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ABSTRACT

We study Constrained Online Convex Optimization (COCO), where a learner
chooses actions iteratively, observes both unanticipated convex loss and convex
constraint, and accumulates loss while incurring penalties for constraint violations.
We introduce CLASP (Convex Losses And Squared Penalties), an algorithm that
minimizes cumulative loss together with squared constraint violations. Our analysis
departs from prior work by fully leveraging the firm non-expansiveness of convex
projectors, a proof strategy not previously applied in this setting. For convex
losses, CLASP achieves regret O (T™2*{%:1=A}) and cumulative squared penalty
(0] (T 1-5 ) for any 8 € (0,1). Most importantly, for strongly convex problems,
CLASP provides the first logarithmic guarantees on both regret and cumulative
squared penalty. In the strongly convex case, the regret is upper bounded by
O(log T) and the cumulative squared penalty is also upper bounded by O(log T).

1 INTRODUCTION

We consider a setting where at each iteration ¢ € {1,2,3,...}, a learner selects an action z; from
a convex set  C R", then a loss function f; is revealed, and the learner incurs loss f;(z;). The
learner’s goal is to perform nearly as well dynamically as the best fixed action in hindsight. i.e, keep
the regret

T T
Regrety = > fi(z:) = Y filah). 0
t=1

t=1
growing sublinearly in 7', so that, asymptotically, the average loss of the learner is no worse than the
imal fixed acti . . T
optimal fixed action, z% = arge%m ooy fe(x).
T

Online Convex Optimization (OCO) is the special case of Online Learning in which the action set K
is convex, and the loss functions f; are convex. The OCO setup has been extensively studied over the
years (Shalev-Shwartz et al., |2012; [Hazan et al.| 2016 Zinkevichl 2003; Duchi et al.| 201 1; Bubeck
et al.,[2012; |Hazan & Kalel 2012; Hazan & Minasyan, |2020; |Hazan & Singh}|2021). OCO assumes
that operational constraints on the possible actions are static in time, being fully captured by the fixed
set IC.

In many applications, however, operational constraints do change at each iteration: at time ¢, the
action x; must satisfy not only x; € K but also an extra constraint g;(x;) < 0, with g; a convex
function. The challenge here is that the learner must choose an action x; also before knowing the
constraint function g;. This more difficult setup generalizes OCO and is known as Constrained Online
Convex Optimization (COCO).

To conclude, the COCO learner wishes not only to bound the regret (I)), now with

T T
vy =argminy_ fi(z), Cr=()C. Ci={z: g(z) <0}, @)

zeKXNCr =1 =1

but also wishes to bound some notion of cumulative constraint violation (CCV), as detailed in the
next section.
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1.1 RELATED WORK

Early work on COCO (Mahdavi et al., 2012} Jenatton et al.}, 2016} [Yuan & Lamperskil, 2018}, [Yu &
2020) focused on soft constraint violations, allowing the learner to compensate over time

by balancing positive and negative violations. In those settings the performance is measured by the
cumulative constraint violation CCVy = Zle g+(x+). However, this metric has a critical weakness:
The sum may become negative even if many rounds incur positive violations, thereby masking the
severity or frequency of actual constraint breaches.

Such arithmetic compensation is often unsuitable in practice, as many applications demand a more
direct and monotonic measure of constraint violation. We thus focus on the hard metrics

T

T
CCVri =Y gf(x), or CCVra= (g (z:)”, 3)
t=1 t=1

where g;f (r) = max{0, g;(x)}. Under these definitions, violations cannot be offset over time:
these cumulative sums are nondecreasing in 7'. Both metrics are of practical relevance, and authors
generally commit to one as their principal violation measure. A natural question is whether a bound
on CCVr 7 can be turned into one on CCV 5 by redefining g; as (/]j)z. This reduction, however,
is generally invalid: key assumptions often required for CCV ; bounds—such as the existence of a
Slater point & with g;(#) < 0 for all +—cannot hold for (g;")2, which is always nonnegative. Other
structural properties (e.g., convexity or Lipschitz constants) may also be lost under squaring. For
these reasons, we directly analyze CCV o rather than rely on such a transformation. Moreover,
even if the reduction were possible, it would not yield our main result: to the best of our knowledge,
no O(logT") bound exists for CCV 1 in the strongly convex setting, so our logarithmic CCVr 5
guarantee cannot be inferred from prior CCVp ; results.

We now review the closest work in COCO, organized by whether the constraints are static (¢; = ¢
for all ¢) or dynamic (¢g; may vary adversarially). Our focus is on the dynamic case, but it is useful to
contrast with the static regime first.

