
Cause and Effect: Can Large Language Models Truly Understand
Causality?

Anonymous ACL submission

Abstract

With the rise of Large Language Models001
(LLMs), it has become crucial to understand002
their capabilities and limitations in deciphering003
and explaining the complex web of causal rela-004
tionships that language entails. Current meth-005
ods use either explicit or implicit causal rea-006
soning, yet there’s a strong need for a unified007
approach combining both to tackle a wide array008
of causal relationships more effectively. This009
research proposes a novel architecture called010
Context-Aware Reasoning Enhancement with011
Counterfactual Analysis (CARE-CA) frame-012
work to enhance causal reasoning and explain-013
ability. The proposed framework incorporates014
an explicit causal detection module with Con-015
ceptNet and counterfactual statements, as well016
as implicit causal detection through LLMs.017
Our framework goes one step further with a018
layer of counterfactual explanations to accen-019
tuate LLMs’ understanding of causality. The020
knowledge from ConceptNet enhances the per-021
formance of multiple causal reasoning tasks022
such as causal discovery, causal identification,023
and counterfactual reasoning. The counterfac-024
tual sentences add explicit knowledge of ‘not025
caused by’ scenarios. By combining these pow-026
erful modules, our model aims to provide a027
deeper understanding of causal relationships,028
enabling enhanced interpretability. Evaluation029
of benchmark datasets shows improved perfor-030
mance across all metrics, such as accuracy, pre-031
cision, recall, and F1 scores. We also introduce032
CausalNet, a new dataset accompanied by our033
code, to facilitate further research in this do-034
main.1035

1 Introduction036

As Large Language Models (LLMs) play an in-037

creasingly central role in technology, their ability038

to understand and logically navigate causal relation-039

ships becomes essential since they impact the trust040

1https://anonymous.4open.science/r/
causal-reasoning-0B6E/

users have on them. [10] This skill is paramount 041

for refining the depth and applicability of LLMs 042

in complex scenarios, driving advancements that 043

hinge on nuanced interpretations of cause and ef- 044

fect. 045

"My body cast
a shadow over

the grass."

"The sun
was rising."

"The grass
was cut."

Correct
Hypothesis

cause not cause

Figure 1: Causal reasoning without CARE-CA: Given
the premise "My body cast a shadow over the grass.",
the left hypothesis, "The sun was rising," should be
identified as the cause to arrive at the correct hypothesis
conclusion.

Given the growing reliance on AI systems to 046

make consequential, mission-critical decisions, we 047

need to enhance the causal reasoning capabilities 048

of LLMs. [24, 26] revealed significant limitations 049

in LLMs’ causal reasoning capacities. While they 050

may mimic causal language, most need a genuine 051

comprehension of causal mechanisms. This is con- 052

cerning as it could propagate misinformation or 053

lead to unreliable predictions. Bridging this causal 054

reasoning gap is an active area of research. 055

Enhancing the causal reasoning abilities of 056

LLMs can significantly impact their reliability 057

and trustworthiness across many applications. A 058

more robust causal understanding of LLMs could 059

improve healthcare and public policy decision- 060

making[15]. It also promises to enhance inter- 061

pretability and transparency. 062

However, prevailing approaches need help with 063

flexibility and depth of causal inference. This pa- 064

per delves into whether these advanced models, 065

like BERT [3], RoBERTa [13], XLM-RoBERTa 066
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"My body cast a
shadow over the grass."

"The sun
was

rising."

"The grass
was cut."

Correct Hypothesis

“ConceptNet Integration:
‘Shadows’ related
to ‘light source’.”

“Contextual Prompting:
Hypotheses contextual-
ized with time of day.”

“Counterfactual
Reasoning: ‘What if no
light source?’ scenario.”

“Improved Causal
Reasoning: Correct
hypothesis identified

with context and
counterfactuals.”

cause not cause

Figure 2: Causal Reasoning Enhanced with CARE-CA:
Starting from a premise, causal hypotheses are eval-
uated. Integration of external knowledge from Con-
ceptNet enhances understanding. Contextual prompting
adapts hypotheses to the time of day. Counterfactual rea-
soning explores alternative scenarios. Improved causal
reasoning is achieved by incorporating context and coun-
terfactuals, leading to the identification of the correct
hypothesis.

