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Abstract

Partial differential equation (PDE) based brain tumor growth models have the potential
to personalize glioma therapy. However, calibrating these models to individual patients is
computationally expensive using traditional optimization techniques. In this work, we pro-
pose an approach leveraging the differentiability of deep learning (DL) based PDE forward
solvers to efficiently calibrate the tumor models. Through gradient-based optimization with
respect to the input tumor parameters, we iteratively minimize the loss between the pre-
dicted and actual tumor distribution in the patient’s MRI scans. We evaluate our method
on a cohort of nine glioma patients and demonstrate a dramatic reduction in the time to
solve the inverse problem from hours, using typically employed evolutionary sampling or
Monte Carlo methods, to minutes while achieving comparable modeling results.
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1. Introduction

Despite advances in understanding the complex tumor biology and extensive clinical trials
(Weller et al., 2021), the treatment of glioblastoma, the most common and most malignant
form of primary brain tumors, remains a formidable challenge due to the tumor’s tendency
to spread into surrounding brain tissue. Radiotherapy is a cornerstone of treatment aimed
at balancing effective tumor irradiation with minimal damage to surrounding healthy brain
tissue. Current planning primarily uses MR and CT imaging to define a clinical target
volume, which includes a uniform margin around the tumor to accommodate diffuse spread
but lacks patient-specific customization (Niyazi et al., 2023).

Tumor modeling can help by providing a personalized and dynamic understanding of
tumor growth and spread, enabling the design of targeted and more effective treatment
strategies. Sampling-based methods like Markov Chain Monte Carlo offer high-precision
modeling (Lipková et al., 2019). They require many costly forward runs, resulting in a
typical runtime of multiple hours to days for the inverse fitting problem.

Deep learning methods, on the other hand, can directly predict tumor growth parameters
without iterative optimization, finishing in minutes (Ezhov et al., 2023; Pati et al., 2021).
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However, these DL approaches are yet far from optimal due to their inherent challenge
to generalize reliably to unseen cases. In an attempt to improve the performance of such
methods, we propose a technique combining the speed advantage of learnable methods with
the adaptability of gradient-based optimization. We learn the well-posed forward simulation
with a DL model and optimize its inputs to solve the inverse problem.

2. Methods

We aim to fit a PDE-based biophysical brain tumor model with unknown tumor parameters
θ to a patient’s MR image1.
Forward Tumor Solver: Tumor growth encompasses two fundamental processes: prolifer-
ation and diffusion. Thus, the progression of the tumor cell concentration c can be described
by a PDE with diffusion coefficient D and growth rate ρ as free parameters θ = {ρ,D}2:
∂c
∂t = ∇ · (D∇c) + ρc(1 − c). In addition to the tumor parameters, the model inputs the
patient-specific tissue anatomy3 T and outputs a prediction ĉ for the tumor concentration
c. A detailed description is provided in (Ezhov et al., 2023). We replace the typically used
non-differentiable numerical solver with a neural network f , parametrized by weights ϕ,
to predict the tumor concentration ĉ = fϕ(θ, T ). Here, we adapted the learnable forward
solver from (Ezhov et al., 2021) and trained it on 10,000 simulations within a brain atlas
(Rohlfing et al., 2010) created by a high-precision numerical solver (Lipková et al., 2019).
Inverse Parameter Optimization: To efficiently solve the inverse problem, we employ
gradient-based optimization (Figure 1). Therefore, we start with an initial forward run
and backpropagate the loss in predicted tumor concentration with respect to the tumor
parameters ∇θ ĉ = ∇θfϕ(T, θ) through the network. It is important to note that we do
not derivate with respect to the (fixed) weights ϕ but to the input parameters θ. Utilizing
this gradient, we can iteratively update θ with a gradient-based optimization step S as:
θNew = S(θ,∇θfϕ(T, θ)). For that, we used the Adam optimizer (Kingma and Ba, 2014).
By fixing the network’s weights (ϕ) when we solve the inverse problem, we aim to adhere
to physical modeling constraints in our solution.
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Figure 1: Personalizing tumor models to an individual patient. After initialization with
tumor parameters and tissue, the forward tumor model predicts a tumor concentration.
Then, the tumor parameters are optimized iteratively using backpropagated gradients of
the loss between the prediction and the MRI.

1. Tumor segmentation of edema and contrast-enhancing tumor.
2. The end time is normalized and the tumor origin is fixed at the center of mass of the tumor segmentation.
3. The segmented white and gray matter and CSF masks.

2



Rapid Personalization of PDE-Based Tumor Growth using a Differentiable Forward Model

3. Experiments and Results

We first evaluate our method on synthetic cases, where we achieve a Dice score of 0.92
± 0.01 for edema and 0.89 ± 0.02 for the tumor core. Next, we validate our method
in nine glioblastoma patients by comparing the predicted tumor concentration with the
observed tumor segmentations. We assume a typical tumor concentration threshold of 0.25
for edema and 0.675 for the tumor core to threshold tumor concentration into segmentations
(Ezhov et al., 2023). We find that our method performs remarkably similar to the standard
evolutionary sampling4 at a runtime comparable to inverse DL methods, which we clearly
outperform in accuracy (Table 1). An example patient is shown in Figure 2.
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Figure 2: Demonstration of our method on one patient. The images show a patient’s MR
scan, the segmentations of the contrast-enhancing and edema region, and the optimized
network prediction of the tumor concentration ĉ.

Table 1: Dice score in contrast-enhancing tumor (CET) and edema as well as the runtimes
in nine glioblastoma patients.

Method Dice CET Dice Edema Runtime [min]

Ours 0.75 ± 0.02 0.65 ± 0.03 1.2 ± 0.1
Evolutionary Sampling 0.70 ± 0.03 0.70 ± 0.02 978 ± 102
One-shot DL (Ezhov et al., 2023) 0.34 ± 0.09 0.55 ± 0.04 < 1 min

Conclusion: Our method, leveraging the differentiability of a deep learning solver for
gradient-based personalization of a growth model, shows promising results on real patient
cases. It combines the speed of DL methods with the adaptability of gradient-based op-
timization. These results warrant future studies into more complex growth models and
network architectures.
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4. We used CMA-ES (Hansen and Ostermeier, 2001) with the forward solver of (Lipková et al., 2019).
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Jana Lipková, Panagiotis Angelikopoulos, Stephen Wu, Esther Alberts, Benedikt Wiestler,
Christian Diehl, Christine Preibisch, Thomas Pyka, Stephanie E Combs, Panagiotis Had-
jidoukas, et al. Personalized radiotherapy design for glioblastoma: integrating mathe-
matical tumor models, multimodal scans, and bayesian inference. IEEE transactions on
medical imaging, 38(8):1875–1884, 2019.

Maximilian Niyazi, Nicolaus Andratschke, Martin Bendszus, Anthony J Chalmers, Sara C
Erridge, Norbert Galldiks, Frank J Lagerwaard, Pierina Navarria, Per Munck af Rosen-
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