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ABSTRACT

As large language models scale to longer contexts, attention layers suffer from
a fundamental pathology: attention scores collapse toward uniformity as context
length n increases, causing tokens to cluster excessively, a phenomenon known
as rank-collapse. While attention scaling effectively addresses this deficiency by
rescaling attention scores with a polylogarithmic factor βn, theoretical justifica-
tion for this approach remains lacking.
We analyze a simplified yet tractable model that magnifies the effect of atten-
tion scaling. In this model, attention exhibits a phase transition governed by the
scaling factor βn: insufficient scaling collapses all tokens to a single direction,
while excessive scaling reduces attention to identity, thereby eliminating mean-
ingful interactions between tokens. Our main result identifies the critical scaling
βn ≍ log n and provides a rigorous justification for attention scaling in YaRN
and Qwen, clarifying why logarithmic scaling maintains sparse, content-adaptive
attention at large context lengths.

1 INTRODUCTION

The attention mechanism is a cornerstone of modern transformer architectures on which Large Lan-
guage Models (LLMs) rely. Mathematically, an attention layer is a nonlinear operator ATT that
maps a collection of tokens {x1, . . . , xn} from Rd to Rd. This operator is parametrized by three
(possibly sparse) d by d matrices K,Q, and V and maps {x1, . . . , xn} to {x′

1, . . . , x
′
n} using the

following formula. Define the normalization operator N(x) = x/∥x∥ and for any i = 1, . . . , n
define qi = QN(xi), ki = KN(xi). Then x′

i = ATT(x1, . . . , xn)i is defined as

x′
i = V

n∑
j=1

N(xj)Aij , Aij =
eaij∑n
k=1 e

aik
, (1)

where the terms aij = q⊤i kj are called attention scores.

A recent line of theoretical work has demonstrated that attention acts as a contractive operator that
tends to cluster tokens together; see Dong et al. (2021); Geshkovski et al. (2024b; 2025); Karagodin
et al. (2024); Geshkovski et al. (2024a); Bruno et al. (2025); Polyanskiy et al. (2025); Chen et al.
(2025a); Cowsik et al. (2024); Giorlandino & Goldt (2025). This clustering effect is also known as
“rank-collapse” or “token uniformity” and arises because the distribution of attention scores tends to
flatten as the sequence length n grows, causing each token to disperse its attention across too many
other tokens rather than focusing selectively.

Various practical solutions have been proposed to curb this clustering behavior. In this work, we
focus on simple context-length-aware modifications of the attention mechanism following ideas
practically implemented as YaRN (Peng et al., 2023), Qwen (Bai et al., 2023), SSMax (Nakanishi,
2025), and SWAN-GPT (Puvvada et al., 2025). These methods employ a straightforward strategy
that rescales attention scores aij by a single poly-logarithmic factor βn; see Table 1. Our goal in
this paper is to answer the following fundamental question:

What is the optimal order of magnitude of the βn scaling?
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Method βn scaling

YaRN (log n)2

Qwen log n
SSMax log n
SWAN-GPT log n

Table 1: Attention scaling factors for
various methods. The standard atten-
tion score exp(k⊤i qj) is replaced with
exp(Cβnk

⊤
i qj), C > 0.

To address this question, we propose a highly simplified
yet completely tractable model for attention. This model
exhibits a phase transition governed by the parameter βn

as n → ∞: when βn is below a critical threshold, atten-
tion becomes overly contractive and collapses all tokens
to a single direction, while when βn is too large, atten-
tion acts as an identity operator and fails to process in-
formation effectively. More precisely, we establish that
the critical parameter βn scales as log n, which corrob-
orates the empirical guidelines underlying YaRN, Qwen,
SSMax, and SWAN-GPT.

Our work is intimately connected to the recent contributions of Giorlandino & Goldt (2025)
and Cowsik et al. (2024), who investigate the contractive effects of attention mechanisms with
random key and query matrices K and Q to establish proper initialization schemes for these pa-
rameters. A crucial insight from Cowsik et al. (2024) is that analyzing the evolution of symmetric
token configurations provides a more mathematically tractable framework compared to the generic
input distributions considered in Geshkovski et al. (2025). This symmetric setting, while simplified,
captures essential dynamics of the attention mechanism and enables rigorous theoretical analysis;
see also Karagodin et al. (2025).

The choice βn = γ log n appears natural in retrospect. As noted in Nakanishi (2025), with such a
scaling the attention weights Aij in Equation (1) become

Aij =
nγaij∑n
k=1 n

γaik
.

To illustrate the resulting dynamics, consider a simplified regime where all attention scores aij are
of order one: specifically, let aii = 1 and aij = ρ > 0 for i ̸= j. In this setting, the off-diagonal
weights satisfy

Aij =
nγρ

nγ + (n− 1)nγρ
∼
{

1/n if γ < 1
1−ρ

1/nγ(1−ρ) if γ > 1
1−ρ

This analysis reveals two distinct regimes. When γ is small (subcritical regime), attention weights
are asymptotically uniform, resulting in diffuse attention that, as we demonstrate below, leads to
severe token contraction. Conversely, when γ is large (supercritical regime), off-diagonal weights
become negligible with respect to the diagonal ones so that the attention mechanism is effectively
suppressed.

The critical regime emerges at the phase boundary γ = 1
1−ρ where attention can concentrate on a

sublinear yet nontrivial number of tokens so as to maintain sufficient connections to facilitate in-
formation flow from a small set of important tokens. This sparse attention is related to structured
attention mechanisms employed in long-context architectures such as Longformer (Beltagy et al.,
2020) and SWIN (Liu et al., 2021) which implement a sliding window over k ≪ n-nearest neigh-
bors but where proximity is measured in terms of token position rather than embedding. Unlike these
structurally constrained approaches that rely on fixed positional neighborhoods, the logarithmic scal-
ing enables the attention pattern to be entirely content-adaptive, allowing each token to dynamically
select its most relevant context based on semantic similarity rather than positional proximity.

Following similar motivations, Giorlandino & Goldt (2025) establish a compelling analogy between
attention dynamics and the random energy model from statistical physics (Derrida, 1981). Using
the replica method—an analytical heuristic from statistical physics—they identify a phase transition
occurring at βn ∼

√
log n, which differs from the scalings presented in Table 1. This result repre-

sents a significant discrepancy from our findings and highlights fundamental differences in modeling
assumptions. More specifically, their approach assumes that the attention scores aij are correlated
Gaussian random variables. This assumption effectively induces a random geometry on the token
space, where similarity between tokens is treated as fundamentally random. In this sense, their
model bears closer resemblance to recent Kuramoto models on random graphs studied in Abdalla
et al. (2022); Jain et al. (2025), where the authors investigate the synchronization of oscillators inter-
acting across the edges of a (sparse) Erdős–Rényi random graph with unit edge weights. However,
in the case of Giorlandino & Goldt (2025), the random graph is both directed and dense, with the
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edge pointing from token j to token i having weight given by

Aij =
eβnaij∑n
k=1 e

βnaik
(2)

where aij are Gaussian random variables. While Giorlandino & Goldt (2025) assumes a specific
correlation structure between the Gaussian random variables, the phase transition they uncover is
expected to be universal within a large class of random matrices including Wigner ones. Crucially
though, in such models, the interaction strength Aij is independent of the positional relationship be-
tween tokens i and j, making this model qualitatively different from standard attention mechanisms
where attention is focused on few (or all) of the preceding tokens.

The remainder of the paper is organized as follows. Section 2 provides a precise mathematical for-
mulation of the phase transition phenomena for the rescaled attention layer. We begin by analyzing
token angles and the contractive behavior of tokens under two settings: an idealized but intuitive
simplex model (Section 2.1) and a more realistic model with the simplex constraint relaxed (Sec-
tion 2.2). In both cases, we identify three distinct regimes of the scaling parameter, each leading
to qualitatively different contrastive behaviors of the self-attention layer. Section 2.3 turns to the
gradient norm of the rescaled attention operator. Because rank collapse is often accompanied by
vanishing gradients, we characterize the gradient dynamics across scaling regimes and show when
gradients vanish, or stabilize to non-trivial limits. Section 3 presents our numerical experiments,
which validate these theoretical predictions.

Throughout this paper, when we denote a quantity as on(1), where n is the number of tokens,
we mean there are positive constants C1, C2 independent of the dimension d, such that |on(1)| ≤
C1n

−C2 . The constants C1, C2 depend on the assumptions in theorems.

2 A PHASE TRANSITION FOR ATTENTION

In this section, we establish the main theorem of this paper, namely a phase transition for the con-
tractive properties of the attention layer when βn = γ log n for some γ > 0.

Following Geshkovski et al. (2025), we study a simplified version of the attention layer with pre-
layer norm that is described in the introduction by assuming that K = Q = V = Id. More
specifically, the model we study is given as follows.

For any two points x, y ∈ Rd, let ⟨x, y⟩ = x⊤y denote the standard Euclidean inner product in Rd,
and ∥x∥ =

√
⟨x, x⟩. Finally, recall that N(x) := x/∥x∥.

For any collection of tokens {x1, . . . , xn} in Rd, define yi = N(xi) ∈ Sd−1 for i = 1, . . . , n and

Zi :=

n∑
k=1

eaik , Aij :=
eaij

Zi
, aij := β ⟨yi, yj⟩ , (3)

for i, j = 1, . . . , n. We then define

ATT(yi) :=
n∑

j=1

Aijyj . (4)

Since the seminal work of He et al. (2016), residual connections are added to modern architectures
and naturally act as a regularization scheme of the attention map towards the identity; see Chen et al.
(2025b). With said residual connections, each token xi is mapped to x′

i using the following update
rule

x′
i := ATT(yi) + αxi , α ≥ 0 . (5)

Our first goal is to understand where the angle ∡(x′
i, x

′
j) compares to ∡(xi, xj). If ∡(x′

i, x
′
j) <

∡(xi, xj)—or equivalently ⟨y′i, y′j⟩ > ⟨yi, yj⟩, with y′i = N(x′
i)—we say that attention is contrac-

tive.