Static constraints. As the focus of this paper is on dynamic constraints, we restrict ourselves here
for brevity to convex loss functions, omitting the results for strongly convex ones. The early work of

(Mahdavi et al., 2012) uses a regularized Lagrangian update and achieves Regret, < O(v/T) and
soft violation CCV < O(T3/*). (Jenatton et al.,[2016) refine this approach via adaptive weightings
of primal and dual step sizes, obtaining Regret;, < O(T™*{#:1=5}) and CCVy < O(T*~5/2) for
any 8 € (0,1). (Yu & Neelyl [2020) push further by bounding CCV7 < O(1) (constant violation)
while preserving O(+/T) regret. Yi et al. (Yi et al.ll@b, in turn, address hard violations by showing
Regret; < O(TmaX{B’lfﬁ}) and CCVp; < O(T(lfﬂ)m). Finally, (IYuan & Lamperski |2018[)
focus directly on the squared-penalty metric CCV 2, proving Regret, < O(T™®{#:1=5}) and

CCV7 < O(T'~P). Their work penalizes large violations more heavily, preventing cancellation
that occurs under soft violation metrics.

Dynamic constraints. When the constraints g; may vary arbitrarily with ¢, the problem becomes
significantly more challenging.

(Guo et al.||2022)) introduce the Rectified Online Optimization (RECOO) algorithm, which exploits a
first-order approximation of the regularized Lagrangian at each round. For convex losses, RECOO
achieves Regret; < O(\/T) and CCVr; <O (T%). In the strongly convex case, it improves to
Regret; < O(logT) and CCVpy < O(v/TlogT).

(Y1 et al.|, [2023)) extend these ideas in a distributed setting, with results that can be transposed
to the centralized regime. For convex losses, they establish Regret;, < O (Tman 15 }) and
CCVr,y < (T'P/%) for any B € (0,1). For strongly convex losses, their guarantees become
Regret;, < O (T¥) and CCVr,; < (T"-F/2).

A major step forward is due to [Sinha & Vaze| (2024), who introduced the Regret Decomposition
Inequality, an elegant analytical tool that extends the drift-plus-penalty framework (Neely}, [2010).
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They show that suitably modified AdaGrad variants can achieve Regret;; < O (\/T ) and, for the

first time, CCVy; < O (\/T log T) for convex loss functions. For strongly convex functions, the

results are Regret;, < O (logT) and CCVp; < O (\/T log T), with the CCV bound improved to
CCVr1 < O(log T') for the specialized setting of non-negative regrets.

Building on this line|Vaze & Sinhal(2025) propose the Switch algorithm, which explicitly leverages the
geometry of the constraint sets C; (2). Although the strongly convex case is not explicitly addressed,
for convex loss functions Switch guarantees Regret; < O(v/T) and CCVr; < O(v/Tlog T) across
all instances, the novelty being that the bound on CCV can drop to O(1) for special geometrical
instances of Cy. Our proposed algorithm, CLASP, bears certain similarities with Algorithm 2 in (Vaze
& Sinhal [2025)), as we elaborate in the next section.

To conclude, we highlight an interesting line of COCO research on low-complexity, projection-free
algorithms, which avoid projection onto K. Representative work is (Garber & Kretzul 2024; Sarkar
et al.,[2025; [Wang et al.| [2025} [Lu et al}2025). For example, the recent work (Lu et al.,2025) exploits

a separation oracle to achieve Regret, < O (x/T) and CCVy 1 <O (x/T log T) for convex loss
functions; and Regret;, < O (logT') and CCVp; < O (\/T log T) for strongly convex ones.

1.2  CONTRIBUTIONS

We propose CLASP, an online COCO algorithm for dynamic constraints with Convex Losses And
Squared Penalties, where the violation metric of interest is CCVr 2 . Our contributions can be
summarized as follows:

* Strongly convex losses. CLASP achieves Regret; < O(logT') and CCVr o < O(logT'). To the
best of our knowledge, this is the first result to guarantee logarithmic bounds on both regret and
squared violations. The closest prior work, (Sinha & Vazel [2024), establishes Regret, < O(logT')
and CCVp 1 < O(logT), but only in the restricted setting of non-negative regrets. CLASP removes
this limitation by providing guarantees without assuming the sign of the regret. Furthermore, by
the Cauchy-Schwarz inequality, we have

T

CCVrpry = Z(K//) M) < VT/CCOVip 4 < O(y/TlogT),

t=1
thus CLASP also attains the best-known bound for C'C'Vr ;1 in the strongly convex setting.

* Convex losses. For general convex losses, CLASP guarantees
Regrety < O(T™>{#1=8Y) " CCVry, <O(TF), VB € (0,1).

This matches the rates reported by [Yuan & Lamperski| (2018]), whose results were derived for static
constraints; CLASP extends them to the dynamic regime and within the same analysis framework,
unifying the results under a single line of reasoning.

* Algorithmic simplicity. Each CLASP iteration consists of a gradient step with respect to the latest
loss, followed by a single projection onto the current feasible set N C,. In contrast, Algorithm 2 of
Vaze & Sinhal(2025) requires two projections per iteration, one onto the full historical intersection
KN ﬂtT:1 C'. Thus CLASP is more memory-efficient, avoiding the need to retain past constraints.
Moreover, the analyses of the two methods differ fundamentally, as discussed in Sections[3.2]and 4]

* Analytical novelty. Our analysis relies on the firm non-expansiveness (FNE) of projections
onto closed convex sets—a stronger property than the standard non-expansiveness typically used.
Exploiting FNE allows a clean modular proof structure, where regret and constraint violation are
analyzed separately. This modularity also makes the analysis more extensible, e.g., to multiple
dynamic constraints or persistent constraints (Section ).