[1], ALBERT [11], DeBERTa [5], Llama 2 [22],067

T5 [17], Mistral [6], GPT-3.5 [14], and Gemini068

Pro [21], can truly grasp and articulate causal re-069

lationships, a cornerstone in the journey towards070

Artificial General Intelligence (AGI). We explore071

this through a blend of theoretical analysis and em-072

pirical investigation, focusing on the capability of073

LLMs to comprehend and articulate causality in074

the literal sense.075

Building on this foundation, we introduce the076

CARE-CA framework, a novel architecture de-077

signed to amplify the causal reasoning compe-078

tence of LLMs. The CARE-CA framework is dis- 079

tinct in its use of explicit knowledge integration 080

from resources like ConceptNet [20] and implicit 081

reasoning patterns derived from models such as 082

BERT. This dual approach bridges the gap between 083

knowledge-driven and data-driven inference. It en- 084

hances the model’s performance across four critical 085

domains of causal reasoning: Causal Relationship 086

Identification, Causal Discovery, Causal Explana- 087

tion, and Counterfactual Reasoning. 088

We present a comprehensive suite of evaluation 089

metrics, including Accuracy, F1, Precision, Re- 090

call, and Human Evaluation, to assess and compare 091

the performance of existing LLMs against our pro- 092

posed CARE-CA framework. Furthermore, we 093

introduce a new dataset, CasualNet, which, we ex- 094

perimentally demonstrate, boosts LLMs’ causal 095

reasoning ability. CasualNet is poised to serve as 096

a benchmark for future advancements in this field, 097

providing a rigorous testing ground for emerging 098

AI models. 099

By uniting explicit and implicit causal modules 100

alongside contextual and counterfactual enhance- 101

ments, this research nudges LLMs towards im- 102

proved causal reasoning—a pivotal step in unravel- 103

ing AI’s black box and realizing more trustworthy, 104

explainable systems. 105

2 Related Work 106

Various approaches have been explored in the lit- 107

erature to understand and enhance causal reason- 108

ing with LLMs. For example, in this paper [26], 109

the authors assess the ability of LLMs to answer 110

causal questions while discussing their strengths 111

and weaknesses. They discuss the potential of in- 112

tegrating explicit and implicit causal modules to 113

enhance LLMs’ capabilities in causal reasoning. 114

However, this lacked a methodical implementation 115

approach to accomplishing the same. 116

The causal capabilities of LLMs and their impli- 117

cations in various fields such as medicine, science, 118

law, and policy have also been explored by [10]. 119

They dive deep into different types of causal rea- 120

soning tasks, presenting how algorithms based on 121

GPT-3.5 and GPT-4 outperform existing algorithms 122

in tasks like pairwise causal discovery, counterfac- 123

tual reasoning, and actual causality. 124

Other papers have explored integrating LLMs 125

into research workflows. [2] have proposed an AI 126

assistant using LLMs and causal AI to systemat- 127

ically review manuscripts and provide feedback 128
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to improve causal analysis in epidemiology. [23]129