The nonlinear update rule (5) can produce complex dynamics, in which some pairs of tokens move
closer together while others drift apart. This diversity of motion is in fact the most desirable outcome

3
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in practice, and it emerges precisely at the phase transition identified in this study. Beyond this
critical regime, the tokens exhibit an unexpectedly cohesive behavior. To delineate the boundaries of
the critical regime, we assume that the size and relative positions of the initial tokens are governed
by constants independent of the number n of tokens. As an analytically tractable extreme of this
assumption, we first consider the case in which the tokens form a regular simplex in Rd as in Cowsik
et al. (2024). Despite its symmetry, this configuration is sufficient to capture and predict the onset
of the phase transition. We subsequently relax this constraint in Section 2.2 to show that the same
phase transition occurs in more realistic configurations.

2.1 THE SIMPLEX CASE

The following assumption was made in Cowsik et al. (2024) and subsequently in Giorlandino &
Goldt (2025). While rather stringent—in particular, it requires d ≥ n—it turns out to provide a
tractable yet predictive setup to study the contractive properties of attention.

Assumption 1 There exists nonnegative constants q ≥ 0 and ρ ∈ (0, 1) such that ∥xi∥2 = q and
⟨yi, yj⟩ = ρ, for any i, j = 1, . . . , n and i ̸= j.

Under Assumption 1, it is easy to see that there are positive constants ρ′ and q′ such that ⟨y′i, y′j⟩ = ρ′

for all i ̸= j and ∥x′
i∥2 = q′ for all i. This simplification gives rise to a tractable phase transition.

Theorem 2.1 Under Assumption 1, there is a ρ′ ∈ (0, 1) such that ⟨y′i, y′j⟩ = ρ′ for all i ̸= j.
Moreover, if β = γ log n where γ is a positive constant, then for any i ̸= j, it holds

lim
n→+∞

⟨y′i, y′j⟩ =


ρ(α

√
q+1)2

α2q+2α
√
qρ+ρ if γ < 1

1−ρ ,
ρ(α

√
q+1)2

α2q+α
√
q(1+ρ)+ 1+3ρ

4

if γ = 1
1−ρ ,

ρ if γ > 1
1−ρ .

(6)

Note that when γ ≤ 1
1−ρ , the right hand sides of Equation (6) are strictly larger than ρ for any α ≥ 0.

In other words, in the critical and subcritical regimes attention is contractive even in the presence
of a residual connection. Of course, when α → ∞, the effects of attention dissipates and the limit
tends to ρ for all phases. This is expected as the update from yi to y′i tends to the identity map, an
effect known to mitigate oversmoothing” in residual neural networks; see Chen et al. (2025b).

Note also that for α = 0, that is in absence of residual connections, the limit in Equation (6) reduces
to

lim
n→+∞

⟨y′i, y′j⟩ =


1 if γ < 1

1−ρ ,
4ρ

1+3ρ if γ = 1
1−ρ ,

ρ if γ > 1
1−ρ .

(7)

In the subcritical case, the tokens contract in one step towards a single cluster when n → ∞ while in
the supercritical case, their inner product does not change. In fact, a careful inspection of the proof
reveals that in this supercritical regime the attention operator converges to the identity as n → ∞.
When α > 0, the subcritical case is mitigated by the residual connection which prevents token to
collapse to a single point in one step. Nevertheless, this singular behavior reveals a major limitation
in the simplex case: since the tokens are equidistant the phase transition reveals an all-or-nothing
phenomenon where attention transitions from Aij ∼ 1/n so that ATT(yi) = ȳ = 1

n

∑n
j=1 yj for

all i to Aij = δij so that ATT(yi) = yi for all i. In the next section, we present a similar result
Theorem 2.2, where the simplex assumption is relaxed.

Before we end this section, we present the proof for Equation (7) as a special case of Theorem 2.1.
The detailed proof for Theorem 2.1 and the later Theorem 2.2 in Section 2.2 is included in Ap-
pendix A.

Proof 1 (Proof of Equation (7)) In Equation (5), when α = 0, we have that x′
i = ATT(yi) for

each i = 1, 2, . . . , n. In Equation (3), under Assumption 1, we notice that the quantity
∑n

k=1 e
aik

4
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in the denominator of Aij is independent of the choice of i, and equals to eβ + (n− 1)eρβ . Denote
this as Z := eβ + (n− 1)eρβ . Then Equation (4) and (5) become

x′
i = ATT(yi) =

1

Z

eβyi +
∑
m ̸=i

eρβym

 .

Under Assumption 1, a direct computation shows that for any i = 1, 2, . . . , n,

⟨x′
i, x

′
i⟩ =

1

Z2

(
e2β + 2(n− 1)ρe(1+ρ)β + (n− 1)(1 + (n− 2)ρ)e2ρβ

)
,

and for any two different i, j = 1, 2, . . . , n,

⟨x′
i, x

′
j⟩ =

1

Z2

(
ρe2β + 2(1 + (n− 2)ρ)eβ(1+ρ) +

(
(n− 2) + (n2 − 3n+ 3)ρ

)
e2βρ

)
.

See also Lemma A.3 and Lemma A.4 for more detailed computations for ⟨x′
i, x

′
i⟩ and ⟨x′

i, x
′
j⟩.

For Z = eβ + (n− 1)eρβ , when we let β = γ log n, we see that eβ = nγ and neρβ = n1+ργ in Z.
The largest term in Z then depends on the relation between γ and 1 + ργ: when γ < 1

1−ρ , n1+ργ

is the largest term; when γ > 1
1−ρ , nγ is the largest term. We then directly get the following three

phases for Z from the above arguments:

Z =


(1 + on(1)) · neρβ if γ < 1

1−ρ ,

(2 + on(1)) · eβ if γ = 1
1−ρ ,

(1 + on(1)) · eβ if γ > 1
1−ρ ,

(8)

where the terms on(1) go to 0 as n → +∞. Similarly, we can get the the following three phases for
⟨x′

i, x
′
i⟩:

lim
n→+∞

⟨x′
i, x

′
i⟩ =


ρ if γ < 1

1−ρ ,
1+3ρ

4 if γ = 1
1−ρ ,

1 if γ > 1
1−ρ .

(9)

For ⟨x′
i, x

′
j⟩, we always have that limn→+∞⟨x′

i, x
′
j⟩ = ρ for γ in these three different regimes. Then

Equation (7) follows from these two limits because ⟨y′i, y′j⟩ = ⟨x′
i/∥x′

i∥, x′
j/∥x′

j∥⟩.

2.2 THE ALMOST-SIMPLEX CASE

In this section, we relax Assumption 1 to allow pairwise angles and lengths to vary slightly. This
relaxation makes it possible for tokens to lie in a dimension d ≪ n. Although the resulting bounds
are not as sharp as those obtained under Assumption 1, they demonstrate that the critical scaling
βn = Θ(log n) is intrinsic and not merely an artifact of a particular geometric construction.

Assumption 2 There exist constants q1, q2 ∈ (0,∞), ρ1, ρ2 ∈ (0, 1) such that q1 ≤ ∥xi∥2 ≤ q2
and ρ1 ≤ ⟨yi, yj⟩ ≤ ρ2, for any i, j = 1, . . . , n and i ̸= j. Moreover, ρ1 = ⟨yi, yj⟩ for some i, j.

It is easy to see using standard probabilistic tools that Assumption 2 holds with high probability
when the yi’s are independent random vectors uniformly distributed on a half-sphere for example.

Theorem 2.2 Under Assumption 2, we have the following phase transition when β = γ log n for
some fixed γ > 0.

If γ < 1
1−ρ1

, then there is a constant ε > 0 depending on α, ρ2, q1, q2, such that

lim
n→+∞

min
i ̸=j

⟨y′i, y′j⟩ ≥ ρ1 + ε > ρ1, (10)

which implies that the angle between tokens becomes strictly smaller after an attention layer Equa-
tion (5).
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If γ > 1
1−ρ2

, then for any i ∈ J1, nK,

ATT(yi) = yi + on(1), and hence x′
i = yi + αxi + on(1), (11)

where the term on(1) goes to 0 as n → +∞ with a speed uniform in i. Hence, when γ > 1
1−ρ2

, for
any two different i, j ∈ J1, nK,

lim
n→+∞

⟨y′i, y′j⟩ = ⟨yi, yj⟩. (12)

which implies that the angle between tokens does not change after an attention layer Equation (5).

The proof for Theorem 2.2 is included in Appendix A, but the general intuition is similar to the
proof for Equation (7) in Section 2.1. As we have seen in that proof, the first step to build up
phase transition regimes for ⟨y′i, y′j⟩ is to study the phase transition regimes for Zi in Equation (3).
Adjusting the logarithmic scaling factor γ causes different phase transition regimes for Zi first.
When γ is small enough, the weights eaik consisting of Zi are asymptotically uniform, and each
token almost equally interacts with the other tokens. When γ is large enough, each token mostly
focuses on itself.

Building on this observation, Theorem 2.1 and Theorem 2.2 together demonstrate that γ controls the
effective interaction range of each token. In particular, we have seen in Theorem 2.1 the existence
of the critical regime when γ = 1

1−ρ . In this case, although the tokens continue to contract, their
rate of shrinkage is evidently slower than in the subcritical regime, as shown in Equation (6) and
Equation (7).