Relevance to Machine Learning Practice. Recent empirical and theoretical work suggests that
strong convexity and sharper penalties for violations are practically meaningful in constrained ML
settings. For example, Wang et al.|(2025) shows that under strong convexity of regret, both regret
and constraint violations drop substantially, and experiments in that paper confirm that algorithms
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exploiting strong convexity perform better on real datasets. The authors of (2025)) empirically
validate that in resource allocation problems with hard constraints plus regularization, faster rates
(logarithmic regret) are achievable. The work Banerjee et al.|(2023) finds that many practical deep
models satisfy restricted strong convexity, and fast (geometric) convergence is observed in training.
These works show that assumptions like strong convexity are not merely theoretical and that penalties,
and constraints (Ramirez et al.[(2025)), matter in real ML systems. However, prior work usually
measures constraint violation linearly (or counts violations) rather than providing log-rate guarantees
on both regret and the severity of violations (e.g., squared penalties). The squared penalty can be
useful in applications where large violations of the constraints are a reason for concern. For example,
in model predictive control, the inequality g(x) < 0 might be encoding a current saturation limit on
an actuator, say, torque or thrust; here, small deviations are tolerable, but large deviations can become
dangerous. As another example, in robot trajectory planning, the inequality might represent a signed
distance to a harmful region. Here, violating the constraint means the robot is at risk, a risk that might
not scale linearly in the sense that every extra unit of penetration does not cost the same and might be
best accounted for by a quadratic increase. Yet another example might occur in a vehicle following a
mobile target. Here, the constraint might model the wish to stay within a given radius of the target. If
the distance becomes too large, the vehicle might lose sight of the target and fail the tracking mission.

2 PRELIMINARIES
We summarize the technical tools used in the analysis of CLASP and state our assumptions.

Projection operators and distance functions. For a non-empty, closed convex set S C R", we let
Ps : R™ — R™ be the associated orthogonal projection operator. Thus, Pgs(u) is the projection of
the point w onto the set S and denotes the point in S that is closest to u with respect to the Euclidean
norm ||-||. Such projectors are firmly non-expansive (FNE) operators, which means they satisfy the
inequality

1Ps(u) = Ps(v)]|* < [|lu = o] = [|(u = Ps(u)) = (v = Ps(0)*, S
for all u,v € R™ (see, e.g.,[Bauschke & Combettes (2017, Proposition 4.8)). Property (@) implies the
popular non-expansiveness (NE) property, || Ps(u) — Ps(v)|| < ||lu — v]|.

We let dg : R™ — R denoted the associated distance function, dg(u) = min {|jv — u| : v € S}.
Thus, ds(u) = ||ju — Ps(u)|| and, from @),

|Ps(u) = v]|* < [lu—v|* — ds(u)?, )

forallu €e R"andv € S.

Finally, the function dg is Lipschitz continuous with constant 1, that is, |dg(u) — ds(v)| < |lu — v||
for all u,v € R™ (see, e.g.,[Bauschke & Combettes| (2017, page 59, Chapter 4)).

Convex and strongly convex functions. Let h: R™ — R U {+oo} be an extended real-valued
function. It is said to be proper if its domain, dom h = {& € R™ : h(z) < 400}, is a non-empty set;
it is closed if each lower level set {z € R" : h(z) < a} at height o € R is a closed set; and it is
convex if there exists an m > 0 such that

B (1= Nu+ o) < (1= Nh(u) + Mh(v) — %m =) flu—v]?, (6)

forall A\ € (0,1) and u,v € R™. If m can be taken to be strictly positive, then A is said to be
m-strongly convex.

If h is a proper, closed, and convex function, then
h(v) 2 hu) + (Vh(u),v =) + T [lo — ], )

for all u,v € R™, where, from now on, Vh(u) denotes a sub-gradient of h at u. ({-, ) is the usual
inner-product). If, furthermore, h is m-strongly convex, then it has a unique global minimizer, say,
u*, (see, e.g., Bauschke & Combettes| (2017, Corollary 11.16)); the zero vector is then a sub-gradient
of h at u*, implying via (7) that

h(v) > h(w*) + 5 o =] ®)

forall v € R™.
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Assumptions. Throughout, we impose the following standard COCO assumptions:

Assumption 1. The action set K is a non-empty, compact convex subset of R™. It follows that the
diameter of K is upper-bounded by some constant, say, D > 0, which entails ||u — v|| < D for all
u,v € K.

Assumption 2. The loss functions f; : R™ — R are convex for all t > 1, with the magnitude of their
sub-gradients bounded by L, when evaluated at points in IC: ||V fi(u)|| < Lforallu € K andt > 1.

Assumption 3. The constraint functions g; : R™ — R are convex for all t > 1, with the magnitude
of their sub-gradients bounded by L, when evaluated at points in KC: |Vg,(u)|| < L forallu € K
andt > 1.

Moreover, K N ﬂthl C is non-empty for all T > 1 (where Cy = {x € R" : g(z) < 0}), so as to
ensure the existence of the regret comparator x%—recall [2)))

Assumptions [2] and [3]imply that
[fe(v) = fe(w)| < Lflv —u| and |g;(v) = g:(u)| < Lo —ul| ©

for all u,v € K and t > 1 (as a consequence, e.g., of the mean-value theorem (Hiriart-Urruty &
Lemaréchal, [1993, Theorem 2.3.3)).

