wy; = pp2e?P(e? —eP2) > (P, V)TV (98)
= pB2e* (e’ — P)n(n — 1) (np+ (1 - p))(1 - p),
where the second and the third equality is because (P, V,y;) = 0.
ZU R,U, = 252 30 (P, V)T (W —y; @ (Wy)) V

,J

= e WZ P, V) WV = 2% (np+ (1 - p ZHP%VHQ 99)

— e n(n— -+ (1 — )1 — p)
where the second equality is because (P,,'V,y;) = 0.
ZUP{R2U3 = 25€B(p+1)(65 - eﬁp) (PyiV)T (=i + BPyyi) @ yi + Ia) yi = 0, (100)
i,j i
where the second equality is because (P, V,y;) = 0and P,,y; = 0.
Z U{R,U, = Zﬁe Co) Py, V)T (i + APy i) @ i + La) V

.7
(101)
= BPEHDNT P, V2 = e Dn(n — 1) (np + (1 - p))(L - p),

where the second equality is because (P, V,y;) = 0 and P,,y; = 0.

Next, we estimate the terms involving Us. We first recall that Uy = el (¥i-vi) (Py,y,). Because
P,,y; = 0 when i = j, we can just replace eBWivi) with PP in Us, ie, Uy = BeP? (Py,y5)-
Hence,

> UIRUs=0, » UIR,U;=0, (102)
i i

because 6;;(P,,y;) = 0 for any i, j in UL R,.
Z U;R,U; = Z BePletwivi) (ef — eP0) (Py,y;)" ((—yi + BPyy;) @ vi + Ia) v

%, 1,
= Be?P(e? — ) " (Py,y;)" ((—yi + BPyy;)p + y))
i#j (103)
_36260( ?)(Bp+1) Z”PyIZUJHQ

i#£]
= Be*??(e” — P7)(Bp+ 1)n(n — 1)(1 — p?).

where the second equality is because P, y; # 0 only when i # j, on which (y;,y;) = p, and the
third equality is because (P, y;,y;) = 0.

Y UTR,U, =y BelCoruivid) (P )T ((—y; + BPy,y;) @ yi + 1a) V

,J ,J
> (ﬂnPyiyjH?(np +(1=p) + (Pyy)" V)

i#j (104)
= B> (B = p*)(np+ (1= p)) + (1= p)(np+ (1 - p)))

i#£]

= 3e*Pn(n —1)(np+ (1 - p))(B1 = p*) + (1 - p)).
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where the second equality is because P, y; # 0 only when i # j, on which (y;,y;) = p, and the
third equality is because (P, y;,y;) = 0.

The proof for Equation (97) is similar to the proof for Equation (91)) in Lemma[B.8| Notice that when
Y < 1=, we need to pick up terms involving ne”?, and the leading order term in Equation

is the one in the second line of Equation , which is 3?n*e30?p?(1 — p); when v > - after
diving nZ?3, all terms in Equation @) are o, (1) terms.

Lemma B.10 For terms U,,U,, U3, Uy in Lemma@ we have that
DU+ U |?|[Us + Uf?
i,
— B2eX0n(n —1)(np+2)(1 - p)
(6P = eP)2 42670 (P — ) (mp + (1 = p)) + ¥ Pninp + (1 - p))] -
As a corollary, when we pick B = ~logn, we have the following phase transition limits as n — —+00:
. Bop’(L=p)+on(l)  ify< et
—1 2 U1+ Us|[[Us + Uy |* = § FEO=050 0,(1)ify = 14, (106)
b3 0+ o0n(1) ify > .

(105)

Proof 18 (Proof of Lemma[B.10) We notice that (U, Us) = 0 because 6;;P,;,y; = 0 for any i, j.
So,

I?

[UL + Us|* = 655 8°€*7 | Py, VI[* + 2P sv3) | Py, y;
= 6:58%¢*7 (n = 1)(np + (1 = p))(1 = p) + (1 = 6;5) 8%**P (1 = p?),

where the second equality is because e*PWivi)||P, yi|[> # 0 only if i # j, on which
BV ||Py yy|[* = 202 (1 — p?).

U5+ Us||* = (7 — e)? + 2677 (e” — PP)(V, ;) + || V|2

(107)

(108)
= (¢ = ") + 26 (" — ) (np + (1 = p)) + ¥ n(np + (1 - p)),
which is independent of v, j. Hence,
D UL+ U U5 + Uy |
4,J
= [82*n(n — D) (np + (1= p))(1 = p) +n(n — 1) (1 — p)] [Us + Uyl 109)
|

= 32*n(n —1)(np+2)(1 — p)|[Us + Uy|]?
— e — 1)(np+ 2)(1 - p
(e — €72 4270 (eP — €P)(np + (1= p)) + €*Pn(np+ (1 - p))] -

The proof for Equation (I06) is similar to the proof for Equation (91) in Lemma [B.8| Notice that
when v < T We need to pick up terms lnvolvmg nePP, and the leading order term in Equa-

tion is is B?n°e* p2(1 — p); when v > 1= after diving nZ*, all terms in Equation @) are
on (1) terms.