It is hence natural to ask whether further regimes emerge when γ is varied between the supercritical
and subcritical threshold. Indeed, in Appendix C, we prove the existence of a nontrivial middle phase
when γ is between the two extrema 1

1−ρ1
and 1

1−ρ2
, under a refined assumption on the distribution of

tokens, which allows for a sharper characterization of the transition. Under this refined assumption,
Theorem C.2 show the existence of γ1, γ2 such that Equation (5) presents three different phases:
γ < γ1, γ1 < γ < γ2, and γ > γ2. In the extreme regimes, when γ < γ1, each token interacts with
almost all the remaining tokens, while when γ > γ2, each token only focuses on itself, consistent
with Theorem 2.2. In the intermediate regime γ1 < γ < γ2, however, the weights eaik concentrate
on only a small subset of tokens, so that each Zi and hence the update in Equation (5) is dominated
by a few highly relevant interactions. This shows that the logarithmic scaling enables each token to
dynamically select its most relevant context.

We conclude by noting that those on(1) terms in our theorems satisfy the bound |on(1)| ≤ C1n
−C2

for some positive constants C1, C2 that are independent of d (though varying across theorems). As
a result, the simplex configuration (Assumption 1) and the almost simplex configuration (Assump-
tion 2) remains valid under repeated application of the ATT operator up to poly(n) iterations. In
particular, the accumulated error remains negligible at this scale, so our theorems and arguments
extend to transformers with many layers.

2.3 PROPAGATION OF GRADIENTS UNDER ATTENTION LAYER

In previous section we established how attention scaling affects propagation of token representa-
tions. This corresponds to running Transformer in the forward (inference) direction. During training,
however, Transformer is also run in “backward” direction for the purpose of computing gradients
(i.e., backprop (Rumelhart et al., 1986)). In this section we show that a similar phase transition
occurs in the backward pass as well: in the subcritical regime (where tokens quickly collapse in the
forward pass) the gradients also collapse, while in supercritical they maintain scale. Similar analysis
(without attention scaling) was previously undertaken in Cowsik et al. (2024); Dong et al. (2021);
Noci et al. (2022).

Let the input token configuration be denoted as X(0) and let X(t) be the positions of all tokens at
the output of transformer layer t. For the purpose of computing gradients, one needs to evaluate the
end-to-end input-output Jacobian for L-layers of transformers, which via chain-rule can be derived
as

∂X(L)

∂X(0)
=

∂X(L)

∂X(L− 1)

∂X(L− 1)

∂X(L− 2)
· · · ∂X(1)

∂X(0)
.

6
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Thus, the end-to-end Jacobian can be computed by recursively computing layer-wise Jacobians and
multiplying them. This procedure is known as adjoint method (Lions, 1971) in the dynamical system
theory, and as backprop in the machine learning community.

Our main result states that when βn = γ log n for subcritical γ, the typical singular values of
∂X(t+1)
∂X(t) are almost zero (apart from the residual connection contribution), whereas for supercritical

values of γ, contribution of the attention part to the Jacobian is non-trivial and is the same as a
normalization map.

We proceed to formal definitions. For an x ∈ Rd, (x)u denotes its u-th coordinate for u =
1, 2, . . . , d; the stacking X = (x1, x2, . . . , xn) ∈ Rnd corresponds to token configurations; nor-
malization map is defined as

N (X) = N (x1, x2, . . . , xn) := (N(x1), N(x2), . . . , N(xn)) (13)
and the attention map is given as

AT T (Y ) = AT T (y1, y2, . . . , yn) := (ATT(y1),ATT(y2), . . . ,ATT(yn)), (14)
where ATT(yi) is defined in (4), and Y = (y1, . . . , yn). We notice that the dynamics (5) can be
written as

X ′ = AT T (N (X)) + αX, (15)
for X ′ = (x′

1, x
′
2, . . . , x

′
n). In the following, we define the nd× nd Jacobian matrix as

∇XX ′ :=

(
∂(x′

j)v

∂(xi)u

)
(j,v),(i,u)

, (16)

for i, j = 1, . . . , n and u, v = 1, . . . , d. Also, ∥∇XX ′∥ is the matrix norm of ∇XX ′ and is defined
by

∥∇XX ′∥2 := tr[(∇XX ′)⊤∇XX ′] =
∑
i,j=1

∑
u,v=1

(
∂(x′

j)v

∂(xi)u

)2

. (17)

Assume the singular values for the nd × nd matrix ∇XX ′ are σ1, σ2, . . . σnd, then the quantity
1
nd∥∇XX ′∥2 represents the mean of the sum of their squares, i.e.,

1

nd
∥∇XX ′∥2 =

∑nd
i=1 σ

2
i

nd
. (18)

Before we state our results on 1
nd∥∇XX ′∥2, we first notice that ∇XX ′ can be decomposed into

the residual part αInd and the attention part ∇X (AT T (N (X))). As we have seen in Theorem 2.1
and Theorem 2.2, the residual part αInd actually does not influence the phase transition phenomena.
Hence, to keep the results clean, we only study the phase transition phenomena for the attention
part ∇X (AT T (N (X))) by fixing α = 0 in Equation (15). We have the following theorems for
1
nd∥∇XX ′∥2 when α = 0.

Theorem 2.3 Adopt Assumption 1 and Equation (15) with α = 0. Then, we have the following
phase transition phenomenon: let β = γ log n where γ is a positive constant.

If γ < 1
1−ρ ,

1

nd
∥∇XX ′∥2 = 0 + on(1). (19)

If γ = 1
1−ρ

1

nd
∥∇XX ′∥2 =

1

4q

(
1− 1

d

)
+ on(1). (20)

If γ > 1
1−ρ

1

nd
∥∇XX ′∥2 =

1

q

(
1− 1

d

)
+ on(1). (21)

In both cases, the terms on(1) go to 0 as n → +∞, with speeds depending on γ, ρ, q.
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The results of the previous theorem show that under the simplex assumption, the phase transition in
the backward dynamics (for gradients) is as sharp as for the forward pass: for small γ, gradients do
not flow through the attention block.

We can also extend the analysis for Theorem 2.3 to the relaxed Assumption 2.

Theorem 2.4 Adopt Assumption 2 and Equation (15) with α = 0. Then, we have the following
phase transition phenomenon: let β = γ log n where γ is a positive constant.

If γ < 1
1−ρ1

,

1

nd
∥∇XX ′∥2 ≤ 4

γ2(log(n))2

q1d
+ on(1), (22)

If γ > 1
1−ρ2

,

1

nd
∥∇XX ′∥2 ≥ 1

q2

(
1− 1

d

)
+ on(1), (23)

which is away from 0 even when d, n is very large. Indeed, when γ > 1
1−ρ2

, for any fixed i, j ∈
J1, nK, (

∂(ATT(N(xj)))v
∂(xi)u

)
d×d

=
δij
∥xi∥

(
Id − yiy

T
i

)
+ on(1) + on(1) · Id, (24)

where the leading order term is exactly ∂(N(xj))v
∂(xi)u

as shown in Proposition B.1. Here, Id is the d× d

identity matrix, the term on(1) (on(1), respectively) is a d × d matrix (constant, respectively) with
matrix norm as defined in Equation (17) (value, respectively) going to 0 as n → +∞, with a speed
independent of i, j but only depending on γ, ρ2, q1.

We present the proofs for Theorem 2.3 and Theorem 2.4 in Appendix B. Note that the log2 n
d term

in equation 22 is small for typical values of n and d used in Transformers. Theorem 2.3 and Theo-
rem 2.4 also corroborate the fact that tokens collapse fast when γ is in the subcritical regime, while
each token only focuses on itself when γ is in the supercritical regime.

3 NUMERICAL EXPERIMENTS

This section reports numerical experiments designed to corroborate our theoretical predictions. In
the following numerical experiments, we test the phase transition in the almost-simplex case as
Section 2.2. We generate samples {x1, . . . , xn} ⊂ Rd such that the expectations E∥xi∥2 = 1 and
E⟨xi, xj⟩ = ρ ∈ [0, 1] for i ̸= j. More precisely, we generate xi according to

xi =
√
ρ z0 +

√
1− ρ zi , (25)

where z0, z1, . . . , zn are i.i.d. standard Gaussian vectors in Rd. The generated samples satisfy the
Assumption 2 with high probability.

In Figure 1, we plot the input-to-output angle ratio λ, defined as

λ =
2

n(n− 1)

∑
1≤i<j≤n

1− ⟨y′i, y′j⟩
1− ⟨yi, yj⟩

, (26)

for samples processed through a single self-attention layer with different γ and of different dimen-
sions d. Consistent with our theoretical predictions, the layer acts as a contraction mapping when
γ is small, reducing pairwise output angles, whereas for large γ the output angles remain nearly
unchanged from the input. Moreover, in the large d regime the angle between input tokens ⟨yi, yj⟩
(i ̸= j) concentrate near ρ, so that the simplex Assumption 1 is effectively satisfied. In this set-
ting, we observe a sharp phase transition in agreement with Theorem 2.1. In the small d regime,
however, the input tokens ⟨yi, yj⟩ randomly distributed in an interval (ρ1, ρ2), and an intermediate

8
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(b) d = 32
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(c) d = 512

Figure 1: Plots of the input-to-output angle ratio λ, defined in Equation (26), as a function of ρ
and γ. The tokens are first normalized by a pre-layer normalization and then passed through a
single self-attention layer (4), with residual connections and MLP layers omitted. The dashed curve
corresponds to γ = 1

1−ρ , which approximates the actual phase transition with increasing accuracy
as d grows, as implied by Theorem 2.1.

phase emerges in which the contraction is only partial: some angles shrink significantly while others
remain close to their original values, which smooths out the transition.

In Figure 2, we plot the normalized matrix norm for the nd× nd matrix ∇XX ′, defined as

η =
1

nd
∥∇XX ′∥2 , (27)

for samples passed through a single self-attention layer with varying γ and dimension d. Across all
three plots, the normalized gradient norm remains close to 0 when γ is small, while for large γ it
approaches 1−1/d, consistent with Theorem 2.4. Similar to the token-angle behavior, a sharp phase
transition emerges near γ = 1

1−ρ in the large-d regime, in agreement with the predictions under
the simplex assumption. In lower dimensions, fluctuations in the pairwise angle prevent perfect
concentration, and the transition is smoothed into an intermediate regime where the gradient norm
only partially stabilizes.