Assumption 4. The sequence (of step-sizes) (1 )¢>1 satisfies 0 < ng1 < ny forall t > 1. Hence,
there exists 6 > 0 such that n? < 0n, forallt > 1 (e.g., take 6 = 7).

3 THE CLASP ALGORITHM

In this section, we introduce our algorithm CLASP, which stipulates how the decisions x;,; are
made, given the stream of losses f; and constraints ¢, observed up to time . CLASP is a conceptually
simple algorithm that, at each iteration (after the first), takes a gradient step with respect to the most
recently observed loss function, and then projects onto the most recently observed constraint function,
see Algorithm [T

Algorithm 1 CLASP

Require: action set KC, horizon T" > 1, step-sizes ; for 1 <¢ <T —1
Choose z; € K and observe f1, g1
Accumulate loss f1(z1) and penalty (g; (z1))?
fort=1,..., T —1do
Choose z¢+1 = P, (vt — 1V fi(x1)) and observe fii1, g1
Accumulate loss f;41(x¢+1) and penalty (g;7 ; (z411))?
end for

Here, V f;(x;) represents a sub-gradient of f; at ;. The projection step in CLASP is onto the set
Ki = KNCy, with Cy = {x € R™ : g4(x) < 0} (as defined in (2))). Note that the set K is non-empty,
as per Assumption [3] and that this projection, typically realized as a convex optimization problem,
sets CLASP apart from the projection-free methods in Section [I.1] The step-sizes 7, are chosen
according to whether the loss functions are convex or strongly convex and are specified further ahead
in Section We write Zy11 = x¢ — 0tV f:(2+), and rewrite CLASP as z;41 = pi, (T441) for
t>1.

We now analyze CLASP, finding upper-bounds for both Regret; (see (I) and (Z))) and the hard
constraint violation CCVr o (see @)).

Our analysis is modular, one module bounding the metric CCVr o (Section@ and the other module
bounding the regret (Section[3.2).

3.1 BOUNDING CCVr 3

In this section, we present the module of our analysis that is dedicated to bounding the metric CCV 5.
More precisely, we start by finding a generic bound on CCV 7 5 that is phrased in terms of the length

of the step-sizes Zthl 1. Our bound, the end result of a progression of three lemmas, is stated
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precisely in Lemma[3] The lemmas hold under Assumptions[]to [] and their proofs are provided in
the Appendix.

Lemma 1. In the COCO setting, for adversarially chosen convex loss functions f; and con-
vex constraint functions, g, consider Assumptions [If#] hold. Then for Algorithm[I} there holds

Sy de, @) <O (S m).

Lemma bounds the cumulative squared-distance of the intermediate step ;11 (which can be sort of
a virtual decision) to the convex set /C;.
The next Lemmagleverages this result and obtains a similar bound, but now relative to the decision x;.

Lemma 2. In the COCO setting, for adversarially chosen convex loss functions f; and con-
vex constraint functions, g;, consider Assumptions hold. Then for Algorithm[I} there holds

Yy de, (@)? <0 (S m).

Lemma 3. In the COCO setting, for adversarially chosen convex loss functions f; and convex
constraint functions, gy, czmsiderA‘sxswnpti(mshold. ThenforA]gorit/unm there holds CCVrp o <

O <Zf:1 m).

LemmaEI, the main result of this section, connects the growth of the CCV 5 metric with the growth
of the stepsizes. The next section chooses these stepsizes for the convex and strongly convex setting
and bounds the regret, completing our analysis.

3.2 ANALYSIS OF CLASP

Having assembled the necessary elements, we are ready to fully analyze CLASP. The analysis is
reported in Theorem|T]for convex losses, and in Theorem 2] for strongly convex ones.

Convex losses. We suppose that assumptionstoElhold. Let 3 be any desired value in (0, 1) and,
accordingly, set the step-sizes to

ne =1/t fort>1, (10)
which complies with Assumptiond] The following Theorem [T]bounds the regret and the CCV of
CLASP for this setting.

Theorem 1 (Convex losses). /n the COCO setting, for adversarially chosen convex loss functions [
and convex constraint functions, g;, consider Assumptimzs/10ld. Letn; = 1/tP, with B € (0,1).
Then, Algorilhmmac'hieves the following regret and CCVr o bounds:

Regret < ()(T”‘“X{g"]*ﬂ}) and CCVpo <O (T]*S) .

Proof. We start by analyzing the Regret,. Express the projection step of CLASP as

Tp1 = argmin he(u),
u€R™

where 1
he(u) = (V fe(zt), u — z¢) + %HU — ze|? + 0k, (u),
t

with i, : R — R U {400} denoting the indicator function of the convex set KC; (i.e., dxc, (u) = 0
ifu € Ky, and ok, (u) = +oo, if u ¢ Ky).