Proof 19 (Proof of Theorem 2.3) As we have mentioned at the beginning of endix we only
need to focus the case when v < % which follows directly from Lemma Lemma and

Lemma We notice that, in these three lemmas, the leading order terms are the same, 5*p

p), which cancels in Equation Hence, when v < 17—, L||VxX'[|> = 0 + 0,(1). When

1—p
v = %p, we also only need to use the corresponding cases in these three lemmas and combine
them in Equation (86) to get the conclusion in Theorem@ One remark is that under Assumptlonzl
g% _ ¥*(logn)

we have that n < d implicitly. So, when ~ = , terms in Equation @ involving = =

also become oy, (1).
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C MODIFIED ASSUMPTIONS WITH MORE MEDIAN PHASES

In this section, we modify Assumption 2] so that we can prove the existence of three different
phases like Lemma [A-T] Theorem [2.2] Theorem [2.4] We remark that we only showed the existence
of two phases (two extrema) in Lemma[AT]| Theorem 2.2} Theorem [2:4] but it doesn’t mean under
Assumption [2] there is no other transition phase between these two phases (two extrema). Under
the following Assumption[3] we can show there are indeed at least three phases. Recall that for any
i € [1,n], we defined y; = N (x;).

Assumption 3

x;]|? € [q1, g2 for some positive constants q; < qa.

e Foranyi € [1,n],

» There is a 7 € (0, 1], four positive constants ps, py, K3, kg With ps < ps, k3 < K4, and
pa < 1, such that for any i € [1,n], if we define

Ki={m#i|(Ym,vi) € [p3, pal}, (110)
then we have that
H3SMSH4- (111)
nT

» Foranyi € [1,n] and any j ¢ K;U{i}, (yi,y;) € [p1, p2] for some nonnegative constants
p1, p2 satisfying p1 < p2 < p3 < pa.

o For technical reason, we further assume that (1 — 7)(1 — p2) + p2 < ps.

Lemma C.1 Let 3 = logn where v is a positive constant. Under Assumption[2]and Equation (),
Sforanyi € [1,n],

Aim / 1 1 1-7

(1 + On(l)) : (Zm%)c,_u{l} e ) l-f’y < min { 17{717 Pa—pP1 }7

Zi=q (1 +0a(1) (X,nex, ) if = <y < 1550 (112)
(1+0n(1))-65 if v > max ﬁ,ﬁ ,

where the terms 0, (1) go to 0 as n — +oo with speeds independent of i but only depending on
Y5 P15 P25 P35 P4, T, K3, K4.

Proof 20 The proof is similar to LemmalA.]} We notice that

7 =ef + Z edim | Z e%im

mek; megK;U{i} (113)
=n) + Z Y Wiym) | Z Y Yisym)
mek; méK;U{i}
We also notice that ksn™ < |IC;| < k4n™ according to Assumption Hence,
K?’n‘r—&-vps < |’C7,| P < Z n’Y(l!mynl) < IK‘ZI P < H4n~r+’ﬂ’4’ (114)
mek;
and
(n — kgn™ — 1) -7t < Z nYWiym) < (n— |Ki| = 1) -n72 < pltrez, (115)
meIC;U{i}
When v < min { 1}p17 pi:;l }, the leading order term in Z; is Zm%l@u{i} nYWiym) - when

1—7
P3—P2 < 7 <

max {ﬁ, ﬁ } the leading order term in Z; is nY. We also remark that the last assumption in
Assumption 3|is to ensure the existence of the middle phase, i.e., pi:; << 1fp3. This finishes
the proof for Lemma[C1)by similar arguments as in Lemmal[A.]

ﬁ, the leading order term in Z; is Zme)ci nYWivm) - \when vo>
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A direct corollary of Lemma|[C.I]is the following theorem.

Theorem C.2 Under Assumption 2] and Equation (B)) we have the following phase transition phe-
nomena: let 8 = ~ylogn where +y is a positive constant. For any i € [1,n] the updating dynamics
Equation (E[) can be written as

Lot © I 1 oon(1) ifv<m1n{ o e }

mgK Ui} €T T—p1’ pa—p1
[ ZmEIC- e“imym cr 1—1 T
T, = ax; =Lk - 7 116
i i+ Zmeici c@im + On(]-) lf P3—pa < Yy < T—p3’ ( )
. 1 T
y1+0n(1) lf,y>ma’x{1,p271,p4}v

The terms o,,(1) represent vectors in R? with norms going to 0 as n — +oo, with a speed indepen-
dent of i but only depending on 7y, p1, p2, P3, P4, T, K3, K4.

The proof of Theorem [C.2]is similar to Lemma[C.T]so we omit its proof.
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