demonstrate that domain-specific fine-tuning en-130

hances LLM performance on patient safety and131

pharmacovigilance tasks demanding accuracy.132

[25] critically examines the capabilities of LLMs133

in causal reasoning and inference while [26] argues134

that although LLMs can mimic causal language,135

they lack genuine causal understanding, coining136

the term “causal parrots”.137

[12] reveals the limitations in LLMs’ causal rea-138

soning by leveraging meta-structural causal models.139

They find that LLMs trained on code (Code-LLMs)140

outperform text-only models in abductive and coun-141

terfactual reasoning, highlighting the value of pro-142

gramming structure for causal abilities.143

Given the widespread implications of LLM144

causal reasoning capabilities, we aim to enhance145

the effectiveness of all four aspects of causal rea-146

soning in addition to the LLM evaluation work147

done in [27]. Our method will specifically focus on148

enhancing the causal reasoning by incorporating149

explicit knowledge from knowledge graphs such as150

ConceptNet.151

Notably, the study of causal reasoning has been152

a prominent focus of research in the field of nat-153

ural language processing (NLP), especially with154

the emergence of large language models (LLMs).155

Prior research has evaluated these models’ capac-156

ities for causal reasoning, pointing out both their157

advantages and disadvantages.158

One remarkable work is the CRAB benchmark159

proposed by [18], which evaluates the ability of160

LLMs to infer causal relationships between real-161

world events. The authors found that while LLMs162

can perform well on certain causal reasoning tasks,163

they struggle with more complex scenarios that164

require a deeper understanding of causality. Simi-165

larly, [8] investigated whether LLMs can infer cau-166

sation from correlation, a crucial skill for causal167

reasoning. Their findings suggest that while LLMs168

can learn some causal patterns, they often fail to169

distinguish between causal and non-causal rela-170

tionships, highlighting the need for more targeted171

approaches.172

Additionally, [9] explored the impact of the173

causal direction of data collection on the perfor-174

mance of LLMs in causal reasoning tasks. They175

found that models trained on data with a specific176

causal direction perform better on tasks that align177

with that direction, underscoring the importance of178

dataset design in causal reasoning research. These179

studies provide a solid foundation for understand- 180

ing the current state of causal reasoning in LLMs. 181

Prior research has explored various approaches 182

to enhance the causal reasoning capabilities of 183

LLMs. For example, [25] assessed the ability of 184

LLMs to answer causal questions, discussing their 185

strengths and weaknesses. The authors suggested 186

the potential of integrating explicit and implicit 187

causal modules to improve LLM performance, 188

which is a key principle underlying our CARE-CA 189

framework. 190

While various past works have demonstrated the 191

superior performance of GPT-3.5 and Gemini Pro 192

in certain causal reasoning tasks, their work did not 193

provide a concrete architecture to enhance these 194

capabilities. In contrast, our CARE-CA framework 195

goes a step further by proposing a novel hybrid 196

approach that combines explicit causal knowledge 197

from resources like ConceptNet introduced by [20] 198

with the implicit reasoning capabilities of LLMs. 199

Interestingly, CARE-CA aims to provide a more 200

comprehensive and effective solution for tackling 201

a wider array of causal reasoning tasks by incor- 202

porating counterfactual reasoning and contextual 203

prompting. Unlike previous methods that either re- 204

lied on explicit or implicit causal reasoning, CARE- 205

CA’s unique integration of these two complemen- 206

tary approaches sets it apart, allowing for a more 207

robust and flexible causal understanding. This dis- 208

tinction enables CARE-CA to potentially outper- 209

form existing techniques in tasks such as causal 210

relationship identification, counterfactual reason- 211

ing, and causal discovery, as demonstrated in our 212

experimental evaluation. 213

Enhancements to Related Work: The inclu- 214

sion of “Causal Parrots: Large Language Models 215

May Talk Causality But Are Not Causal” [25], and 216

subsequent studies provide a critical foundation 217

for understanding the current state of LLMs in 218

the realm of causal reasoning. Our framework, 219

CARE-CA, builds on these insights by offering a 220

concrete architecture and implementation designed 221

to overcome the highlighted limitations. Specifi- 222

cally, CARE-CA’s novel integration of explicit and 223

implicit causal modules aims to endow LLMs with 224

a more profound, genuine capacity for causal un- 225

derstanding and inference. 226

Furthermore, our methodological advancements 227

are showcased through the development and utiliza- 228

tion of the CausalNet dataset, specifically designed 229
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to benchmark and refine the causal reasoning ca-230