Note that h; is a proper, closed, and o-strongly convex function with modulus ¢ = 1/7, and global
minimizer x4 1. Thus, from @), we have

1
hi(27) > he(2es1) + 2, |25 — 2o 1)
T

Observing that both x,41 and z% are points in /C; (which implies dx, (z¢11) = Ik, (z%) = 0), we
can re-arrange (T1) as

1 9 1 1
- Lk < - k2 v * o = _ 2
27h”xt+1 xp||® < 277t||i’3t o7+ (Vfilze), 27 — x4) 277t||ilﬁt Top | (12)

+ <vft(xt)7 Ty — ZZit+1>.
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We now use the easily-checked fact
1
max{—% [ul* + (v,u) : u € R"} = 2ol

which holds for all n > 0 and v € R"”, and amounts simply to compute the peak value of the concave
quadratic function inside the braces. Using this fact with ) = 7y and v = V f;(x), we can bound the
sum of the last two terms on the right-hand side of (12)), thereby arriving at

1 N 1
grllzees = 2l < sl — 2l 4+ (Vfileo).oF - w0+ S IVAGE. a3

The convexity of f; implies (V fi(xy), 2% — z¢) < f(a%) — f(x¢) (e.g., see (7) with m = 0), which,
when plugged in (13)), yields

1 1
folwe) = flwh) < s—llwe = 52 = o= lwess — 252 + 2| fulw) |2 (14)
2my 2n 2
For ¢ = 1, inequality (T4) implies
N 1 1 * m
fi(xr) = fi(er) < m D? — o w2 — a7 + 5 IV fi(0)]?, (15)

where Assumption [I]was used to bound the first term in the right-hand side of (I4). For t > 2, we
have

1 * (|2 1 * (|2 ( 1 1 ) * (12
—|Tt —x = Ty — X +|——— )llzr—2
g o = wll* = 5o —llow = wil* + 5= = 5 — ) o = a7
1 " 1 1
< e — 27 [|* + ( - )DQ, (16)
2ns 1 2y 2m1

where the last inequality uses Assumptions|[T]and ]

Plugging (T6) in (T4) gives
1 1 Nt
fe(xe) = fe(ap) < S s — a7 )|* - TmeUHl —ap|” + §||Vft($t)||2

1 1
(-
2y 2mp—1

which is valid for ¢ > 2. Finally, summing (T3] to (T7) (instantiated from ¢ = 2 to T') yields

(a7

T
1 Mt 2
Regret» < — D? =V
cerety < 5 D%+ 30 5 [V iGon)

D2 1221
< - il
- 2 + 2 Ztﬁ

t=1
< O(Tmax{B1=8})
where the second inequality follows from Assumption 2]and (I0).

We now turn to the analysis of CCVy 5: combining Lemma@ with (T0) gives directly CCVp o <
O(T'~*) and concludes the proof. O

Strongly convex losses. We suppose assumptions|I]to[d] are still in force and further assume that
there exists m > 0 such that each convex loss f; is m-strongly convex for ¢ > 1. The step-sizes are
set to

ne =1/(mt), fort>1, (18)
thereby satisfying Assumption 4]
Theorem 2 (Strongly convex losses). /1 the COCO setting, for adversarially chosen m-strongly-
convex loss functions f, and convex constraint functions, g, consider Assumptions [[Jf| hold. Let
n = 1/(mt). Then, Alg()rirhm(1(‘/71'61»@3‘ the following regret and CCVp o bounds:

Regret: < O(logT) and CCVps < O(logT).
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Proof. Looking first at Regret;. and replaying the opening moves in the proof of Theorem|[I] we may
assume that inequality (I3) holds, an inequality that we reproduce here for convenience of the reader:

1

1
%me —ap|* < %let — |2+ (V fulwr), 2 — m) + 2 HVft(fEt)H - (19

The strong convexity of f; implies, via (7),
(fe(xe)swp — @) < folwh) = folwe) = (m/2) ||z — 27|

which, when inserted in (T9), gives

folee) — i) < M ™ s — a5l + LIV AGEIIP @0)

(where we used (I8) to replace 7, in some terms). Adding (20) from ¢ = 1 to T yields

2
(R

T
Ui 2
Regret, < Z 0} IV fe(zo)l
t=1
L2~ 1

< = —
-2 mt
t=1
= O(logT),
where the second inequality is due to Assumption [2]and (I8).

It remains to account for CCVr . For this, concatenate Lemma [3 with (I8) to get CCV7 2 <
O(log T), thereby closing the proof.

O

4 EXTENSIONS

‘We now briefly mention two straightforward extensions of CLASP: one to accommodate multiple
constraints; the other to handle persistent constraints.

