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ABSTRACT

We study Constrained Online Convex Optimization (COCO), where a learner
chooses actions iteratively, observes both unanticipated convex loss and convex
constraint, and accumulates loss while incurring penalties for constraint violations.
We introduce CLASP (Convex Losses And Squared Penalties), an algorithm that
minimizes cumulative loss together with squared constraint violations. Our analysis
departs from prior work by fully leveraging the firm non-expansiveness of convex
projectors, a proof strategy not previously applied in this setting. For convex
losses, CLASP achieves regret O

(
Tmax{β,1−β}) and cumulative squared penalty

O
(
T 1−β

)
for any β ∈ (0, 1). Most importantly, for strongly convex problems,

CLASP provides the first logarithmic guarantees on both regret and cumulative
squared penalty. In the strongly convex case, the regret is upper bounded by
O(log T ) and the cumulative squared penalty is also upper bounded by O(log T ).

1 INTRODUCTION

We consider a setting where at each iteration t ∈ {1, 2, 3, . . . }, a learner selects an action xt from
a convex set K ⊂ Rn, then a loss function ft is revealed, and the learner incurs loss ft(xt). The
learner’s goal is to perform nearly as well dynamically as the best fixed action in hindsight. i.e, keep
the regret

RegretT =

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
⋆
T ). (1)

growing sublinearly in T , so that, asymptotically, the average loss of the learner is no worse than the
optimal fixed action, x⋆

T = argmin
x∈K

∑T
t=1 ft(x).

Online Convex Optimization (OCO) is the special case of Online Learning in which the action set K
is convex, and the loss functions ft are convex. The OCO setup has been extensively studied over the
years (Shalev-Shwartz et al., 2012; Hazan et al., 2016; Zinkevich, 2003; Duchi et al., 2011; Bubeck
et al., 2012; Hazan & Kale, 2012; Hazan & Minasyan, 2020; Hazan & Singh, 2021). OCO assumes
that operational constraints on the possible actions are static in time, being fully captured by the fixed
set K.

In many applications, however, operational constraints do change at each iteration: at time t, the
action xt must satisfy not only xt ∈ K but also an extra constraint gt(xt) ≤ 0, with gt a convex
function. The challenge here is that the learner must choose an action xt also before knowing the
constraint function gt. This more difficult setup generalizes OCO and is known as Constrained Online
Convex Optimization (COCO).

To conclude, the COCO learner wishes not only to bound the regret (1), now with

x⋆
T = argmin

x∈K∩CT

T∑
t=1

ft(x), CT =

T⋂
t=1

Ct, Ct = {x : gt(x) ≤ 0}, (2)

but also wishes to bound some notion of cumulative constraint violation (CCV), as detailed in the
next section.

1
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1.1 RELATED WORK

Early work on COCO (Mahdavi et al., 2012; Jenatton et al., 2016; Yuan & Lamperski, 2018; Yu &
Neely, 2020) focused on soft constraint violations, allowing the learner to compensate over time
by balancing positive and negative violations. In those settings the performance is measured by the
cumulative constraint violation CCVT =

∑T
t=1 gt(xt). However, this metric has a critical weakness:

The sum may become negative even if many rounds incur positive violations, thereby masking the
severity or frequency of actual constraint breaches.

Such arithmetic compensation is often unsuitable in practice, as many applications demand a more
direct and monotonic measure of constraint violation. We thus focus on the hard metrics

CCVT,1 =

T∑
t=1

g+t (xt), or CCVT,2 =

T∑
t=1

(
g+t (xt)

)2
, (3)

where g+t (x) = max{0, gt(x)}. Under these definitions, violations cannot be offset over time:
these cumulative sums are nondecreasing in T . Both metrics are of practical relevance, and authors
generally commit to one as their principal violation measure. A natural question is whether a bound
on CCVT,1 can be turned into one on CCVT,2 by redefining gt as (g+t )

2. This reduction, however,
is generally invalid: key assumptions often required for CCVT,1 bounds—such as the existence of a
Slater point x̃ with gt(x̃) < 0 for all t—cannot hold for (g+t )

2, which is always nonnegative. Other
structural properties (e.g., convexity or Lipschitz constants) may also be lost under squaring. For
these reasons, we directly analyze CCVT,2 rather than rely on such a transformation. Moreover,
even if the reduction were possible, it would not yield our main result: to the best of our knowledge,
no O(log T ) bound exists for CCVT,1 in the strongly convex setting, so our logarithmic CCVT,2

guarantee cannot be inferred from prior CCVT,1 results.

We now review the closest work in COCO, organized by whether the constraints are static (gt = g
for all t) or dynamic (gt may vary adversarially). Our focus is on the dynamic case, but it is useful to
contrast with the static regime first.

