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ABSTRACT

Natural language has the universal properties of being compositional and grounded
in the real world. A popular method to investigate the emergence of linguistic
properties is by simulating emergent communication setups with deep neural agents
in referential games. Despite growing interest, experiments have yielded mixed
results compared to similar experiments addressing linguistic properties of human
language. Here we address representational alignment as a potential contributing
factor to these results. Specifically, we investigate the alignment between agent
image representations and between agent representations and the input images.
We first revisit and confirm that the emergent language in the common referential
game does not appear to encode conceptual visual features, since agent image
representations drift away from the input whilst inter-agent alignment increases.
We further find a strong relationship between inter-agent alignment and topographic
similarity, a common metric for compositionality, and address its consequences.
We then introduce an alignment penalty that results in equivalent communicative
success but prevents representational drift. Overall, we show critical differences
between emergent solutions from humans and neural agents and highlight the
importance of representational alignment in simulations of language emergence.

1 INTRODUCTION

Human language has unique properties that make it a powerful tool for communication. A well-known
property is compositionality: the ability to combine meaningful words into more complex meanings
(Hockett, |1959). The emergence of compositionality is studied extensively in the field of language
evolution through human experiments (e.g.,|Selten & Warglien, [2007; Kirby et al., [2008; 2015} Raviv,
et al.| 2019a). An important finding from this field is that the unique nature of human language can
be explained as a consequence of biases for simplicity and expressivity imposed during continuous
language learning and use (Smith, |2022). Besides experimental studies, computational simulations
have also been used to study the emergence of linguistic properties (e.g.,|/de Boer, 2006} Steels &
Loetzschl 2012), and have seen a rising interest in the field of computational linguistics (Lazaridou &
Baroni, |2020). Here, the degree of compositionality in the emergent protocols is commonly measured
through topographic similarity (TOPSIM; Brighton & Kirby, [2006). It measures the topographic
relation between meanings and signals, conceptually it gauges whether similar meanings map to
similar signals. This metric was introduced in simulations of emergent communication by |[Lazaridou
et al.| (2018)) and has been used in a large body of work since. Yet, it is still unclear how the emergence
of linguistic properties in simulations should be interpreted seeing that language protocols used
among artificial agents often show critical mismatches with known properties of human languages
(Galke et al.l 2022} |[Lian et al.|[2023). It is therefore crucial to obtain deeper insight into referential
games in the language learning setting (Rita et al.| 2022).

A possible explanation for these mismatches could stem from representational alignment, the degree of
agreement between the internal representations of two information processing systems (Sucholutsky
et al.,|2023)). To the best of our knowledge, representational alignment was first, and only, reported
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Figure 1: Left: communicative performance on three datasets across 15 seeds, using the best-
performing parameters from our parameter sweep. Middle: inter-agent representational alignment
(RSA) between the agents. Right: topographic similarity (TOPSIM) between the image input and the
produced messages. Dashed green lines indicate averages.

by Bouchacourt & Baroni| (2018)), who measured the degree to which communicating agents aligned
their internal image interpretations (inter-agent alignment) by performing Representational Similarity
Analysis (RSA; [Kriegeskorte et al.| [2008). Using RSA (§3)), they showed that agents establish
successful communication artificially by aligning their internal image representations while losing
any relation to the images presented (image-agent alignment), enabling communication about noise
input even though they were trained on real images. As such, their language protocol captured
not conceptual properties of the objects depicted in pictures but most likely focused on spurious
image features. While inter-agent alignment is not a problem per se, losing image-agent alignment is
problematic for two reasons. Firstly, for simulations of emergent communication to be informative of
human language emergence, agent image representations must be grounded in what is represented in
the images. Only then can we deduce what the agents communicate about and investigate linguistic
properties or their ability to generalise to novel concepts. Secondly, emergent communication
setups have been proposed to fine-tune pre-trained (vision-)language models to enhance machine
understanding of natural human language (Lazaridou & Baroni, |2020; Lowe et al.| 2020; [Steinert-
Threlkeld et al., 2022; |Zheng et al.||2024)). Here, representations must maintain substantial alignment
with the image to maintain mutual understanding with humans.