Multiple dynamic constraints. In deriving CLASP, Algorithm |1} we assumed that only one
constraint function g; is revealed at iteration ¢. In some applications, however, several constraints
might be revealed, say, M constraint functions, denoted g;.,,, for 1 < m < M. Accordingly, CCV
might be adjusted to

T M T
CCV1T72 = Z Z (g;;"(xt)f or CCVOTf2 = Zmax {(g;;n(o:t))Q :1<m< M} .
t=1 m=1 t=1

Adapting CLASP to this setting is easy: it suffices to define the set K; as K N Ct.pp,,, where Ct., =
{z € R": gym(z;) <0} and m, denotes the index of the constraint incurring the largest violation
at x;, and correspondlngly upgrade AssumptlonE] so as to suppose the existence of . € KX N Cr,
with Cpr = ﬁt:1 ﬂ —1 Ct.m- It can be readily verified that the proofs of Lemmas to I remain

valid. In particular, Lemma [3[ now asserts that thl(gt;m(ac,g))2 <0 (thl nt> for any fixed

m € {1,..., M}. This and the fact that there is a finite number M of constraints imply that the
statement of Lemmacontmues to hold when CCV 3 is replaced by CCVT o or CCV7,. Owing
to the modular structure of the CLASP proof, which treats regret and CCV separately, Theorems [
and 2| remain valid as well. To conclude, the theoretical guarantees of CLASP are preserved.

Persistent constraints. The canonical interpretation in the COCO literature about dynamic con-
straints is that they are transient: the constraint g; should be satisfied by decision x;, but not necessarily
by future decisions x4y, ¢+2,.... This interpretation can be read in the common definitions of
CCVs in that they penalize only the violation of x; induced by g,—if that was not the case, if
constraints were to be interpreted as persistent, then the definition of a CCV would have to keep the
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score of violations of z; induced by the history of constraints g1, go, . . . , g¢ so far, say, through the
much more stricter metric

T ¢
CCVEL = (g (21)) @1)
t=171=1

The underlying interpretation of dynamic constraints as being transient can also be inferred from
standard COCO algorithms, in the sense that they generate the decision x; without worrying, let
alone enforcing, that it satisfies previously revealed constraints (in this regard, the only exception that
we know of is|Vaze & Sinha|(2025)), though the authors do not articulate that such property is built-in

in their algorithm to address explicitly persistent constraints).

In any case, although we are not aware of specific applications that are best modeled by persistent
constraints, CLASP can be effortlessly adjusted to such settings if needed by defining 'y = KN
ﬂthl Cy, with C; = {x € R™ : g4(x) < 0}. This forces x; to comply with all constraints revealed

so far, that is, g, (z;) < 0 holds for 7 < ¢, in which case CCVlr}ift2 collapses back to CCVy 5, and the

theoretical analysis goes through unchanged, keeping the guarantees of CLASP intact.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed algorithm CLASP with the AdaGrad-

based algorithm of [Sinha & Vaze] (2024), the RECOO algorithm of [Guo et al] (2022), the Frank-
Wolfe-based algorithm of [Wang et al|(2023]), and the Switch algorithm of [Vaze & Sinha] (2023]). We

report results for the cumulative loss and for the violation metrics CCVp 1 and CCV 5.

On evaluating CCV7 . In line with prior COCO work, we measure CCV 1 o a posteriori to
illustrate how this theoretically motivated quantity behaves in practice.

Further synthetic and real-data experiments can be found in Appendix[A-4} All results were averaged
over 100 trials and are reported with 95% confidence intervals|'| The experiments were performed on
a 2020 MacBook Air 13”, with an 8-core Apple M1 processor and 16 GB of RAM.

5.1 ONLINE LINEAR REGRESSION

This experiment is similar to the one presented by (2022) for the setting of adversarial
constraints with a synthetic dataset. At each iteration ¢, the loss function is given by f;(z) = ||[H; x —
yi|?, with Hy € R*¥>10 2 € R19 and 9, € R*, where Hy(i,j) ~ U(—1,1),1<i<4,1 <5 <10,
and y;(i) = Hy(i)1+¢;, suchthat 1 :== (1,...,1) € R and ¢; denotes the standard normal random
variable. On the other hand, the constraint function is given by g;(z) = A; x — by, with 4, € R**10
and b, € R*, where A;(i,j) ~ U(0,2) and b;(i) ~ U(0,1),for1 <i <4and 1 < j < 10. Note
that g, is a vector-valued map taking values in R*, and thus corresponds to multiple constraints of the
form gtym(x) <0, for 1 < m < 4. However, we can replace it with a single scalar function, which
is the pointwise maximum of the constraints g(z) = max{g;m(z) : 1 < m < 4} (see Section 4]
for details). The static decision set is given by K = {:L' eRY:0<2; <1, fori=1,..., 10}. The
vector 1 € R™ in all algorithms was initialized such that 2; ~ U(0, 1), for 1 < i < n, where U (a, b)
stands for the uniform distribution supported on the interval (a, b).

FigureElreports cumulative loss, linear violation (CCVr 1), and squared violation (CCV 7 2) over
iterations. The AdaGrad-based method (blue) attains the lowest cumulative loss, but only by incurring
much larger constraint violations. By contrast, CLASP (orange) controls both CCV 1 and CCV o
at levels comparable to RECOO (green), while remaining simpler and more memory-efficient. The
Frank-Wolfe-based algorithm (red) achieves similar cumulative loss as CLASP, RECOQO, and Switch,
at the cost of higher cumulative constraint violation. Switch (purple) achieves the smallest overall
violations, but at the cost of higher per-iteration complexity. Notably, on the squared violation metric
CCVp o—the focus of our analysis—CLASP is competitive with the best-performing baselines,
confirming in practice that it can keep violation severity sublinear while maintaining reasonable
regret.