Static constraints. As the focus of this paper is on dynamic constraints, we restrict ourselves here
for brevity to convex loss functions, omitting the results for strongly convex ones. The early work of
(Mahdavi et al., 2012) uses a regularized Lagrangian update and achieves RegretT ≤ O(

√
T ) and

soft violation CCVT ≤ O(T 3/4). (Jenatton et al., 2016) refine this approach via adaptive weightings
of primal and dual step sizes, obtaining RegretT ≤ O

(
Tmax{β,1−β}) and CCVT ≤ O

(
T 1−β/2

)
for

any β ∈ (0, 1). (Yu & Neely, 2020) push further by bounding CCVT ≤ O(1) (constant violation)
while preserving O(

√
T ) regret. Yi et al. (Yi et al., 2021), in turn, address hard violations by showing

RegretT ≤ O
(
Tmax{β,1−β}) and CCVT,1 ≤ O

(
T (1−β)/2

)
. Finally, (Yuan & Lamperski, 2018)

focus directly on the squared-penalty metric CCVT,2, proving RegretT ≤ O
(
Tmax{β,1−β}) and

CCVT,2 ≤ O(T 1−β). Their work penalizes large violations more heavily, preventing cancellation
that occurs under soft violation metrics.

Dynamic constraints. When the constraints gt may vary arbitrarily with t, the problem becomes
significantly more challenging.

(Guo et al., 2022) introduce the Rectified Online Optimization (RECOO) algorithm, which exploits a
first-order approximation of the regularized Lagrangian at each round. For convex losses, RECOO
achieves RegretT ≤ O(

√
T ) and CCVT,1 ≤ O

(
T

3
4

)
. In the strongly convex case, it improves to

RegretT ≤ O(log T ) and CCVT,1 ≤ O(
√
T log T ).

(Yi et al., 2023) extend these ideas in a distributed setting, with results that can be transposed
to the centralized regime. For convex losses, they establish RegretT ≤ O

(
Tmax{β,1−β}) and

CCVT,1 ≤
(
T 1−β/2

)
for any β ∈ (0, 1). For strongly convex losses, their guarantees become

RegretT ≤ O
(
T β
)

and CCVT,1 ≤
(
T 1−β/2

)
.

A major step forward is due to Sinha & Vaze (2024), who introduced the Regret Decomposition
Inequality, an elegant analytical tool that extends the drift-plus-penalty framework (Neely, 2010).

2
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They show that suitably modified AdaGrad variants can achieve RegretT ≤ O
(√

T
)

and, for the

first time, CCVT,1 ≤ O
(√

T log T
)

for convex loss functions. For strongly convex functions, the

results are RegretT ≤ O (log T ) and CCVT,1 ≤ O
(√

T log T
)
, with the CCV bound improved to

CCVT,1 ≤ O(log T ) for the specialized setting of non-negative regrets.

Building on this line Vaze & Sinha (2025) propose the Switch algorithm, which explicitly leverages the
geometry of the constraint sets Ct (2). Although the strongly convex case is not explicitly addressed,
for convex loss functions Switch guarantees RegretT ≤ O(

√
T ) and CCVT,1 ≤ O(

√
T log T ) across

all instances, the novelty being that the bound on CCV can drop to O(1) for special geometrical
instances of Ct. Our proposed algorithm, CLASP, bears certain similarities with Algorithm 2 in (Vaze
& Sinha, 2025), as we elaborate in the next section.

To conclude, we highlight an interesting line of COCO research on low-complexity, projection-free
algorithms, which avoid projection onto K. Representative work is (Garber & Kretzu, 2024; Sarkar
et al., 2025; Wang et al., 2025; Lu et al., 2025). For example, the recent work (Lu et al., 2025) exploits
a separation oracle to achieve RegretT ≤ O

(√
T
)

and CCVT,1 ≤ O
(√

T log T
)

for convex loss

functions; and RegretT ≤ O (log T ) and CCVT,1 ≤ O
(√

T log T
)

for strongly convex ones.

1.2 CONTRIBUTIONS

We propose CLASP, an online COCO algorithm for dynamic constraints with Convex Losses And
Squared Penalties, where the violation metric of interest is CCVT,2 (3). Our contributions can be
summarized as follows:

• Strongly convex losses. CLASP achieves RegretT ≤ O(log T ) and CCVT,2 ≤ O(log T ). To the
best of our knowledge, this is the first result to guarantee logarithmic bounds on both regret and
squared violations. The closest prior work, (Sinha & Vaze, 2024), establishes RegretT ≤ O(log T )
and CCVT,1 ≤ O(log T ), but only in the restricted setting of non-negative regrets. CLASP removes
this limitation by providing guarantees without assuming the sign of the regret. Furthermore, by
the Cauchy-Schwarz inequality, we have

CCVT,1 =

T∑
t=1

(gt)
+(xt) ≤

√
T
√

CCVT,2 ≤ O(
√

T log T ),

thus CLASP also attains the best-known bound for CCVT,1 in the strongly convex setting.
• Convex losses. For general convex losses, CLASP guarantees

RegretT ≤ O
(
Tmax{β,1−β}), CCVT,2 ≤ O(T 1−β), ∀β ∈ (0, 1).