Representational alignment, however, did not receive the necessary attention since a host of papers
appeared after the findings by Bouchacourt & Baroni|in which results on referential games were
reported without taking RSA into account (e.g., [Lazaridou et al.l 2018} |Guo et al.| 2019; L1 &
Bowling, 2019; Ren et al.l 2020; [Chaabounti et al., 2020b; [Dagan et al., 2021; Mu & Goodman,
2021} |Chaabouni et al., 2022). Admittedly, some use attribute-value objects and not real images as
input. But importantly, the problem of inter-agent alignment is agnostic to the input type and can
always occur when agents map inputs into an agent-specific representation, which is the case for
almost all simulations. Although this warrants further analysis of earlier results, the field is already
employing referential games in even more complex simulations with real images (e.g.,|Dessi et al.,
2021 /Chaabouni et al., [2022; [Mahaut et al., 2024]).

This work addresses the understudied alignment problem in standard referential game setups used
in emergent communication. We train Reinforcement Learning (RL) agents equipped with a recent
vision module (DinoV2;|Oquab et al., 2024) to communicate about images. In addition to evaluating
the agents on MS COCO (Lin et al., 2014) image pairs, we evaluate on noise pairs and image pairs
sourced from the Winoground dataset (Thrush et al.l 2022)). The latter is explicitly created to gauge
visio-linguistic compositional reasoning abilities of vision and language models. We first confirm that
effective communication in the referential game relies on inter-agent alignment and then move on to
our contributions. First, we find a strong correlation between the degree of inter-agent alignment and
the TOPSIM metric. Our second contribution consists of a solution to the alignment problem (§3) by
including an alignment penalty term to the loss, resulting in equivalent communicative success and
higher TOPSIM whilst ensuring that the agents communicate about images instead of spurious features
(Figure [T). We then argue to start evaluating emergent communication protocols on more strict
tasks that directly target the intuition behind popular metrics to obtain a clearer understanding of the
protocols. Overall, our results highlight the importance of representational alignment in simulations
of language emergence, and underscore the need to better understand the contradictions between
human and artificial language emergence.
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2 BACKGROUND

Most research in simulating emergent communication is modelled after the Lewis signalling game
(Lewis| [1969) with a speaker and a listener agent. The speaker observes an environment state
(e.g., an image) and sends a signal to the listener who acts based on this signal. In the case of the
referential game, this means selecting a target among multiple distractors. Both agents are rewarded
for successful communication, meaning the listener points to the target object. The solution of
this game requires the agents to have a shared protocol (i.e., an artificial language) which typically
emerges when the agents learn based on trial and error over multiple games. This is similar to
how language learning and use for humans impose constraints like pressures for learnability and
compression that shape our language design (Kirby et al.,|2014;2015)). Importantly, the emergent
language in this setup is also shaped by biases resulting from, for example, the agent architecture,
loss function, and learning protocol Rita et al.|(2022). In the current work, we use the referential
game: a variant of the Lewis signalling game which is extensively used in linguistic and cognitive
studies to explore language evolution (e.g.,|Steels & Loetzsch,|[2012} Kirby et al.,|2015; [Lazaridou
et al.| 2017 [Kottur et al., 2017} [Lazaridou et al., [2018; Kharitonov et al.| [2020; |Chaabouni et al.|
2022).

An important challenge in emergent communication is that artificial learners often do not behave
the same way as human learners in experimental settings. Some emergent protocols do not follow
Zipf’s law and thus are anti-efficient unless pressures for brevity are introduced (Chaabouni et al.,
2019al), others do not show the word-order vs. case-marking trade-off found in human languages
(Chaabouni et al.l 2019bj [Lian et al.| [2021)). It has been suggested to introduce communicative
(e.g., alternating speaker/listener roles) and cognitive (e.g., memory) constraints (Galke et al., 2022)
and use more natural settings to promote more human-like patterns of language emergence with
neural agents (Kouwenhoven et al.,|2022). An example of such work, investigating the word-order
vs. case-marking trade-off, has succeeded in replicating this trade-off for neural learners (Lian
et al.}2023). Their setup differs from other work in that agents first learn a miniature language via
supervised learning, and then optimise it for communication via RL, resulting in emergent languages
that share linguistic universals with human language. Yet, their work is based on the reconstruction
game, not the referential game, the topic of this paper.