pabilities of LLMs. By focusing on the four key231

aspects of causal reasoning—Causal Relationship232

Identification, Counterfactual Reasoning, Causal233

Discovery, and Causal Explanation—CARE-CA234

represents a comprehensive approach to enhancing235

LLMs’ causal reasoning faculties.236

3 Approach237

CARE-CA Hybrid Causal LLM Framework: Our238

approach combines the explicit, structured causal239

reasoning of ConceptNet knowledge graphs cou-240

pled with counterfactual sentences to improvise241

the causal understanding of LLMs. This novel ar-242

chitecture aims to surpass traditional decoder or243

encoder-only models by leveraging the rich seman-244

tic knowledge base of ConceptNet with advanced245

contextual inference capabilities and ‘alternate sce-246

narios’ of the contextual sentences to further aid the247

LLMs in understanding the causality of scenarios.248

The combination of these two provides relevant249

contextual information for the LLMs to understand250

the causal reasoning in question. We carry out a251

single variable test comparing the performance (X252

and Y) on CARE-CA v/s without and compare per-253

formance with accuracy, recall, precision and F1254

scores.255

Critical Components of the CARE-CA Frame-256

work:257

1. Contextual Knowledge Integrator (CKI):258

CKI enriches the AI’s reasoning process with rele-259

vant external knowledge graph - ConceptNet, pro-260

viding a deep contextual backdrop against which261

causal relationships can be examined.262

2. Counterfactual Reasoning Enhancer263

(CRE): CRE introduces hypothetical ‘what-if’ sce-264

narios to test and refine the AI’s causal inferences,265

ensuring that identified causal links are robust and266

not merely correlational.267

3. Context-Aware Prompting Mechanism268

(CAPM): CAPM crafts tailored prompts that en-269

capsulate enriched context and counterfactual in-270

sights, directing Large Language Models toward271

more precise and accurate causal reasoning.272

Prompt Example for COPA Dataset: “Shadows273

are formed when a light source illuminates an ob-274

ject, creating a dark area on the opposite side.275

Given that ‘My body cast a shadow over the grass,’276

which hypothesis seems more plausible based on277

the understanding of shadows?278

Counterfactual statement: “If the grass was on279

fire, my shadow would have been the least of my 280

concerns.” 281

‘The sun was rising,’ providing the light that 282

cast the shadow. ‘The grass was cut,’ which is a 283

condition unrelated to shadow formation. 284

4 Experiments 285

4.1 Data 286

To develop and evaluate our CARE-CA framework, 287

we employed six distinct datasets. Each dataset 288

serves a specific function within our research, rang- 289

ing from training the model’s causal reasoning ca- 290

pabilities to evaluating its performance in various 291

causal reasoning tasks. All experiments were per- 292

formed with a dataset split of 75%-25% for train 293

test sets, and 3 runs were conducted for each dataset 294

model combination. We evaluated 5 LLMs - GPT- 295

3.5, Mistral 7b, Gemini Pro, Llama 2, T5 using 5 296

datasets- COPA, Timetravel, CLadder, Com2sense 297

and e-care on causal reasoning tasks, then com- 298

pared the same LLMs against our proposed method: 299

CARE-CA’. Dataset for Causal Reasoning Iden- 300

tification (CRI): 301

• CLadder and Com2Sense: Composition: 302

Derived from narrative texts, these datasets 303

are crafted to pinpoint explicit causal links 304

within a narrative context. 305

Purpose: They provide foundational training 306

for the model’s explicit causal reasoning abili- 307

ties, allowing it to recognize and understand 308

causal relationships within complex text struc- 309

tures. 310

Dataset for Counterfactual Reasoning (CR): 311

• TimeTravel: Composition: This dataset 312

presents hypothetical scenarios that challenge 313

the model to reason about events that did not 314

occur. 315

Purpose: It is crucial for enhancing the 316

model’s counterfactual reasoning, teaching it 317

to contemplate different possibilities and their 318

implications. 319

Dataset for Causal Discovery: 320

• COPA and e-care: Composition: COPA fo- 321

cuses on scenarios that require understand- 322

ing potential outcomes and alternate realities, 323

while e-care contains medical narratives that 324

add domain-specific intricacies. 325
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Purpose: These datasets are utilized to chal-326