0.0 0.2 0.4 0.6 0.8

2

4

6

8

10

0.0

0.2

0.4

0.6

0.8

1.0

(a) d = 2

0.0 0.2 0.4 0.6 0.8

2

4

6

8

10

0.0

0.2

0.4

0.6

0.8

1.0

(b) d = 32
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Figure 2: Plots of the normalized norm η of the gradient, defined by Equation (27), as a function of ρ
and γ. The tokens are first normalized by a pre-layer normalization and then passed through a single
self-attention layer (4), with residual connections and MLP layers omitted. The dash curve shows
1

1−ρ , which approximate the actual phase transition with increasing accuracy as d grows, as implied
by Theorem 2.3. The matrix norm η is computed by the Hutchinson trace estimator (Hutchinson,
1989), based on the definition in Equation (17).
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A PROOF OF THEOREM 2.1 AND THEOREM 2.2

In this section, we adopt Assumption 2 and prove Theorem 2.2 first. Then, we prove Theorem 2.1.
To simplify notations, we define J1, nK := {1, 2, . . . , n} for any n ∈ Z+.

We study the asymptotics of the quantity ⟨x′
i, x

′
j⟩ as n → +∞. We use the notation

Zi :=

n∑
k=1

eaik = eβ +
∑
k ̸=i

eaik . (28)

Lemma A.1 Let β = γ log n where γ is a positive constant. Under Assumption 2 and Equation (5),
for any i ∈ J1, nK,

Zi =

{
(1 + on(1)) ·

(∑
k ̸=i e

aik

)
if γ < 1

1−ρ1
,

(1 + on(1)) · eβ if γ > 1
1−ρ2

,
(29)

where the terms on(1) go to 0 as n → +∞ with speeds independent of i but only depending on
γ, ρ1, ρ2.

Proof 2 (Proof of Lemma A.1) We notice that

Zi = eβ +
∑
k ̸=i

eaik . (30)

We also notice that eβt = nγt for any t. It then holds that eβ = nγ and

nγρ1(n− 1) ≤
∑
k ̸=i

eaik ≤ nγρ2(n− 1) . (31)

Hence, when γ < 1
1−ρ1

, nγ < n1+γρ1 , the leading order term in Zi is
∑

k ̸=i e
aik . We also see that

Zi =

 eβ(∑
k ̸=i e

aik

) + 1

 ·

∑
k ̸=i

eaik

 , (32)

with

eβ(∑
k ̸=i e

aik

) ≤ nγ

nγρ1(n− 1)
, (33)

which goes to 0 as n → +∞, and is independent of i but only depending on γ, ρ1. Similarly, when
γ > 1

1−ρ2
, nγ > n1+γρ2 , the leading order term in Zi is eβ , and similar arguments hold true.

11
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Lemma A.2 Let β = γ log n where γ is a positive constant. Under Assumption 2 and Equation (5),
if γ > 1

1−ρ2
, then for any i ∈ J1, nK,

ATT(yi) = yi + on(1), and hence x′
i = yi + αxi + on(1), (34)

where the term on(1) goes to 0 as n → +∞ with a speed independent of i but only depending on
γ, ρ2.

Proof 3 (Proof of Lemma A.2) According to Lemma A.1, we see that when γ > 1
1−ρ2

, nγ >

n1+γρ2 , and hence,

ATT(yi) = Z−1
i

eβyi +
∑
j ̸=i

eaijyj

 = (1 + on(1))

yi + e−β
∑
j ̸=i

eaijyj

 . (35)

Because ∥yj∥ = 1, ∥∥∥∥∥∥e−β
∑
j ̸=i

eaijyj

∥∥∥∥∥∥ ≤ e−β
∑
j ̸=i

eaij ≤ n−γ · nγρ2(n− 1), (36)

which goes to 0 as n → +∞, and is independent of i but only depending on γ, ρ2. This shows that
when γ > 1

1−ρ2
,

ATT(yi) = (1 + on(1))(yi + on(1)) = yi + on(1). (37)

Lemma A.3 Under Assumption 2 and Equation (5), for any i ∈ J1, nK,

⟨x′
i, x

′
i⟩ = α2∥xi∥2 +

2α∥xi∥
Zi

eβ +
∑
j ̸=i

eaij ⟨yi, yj⟩


+

1

Z2
i

e2β + 2eβ
∑
j ̸=i

eaij ⟨yi, yj⟩+
∑
j ̸=i

∑
k ̸=i

eaij+aik⟨yk, yj⟩

 .

(38)

Let β = γ log n where γ is a positive constant. When γ < 1
1−ρ1

,

⟨x′
i, x

′
i⟩ = α2∥xi∥2 + 2α∥xi∥

∑
k ̸=i e

aik⟨yi, yk⟩∑
k ̸=i e

aik
+

∑
k ̸=i

∑
l ̸=i e

aik+ail⟨yk, yl⟩(∑
k ̸=i e

aik

)2 + on(1). (39)

When γ > 1
1−ρ2

,

⟨x′
i, x

′
i⟩ = (α∥xi∥+ 1)2 + on(1). (40)

In both cases, the terms on(1) go to 0 as n → +∞ with speeds independent of i but only depending
on γ, ρ1, ρ2, α.

Proof 4 (Proof of Lemma A.3) According to Equation (5), we see that

⟨x′
i, x

′
i⟩ = α2∥xi∥2 + 2α⟨xi,ATT(yi)⟩+ ⟨ATT(yi),ATT(yi)⟩. (41)

Equation (38) follows from direct computations. Two phase transitions Equation (39) and Equa-
tion (40) follow from similar arguments as in Lemma A.1.

Lemma A.4 Under Assumption 2 and Equation (5), for any two different i, j ∈ J1, nK,

⟨x′
i, x

′
j⟩ = α2⟨xi, xj⟩+

α∥xj∥
Zi

eβ⟨yj , yi⟩+
∑
k ̸=i

eaik⟨yj , yk⟩

+
α∥xi∥
Zj

eβ⟨yi, yj⟩+
∑
l ̸=j

eajl⟨yi, yl⟩


+

1

ZiZj

e2β⟨yi, yj⟩+ eβ
∑
k ̸=i

eaik⟨yj , yk⟩+ eβ
∑
l ̸=j

eajl⟨yi, yl⟩+
∑
k ̸=i

∑
l ̸=j

eaik+ajl⟨yk, yl⟩

 .

(42)
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Let β = γ log n where γ is a positive constant. When γ < 1
1−ρ1

,

⟨x′
i, x

′
j⟩ = α2⟨xi, xj⟩+ α∥xj∥

∑
k ̸=i e

aik⟨yj , yk⟩∑
k ̸=i e

aik
+ α∥xi∥

∑
l ̸=j e

ajl⟨yi, yl⟩∑
l ̸=j e

ajl

+

∑
k ̸=i

∑
l ̸=j e

aik+ajl⟨yk, yl⟩(∑
k ̸=i e

aik

)
·
(∑

l ̸=j e
ajl

) + on(1).

(43)

When γ > 1
1−ρ2

,

⟨x′
i, x

′
j⟩ = (α∥xi∥+ 1)(α∥xj∥+ 1)⟨yi, yj⟩+ on(1). (44)

Proof 5 (Proof of Lemma A.4) According to Equation (5), we see that for two different i, j ∈
J1, nK,

⟨x′
i, x

′
j⟩ = α2p+ α⟨xi,ATT(yj)⟩+ α⟨xj ,ATT(yi)⟩+ ⟨ATT(yi),ATT(yj)⟩. (45)

Equation (42) follows from direct computations. Two phase transitions Equation (43) and Equa-
tion (44) follow from similar arguments as in Lemma A.1.

Next, we prove Theorem 2.2.

Proof 6 (Proof of Theorem 2.2) We first discuss the case when γ < 1
1−ρ1

. According to Equa-
tion (43) and Assumption 2, we see that

⟨x′
i, x

′
j⟩ ≥ α2∥xi∥∥xj∥ρ1 + α∥xj∥ρ1 + α∥xi∥ρ1 + ρ1 + on(1)

= ρ1(α∥xi∥+ 1)(α∥xj∥+ 1) + on(1).
(46)

By Equation (39), we see that

⟨x′
i, x

′
i⟩ ≤ α2∥xi∥2 + 2α∥xi∥ρ2 + ρ2 + on(1)

= α2∥xi∥2 + 2α∥xi∥+ 1− (1− ρ2)(1 + 2α∥xi∥) + on(1)

≤ (α∥xi∥+ 1)2 − (1− ρ2)(1 + 2αq1) + on(1).

(47)

We have a similar inequality for ⟨x′
j , x

′
j⟩. So, there is a constant δ > 0 depending on ρ2, α, q1, q2

and independent of n, such that

1

∥x′
i∥

≥ 1 + δ

α∥xi∥+ 1
+ on(1), and

1

∥x′
j∥

≥ 1 + δ

α∥xj∥+ 1
+ on(1). (48)

Hence,

⟨y′i, y′j⟩ ≥ ρ1(1 + δ)2 + on(1) ≥ ρ1 + ε+ on(1), (49)

for ε = ρ1(1 + 2δ)δ > 0 independent of n.

For the case when γ < 1
1−ρ2

, Equation (11) and Equation (12) follow directly from Lemma A.2,
Lemma A.3, and Lemma A.4.