To enhance understanding of emergent communication in the Lewis game, [Rita et al.| (2022) de-
composed the standard objective in Lewis games into two key components: a co-adaptation loss
and an information loss. In doing so, they shed light on potential sources of overfitting and how
they might hinder the emergence of structured communication protocols. They demonstrated that
desired linguistic properties (e.g., compositionality and generalizability) emerge when they control
the listener’s ability to converge to the speaker agent (i.e., control for overfitting on the co-adaptation
loss). While the co-adaptation loss has parallels to inter-agent alignment, their work does not address
the alignment between the agents’ image representation and the input features, which we deem crucial
in developing grounded communication protocols.

Another challenge in emergent communication is the disentanglement of the underlying meanings
of emergent languages. Earlier research suggested that the meanings agents assign to symbols
capture general conceptual properties of the objects in images rather than low-level visual properties
(Lazaridou et al., [2017). However, as previously mentioned, follow-up work from |Bouchacourt;
& Baroni| (2018) showed this is not always the case, as agents align their agent-specific image
representations and do not share a language that captures conceptual properties depicted in the images.
Moreover, agents lost any sense of meaningful within-category variation where two similar objects
in human perception (e.g., two avocados) were observed as maximally dissimilar for the agents.
Although this is a pressing matter that needs to be addressed before continuing with multi-modal
setups, to the best of our knowledge, there has been little attention to their results apart from testing
whether trained agents can communicate about noise (Dessi et al., [2021} [Mahaut et al., 2024)).

3 REPRESENTATIONAL ALIGNMENT

Representational alignment is the degree of agreement between the internal representations of two
information processing systems, whether biological or artificial (Sucholutsky et al.,|2023)). Even
though representational alignment is widely recognised in cognitive science, neuroscience, and
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machine learning (Sucholutsky et al.| |2023), it has not seen much interest in the field of emergent
communication, except for the work by |Bouchacourt & Baroni/ who analysed the referential game
using RSA. This metric measures the alignment between two sets of numerical vectors, for example,
image embeddings and agents’ representations thereof. In practice, it is calculated by taking the
pairwise (cosine) distances between vectors of a set and calculating the Spearman rank correlation
between these distances.

Representational alignment is also operationalised using RSA in this paper. Given the speaker image
representations rg of the DinoV2 input embeddings ¢ and r; as the same images represented in the
listener representation space, we compute the pairwise cosine similarity between the representations
for the speaker s¢ and for the listener s; and calculate Spearman’s p between s, and s;. As such,
this measures the degree of inter-agent alignment (RSAg;) between image representations s, and
sy, relative to their input. Additionally, we use it to measure image-agent alignment between the
speaker/listener image representations and the DinoV2 embeddings (RSAg; and RSA;;). Importantly,
alignment is agnostic to the type of input, being either images or attribute-value objects and can
always happen when inputs are projected onto agent-specific representations.

Intuitively, a high inter-agent RSA; value can be interpreted as agents with similar representations
for similar images. Importantly, this can have two causes: both agents’ image representations either
maintain a relation to the image input, or lose this relation. While the former is desirable, the latter
means that the agents are not communicating about the same high-level image features but are likely
communicating about spurious features. A low RSAg; value entails that the agents have developed
different interpretations for the same image. While this may well be similar to the question of
whether people have different perceptual experiences of colour (Locke,|1847), in the case of emergent
communication, the agents should develop a grounded vocabulary with overlapping concept-level
properties if we wish machines to have more natural understanding of human language. Whereas
Bouchacourt & Baroni| (2018) used RSA to indicate the alignment problem, we use it as 1) a metric to
re-assess their findings in whether the agents create messages based on the image features and 2) as
an auxiliary loss to mitigate the alignment problem and ensure that the agents communicate about
image features.

4 METHODS

The standard referential game is used as provided by the EGG framework (Kharitonov et al., 2021).
Doing so ensures that our findings are representative of this setup and not specific to design choices.
The game is implemented as a multi-agent cooperative RL problem where a speaker and a listener
communicate to discriminate a target image from two shuffled distractor images. The speaker receives
a target t and generates a message m of at most length L, using vocabulary V. Importantly, the
messages and symbols have no a priori meaning but are assumed to obtain meaning and become
grounded during the game. The meaningful symbols are ideally combined in a structured manner
to create compositional messages that express more complex meanings. Using message m, the
listener guesses the target £. Communicative success is defined as = ¢, meaning that the listener has
correctly identified the target image among the candidate images.