lenge the model in discovering underlying327

causal mechanisms within varied and domain-328

specific contexts.329

Each dataset contributes uniquely to the robust-330

ness of the CARE-CA framework, ensuring com-331

prehensive coverage across the spectrum of causal332

reasoning tasks.333

Proposed Dataset: We also propose a new334

dataset called CausalNet. The CausalNet dataset is335

a valuable resource designed to facilitate causal336

reasoning and counterfactual analysis research.337

Comprising 1000 carefully curated scenarios, this338

dataset presents a diverse set of causal and counter-339

factual questions, allowing researchers to explore340

the intricacies of cause-and-effect relationships in341

various contexts.342

Each entry in CausalNet consists of the follow-343

ing components:344

Context: A detailed narrative context provides345

the backdrop for each scenario. These narratives346

describe situations where multiple events or factors347

coincide, potentially influencing outcomes. The348

contexts are designed to be realistic and thought-349

provoking, setting the stage for causal reasoning350

and counterfactual exploration.351

Causal Questions: For each scenario, a set of352

causal questions is provided to challenge the mod-353

els’ abilities in causal reasoning. These questions354

are categorized into two main types:355

Cause-Effect Questions: These questions356

prompt models to identify less obvious factors that357

may have contributed to observed outcomes. Mod-358

els must discern the subtle interplay of various359

events or conditions in determining the outcome.360

Counterfactual Questions: Counterfactual361

questions explore how changes in the scenario’s362

main cause might impact the outcome. Models are363

evaluated based on their capacity to predict the con-364

sequences of hypothetical alterations to the causal365

factor.366

Choices and Answers: Each question is ac-367

companied by a set of choices, one designated368

as the correct answer. For cause-effect questions,369

the choices represent potential influencing factors,370

while for counterfactual questions, the choices371

depict possible outcomes under different circum-372

stances. The correct answers are carefully labeled373

to facilitate evaluation.374

The CausalNet dataset contributes to advancing375

natural language understanding and reasoning ca-376

pabilities. It enables researchers to explore and 377

enhance models’ causal reasoning skills, paving 378

the way for more interpretable and context-aware 379

AI systems. 380

4.2 Experimental Details 381

Our CARE-CA framework underwent rigorous test- 382

ing on encoder and decoder models, targeting four 383

distinct causal reasoning tasks: Causal Relation- 384

ship Identification, Counterfactual Reasoning, and 385

Causal Discovery. The experiments were designed 386

to evaluate the framework’s comprehensive capa- 387

bilities in understanding and processing causal in- 388

formation. 389

4.2.1 Causal Relationship Identification 390

Objective: Assess CARE-CA’s proficiency in rec- 391

ognizing explicit causal links within narrative con- 392

texts. 393

Dataset Used: CLadder[7] and Com2sense[19], 394

chosen for their rich narrative structures and ex- 395

plicit causal statements. 396

4.2.2 Counterfactual Reasoning 397

Objective: Examine CARE-CA’s ability to reason 398

with hypothetical scenarios and their implications 399

for understanding potential outcomes. 400

Dataset Used: timetravel[16], selected for its coun- 401

terfactual scenarios that challenge models to think 402

beyond the actual events. 403

4.2.3 Causal Discovery 404

Objective: Test CARE-CA’s capability to unearth 405

hidden or implicit causal relationships within com- 406

plex scenarios. 407

Dataset Used: COPA and e-care[4] provide diverse 408

contexts for causal discovery, from abstract reason- 409

ing to domain-specific (medical) narratives. 410

4.2.4 Evaluation Metrics 411

We used Accuracy, Precision and Recall as evalua- 412

tion metrics for all the expeirments. 413

4.3 Results 414

Evaluating our proposed CARE-CA framework 415

and comparing existing LLMs across different 416

causal reasoning tasks yielded insightful find- 417

ings. The performance was quantitatively assessed 418

through mean accuracy, precision, recall, and F1 419

scores, revealing the nuanced capabilities of each 420

model in handling complex causal reasoning sce- 421

narios. 422

5



Causal Discovery: In causal discovery, our423

method showcased superior accuracy (76%) on424

the COPA dataset, emphasizing the framework’s425

strength in integrating contextual and counterfac-426

tual insights to uncover underlying causal mech-427

anisms. Interestingly, GPT-3.5 and Gemini Pro428

also performed well, with accuracies of 73.3% and429

70.1%, respectively, indicating their potential in430

learning causal patterns. The lower performance431

of models like XLM-RoBERTa and DeBERTa,432

with accuracies of 53.2% and 51.8%, respectively,433

could stem from their less effective handling of434

the dataset’s counterfactual and causal scenarios435

without specific fine-tuning. On the Ecare dataset,436

our method also performed well with 85.9% accu-437

racy, compared to the next closest decoder model438

performance of T5 at 84%439

Causal Relationship Identification: On the440

Cladder dataset, the CARE-CA model led with441

a standout performance, achieving a 63% accuracy,442

indicating its strong capability to identify causal443

relationships. The decoder model T5 highlighted444

its proficiency with a balanced performance, show-445

casing the effectiveness of its decoding capabilities446

in causal reasoning tasks.447

On the Com2sense dataset, the decoder models448

encountered diverse challenges, with CARE-CA449

again leading at 67.1% accuracy, suggesting its con-450

sistent ability to navigate causal reasoning tasks.451

On our CausalNet dataset, CARE-CA’s remark-452

able accuracy of 94.6% sets a high benchmark,453

emphasizing the model’s superior causal reasoning454

capabilities. The T5 decoder model mirrored this455

high performance with a 94.2% accuracy, show-456

casing the strength of decoder architectures in ex-457

tracting and interpreting causal relationships from458

data.459

Counterfactual Reasoning: The time-travel460

dataset, focused on counterfactual reasoning, high-461

lighted models’ challenges in understanding hypo-462

thetical scenarios. The Gemini Pro and Llama mod-463

els scored 38.4% and 24.2%, respectively, suggest-464

ing that despite their extensive training data, they465

might struggle with tasks requiring deep counter-466

factual inference, underscoring the importance of467

specialized training or prompting for such tasks.T5468

and GPT 3.5 models performed well with 61.7%469