Proof 7 (Proof of Theorem 2.1) We notice that Assumption 1 corresponds to the special case when
q1 = q2 = q and ρ1 = ρ2 = ρ in Assumption 2. Clearly, Zi is independent of the choice of i ∈ J1, nK
by its definition Equation (28). According to the explicit forms Equation (38) in Lemma A.3 and
Equation (42) in Lemma A.4, one directly sees that both ⟨xi, xi⟩ and ⟨xi, xj⟩ are independent of the
choices of i, j ∈ J1, nK. We can further compute that for any i ∈ J1, nK,

lim
n→+∞

⟨x′
i, x

′
i⟩ =


α2q + 2α

√
qρ+ ρ if γ < 1

1−ρ ,

α2q + α
√
q(1 + ρ) + 1+3ρ

4 if γ = 1
1−ρ ,

(α
√
q + 1)2 if γ > 1

1−ρ ,

(50)

and for any two different i, j ∈ J1, nK,

lim
n→+∞

⟨x′
i, x

′
j⟩ = ρ(α

√
q + 1)2. (51)

13
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Equation (6) follows from Equation (50) and Equation (51).

When γ < 1
1−ρ , we see that

lim
n→+∞

⟨y′i, y′j⟩ =
ρ(α

√
q + 1)2

α2q + 2α
√
qρ+ ρ

>
ρ(α

√
q + 1)2

α2q + 2α
√
q + 1

= ρ, (52)

where the strict inequality is because ρ < 1. When γ = 1
1−ρ , we can similarly show that

limn→+∞⟨y′i, y′j⟩ > ρ. This completes the proof for Theorem 2.1.

B PROOF OF THEOREM 2.3 AND THEOREM 2.4

We prove Theorem 2.4 first. We need to explicitly compute terms in ∂(ATT(N(xj)))v
∂(xi)u

, for which we
need the following lemmas.

B.1 PROOF OF THEOREM 2.4

Lemma B.1 For any i, k ∈ J1, nK and u,w ∈ J1, dK,

∂(N(xk))w
∂(xi)u

= δik
δwu∥xk∥2 − (xk)w(xk)u

∥xk∥3
. (53)

Proof 8 (Proof of Lemma B.1)

∂(N(xk))w
∂(xi)u

=
∂((xk)w · ∥xk∥−1)

∂(xi)u
= δik

δwu∥xk∥ − (xk)w · (xk)u
∥xk∥

∥xk∥2
. (54)

Lemma B.2 For any k, j ∈ J1, nK and w, v ∈ J1, dK,

∂(ATT(yj))v
∂(yk)w

=

[(
δkjβ

(
n∑

m=1

eβ⟨yj ,ym⟩(ym)w(ym)v

)
+ eβ⟨yj ,yk⟩(β(yj)w(yk)v + δwv)

)
·

(
n∑

l=1

eβ⟨yj ,yl⟩

)

−

(
δkjβ

(
n∑

l=1

eβ⟨yj ,yl⟩(yl)w

)
+ βeβ⟨yj ,yk⟩(yj)w

)
·

(
n∑

m=1

eβ⟨yj ,ym⟩(ym)v

)]

·

(
n∑

l=1

eβ⟨yj ,yl⟩

)−2

.

(55)

Proof 9 (Proof of Lemma B.2) By Equation (4),

(ATT(yj))v =

∑n
m=1 e

β⟨yj ,ym⟩(ym)v∑n
l=1 e

β⟨yj ,yl⟩
. (56)
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A direct computation shows that

∂(ATT(yj))v
∂(yk)w

=

[( n∑
m=1

(δkjβ(ym)w(ym)v + δkmβ(yj)w(ym)v + δkmδwv) e
β⟨yj ,ym⟩

)
·

(
n∑

l=1

eβ⟨yj ,yl⟩

)

−

(
n∑

l=1

(δkj(yl)w + δkl(yj)w)βe
β⟨yj ,yl⟩

)
·

(
n∑

m=1

eβ⟨yj ,ym⟩(ym)v

)]

·

(
n∑

l=1

eβ⟨yj ,yl⟩

)−2

=

[(
δkjβ

n∑
m=1

eβ⟨yj ,ym⟩(ym)w(ym)v + eβ⟨yj ,yk⟩(β(yj)w(yk)v + δwv)

)
·

(
n∑

l=1

eβ⟨yj ,yl⟩

)

−

(
δkjβ

n∑
l=1

eβ⟨yj ,yl⟩(yl)w + βeβ⟨yj ,yk⟩(yj)w

)
·

(
n∑

m=1

eβ⟨yj ,ym⟩(ym)v

)]

·

(
n∑

l=1

eβ⟨yj ,yl⟩

)−2

.

(57)

For x, y ∈ Rd, we use x⊗y to denote the d×d matrix with (u, v)-th element (x⊗y)uv = (x)u(y)v ,
i.e., x⊗ y := xyT . We then have the following proposition.

Lemma B.3 Adopt Assumption 2 and Equation (5). For any i, j ∈ J1, nK, consider the d×d matrix
formed by ∂(ATT(N(xj)))v

∂(xi)u
, for u, v ∈ J1, dK. Denote yk = N(xk) for each k ∈ J1, nK. Then, this

matrix has the following form:(
∂(ATT(N(xj)))v

∂(xi)u

)
d×d

= ∥xi∥−
1
2 [(R1 +R2)Zj − (U1 +U2)⊗Vj ] · Z−2

j , (58)

where Zj =
∑n

l=1 e
β⟨yj ,yl⟩ as in Equation (28),

R1 := δijβ (Wj − yi ⊗ (Wjyi)) , R2 := eβ⟨yj ,yi⟩ ((−yi + βPyi
yj)⊗ yi + Id) , (59)

and

U1 := δijβ (PyiVj) , U2 := βeβ⟨yj ,yi⟩ (Pyiyj) . (60)

In Equation (59) and Equation (60),

Vj :=

n∑
m=1

eβ⟨yj ,ym⟩ym, Wj :=

n∑
m=1

eβ⟨yj ,ym⟩ym ⊗ ym, Pxy := y − ⟨y, x⟩x. (61)

Proof 10 (Proof of Lemma B.3) By chain rule and Proposition B.1, we have that

∂(ATT(N(xj)))v
∂(xi)u

=

n∑
k=1

d∑
w=1

∂(ATT(yj))v
∂(yk)w

∣∣∣∣
Y=N (X)

· ∂(N(xk))w
∂(xi)u

= ∥xi∥−
3
2

(
∥xi∥ ·

∂(ATT(yj))v
∂(yi)u

−
d∑

w=1

(xi)u(xi)w
∂(ATT(yj))v

∂(yi)w

)∣∣∣∣
Y=N (X)

= ∥xi∥−
1
2

(
∂(ATT(yj))v

∂(yi)u
− (yi)u

d∑
w=1

(yi)w
∂(ATT(yj))v

∂(yi)w

)∣∣∣∣
Y=N (X)

.

(62)
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According to Proposition B.2 and the notation Zj =
∑n

l=1 e
ajl , we see that

d∑
w=1

(yi)w
∂(ATT(yj))v

∂(yi)w

=

[(
δijβ

(
n∑

m=1

eβ⟨yj ,ym⟩⟨ym, yi⟩(ym)v

)
+ eβ⟨yj ,yi⟩(β⟨yj , yi⟩+ 1)(yi)v

)
· Zj

−

(
δijβ

(
n∑

l=1

eβ⟨yj ,yl⟩⟨yl, yi⟩

)
+ βeβ⟨yj ,yi⟩⟨yj , yi⟩

)
·

(
n∑

m=1

eβ⟨yj ,ym⟩(ym)v

)]
· Z−2

j .

(63)

Hence,

∥xi∥
1
2 · ∂(ATT(N(xj)))v

∂(xi)u

=

(
∂(ATT(yj))v

∂(yi)u
− (yi)u

d∑
w=1

(yi)w
∂(ATT(yj))v

∂(yi)w

)∣∣∣∣
Y=N (X)

=

[[
δijβ

(
n∑

m=1

eβ⟨yj ,ym⟩ ((ym)u(ym)v − ⟨ym, yi⟩(ym)v(yi)u)

)

+ eβ⟨yj ,yi⟩(β(yj)u(yi)v + δuv − (β⟨yj , yi⟩+ 1) (yi)v(yi)u)

]
· Zj

−
[
δijβ

(
n∑

l=1

eβ⟨yj ,yl⟩ ((yl)u − ⟨yl, yi⟩(yi)u)

)

+ βeβ⟨yj ,yi⟩ ((yj)u − ⟨yj , yi⟩(yi)u)
]
·

(
n∑

m=1

eβ⟨yj ,ym⟩(ym)v

)]
· Z−2

j .

(64)

We then adopt the notation Equation (61), i.e.,

Vj =

n∑
m=1

eβ⟨yj ,ym⟩ym, Wj =

n∑
m=1

eβ⟨yj ,ym⟩ym ⊗ ym, Pxy := y − ⟨y, x⟩x. (65)

So, the matrix form of Equation (64) becomes[[
δijβ (Wj − yi ⊗ (Wjyi)) + eβ⟨yj ,yi⟩(βyj ⊗ yi + Id − (β⟨yj , yi⟩+ 1) yi ⊗ yi)

]
· Zj

−
[
δijβ (Vj − ⟨Vj , yi⟩yi) + βeβ⟨yj ,yi⟩ (yj − ⟨yj , yi⟩yi)

]
⊗Vj

]
· Z−2

j

=

[[
δijβ (Wj − yi ⊗ (Wjyi)) + eβ⟨yj ,yi⟩((−yi + βPyi

yj)⊗ yi + Id)

]
· Zj

−
[
δijβ (Pyi

Vj) + βeβ⟨yj ,yi⟩ (Pyi
yj)

]
⊗Vj

]
· Z−2

j .