This matches the rates reported by Yuan & Lamperski (2018), whose results were derived for static
constraints; CLASP extends them to the dynamic regime and within the same analysis framework,
unifying the results under a single line of reasoning.

• Algorithmic simplicity. Each CLASP iteration consists of a gradient step with respect to the latest
loss, followed by a single projection onto the current feasible set K∩Ct. In contrast, Algorithm 2 of
Vaze & Sinha (2025) requires two projections per iteration, one onto the full historical intersection
K ∩

⋂t
τ=1 Cτ . Thus CLASP is more memory-efficient, avoiding the need to retain past constraints.

Moreover, the analyses of the two methods differ fundamentally, as discussed in Sections 3.2 and 4.
• Analytical novelty. Our analysis relies on the firm non-expansiveness (FNE) of projections

onto closed convex sets—a stronger property than the standard non-expansiveness typically used.
Exploiting FNE allows a clean modular proof structure, where regret and constraint violation are
analyzed separately. This modularity also makes the analysis more extensible, e.g., to multiple
dynamic constraints or persistent constraints (Section 4).

Relevance to Machine Learning Practice. Recent empirical and theoretical work suggests that
strong convexity and sharper penalties for violations are practically meaningful in constrained ML
settings. For example, Wang et al. (2025) shows that under strong convexity of regret, both regret
and constraint violations drop substantially, and experiments in that paper confirm that algorithms

3
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exploiting strong convexity perform better on real datasets. The authors of Ma et al. (2025) empirically
validate that in resource allocation problems with hard constraints plus regularization, faster rates
(logarithmic regret) are achievable. The work Banerjee et al. (2023) finds that many practical deep
models satisfy restricted strong convexity, and fast (geometric) convergence is observed in training.
These works show that assumptions like strong convexity are not merely theoretical and that penalties,
and constraints (Ramirez et al. (2025)), matter in real ML systems. However, prior work usually
measures constraint violation linearly (or counts violations) rather than providing log-rate guarantees
on both regret and the severity of violations (e.g., squared penalties). The squared penalty can be
useful in applications where large violations of the constraints are a reason for concern. For example,
in model predictive control, the inequality g(x) ≤ 0 might be encoding a current saturation limit on
an actuator, say, torque or thrust; here, small deviations are tolerable, but large deviations can become
dangerous. As another example, in robot trajectory planning, the inequality might represent a signed
distance to a harmful region. Here, violating the constraint means the robot is at risk, a risk that might
not scale linearly in the sense that every extra unit of penetration does not cost the same and might be
best accounted for by a quadratic increase. Yet another example might occur in a vehicle following a
mobile target. Here, the constraint might model the wish to stay within a given radius of the target. If
the distance becomes too large, the vehicle might lose sight of the target and fail the tracking mission.

2 PRELIMINARIES

We summarize the technical tools used in the analysis of CLASP and state our assumptions.

Projection operators and distance functions. For a non-empty, closed convex set S ⊂ Rn, we let
PS : Rn → Rn be the associated orthogonal projection operator. Thus, PS(u) is the projection of
the point u onto the set S and denotes the point in S that is closest to u with respect to the Euclidean
norm ∥·∥. Such projectors are firmly non-expansive (FNE) operators, which means they satisfy the
inequality

∥PS(u)− PS(v)∥2 ≤ ∥u− v∥2 − ∥(u− PS(u))− (v − PS(v))∥2 , (4)
for all u, v ∈ Rn (see, e.g., Bauschke & Combettes (2017, Proposition 4.8)). Property (4) implies the
popular non-expansiveness (NE) property, ∥PS(u)− PS(v)∥ ≤ ∥u− v∥.

We let dS : Rn → R denoted the associated distance function, dS(u) = min {∥v − u∥ : v ∈ S}.
Thus, dS(u) = ∥u− PS(u)∥ and, from (4),

∥PS(u)− v∥2 ≤ ∥u− v∥2 − dS(u)
2, (5)

for all u ∈ Rn and v ∈ S.

Finally, the function dS is Lipschitz continuous with constant 1, that is, |dS(u)− dS(v)| ≤ ∥u− v∥
for all u, v ∈ Rn (see, e.g., Bauschke & Combettes (2017, page 59, Chapter 4)).