and 63.2% respectively. Our method got a slight470

jump in accuracy from the best-performing de-471

coders; however, due to information overload, it472

could not compete with relatively more straightfor-473

ward encoders such as ALBERT with 68% accu- 474

racy. 475

5 Analysis 476

The observed performances underscore the com- 477

plexity of causal reasoning tasks and the varying 478

abilities of models to address them. The CARE-CA 479

framework’s superior performance across several 480

tasks suggests that its hybrid approach, which lever- 481

ages explicit causal knowledge and counterfactual 482

reasoning, significantly enhances causal inference 483

capabilities. LLMs exhibit strong foundational abil- 484

ities in causal reasoning, likely benefiting from 485

their diverse pre-training. However, tasks requiring 486

nuanced understanding or domain-specific knowl- 487

edge, such as counterfactual reasoning and causal 488

explanation, highlight the limitations of LLMs and 489

the value of specialized training or frameworks like 490

CARE-CA. 491

Integrating human evaluation into our study was 492

pivotal in assessing the nuanced capabilities of the 493

CARE-CA framework, particularly in tasks where 494

subjective judgment and a deep understanding of 495

context are crucial. To this end, we conducted 496

a comprehensive study involving 100 examples 497

spanning our four critical causal reasoning tasks: 498

Causal Relationship Identification, Counterfactual 499

Reasoning, and Causal Discovery. 500

Human Evaluation Methodology: 501

We also performed human evaluations for the 502

COPA dataset on 100 samples. The evaluator 503

was presented with examples where the CARE-CA 504

framework and other leading LLMs (such as T5, 505

GPT-3.5) responded. The evaluators were tasked 506

with rating the responses based on several criteria: 507

• Accuracy: The correctness of the causal rela- 508

tionships identified or inferred by the models. 509

• Coherence: How logically consistent and un- 510

derstandable the responses were. 511

• Depth of Reasoning: The extent to which the 512

model’s response demonstrated an understand- 513

ing of the underlying causal mechanisms. 514

• Relevance: The applicability of the response 515

to the given causal question or scenario. 516

Study Findings: The human evaluators consis- 517

tently rated the CARE-CA framework higher in 518

coherence and depth of reasoning across all tasks, 519

indicating its superior ability to generate responses 520
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Figure 3: From the experimental results, it is evident that the CARE-CA model consistently outperforms other
models across various datasets and tasks in causal reasoning. In causal discovery tasks using the COPA dataset,
CARE-CA achieved the highest mean accuracy of 76% compared to other models while in counterfactual reasoning
and causal reasoning identification tasks, CARE-CA demonstrated superior performance, achieving mean accuracies
of 69.4% and 63%, respectively. Notably, on our CasualNet dataset, CARE-CA achieved exceptional results with a
mean accuracy of 94.6%, showcasing its effectiveness in causal reasoning tasks across different contexts.

that identified causal relationships and provided521

insightful explanations of the ‘why’ and ‘how’ be-522

hind them. Specifically, in the Counterfactual Rea-523

soning and Causal Explanation tasks, CARE-CA524

outperformed other models significantly, reflecting525

its enhanced capability to deal with complex, hypo-526

thetical scenarios and to articulate detailed causal527

narratives.528

Feedback from evaluators pointed to occasional529

challenges in handling highly domain-specific sce-530

narios, especially in the e-care dataset, suggesting531

an avenue for further refining CARE-CA’s domain532

adaptation capabilities.533

6 Conclusion & Future Work534

In this project, we have designed and implemented535

a causal reasoning module. Our system works well536

under restrictive token constraints.537

Future Directions: These results pave the way for538

further research into hybrid models that combine539

the breadth of knowledge from resources like Con-540

ceptNet with the depth of understanding inherent541

in LLMs. Fine-tuning strategies, domain-specific542

model adaptations, and developing more compre-543

hensive benchmarks like CausalNet are promising544

areas for future exploration.545

7 Limitations546

In our research on the efficacy of causal reasoning547

in LLMs through the CARE-CA framework, we548

encountered several limitations that highlight areas549

for future exploration and improvement. Firstly, 550

we were able to run CARE-CA only on best per- 551

forming decoders of each dataset and compare the 552

results. The comparison of CARE-CA on all de- 553

coders as well as on all encoders was a challenge 554

due to computational resource constraints. Sec- 555

ondly, our focus on English limits the generaliz- 556

ability of our findings across languages and cul- 557

tures; this opens a door for a need for multilin- 558

gual datasets and cross-cultural validation. The 559

challenge of applying our general causal reasoning 560

framework effectively in domain-specific scenar- 561

ios, such as those presented in the e-care dataset, 562

indicates an opportunity for refining its adaptability 563

to specialized fields. Additionally, the significant 564

computational resources required by the CARE-CA 565

framework may limit accessibility for those with 566

constrained computational budgets, pointing to a 567

need for optimization strategies. While CARE-CA 568

enhances interpretability in causal reasoning tasks, 569

further research is required to improve transparency 570

and explain the model’s reasoning processes, es- 571

pecially for non-expert users. These limitations 572

underscore the necessity for ongoing research to 573

enhance the efficacy, inclusiveness, and applica- 574

bility of causal reasoning models and invite the 575

broader research community to address these chal- 576

lenges collaboratively. 577
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Experiment Dataset Model Mean Accuracy Mean F1 Mean Precision Mean Recall

Causal Discovery COPA

CARE-CA 76.0 82.3 1.0 78.1
BERT 69.2 66.3 70.0 68.6
RoBERTa 57.2 56.2 58.3 61.1
XLM-RoBERTa 53.2 47.0 52.1 56.2
ALBERT 62.2 63.1 64.0 66.2
DeBERTa 51.8 0.0 0.0 0.0
Llama2 62.4 56.0 87.0 68.0
T5 53.5 1.0 54.0 70.0
Mistral 67.2 67.2 1.0 87.1
GPT-3.5 73.3 78 1.0 87.5
Gemini Pro 70.1 1.0 70.1 82.4

Ecare

CARE-CA 85.9 88.8 84.6 82.9
BERT 50 39.4 66 47.6
RoBERTa 49.7 51.5 50.8 73.1
XLM-RoBERTa 48.2 58.7 46.7 84.2
ALBERT 47.7 41.4 50.9 57.7
DeBERTa 46.6 63.6 46.6 100.0
Llama2 62.2 60.0 63.8 56.7
T5 84 84.8 80.5 89.6
Mistral 50 49.9 50 49.9
GPT-3.5 77.8 75.9 83.3 69.7
Gemini Pro 67.8 63.0 74.4 54.5