'The source code for the numerical experiments can be found in https://anonymous.4open,
science/r/CLASP-45D2
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Figure 1: Online linear regression with adversarial constraints. We report (a) cumulative loss, (b)
linear violation CCV 7 1, and (c) squared violation CCV 5. AdaGrad achieves the lowest loss but
at the cost of very large constraint violations. CLASP controls both violation metrics competitively
with RECOO, while remaining more memory-efficient than Switch. Frank-Wolfe attains higher
cumulative constraint violation compared with CLASP, RECOO, and Switch while not attaining
relevant reduction in the cumulative loss. Switch attains the smallest violations overall but with
higher per-iteration complexity. All CCV 7 5 values are reported a posteriori.

6 CONCLUSIONS

Limitations and Future Work. While CLASP attains state-of-the-art guarantees for the squared
cumulative constraint violation CC'Vr 2, we do not pursue sharp bounds for the linear metric CC'Vr 4
in the convex regime. Obtaining such bounds would require a dedicated analysis of CLASP, rather
than a loose Cauchy-Schwarz conversion, and constitutes a natural continuation of the modular FNE-
based framework developed here. A second direction concerns projection-free variants of CLASP,
which would broaden its applicability in domains where projections onto X' N C} are computationally
costly. We regard both extensions as promising and complementary avenues for future research.

Conclusions. We introduced CLASP, an online COCO algorithm that handles convex losses and
dynamic constraints. CLASP aims at minimizing both loss regret and cumulative constraint violation
(CCV). In this work, the metric is the squared Cumulative Constraint Violation to account for large
violations. For general convex losses, CLASP offers a tunable trade-off between regret and CCV,
matching the best performance of previous works designed for static constraints. More importantly,
for strongly convex losses, CLASP universally achieves logarithmic bounds on both regret and CCV—
an advance that, to the extent of our knowledge, is established here for the first time. Algorithmically,
CLASP consists of just a gradient step followed by a projection at each iteration, while its analysis is
simplified by leveraging the firmly non-expansiveness property of projections. This yields a modular
proof structure that disentangles the treatment of regret from that of CCV. This modularity, in turn,
makes extensions of CLASP to other settings (e.g., multiple or persistent constraints) straightforward.
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A APPENDIX

A.1 PROOF OF LEMMAII

Note that 2% € X N Cr C Ky, implying 2% = Pi, («7.) for 1 < ¢ <T. We have

~ 2
41 = 2% ]* = | Pe, (@e41) = Pr, (a7

< Zer — 27| = dic, (Te41)?
= |l = mV fi(wr) = 27| = dic, (F141)”
= |lze — a7l = 20V fe(we), 0 — 2%) + 07 IV fo(ze) |* — dic, (Fer1)?
< lwe = 27 ? + 2061V fe(wo) [l — 2%l + 07 IV fe(wo)|? = dic, (Ter1)?
< lloe = @Fl|* + 2LDne + L2n7 — dic, (141)°,
where the first inequality is due to the firm non-expansiveness of the operator Py, (see (3)); the second

inequality is the Cauchy-Schwarz inequality; and the third inequality follows from Assumptions
and 2l

Before proceeding, we would like to indicate the pivotal role played by the firmly non-expansiveness
property of the operator Px,. Indeed, if we used only its weaker non-expansiveness property, the
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right-hand side of the first inequality would read as ||Z;41 — 2%, the key term dic, (Zy41)2 no
longer present. The disappearance of this term would instantly sever the reasoning of the present
lemma; as the subsequent lemmas depend upon it, the entire proof would be invalidated.

Re-arranging the last inequality yields
d, (Te41)? < [lze — 27| = lwerr — 27| + 2L D, + L7
< lze = 2% |* = lwesr — a7 l* + (2LD + 0L,

where the last inequality is due to Assumption 4]

Summing up from ¢ = 1 to 7', we obtain

Zd;ct (Ti1)? < ||x1—xTH2—|—Z (2LD + L)y, = (Z"t>-

t=1 t=1

A.2 PROOF OF LEMMA 2]

‘We have

dlcf (:Ct) = d)Cf (xt—‘rl + («rt — xt+1))
< die, (@e41) + |20 — Tega |
= dic, (Tev1) + ml[V fe (@) |

o

<d,(T41) + L,

where the first inequality follows from the Lipschitz continuity of the distance function dx, (see
Section [2), and the second inequality from Assumption 2]

It follows that

dic, (1)? < 2dic, (Tp41)? + 207 L
S 2dlCt (it+1)2 + 27’}t0L27

where the first inequality comes from the general fact (a + b)? < 2a? + 2b? for a,b € R, and the
second inequality from Assumption 4]

Summing up from ¢ = 1 to 7" and using Lemma|T] we obtain

T T T
D di, (@)® <2 dic, (#41)? + 20720 ) e
t=1 t=1 t=1

“o(Sn)

Note that |g;" (u) — g;" (v)| < |g¢(w) —g¢(v)| for all u, v € R™. Hence,
for all u, v € K due to Assumption[3]and its consequence (9).