(66)

We further use the notations in Equation (59) and Equation (60), i.e.,

R1 = δijβe
βρ (Wj − yi ⊗ (Wjyi)) , R2 = eβ⟨yj ,yi⟩ ((−yi + βPyi

yj)⊗ yi + Id) , (67)

and

U1 = δijβ (PyiVj) , U2 = βeβ⟨yj ,yi⟩ (Pyiyj) . (68)

Finally, the matrix form of Equation (64) becomes

[(R1 +R2)Z − (U1 +U2)⊗Vj ] · Z−2
j . (69)
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Lemma B.4 Let β = γ log n where γ is a positive constant. Under Assumption 2 and Equation (5),
if γ > 1

1−ρ2
, then for any fixed i, j ∈ J1, nK, the d× d matrix satisfies(

∂(ATT(N(xj)))v
∂(xi)u

)
d×d

=
δij
∥xi∥

(Id − yi ⊗ yi) + on(1) + on(1) · Id, (70)

where the leading order term is exactly ∂(N(xj))v
∂(xi)u

. The term on(1) (on(1), respectively) is a d × d

matrix (constant, respectively) with matrix norm as defined in Equation (17) (value, respectively)
going to 0 as n → +∞, with a speed independent of i, j but only depending on γ, ρ2, q1.

Proof 11 (Proof of Lemma B.4) We frequently use this formula: for two vectors V1, V2, the matrix
norm of V1 ⊗ V2 as defined in Equation (17) is ∥V1∥∥V2∥. When γ > 1

1−ρ2
, nγ > n1+γρ2 , and

we know from Lemma A.1 that Zj = (1 + on(1)) · eβ for any j ∈ J1, nK. Adopt the notations in
Proposition B.3, we then show the following facts when γ > 1

1−ρ2
:

R1Z
−1
j = on(1), R2Z

−1
j = δij (−yi ⊗ yi + Id) + on(1) + on(1) · Id, (71)

and

[(U1 +U2)⊗Vj ] · Z−2
j = on(1). (72)

First, for R1Z
−1
j , when i ̸= j, we have that R1 = 0 by its definition. When i = j, R1 =

β
∑n

m=1 e
β⟨yi,ym⟩ (ym ⊗ ym − ⟨ym, yi⟩yi ⊗ ym) and we notice that the term when m = i is 0. So,

because ∥ym ⊗ ym − ⟨ym, yi⟩yi ⊗ ym∥ ≤ ∥ym∥2 + ∥ym∥2∥yi∥2 = 2, eβ = nγ ,

∥R1∥Z−1
j ≤ β(n− 1)eβρ2 · 2Z−1

j ≤ 2γ log(n) · nγρ2+1−γ(1 + on(1)), (73)

which goes to 0 with a speed independent of i, j, because γρ2 + 1− γ < 0.

For R2Z
−1
j , we notice that when i ̸= j, eβ⟨yi,yj⟩Z−1

j ≤ eβ(ρ2−1)(1+on(1)) = nγ(ρ2−1)(1+on(1)),
which goes to 0 with a speed independent of i, j. So, R2Z

−1
j = on(1) + on(1) · Id when i ̸= j.

When i = j, R2 = eβ (−yi ⊗ yi + Id), and so R2Z
−1
j = (−yi ⊗ yi + Id) + on(1) + on(1) · Id.

For [(U1 +U2)⊗Vj ] · Z−2
j , we see that when i ̸= j, U1 = 0, and so

∥(U1 +U2)⊗Vj∥ · Z−2
j ≤ Z−2

j β

n∑
m=1

eβ⟨yj ,ym+yi⟩∥ym∥∥Pyiyj∥

≤ Z−2
j βeβ(1+ρ2)n = γ log(n)nγ(ρ2−1)+1(1 + on(1)),

(74)

which goes to 0 with a speed independent of i, j because γ > 1
1−ρ2

. When i = j, U2 = 0, and so

∥(U1 +U2)⊗Vj∥ · Z−2
j ≤ Z−2

j β∥Pyi
Vi∥∥Vi∥

≤ Z−2
j β

∑
m ̸=i

eβ⟨yi,ym⟩∥Pyiym∥

 ·

eβ +
∑
m̸=i

eβ⟨yi,ym⟩∥Pyiym∥


≤ Z−2

j β
(
eβρ2n

)
·
(
eβ + eβρ2n

)
= γ log(n)nγ(ρ2−1)+1(1 + nγ(ρ2−1)+1)(1 + on(1)),

(75)

which goes to 0 with a speed independent of i, j because γ > 1
1−ρ2

. Hence, [(U1 +U2)⊗Vj ] ·
Z−2
j = on(1).

Lemma B.5 Let β = γ log n where γ is a positive constant. Under Assumption 2 and Equation (5),
if γ < 1

1−ρ1
, then for fixed i, j ∈ J1, nK, the d× d matrix satisfies∥∥∥∥∥
(
∂(ATT(N(xj)))v

∂(xi)u

)
d×d

∥∥∥∥∥ ≤ ∥xi∥−
1
2 ·
(
2βδij + (2β +

√
d)eaijZ−1

j

)
. (76)
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Proof 12 (Proof of Lemma B.5) According to Lemma A.1, when γ < 1
1−ρ1

, Zj = (1 + on(1)) ·(∑
k ̸=j e

ajk

)
for any j ∈ J1, nK, and Zj ≥ nγρ1+1(1+on(1)) > nγ(1+on(1)), because γρ1+1 >

γ. Adopt the notations in Proposition B.3, we then show the following facts when γ < 1
1−ρ1

:

∥R1∥Z−1
j ≤ δijβ, ∥R2∥Z−1

j ≤ Z−1
j eaij

(
β +

√
d− 1

)
, (77)

and

∥(U1 +U2)⊗Vj∥ · Z−2
j ≤ β

(
δij + eaijZ−1

j

)
. (78)

First, for R1Z
−1
j , when i ̸= j, we have that R1 = 0 by its definition. When i = j,

R1 = β
∑n

m=1 e
β⟨yi,ym⟩ (ym ⊗ ym − ⟨ym, yi⟩yi ⊗ ym). So, because we have that ∥ym ⊗ ym −

⟨ym, yi⟩yi ⊗ ym∥ = ∥Pyi
yn ⊗ ym∥ = ∥Pyi

yn∥∥ym∥ ≤ 1,

∥R1∥Z−1
j ≤ βZj · ·Z−1

j = β. (79)

For R2Z
−1
j , because ∥ − yi ⊗ yi + Id∥ =

√
d− 1, we have that

∥R2∥Z−1
j ≤ Z−1

j eaij

(
β +

√
d− 1

)
. (80)

For [(U1 +U2)⊗Vj ] · Z−2
j , we see that ∥Vj∥ ≤

∑n
m=1 e

β⟨yj ,ym⟩ = Zj . Also, ∥U1∥Z−1
j ≤

δijβ∥Vj∥Z−1
j ≤ δijβ, ∥U2∥Z−1

j ≤ βeaijZ−1
j . Hence, we have that

∥(U1 +U2)⊗Vj∥ · Z−2
j ≤ β

(
δij + eaijZ−1

j

)
. (81)

Proof 13 (Proof of Theorem 2.4) Theorem 2.4 follows directly from Lemma B.4 and Lemma B.5.

B.2 PROOF OF THEOREM 2.3

The proof for Theorem 2.3 requires more delicate arguments. The part when γ > 1
1−ρ in Theo-

rem 2.3 directly follows from Lemma B.4, so we only focus on the part when γ ≤ 1
1−ρ . We remark

that when γ < 1
1−ρ , our result is that 1

nd∥∇XX ′∥2 = 0 + on(1), which is a better estimate than
Equation (22) in Theorem 2.4.

We first have the following lemma which replaces Lemma B.3 when we adopt Assumption 1.

Lemma B.6 Adopt Assumption 1 and Equation (5). For any i, j ∈ J1, nK, consider the d×d matrix
formed by ∂(ATT(N(xj)))v

∂(xi)u
, for u, v ∈ J1, dK. Denote yk = N(xk) for each k ∈ J1, nK. Then, this

matrix has the following form:(
∂(ATT(N(xj)))v

∂(xi)u

)
d×d

= q−
1
2 [(R1 +R2)Z − (U1 +U2)⊗ (U3 +U4)] · Z−2, (82)

where Z = eβ + (n− 1)eβρ,

R1 := δijβe
βρ (W − yi ⊗ (Wyi)) , R2 := eβ⟨yj ,yi⟩ ((−yi + βPyi

yj)⊗ yi + Id) , (83)

and

U1 := δijβe
βρ (Pyi

V) , U2 := βeβ⟨yj ,yi⟩ (Pyi
yj) ,

U3 := (eβ − eβρ)yj , U4 := eβρV.
(84)

In Equation (83) and Equation (84),

V :=

n∑
m=1

ym, W :=

n∑
m=1

ym ⊗ ym, Pxy := y − ⟨y, x⟩x. (85)
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Proof 14 (Proof of Lemma B.6) We first apply Lemma B.3 to get Equation (58). After replacing
⟨yj , ym⟩ = ρ for m ̸= j, we can obtain Equation (82). The only remark is that the term δij(Wj −
yi ⊗ (Wjyi)) in R1 of Equation (59) is nonzero when i = j. Then, when i = j, Wi − yi ⊗
(Wiyi) =

∑n
m=1 e

β⟨yi,ym⟩(ym⊗ ym− yi⊗ ym⟨ym, yi⟩). If m = i, the summand (ym⊗ ym− yi⊗
ym⟨ym, yi⟩) becomes 0. Hence, Wi−yi⊗(Wiyi) =

∑
m ̸=i e

β⟨yi,ym⟩(ym⊗ym−yi⊗ym⟨ym, yi⟩) =
eβρ

∑
m̸=i(ym ⊗ ym − yi ⊗ ym⟨ym, yi⟩) = eβρ (W − yi ⊗ (Wyi)).