Counterfactual Reasoning Timetravel

CARE-CA 69.4 40.1 20.2 13.5
BERT 56.3 6.0 11.0 5.0
RoBERTa 68.7 3.0 9.0 2.0
XLM-RoBERTa 56.9 5.0 10.0 3.0
ALBERT 68 6.0 11.2 4.0
DeBERTa 58.1 6.0 11.0 4.0
Llama2 24.2 1.0 1.0 5.0
T5 63.2 19.1 12.7 38.2
Mistral 27.5 2.0 1.0 6.0
GPT 3.5 61.7 8.0 5.0 14.7
Gemini Pro 38.4 17.4 10.2 57.3

Causal Reasoning Identification Cladder

CARE-CA 63.0 62.5 61.9 62.5
BERT 53.0 48.6 52.3 52.4
RoBERTa 50.3 65.2 50.3 100.0
XLM-RoBERTa 49.5 64.3 49.5 99.3
ALBERT 49.4 46.2 40.5 68.9
DeBERTa 49.8 22.1 18.0 33.2
Llama2 48.0 60.0 47.0 82.0
T5 60.0 59.0 59.0 59.0
Mistral 51.0 59.0 52.0 70.0
GPT 3.5 52.0 54.0 53.0 55.0
Gemini Pro 59.0 65.0 57.0 76.0

Com2sense

CARE-CA 67.1 28.6 25.7 32.3
BERT 44.6 59.2 44.9 96.0
RoBERTa 45.5 1.0 3.0 1.0
XLM-RoBERTa 50.4 51.4 45.0 60.0
ALBERT 51.2 35.0 25.0 30.0
DeBERTa 45.3 60.0 45.6 96.5
Llama2 50 20.0 10.0 13.3
T5 65.4 63.4 46.2 53.4
Mistral 54.3 69.1 71.7 70.4
GPT 3.5 62.8 23.2 30.4 28.0
Gemini Pro 65.8 25.2 31.6 28.0

CasualNet

CARE-CA 94.6 95.4 95 95.4
BERT 39.0 21.8 15.2 39.0
RoBERTa 38.0 20.9 14.4 38.0
XLM-RoBERTa 37.5 20.4 14.9 37.5
ALBERT 33.8 19.3 27.2 33.8
DeBERTa 33.5 25.8 22.0 33.5
Llama2 27.3 23.8 51.3 27.3
T5 94.2 94.5 95.0 94.2
Mistral 36.8 29.2 60.9 36.8
GPT 3.5 70.3 70.9 84.6 70.3
Gemini Pro 79.5 80.0 83.8 79.5

Table 1: The table summarizes performance metrics Accuracy, Precision, Recall and F1 scores of Encoders - Bert,
RoBERTa, ALBERT, DeBERTa, XML-RoBERTa as well as Decoders- GPT 3.5, Gemini Pro, Mistral, T5 and
Llama2 on three different tasks including Causal Discovery on datasets COPA and ecare, Counterfactual reasoning
on dataset Timetravel and Causal Discovery on dataset CLadder and Com2sense and CausalNet.

8 Ethics Statement578

Ethical considerations are paramount in research,579

particularly when LLMs are involved. We have580

strived to prevent the propagation of bias within 581

CausalNet, the dataset we introduced in this work, 582

by carefully curating and filtering the data to mit- 583
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igate the inclusion of sensitive or discriminatory584

content. Furthermore, we have committed to trans-585

parency regarding the dataset’s origins and poten-586

tial implications, acknowledging the ethical respon-587

sibilities of conducting research with LLMs.588
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Frequently Asked Questions (FAQs)733