4.1 AGENTS

The agents contain a language and a vision module. The latter consists of a frozen pre-trained visual
network (DinoV2) and a trained agent-specific representation part. While it is difficult to know
exactly what conceptual image features are present in DinoV2 embeddings, they provide rich enough
features for semantic segmentation (Oquab et al.| [2024), which is similar to the agents’ task. The
language module is trained from scratch.

The speaker performs a linear transformation on the image embeddings to obtain its agent-specific
image representation rs followed by batch normalisation. Its language module embeds this represen-
tation and passes it through a single-layer Gated Recurrent Unit (GRU;|Cho et al.| 2014)) that spells
out messages to describe the target. The listener receives the message and the distractor images. It
encodes the message into an embedding using another single-cell GRU layer. Additionally, a listener
image representation 7; is obtained for each image by performing a linear transformation followed by
batch normalisation. Subsequently, temperature-weighted (temperature defaults to 0.1) cosine scores
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Figure 2: Exemplar pairs used for evaluation. Left: an image pair from MS COCO. Middle: A
Winoground example. Right: A Gaussian noise pair. All images are cropped for display purposes.

construct a multi-modal representation between the image and message representation (Dessi et al.]
2021)), where a higher probability should be assigned to the target image.

4.2 OPTIMISATION

Communicative success (f = t) is used to optimise the trainable parameters of both agents. The
listener is optimised to minimise cross-entropy (ce) loss using stochastic gradient descent, amounting
to supervised learning. The ce loss is calculated over the listeners’ target distribution, thus providing
direct pressure for communicative success. At inference, the candidate image with the highest
probability is chosen as the target {. The gradients required to optimise the speaker are calculated
using the REINFORCE (Williams}, [1992)) update rule as each generated symbol must be assigned a
loss. Following common practice (Rita et al., [2024), entropy regularisation (Mnih et al., 2016) is

added to the loss to maintain exploration in message generation.

In addition to the conventional ce loss, we introduce an alignment loss (ce + RSA) that includes an
alignment penalty term to enforce high inter-agent and image-agent alignment. The term

Lgsa = (1 = RSAg) + (1 — RSAg;) + (1 — RSAy)

is added to the ce loss with equal importance. We use torchsort (Blondel et al., [2020)) to calculate Lgg,
such that the entire loss term is differentiable. Importantly, Lgs, is not influenced by communicative
success and does not interact with the ce loss (Appendix [C). Only adding RSA; to the ce loss is not
sufficient, as high inter-agent alignment can be achieved while losing image-agent alignment (see
§E|). Including RSA,; and RSAy; intuitively ensures that the agents communicate about the content
displayed in the images. In both cases, we train for 30 epochs. The hyperparameters which resulted
in the best validation accuracy across 42 different communication channel capacities (Appendix [A])
were used for our findings (Appendix [B).

4.3 DATA

The agents are trained to discriminate images from MS COCO but tested on three different datasets
(FigurelZ[) to assess out-of-distribution (0.0.d.) performance.

MS COCO - We use a subset of 1200 images from the MS COCO 2017 validation set to train and
test the agents using an 80/20 split. To obtain this subset, we first select the categories that contain
more than 100 images (12 categories) and subsequently sample 100 images for each supercategory
present in the resulting set of images. The distractor images are sampled from the same category to
ensure that there is some relevance to the target image. Importantly, sampling distractor images is
done for each batch, meaning targets have different distractors at each epoch.

Winoground — The Winoground dataset (Thrush et al.}[2022)) was created to assess the visio-linguistic
compositional reasoning abilities of vision and language models. Here, we repurpose it as a proxy for
the agents’ ability to endow in compositional reasoning for image-based settings. The dataset contains
800 images and corresponding captions, comprising 400 Winoground pairs. Image-caption pairs
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Figure 3: Left: Learning curves for the MS COCO dataset on train and validation data. Middle:
Representational alignment between the agents’ image representations (green) and between the image
features and the sender/listener representations (purple, red). Right: The evolution of topographic
similarity (TOPSIM). Data is averaged over 15 seeds, areas indicate the 95% confidence intervals.

were included when the captions share the same words but are of different compositions, implying
completely different semantics (e.g., “a tree smashed into a car” versus “a car smashed into a tree”).
We only use the image pairs, not the captions. Crucially, this task differs from MS COCO since the
image pairs are fixed, conceptually similar and meant to be discriminative if the agents’ language
allows for compositional reasoning and is grounded in the visual modality.