Next, to compute the matrix norm of Equation (82), we see that for any matrix K, its matrix norm
square equals to Tr(KTK). Hence, the matrix norm square of Equation (82) equals to

q−1Z−4 ·
(
Tr
[
Z2(R1 +R2)

T (R1 +R2)
]
− 2Z(U1 +U2)

T (R1 +R2)(U3 +U4)

+ ∥U1 +U2∥2∥U3 +U4∥2
)
.

(86)

We then compute these terms separately, and sum them in i, j. We first have the following basic
equalities for the notations V,W in Equation (85).

Lemma B.7 For the notations in Equation (85), i.e.,

V :=

n∑
m=1

ym, W :=

n∑
m=1

ym ⊗ ym, Pxy := y − ⟨y, x⟩x, (87)

we have that

Tr(W2) =
∑
m,l

⟨ym, yl⟩2 = n(nρ2 + (1− ρ2)),

Tr(W) = n, Tr(Wyiy
T
i ) = nρ2 + (1− ρ2), ∥Pyiyj∥2 = 1− ρ2.

(88)

Also,

Wyi =

n∑
m=1

⟨ym, yi⟩ym = (1− ρ)yi + ρV,

⟨V, yi⟩ =
n∑

m=1

⟨ym, yi⟩ = nρ+ (1− ρ),

∥V∥2 =
∑
m,l

⟨ym, yl⟩ = n+ ρn(n− 1) = n(nρ+ (1− ρ)),

∥Pyi
V∥2 = ∥V∥2 − ⟨V, yi⟩2 = (n− 1)(nρ+ (1− ρ))(1− ρ),

∥Wyi∥2 = n2ρ3 + 3nρ2(1− ρ) + (1 + 2ρ)(1− ρ)2.

(89)

Proof 15 (Proof of Lemma B.7) Direct Computations.

Lemma B.8 For terms R1,R2 in Lemma B.6, we have that∑
i,j

Tr
[
(R1 +R2)

T (R1 +R2)
]

= β2e2βρn
[
n2ρ2(1− ρ) + n(1− ρ)(1 + ρ− 3ρ2)− (1 + 2ρ)(1− ρ)2

]
+ βeβ(ρ+1)n(n− 1)(1− ρ2)

+ e2β(d− 1)n+ e2βρ
[
β2(1− ρ2) + d− 1

]
n(n− 1).

(90)

As a corollary, when we pick β = γ log n, we have the following phase transition limits as n → +∞:

1

nZ2

∑
i,j

Tr
[
(R1 +R2)

T (R1 +R2)
]
=


β2ρ2(1− ρ) + on(1) if γ < 1

1−ρ ,
d−1+β2ρ2(1−ρ)

4 + on(1) if γ = 1
1−ρ ,

d− 1 + on(1) if γ > 1
1−ρ .

(91)
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Proof 16 (Proof of Lemma B.8) We first notice that W is a symmetric matrix and ∥yi∥ = 1. We
then expand each term in Lemma B.8 and use Lemma B.7.∑

i,j

Tr
[
(R1)

TR1

]
= β2e2βρ

∑
i

(
Tr
(
W2 − 2Wyi(Wyi)

T
)
+ ∥yi∥2∥Wyi∥2

)
= β2e2βρ

∑
i

(
TrW2 − 2∥Wyi∥2 + ∥Wyi∥2

)
= β2e2βρn

[
n2ρ2(1− ρ) + n(1− ρ)(1 + ρ− 3ρ2)− (1 + 2ρ)(1− ρ)2

]
.

(92)

Then,∑
i,j

Tr
[
(R1)

TR2

]
= Tr

∑
i,j

δijβe
βρ
(
W −Wyiy

T
i

)
eβ⟨yj ,yi⟩ ((−yi + βPyi

yj)⊗ yi + Id)

= βeβ(ρ+1)Tr
∑
i

(
W −Wyiy

T
i

)
(−yiy

T
i + Id) = βeβ(ρ+1)Tr

∑
i

(
W −Wyiy

T
i

)
= βeβ(ρ+1)n(n− 1)(1− ρ2),

(93)

where the second equality is because Pyi
yi = 0.∑

i,j

Tr
[
(R2)

TR2

]
=
∑
i,j

e2β⟨yj ,yi⟩Tr
[
(−yi + βPyiyj)y

T
i + Id

) (
yi(−yi + βPyiyj)

T + Id
]

=
∑
i ̸=j

e2βρ
[(
1 + β2(1− ρ2)

)
− 2 + d

]
+
∑
i

e2β(d− 1)

= e2β(d− 1)n+ e2βρ
[
β2(1− ρ2) + d− 1

]
n(n− 1).

(94)

Next, we show the asymptotics Equation (91) as n → +∞. According to Lemma A.1, we have that

Z =

{
(1 + on(1)) · neβρ if γ < 1

1−ρ ,

(1 + on(1)) · eβ if γ > 1
1−ρ .

(95)

That is, when γ < 1
1−ρ , the leading order terms are those terms involving neβρ, and all the re-

maining terms go to 0 after dividing neβρ; when γ > 1
1−ρ , the leading order terms are those terms

involving eβ , and all the remaining terms go to 0 after dividing eβ . Hence, when γ < 1
1−ρ , the

leading order term in Equation (90) is the term β2e2βρn3ρ2(1 − ρ); when γ > 1
1−ρ , the leading

order term is e2β(d− 1)n. This proves Equation (91).

Lemma B.9 For terms R1,R2,U1,U2,U3,U4 in Lemma B.6, we have that∑
i,j

(U1 +U2)
T (R1 +R2)(U3 +U4)

= ρβ2e2βρ(eβ − eβρ)n(n− 1)(nρ+ (1− ρ))(1− ρ)

+ β2e3βρn(n− 1)(nρ+ (1− ρ))2(1− ρ)

+ βeβ(2ρ+1)n(n− 1)(nρ+ (1− ρ))(1− ρ)

+ βe2βρ(eβ − eβρ)(βρ+ 1)n(n− 1)(1− ρ2)

+ βe3βρn(n− 1)(nρ+ (1− ρ))(β(1− ρ2) + (1− ρ)).

(96)

As a corollary, when we pick β = γ log n, we have the following phase transition limits as n → +∞:

1

nZ3

∑
i,j

(U1 +U2)
T (R1 +R2)(U3 +U4) =


β2ρ2(1− ρ) + on(1) if γ < 1

1−ρ ,
β2ρ2(1−ρ)

4 + on(1) if γ = 1
1−ρ .

0 + on(1) if γ > 1
1−ρ .

(97)
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Proof 17 (Proof of Lemma B.9) We expand each term in Lemma B.9 and also apply Lemma B.7 to
each term. We first estimate terms involving U1.∑

i,j

UT
1 R1U3 =

∑
i

β2e2βρ(eβ − eβρ) (Pyi
V)

T
(W − yi ⊗ (Wyi)) yi

= β2e2βρ(eβ − eβρ)
∑
i

(PyiV)
T
Wyi = ρβ2e2βρ(eβ − eβρ)

∑
i

(PyiV)
T
V

= ρβ2e2βρ(eβ − eβρ)n(n− 1)(nρ+ (1− ρ))(1− ρ),

(98)

where the second and the third equality is because ⟨Pyi
V, yi⟩ = 0.∑

i,j

UT
1 R1U4 =

∑
i

β2e3βρ (Pyi
V)

T
(W − yi ⊗ (Wyi))V

= β2e3βρ
∑
i

(PyiV)
T
WV = β2e3βρ(nρ+ (1− ρ))

∑
i

∥PyiV∥2

= β2e3βρn(n− 1)(nρ+ (1− ρ))2(1− ρ),

(99)

where the second equality is because ⟨Pyi
V, yi⟩ = 0.∑

i,j

UT
1 R2U3 =

∑
i

βeβ(ρ+1)(eβ − eβρ) (Pyi
V)

T
((−yi + βPyi

yi)⊗ yi + Id) yi = 0, (100)

where the second equality is because ⟨Pyi
V, yi⟩ = 0 and Pyi

yi = 0.∑
i,j

UT
1 R2U4 =

∑
i

βeβ(2ρ+1) (Pyi
V)

T
((yi + βPyi

yi)⊗ yi + Id)V

= βeβ(2ρ+1)
∑
i

∥Pyi
V∥2 = βeβ(2ρ+1)n(n− 1)(nρ+ (1− ρ))(1− ρ),

(101)

where the second equality is because ⟨Pyi
V, yi⟩ = 0 and Pyi

yi = 0.

Next, we estimate the terms involving U2. We first recall that U2 = βeβ⟨yj ,yi⟩ (Pyi
yj). Because

Pyiyj = 0 when i = j, we can just replace eβ⟨yj ,yi⟩ with eβρ in U2, i,e, U2 = βeβρ (Pyiyj).
Hence, ∑

i,j

UT
2 R1U3 = 0,

∑
i,j

UT
2 R1U4 = 0, (102)

because δij(Pyi
yj) = 0 for any i, j in UT

2 R1.∑
i,j

UT
2 R2U3 =

∑
i,j

βeβ(ρ+⟨yj ,yi⟩)(eβ − eβρ) (Pyi
yj)

T
((−yi + βPyi

yj)⊗ yi + Id) yj

= βe2βρ(eβ − eβρ)
∑
i ̸=j

(Pyiyj)
T
((−yi + βPyiyj)ρ+ yj)

= βe2βρ(eβ − eβρ)(βρ+ 1)
∑
i̸=j

∥Pyiyj∥2

= βe2βρ(eβ − eβρ)(βρ+ 1)n(n− 1)(1− ρ2).