1. What were the reason for choosing these734

specific set of models- encoders and decoders735

736

We selected the encoders - Bert, RoBERTa,737

ALBERT, DeBERTa, XML-RoBERTa as well738

as Decoders- GPT 3.5, Gemini Pro, Mistral,739

T5 and Llama2 based on the most commonly740

used models in research. We wanted to create741

a comprehensive study and analysis on these742

high performing and widely used models as a743

baseline for future enhancement in the area of744

Causal reasoning.745

2. What were the reason for choosing these 746

specific set of models- encoders and decoders 747

748

We selected the encoders - Bert, RoBERTa, 749

ALBERT, DeBERTa, XML-RoBERTa as well 750

as Decoders- GPT 3.5, Gemini Pro, Mistral, 751

T5 and Llama2 based on the most commonly 752

used models in research. We wanted to create 753

a comprehensive study and analysis on these 754

high performing and widely used models as a 755

baseline for future enhancement in the area of 756

Causal reasoning. 757

3. Why did you choose CARE-CA as your 758

approach? 759

760

While running experiments with just 761

encoders and decoders, we realized that 762

these models are not very good at causal 763

reasoning tasks and miss on the knowledge 764

needed to help them understand the scenario 765

better. Hence we added knowledge from 766

the Conceptnet knowledge graph. Even 767

after adding the knowledge, we realized this 768

can be further enhanced, if the LLM’s can 769

leverage additional what if scenarios using 770

counterfactual statements, that guide them in 771

rejecting hypothesis that are not causal. 772

4. Why did you just run the CARE-CA ap- 773

proach on decoders? 774

775

While our approach can be applied to 776

encoders as well, we will need fine-tuning 777

due to token limits of encoders. Due to 778

resource constraints, we could not explore and 779

run experiments on encoders with CARE-CA 780

approach, but hoping to produce these results 781

that can be used for further research and 782

enhancement. 783

5. How did you create the dataset CausalNet? 784

785

We provide a CausalNet dataset, which 786

can be a benchmark for causal reasoning 787

tasks for furture research. The idea was to 788

include causal statements that are currently 789

not supported well by decoders, and have 790

multiple causal reasoning tasks in one dataset. 791

Our dataset has 1000 rows of scenarios 792

with both Causal reasoning identification as 793

well as Counterfactual reasoning. We used 794

ChatGPT to create the dataset. 795
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A Appendix796

A.0.1 Detailed run on COPA797

A.0.2 Causal Explanation798

We also experimented with Causal Explanation799

task, which lies at the core of understanding why800

things happen. rather than simply observing pat-801

terns or connections, which may not necessarily802

reveal causality, it delves deeper to pinpoint the803

direct cause-and-effect links between variables. .804

Its significance spans across a wide range of disci-805

plines, such as philosophy, science, social sciences,806

medicine, and engineering, as it enables us to grasp807

the intricate workings of complex systems and fore-808

see the effects of altering certain variables.809

We used the ecare dataset which has the follow-810

ing example scenario -811

cause: "The woman gave birth to a child.812

effect: "The child brought psycho-physical phe-813

nomena on a new life.814

conceptualexplanation: "Birth is the arising of the815

psycho-physical phenomena."816

We used Rouge and BLEU score to evaluate the817

performance of the generated response.818

A.0.3 CausalNet Dataset Generation819

The CausalNet dataset was generated using GPT-4.820

The way we created the prompt was using a few821

shot approach giving a few examples to gpt-4 to822

understand the causal nature of the sentences and823

generate prompts that are diverse.824

We used the following prompt: Develop a825

dataset composed of entries that challenge and en-826

hance machine learning models’ understanding of827

causal relationships and counterfactual reasoning828

across various domains. Each entry in the dataset829

should follow this structure: "Context": A detailed830

description of a scenario that outlines a complex831

situation involving causal relationships. "Ques-832

tions": A set of questions focusing on (1) identify-833

ing causal effects within the context and (2) explor-834

ing counterfactual scenarios, with multiple-choice835

answers to infer the model’s reasoning capabilities.836
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Table 2: Detailed model Performance on the COPA Dataset with three runs capturing Accuracy, Precision, Recall,
and F1 Score

Model Run Metrics

Manual Accuracy Sklearn Accuracy F1 Precision Recall Mean Accuracy Mean F1 Mean Precision Mean Recall

BERT-base-uncased
1 0.7400 0.7461 0.7067 0.7385 0.7349 0.6893 0.6927 0.6635 0.7003
2 0.6600 0.6562 0.6573 0.6755 0.6886
3 0.6680 0.6758 0.6264 0.6870 0.6348

RoBERTa-base
1 0.6640 0.6484 0.6582 0.6876 0.6653 0.5787 0.5729 0.5624 0.5833
2 0.6000 0.5977 0.5735 0.5699 0.6580
3 0.4720 0.4727 0.4554 0.4923 0.5116

XLM-RoBERTa-base
1 0.5640 0.5625 0.5376 0.5413 0.6153 0.5373 0.5326 0.4709 0.5210
2 0.5000 0.5000 0.4375 0.5413 0.6153
3 0.5480 0.5352 0.4375 0.4804 0.4574

ALBERT-base-v2
1 0.6280 0.6297 0.6382 0.6625 0.6308 0.6240 0.6226 0.6310 0.6406
2 0.6560 0.6523 0.6473 0.6550 0.6845
3 0.5880 0.5859 0.6075 0.6044 0.6725

DeBERTa-base
1 0.5480 0.5461 0.0000 0.0000 0.0000 0.5200 0.5182 0.0000 0.0000
2 0.4920 0.4894 0.0000 0.0000 0.0000
3 0.5200 0.5191 0.0000 0.0000 0.0000
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