Noise — Following [Bouchacourt & Baroni| (2018)), we test whether agents can communicate about
Gaussian noise (4 = 0,0 = 1) pairs when trained on real images. This would imply that messages
communicate about spurious instead of high-level concept features.

4.4 METRICS

The performance of our agents is assessed by communicative success (accuracy) and RSA (§3)
measures alignment. The degree of compositionality in the emergent language is assessed through the
TOPSIM metric. Other computational metrics for compositionality like positional disentanglement,
bag-of-symbols disentanglement (Chaabouni et al.l 2020b), or metrics of compositionality that
allow for natural language-like variation, e.g., synonymy, homonymy, freedom, or disentanglement
(Conklin & Smith| [2023)) are not appropriate due to the continuous nature of the image embeddings.

5 RESULTS

5.1 COMMUNICATIVE SUCCESS

The results are given in Figure[l| Using an emergent language, agents can disambiguate images
among MS COCO pairs. Additionally, we observe that agents can communicate about Gaussian noise
when trained on real images, confirming previous work (Bouchacourt & Baroni,|2018) and suggesting
that the messages convey spurious features rather than concept-level information. Performance on
noise is roughly the same on average as on the Winoground pairs, which requires the messages
to capture concept-level properties, showing it is difficult to discriminate between strict pairs of
conceptually similar images. Compared to MS COCO, the lowered o.0.d. performance is like what is
observed in other work (Lazaridou et al., 2018} |Conklin & Smithl [2023)).

5.2 THE ALIGNMENT PROBLEM

The solid lines in Figure [3|(middle) clearly show that inter-agent alignment increases while alignment
sensitivity to image features decreases for both agents. In principle, it is not a problem that the agents’
image representations align. However, it is problematic when the alignment between the image
embeddings and the image representations declines. Ablations across different channel capacities
(§A) and pre-trained vision modules (§D) showed that these trends appear consistently and are not
influenced by the capacity or type of vision model. This re-confirms that the agents do not learn to
extract concept-level information from the image embeddings but instead solve this task differently.
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5.3 TOPSIM AND ALIGNMENT

Earlier findings show mixed results on the relationship between TOPSIM and generalisation in image-
based settings, TOPSIM was either related to generalisation (Chaabouni et al.,2022)) or not (Rita et al.}
2022). Our results indicate that generalisation and TOPSIM are correlated with both ce (r = .856,
p < .001) and ce +RSA (r = .767, p < .001) losses. Meaning that more structured languages enable
better communication on unseen validation pairs. Moreover, Figure fi] shows a strong positive
relationship between RSAg; and TOPSIM (r = .838, p < .001) in the ce. This relation is also present
in the ce + RSA setup (r = .408, p = .001), but is decoupled from TOPSIM given the (very) small
spread (o = .003) of RSA;;. We do not observe an influence of inter-agent alignment on the number
of uniquely produced messages.
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Figure 4: The relationship between TOPSIM and inter-agent alignment (RSA ;) for both loss types.

5.4 MITIGATING THE ALIGNMENT PROBLEM

We now focus on the ce + RSA setup for which we want the agents to maintain alignment with the
image embeddings. Figure [3]shows that this is the case: inter-agent alignment and agent-image
alignment increase during training and remain high at inference. There does not seem to be a benefit
for communicative success at inference time (Figure [T). This is because the alignment penalty
only forces agents to represent images similarly to the image embeddings and is independent of the
cross-entropy loss used to assess the success of communication (Appendix [C)). In the case of noise
images, we still observe above-chance performance, suggesting that communication between the
agents still occurs in an artificial manner.

The alignment penalty also leads to increased TOPSIM, indicating a higher level of structure (Figure
3) and strengthens our finding that TOPSIM and inter-agent alignment are related. Suggesting that the
observed variations in TOPSIM, whether higher or lower, as noted in previous studies (e.g., Kottur
et al.,2017; |Chaabouni et al., 2020b)), should not be interpreted without considering alignment since
they may be attributable to this underlying artefact rather than alterations to the original setup.

When tested on more strict Winoground pairs, communicative success does not improve as a result of
using the alignment penalty. Given the correlation between TOPSIM and generalisation (§5.3)), this
is surprising since the higher degree of TOPSIM should imply that the language is more structured.
Moreover, both, RSA; and RSA;; have not drifted away from the image features. This combination,
in theory, should be ideal for discriminating image pairs from the Winoground dataset since it was
designed to be discriminative with compositional visio-linguistic reasoning. However, in practice
this is not the case.