(103)

where the second equality is because Pyiyj ̸= 0 only when i ̸= j, on which ⟨yj , yi⟩ = ρ, and the
third equality is because ⟨Pyiyj , yi⟩ = 0.∑

i,j

UT
2 R2U4 =

∑
i,j

βeβ(2ρ+⟨yj ,yi⟩) (Pyi
yj)

T
((−yi + βPyi

yj)⊗ yi + Id)V

= βe3βρ
∑
i ̸=j

(
β∥Pyi

yj∥2(nρ+ (1− ρ)) + (Pyi
yj)

T
V
)

= βe3βρ
∑
i ̸=j

(
β(1− ρ2)(nρ+ (1− ρ)) + (1− ρ)(nρ+ (1− ρ))

)
= βe3βρn(n− 1)(nρ+ (1− ρ))(β(1− ρ2) + (1− ρ)).

(104)
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where the second equality is because Pyi
yj ̸= 0 only when i ̸= j, on which ⟨yj , yi⟩ = ρ, and the

third equality is because ⟨Pyi
yj , yi⟩ = 0.

The proof for Equation (97) is similar to the proof for Equation (91) in Lemma B.8. Notice that when
γ < 1

1−ρ , we need to pick up terms involving neβρ, and the leading order term in Equation (96)
is the one in the second line of Equation (96), which is β2n4e3βρρ2(1 − ρ); when γ > 1

1−ρ , after
diving nZ3, all terms in Equation (96) are on(1) terms.

Lemma B.10 For terms U1,U2,U3,U4 in Lemma B.6, we have that∑
i,j

∥U1 +U2∥2∥U3 +U4∥2

= β2e2βρn(n− 1)(nρ+ 2)(1− ρ)

·
[
(eβ − eβρ)2 + 2eβρ(eβ − eβρ)(nρ+ (1− ρ)) + e2βρn(nρ+ (1− ρ))

]
.

(105)

As a corollary, when we pick β = γ log n, we have the following phase transition limits as n → +∞:

1

nZ4

∑
i,j

∥U1 +U2∥2∥U3 +U4∥2 =


β2ρ2(1− ρ) + on(1) if γ < 1

1−ρ ,
β2ρ(1−ρ)(1+3ρ)

16 + on(1) if γ = 1
1−ρ ,

0 + on(1) if γ > 1
1−ρ .

(106)

Proof 18 (Proof of Lemma B.10) We notice that ⟨U1,U2⟩ = 0 because δijPyi
yj = 0 for any i, j.

So,

∥U1 +U2∥2 = δijβ
2e2βρ∥Pyi

V∥2 + β2e2β⟨yj ,yi⟩∥Pyi
yj∥2

= δijβ
2e2βρ(n− 1)(nρ+ (1− ρ))(1− ρ) + (1− δij)β

2e2βρ(1− ρ2),
(107)

where the second equality is because e2β⟨yj ,yi⟩∥Pyi
yj∥2 ̸= 0 only if i ̸= j, on which

e2β⟨yj ,yi⟩∥Pyiyj∥2 = e2βρ(1− ρ2).

∥U3 +U4∥2 = (eβ − eβρ)2 + 2eβρ(eβ − eβρ)⟨V, yj⟩+ e2βρ∥V∥2

= (eβ − eβρ)2 + 2eβρ(eβ − eβρ)(nρ+ (1− ρ)) + e2βρn(nρ+ (1− ρ)),
(108)

which is independent of i, j. Hence,∑
i,j

∥U1 +U2∥2∥U3 +U4∥2

=
[
β2e2βρn(n− 1)(nρ+ (1− ρ))(1− ρ) + n(n− 1)β2e2βρ(1− ρ2)

]
∥U3 +U4∥2

= β2e2βρn(n− 1)(nρ+ 2)(1− ρ)∥U3 +U4∥2

= β2e2βρn(n− 1)(nρ+ 2)(1− ρ)

·
[
(eβ − eβρ)2 + 2eβρ(eβ − eβρ)(nρ+ (1− ρ)) + e2βρn(nρ+ (1− ρ))

]
.

(109)

The proof for Equation (106) is similar to the proof for Equation (91) in Lemma B.8. Notice that
when γ < 1

1−ρ , we need to pick up terms involving neβρ, and the leading order term in Equa-
tion (105) is is β2n5e4βρρ2(1− ρ); when γ > 1

1−ρ , after diving nZ4, all terms in Equation (96) are
on(1) terms.

Proof 19 (Proof of Theorem 2.3) As we have mentioned at the beginning of Appendix B.2, we only
need to focus the case when γ ≤ 1

1−ρ , which follows directly from Lemma B.8, Lemma B.9, and
Lemma B.10. We notice that, in these three lemmas, the leading order terms are the same, β2ρ2(1−
ρ), which cancels in Equation (86). Hence, when γ < 1

1−ρ , 1
nd∥∇XX ′∥2 = 0 + on(1). When

γ = 1
1−ρ , we also only need to use the corresponding cases in these three lemmas and combine

them in Equation (86) to get the conclusion in Theorem 2.3. One remark is that under Assumption 1,
we have that n ≤ d implicitly. So, when γ = 1

1−ρ , terms in Equation (86) involving β2

d = γ2(logn)2

d

also become on(1).
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C MODIFIED ASSUMPTIONS WITH MORE MEDIAN PHASES

In this section, we modify Assumption 2, so that we can prove the existence of three different
phases like Lemma A.1, Theorem 2.2, Theorem 2.4. We remark that we only showed the existence
of two phases (two extrema) in Lemma A.1, Theorem 2.2, Theorem 2.4, but it doesn’t mean under
Assumption 2, there is no other transition phase between these two phases (two extrema). Under
the following Assumption 3, we can show there are indeed at least three phases. Recall that for any
i ∈ J1, nK, we defined yi = N(xi).

Assumption 3

• For any i ∈ J1, nK, ∥xi∥2 ∈ [q1, q2] for some positive constants q1 ≤ q2.

• There is a τ ∈ (0, 1], four positive constants ρ3, ρ4, κ3, κ4 with ρ3 ≤ ρ4, κ3 ≤ κ4, and
ρ4 < 1, such that for any i ∈ J1, nK, if we define

Ki = {m ̸= i | ⟨ym, yi⟩ ∈ [ρ3, ρ4]} , (110)

then we have that

κ3 ≤ |Ki|
nτ

≤ κ4. (111)

• For any i ∈ J1, nK and any j /∈ Ki∪{i}, ⟨yi, yj⟩ ∈ [ρ1, ρ2] for some nonnegative constants
ρ1, ρ2 satisfying ρ1 ≤ ρ2 < ρ3 ≤ ρ4.

• For technical reason, we further assume that (1− τ)(1− ρ2) + ρ2 < ρ3.

Lemma C.1 Let β = γ log n where γ is a positive constant. Under Assumption 2 and Equation (5),
for any i ∈ J1, nK,

Zi =


(1 + on(1)) ·

(∑
m/∈Ki∪{i} e

aim

)
if γ < min

{
1

1−ρ1
, 1−τ
ρ4−ρ1

}
,

(1 + on(1)) ·
(∑

m∈Ki
eaim

)
if 1−τ

ρ3−ρ2
< γ < τ

1−ρ3
,

(1 + on(1)) · eβ if γ > max
{

1
1−ρ2

, τ
1−ρ4

}
,

(112)

where the terms on(1) go to 0 as n → +∞ with speeds independent of i but only depending on
γ, ρ1, ρ2, ρ3, ρ4, τ, κ3, κ4.

Proof 20 The proof is similar to Lemma A.1. We notice that

Zi = eβ +
∑

m∈Ki

eaim +
∑

m/∈Ki∪{i}

eaim

= nγ +
∑

m∈Ki

nγ⟨yi,ym⟩ +
∑

m/∈Ki∪{i}

nγ⟨yi,ym⟩.
(113)

We also notice that κ3n
τ ≤ |Ki| ≤ κ4n

τ according to Assumption 3. Hence,

κ3n
τ+γρ3 ≤ |Ki| · nγρ3 ≤

∑
m∈Ki

nγ⟨yi,ym⟩ ≤ |Ki| · nγρ4 ≤ κ4n
τ+γρ4 , (114)

and

(n− κ4n
τ − 1) · nγρ1 ≤

∑
m/∈Ki∪{i}

nγ⟨yi,ym⟩ ≤ (n− |Ki| − 1) · nγρ2 ≤ n1+γρ2 . (115)

When γ < min
{

1
1−ρ1

, 1−τ
ρ4−ρ1

}
, the leading order term in Zi is

∑
m/∈Ki∪{i} n

γ⟨yi,ym⟩; when
1−τ

ρ3−ρ2
< γ < τ

1−ρ3
, the leading order term in Zi is

∑
m∈Ki

nγ⟨yi,ym⟩; when γ >

max
{

1
1−ρ2

, τ
1−ρ4

}
, the leading order term in Zi is nγ . We also remark that the last assumption in

Assumption 3 is to ensure the existence of the middle phase, i.e., 1−τ
ρ3−ρ2

< γ < τ
1−ρ3

. This finishes
the proof for Lemma C.1 by similar arguments as in Lemma A.1.
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A direct corollary of Lemma C.1 is the following theorem.

Theorem C.2 Under Assumption 2 and Equation (5) we have the following phase transition phe-
nomena: let β = γ log n where γ is a positive constant. For any i ∈ J1, nK the updating dynamics
Equation (5) can be written as

x′
i = αxi +


∑

m/∈Ki∪{i} eaimym∑
m/∈Ki∪{i} eaim

+ on(1) if γ < min
{

1
1−ρ1

, 1−τ
ρ4−ρ1

}
,∑

m∈Ki
eaimym∑

m∈Ki
eaim

+ on(1) if 1−τ
ρ3−ρ2

< γ < τ
1−ρ3

,

yi + on(1) if γ > max
{

1
1−ρ2

, τ
1−ρ4

}
,

(116)

The terms on(1) represent vectors in Rd with norms going to 0 as n → +∞, with a speed indepen-
dent of i but only depending on γ, ρ1, ρ2, ρ3, ρ4, τ, κ3, κ4.

The proof of Theorem C.2 is similar to Lemma C.1 so we omit its proof.
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