A.3 PROOF OF LEMMA 3]

£ (W) =g ()| < Lu—vf

It follows that

9¢ (x¢) < g/ (P, (we)) + Lz — P, (z2)||
= Ld’Ct (xt)7

since g;” (Pi, (w¢)) = 0 because Py, (z;) € Ky = KN {x € R™: g;(x) < 0} and any point u € K;
satisfies g;(u) < 0.
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Equivalently, we have g; () < L%dx, (2;). Summing up from ¢ = 1 to 7" and using Lemma 2]
we obtain
T

CCVro = (g (z1))

t=1

T
<L) dk,(w1)
=1
T
<0 (Z 77t> .
=1

A.4 ADDITIONAL NUMERICAL EXPERIMENTS

In this section, we present additional numerical experiments. In particular, a version of the Online
Linear Regression experiment with additional rounds, and an experiment for Online Support Vector
Machine. The results were obtained by averaging over 100 trials and reported with a 95% confidence
interval.

A.4.1 ONLINE LINEAR REGRESSION WITH ADDITIONAL ROUNDS

We now present a version of the Online Linear Regression experiment with a larger number of
rounds. As stated in Section the Switch algorithm is memory-intensive as the set to which
the algorithm performs the projections incorporates all previously revealed constraint functions.
Therefore, as the iterations unfold, the set becomes increasingly more complex and the associated
projection increasingly more expensive. So, we removed Switch from this experiment, as to be able
to investigate a larger number of rounds.
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Figure 2: Online Linear Regression with additional rounds.

The results are similar to the ones in Section[5] However, while the Cumulative Constraint Violation
(both CCVr ; and CCVr 5) attained by CLASP and RECOO are very similar, note that, for the
CCV 7,2 metric, for a larger number of rounds, the CLASP algorithm displays diminished variability.

A.4.2 ONLINE SUPPORT VECTOR MACHINE

In our second experiment, we compare the performance of the algorithms for the online update of a
Support Vector Machine (SVM) (Boser et al.l[1992} [Bishop & Nasrabadi},|2006). We consider that,
at each iteration ¢, we receive a new labeled sample (ug, v¢), with u; € RY the feature vector and
vy € {£1} the label. Thus, at each round ¢, we can formulate the optimization problem in the COCO
setting as

1
minimize = |lw|?, subjectto —v; (wTuy —b) +1<0,
zi=(w,b)ek 2

or, in terms of the COCO framework, the revealed loss function is f;(z) = 3 |w||? and the revealed

constraint function is g¢(z) = —v; (wTut — b) + 1. For this experiment, we use the real-world
dataset about wine quality from their physicochemical properties (for the details about the dataset,
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see Cortez et al. (2009)ﬂ The dataset contains 6497 samples, each sample contains P = 11 features,
and the quality of the wine is classified between 1 and 9. Some of the features were in g/dm?, while
others were in mg/dm3. We ensured that all density features were expressed in g/dm3. In this
experiment, we consider the binary classification setting, where we label with 1 the wine samples
with quality equal to or greater than 7, and label with —1 the remaining. Thus, we want our classifier
to distinguish between high-quality and low-quality wines. In each trial, we reshuffle the dataset so
that the order of samples in each trial is always different. The vector z; € R™*! for all algorithms
was initialized such that z; ~ U(—1,1), for 1 < ¢ < n + 1. The results were obtained by averaging
over 100 trials and reported with a 95% confidence interval.

From domain knowledge, we can bound the norm of the feature vector as each physicochemical
property has an interval of possible values (for simplicity, we analyzed the possible values encountered
in the dataset and concluded that 0 < u; < 70 for all ¢, thus we can use this to define the Lipschitz
constant of the constraint functions L = 70+/P). While the SVM is an unconstrained problem, our
algorithms assume that the decision set is compact; thus, based on the constraints on the feature
vectors, we define K = {z = (w,b) € R+ . ||z| < 70v/P}.
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Figure 3: Online Support Vector Machine

Remark. In this experiment, the feasibility assumption is not satisfied, i.e., the set X N Cr = &,
where Cp = ﬂthl Cy. Although this property is used in the analysis of the algorithms in COCO to
obtain regret and cumulative constraint violation bounds, most of the algorithms in COCO can still
be applied to problems without this property. However, the Switch algorithm, due to the exploitation
of nested convex bodies, cannot be applied when the feasibility property is not satisfied. Since, at
each iteration, the algorithm projects onto the intersection of past constraint functions, then there will
be some Tp, with 1 < T < T, such that Cr, = ﬂ21 C; = @. Therefore, in this experiment, we
cannot compare the performance of the Switch algorithm, but compare our algorithm CLASP with
the AdaGrad, RECOO and Frank-Wolfe algorithms.

In Fig. 3] we can visualize both the cumulative loss and the CCV of the different algorithms for each
round. In this experiment, the more informative results are in Figs.[3band[3c] as a constraint violation
translates as a transgression of the margin. We see for both constraint violation metrics, CCVr ; and
CCV 17,2, the CLASP algorithm achieves better results and with less variability. Furthermore, we see
that for the metric CCVr o, the difference in performance is significantly better.

2This dataset is released under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
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