6 DISCUSSION

In this work, we revisited the representational alignment problem in a common setup used in emergent
communication and proposed a solution to this underrepresented problem. We corroborated earlier
findings by showing that agents align their image representations and rely on spurious image features
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instead of concept-level information (Bouchacourt & Baronil 2018). We then showed that inter-agent
alignment strongly correlates with the commonly used TOPSIM metric. Our solution to the alignment
problem involves an alignment penalty that forces the agents to remain aligned with the input features
and mitigates the alignment problem without decreasing communicative success. Finally, when agents
are tested on more challenging Winoground pairs they maintain reasonable but lower performance
while representing images similarly to the image embeddings, instead of relying on spurious features.
With this work, we hope that the alignment problem will receive more attention in the field of
emergent communication, as is already the case in adjacent fields (Sucholutsky et al., 2023)).

It is common practice in simulations of emergent communication to process (visual) inputs into an
agent-specific hidden representation and update their weights simultaneously (e.g.,|Lazaridou et al.,
2017} |Bouchacourt & Baroni, 2018; |(Chaabouni et al., [2019a; 2020bj [Rita et al., [2022). As such,
inter-agent alignment, irrespective of the input form, likely happens in other simulations too. This
phenomenon is therefore potentially widespread and perhaps the cause for findings that are at odds
with experimental findings. While it is not always the case that the representation structure we expect
to help solve a task will do so (e.g., [ Montero et al., 2021} Xu et al., | 2022), such discrepancies may
hinder the use of emergent communication models in developing a more natural understanding of
human languages and leave them less suitable for directly simulating language evolution phenomena.
Especially if we want machine representations of natural language to align with human representations
(Sucholutsky et al.,[2023)). RSA should therefore be used to rule out, or at the bare minimum report
about, representational alignment in the future.

Measuring representational alignment using RSA is similar to how TOPSIM measures the structure in
messages. They differ in their inputs but both measure the correlation between pairwise distances,
which are metric-agnostic. Crucially, the input makes all the difference, the inputs for RSA are from
both agents and are trained independently, whilst TOPSIM only assesses the relation between the fixed
inputs and learned output. Despite the similarities, the metrics thus describe different phenomena and
are rarely reported simultaneously.

We hypothesise that the relationship between TOPSIM and inter-agent representational alignment is a
by-product of the setup, which in essence implies that the listener has to align its representation 7; to
the speaker representation 75 (Rita et al.| 2022)). It has to do so using only the speakers’ messages,
which are an abstraction of 5. A solution to this problem is to align representations, which eases the
listeners’ training objective. If the speaker consistently produces structured messages during training,
aligning r; to 7, is easier, thereby causing higher inter-agent alignment. Essentially, this renders
TOPSIM to be an indirect metric for the rate of alignment, for which RSA; is a direct metric. In the
context of learnability, the found relationship between TOPSIM and inter-agent alignment and that
alignment always occurs can be seen as reasons for why languages with higher TOPSIM are easier
to learn (L1 & Bowling}, 2019; |Cheng et al.,|2023)). This underscores the need to report inter-agent
representational alignment to avoid conclusions drawn about the effect of specific interventions on
TOPSIM which may be attributable to inter-agent alignment.

We used the Winoground dataset as a proxy for the agents’ ability to endow in compositional
reasoning for image-based settings. Good performance on the Winoground dataset requires a
grounded vocabulary that can be used to create compositional messages since the objects and their
underlying relations need to be described. In general, we suggest to start evaluating simulations of
referential games on targeted strict tasks, like probing state-of-the-art vision language models on e.g.,
visio-compositional (Thrush et al., |2022; Diwan et al., 2022} |[Hsieh et al., 2023} |Ray et al., 2023)) or
spatial (Kamath et al., 2023)) reasoning. Re-purposing such datasets can reveal more directly whether
agents develop the attested communicative abilities that are trivial to humans without relying on
metrics. Our results illustrate this through another shortcoming of the TOPSIM metric. We observed
that agents still struggle with distinguishing pairs of conceptually similar Winoground images even
though TOPSIM is higher with the alignment penalty. If the language protocol were to communicate
concept-level information and compositional messages were created, we should not observe this
struggle, meaning that the protocols do not enable human-like communicative success.

An important implication of our findings concerns the standard practice of reporting 0.0.d. accuracy
where the agents are tested on unseen input after training (e.g., /Auersperger & Pecinal 2022; |Conklin
& Smith, [2023). This should inform about the agents’ ability to generalise from one dataset (e.g.,
MS COCO) to another dataset (e.g., the Winoground pairs) much like human language allows us to
talk about an infinite number of situations. Crucially, this overlooks the representational alignment
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problem in that we do not know what the agents are precisely generalising about. This problem
can be mitigated with the alignment penalty to assess generalisation more directly. We assess 0.0.d.
performance on the more challenging Winoground pairs and observe roughly equal accuracy when
the alignment penalty is used compared to the ce loss. Interestingly, the 0.0.d. performance remains
substantially above chance in the ce + RSA setting. Given that MS COCO is not a dataset for learning
to model compositionality, this delineates the limits of what can be achieved qua performance
based on MS COCO image features in the Winoground context. Nevertheless, this leaves open
the question of above-chance performance on Gaussian noise with the ce 4+ RSA loss. A tentative
explanation is that the higher inter-agent alignment on noise input (M. = .428, Mceyrsa,, = -943,
t = —8.71, p < .001) alleviates part of the problem. To validate this, future experiments should
involve controlling the prior distributions of the agents’ image encoders by training their vision
modules on different data. Doing so ensures that they have to communicate about novel objects and
cannot rely on similar representations.

7 CONCLUSION

This paper revisits the underrepresented alignment problem present in the well-known referential
game often used in simulations of emergent communication. Specifically, we focused on the problem
of increasing alignment between agent-image representations in combination with a decreasing
alignment between the input and agent representations. We first confirmed that the emergent language
in referential games does not appear to encode visual features, since the agents align their image
representations while losing connection to the input. We then showed that, in the common setup,
inter-agent alignment is related to topographic similarity, and argued that this renders TOPSIM an
indirect metric of the rate of inter-agent alignment. To further investigate the effects of alignment, we
introduced an alignment penalty to mitigate the alignment problem and showed communicative ability
on a strict compositionality benchmark. Our findings underscore critical differences between human
and artificially emergent solutions within the prevalent referential setup, and highlight the importance
of representational alignment and its potential impact on simulations of language emergence. We
hope that future work rules out or at least reports about representational alignment.

8 LIMITATIONS

Our work is limited in that it only involves the referential game. Another popular variant, the
reconstruction game (e.g.,|Chaabouni et al.,[2019a; 2020a} |Lian et al., 2021} |Conklin & Smith} 2023),
requires the listener to reconstruct the input object based on the speakers’ message. This setup
may present different learning biases and thus have different results. We still expect inter-agent
representational alignment to happen while losing connection to the image embeddings since there is
no pressure to retain the latter connection. It would, however, be interesting to investigate whether
the language protocol in this scenario is more structured than in the referential game.

Another limitation in our setup is that we only consider the scenario with two agents, which may be a
requirement for alignment to be possible. Since experiments with human participants show that larger
communities create more systematic languages (Raviv et al., |2019b)), simulations on emergent multi-
agent communication with populations of agents are also conducted, but these mostly yield negative
(i.e., the emergent language protocol is not more structured) results (Michel et al.,[2023)). Nevertheless,
we believe that emergent communication with populations of agents is ecologically more valid and
could result in different alignment effects since this introduces the pressure to communicate with
more than one other agent.

The last potential limitation of our study regards its scale. While simulations of emergent commu-
nication are typically conducted on relatively small-scale datasets, human language acquisition is
accompanied by rich and diverse multi-modal experiences. Recent results in the field of computer
vision suggest that dataset diversity and scale are the primary drivers of alignment to human represen-
tations (Conwell et al.| 2023; Muttenthaler et al.l | 2023). As such, this key difference between the
setting of artificial emergent communication and human language acquisition can drive the observed
differences in representations. Due to the difficulty of interpreting these representations, we see this
as another reason to evaluate emergent protocols on more strict datasets with clear pragmatic value
for humans.
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A CHANNEL CAPACITY

To test to what degree communicative success, TOPSIM, and representational alignment are con-
founded with the communication channel capacity, we ran simulations altering the vocabulary size
(V = {3,5,10, 20,40, 50,100}) and message length (L = {2,3,5,10,50,100}) resulting in 42
parameter settings per loss type.

Overall, performance is relatively independent of the chosen configuration, but vocabulary size
influences success more than message length (Figure [5). The hyperparameters that resulted in the
best validation accuracy (i.e., generalisation; [Chaabouni et all,[2022)) for the standard ce setup were
V = 40 and L = 2. These are used in the main paper. Contra expectations, this is also true for
TOPSIM, which, especially in the case of ce + Lgs,, is higher when messages are shorter but have
access to a larger vocabulary (Figure [6)).
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Figure 5: The validation accuracy as a dependent factor of the vocabulary size and maximum message
length. Values are averages across 15 seeds.
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Figure 6: The validation TOPSIM as a dependent factor of the vocabulary size and maximum message
length. Values are averages across 15 seeds.

Figure [7] shows that, regardless of capacity, inter-agent alignment increases while image-agent
alignment decreases with the ce loss. Interestingly, RSAg; is agnostic to capacity but a larger
vocabulary size, not message length, reduces the degree of drifting away from the input. We

hypothesise this to result from lower pressure to compress rich continuous embeddings into smaller
discrete vocabulary embeddings.

B BEST HYPERPARAMETERS

The parameters used to run our experiments were the following:
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Figure 7: Representational alignment metrics averaged over 15 simulations with the standard ce loss.
Representational alignment always occurs while losing relation to the input.

Parameter Value

Batch size 32

Optimiser Adam

Learning Rate (S & L) 0.01 & 0.001

Vocabulary size (V') 40

Message length (L) 2

Hidden size (S & L) 768 & 768

Embedding size 50

Listener cosine temperature | 0.1
16,22,41,56,67,

Seeds 77,14,78,99,23,
82,40,51,37,62

Table 1: Best-performing parameters resulting from the parameter sweep that were used to obtain the
main results.

C INTERACTION OF THE ALIGNMENT TERM ON THE CROSS-ENTROPY LOSS

To ensure that there is no impact of the alignment penalty on the pressure for communicative success,
we ablated the Lgg, term of our proposed loss function and found that both, communicative success
and ce are not affected by the alignment penalty (Figure [§). Corroborating that only the ce term
provides pressure for successful communication (§5.4).
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Figure 8: Learning curves (accuracy) and cross-entropy loss (ce) for both loss settings. There is
virtually no effect of the auxiliary term Lgg, on the cross entropy loss or communicative success.

D PRE-TRAINED VISION MODULES

Although it is in principle possible to train the vision module of the agents from scratch (Dessi
et al, [2021), in our work, agents’ perception stems from a pre-trained vision-language model.
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Although we believe that DinoV2 embeddings capture high-level, conceptual image features useful
for discriminating image pairs, we assessed the degree to which the alignment problem occurs for
different pre-trained models despite encoding the same objects. We ran additional simulations using
image features obtained from ResNet (He et al.,|2016) and CLIP (Radford et al.,[2021) for 6 different
parameter settings with the ce loss function. Here we used the parameters that resulted in the best,
worst, mean, and quantile validation performance from the parameter sweep in appendix [A] (see Table
|Z[), and a sensible setup with V' =10 and L = 5.

Message Length (L) Vocab. Size (V') || Vision
2 40
2 150 DinoV2
5 10 CLIP
10 3 ResNet
50 100

Table 2: The parameters for running additional simulations with CLIP and ResNet to assess the
robustness of our results. Each combination was run for 15 different seeds. Note: the results for the
DinoV2 simulations are from the sweep.

Figure 9] shows clearly that inter-agent alignment increases while agent-image alignment decreases
for all models. In addition to the similar results reported by Bouchacourt & Baroni (2018)) for VGG
ConvNet embeddings, both 4096 and 1000 layers, we can confirm that the problem is agnostic to the
input embeddings. Interestingly, agent representations drift most for CLIP embeddings. Nevertheless,
the agents still develop a successful communication strategy, indicating that out-of-the-box CLIP
embeddings are the least useful for agents and enforce finding a different (non-grounded) solution.
No such differences are seen when the agents are trained with the additional alignment penalty term,
inter-agent and image-agent alignment remain high for all models.
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Figure 9: Learning curves (accuracy) and RSA metrics for different vision models averaged over 6
parameter settings with 15 seeds each. Line style corresponds to the vision module used to obtain
image embeddings and colour indicates the metric. Areas indicate the 95% confidence intervals.
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