Convex and strongly convex functions. Let h : Rn → R ∪ {+∞} be an extended real-valued
function. It is said to be proper if its domain, dom h = {x ∈ Rn : h(x) < +∞}, is a non-empty set;
it is closed if each lower level set {x ∈ Rn : h(x) ≤ α} at height α ∈ R is a closed set; and it is
convex if there exists an m ≥ 0 such that

h ((1− λ)u+ λv) ≤ (1− λ)h(u) + λh(v)− m

2
λ(1− λ) ∥u− v∥2 , (6)

for all λ ∈ (0, 1) and u, v ∈ Rn. If m can be taken to be strictly positive, then h is said to be
m-strongly convex.

If h is a proper, closed, and convex function, then

h(v) ≥ h(u) + ⟨∇h(u), v − u⟩+ m

2
∥v − u∥2 , (7)

for all u, v ∈ Rn, where, from now on, ∇h(u) denotes a sub-gradient of h at u. (⟨·, ·⟩ is the usual
inner-product). If, furthermore, h is m-strongly convex, then it has a unique global minimizer, say,
u⋆, (see, e.g., Bauschke & Combettes (2017, Corollary 11.16)); the zero vector is then a sub-gradient
of h at u⋆, implying via (7) that

h(v) ≥ h(u⋆) +
m

2
∥v − u⋆∥2 (8)

for all v ∈ Rn.

4
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Assumptions. Throughout, we impose the following standard COCO assumptions:
Assumption 1. The action set K is a non-empty, compact convex subset of Rn. It follows that the
diameter of K is upper-bounded by some constant, say, D ≥ 0, which entails ∥u− v∥ ≤ D for all
u, v ∈ K.
Assumption 2. The loss functions ft : Rn → R are convex for all t ≥ 1, with the magnitude of their
sub-gradients bounded by L, when evaluated at points in K: ∥∇ft(u)∥ ≤ L for all u ∈ K and t ≥ 1.
Assumption 3. The constraint functions gt : Rn → R are convex for all t ≥ 1, with the magnitude
of their sub-gradients bounded by L, when evaluated at points in K: ∥∇gt(u)∥ ≤ L for all u ∈ K
and t ≥ 1.

Moreover, K ∩
⋂T

t=1 Ct is non-empty for all T ≥ 1 (where Ct = {x ∈ Rn : gt(x) ≤ 0}), so as to
ensure the existence of the regret comparator x⋆

T —recall (2))

Assumptions 2 and 3 imply that

|ft(v)− ft(u)| ≤ L ∥v − u∥ and |gt(v)− gt(u)| ≤ L ∥v − u∥ (9)

for all u, v ∈ K and t ≥ 1 (as a consequence, e.g., of the mean-value theorem (Hiriart-Urruty &
Lemaréchal, 1993, Theorem 2.3.3)).
Assumption 4. The sequence (of step-sizes) (ηt)t≥1 satisfies 0 < ηt+1 ≤ ηt for all t ≥ 1. Hence,
there exists θ > 0 such that η2t ≤ θηt for all t ≥ 1 (e.g., take θ = η1).

3 THE CLASP ALGORITHM

In this section, we introduce our algorithm CLASP, which stipulates how the decisions xt+1 are
made, given the stream of losses ft and constraints gt observed up to time t. CLASP is a conceptually
simple algorithm that, at each iteration (after the first), takes a gradient step with respect to the most
recently observed loss function, and then projects onto the most recently observed constraint function,
see Algorithm 1.

Algorithm 1 CLASP

Require: action set K, horizon T ≥ 1, step-sizes ηt for 1 ≤ t ≤ T − 1
Choose x1 ∈ K and observe f1, g1
Accumulate loss f1(x1) and penalty (g+1 (x1))

2

for t = 1, . . . , T − 1 do
Choose xt+1 = PKt

(xt − ηt∇ft(xt)) and observe ft+1, gt+1

Accumulate loss ft+1(xt+1) and penalty (g+t+1(xt+1))
2

end for

Here, ∇ft(xt) represents a sub-gradient of ft at xt. The projection step in CLASP is onto the set
Kt = K∩Ct, with Ct = {x ∈ Rn : gt(x) ≤ 0} (as defined in (2)). Note that the set Kt is non-empty,
as per Assumption 3, and that this projection, typically realized as a convex optimization problem,
sets CLASP apart from the projection-free methods in Section 1.1. The step-sizes ηt are chosen
according to whether the loss functions are convex or strongly convex and are specified further ahead
in Section 3.2. We write x̂t+1 = xt − ηt∇ft(xt), and rewrite CLASP as xt+1 = pKt

(x̂t+1) for
t ≥ 1.

We now analyze CLASP, finding upper-bounds for both RegretT (see (1) and (2)) and the hard
constraint violation CCVT,2 (see (3)).

Our analysis is modular, one module bounding the metric CCVT,2 (Section 3.1) and the other module
bounding the regret (Section 3.2).

3.1 BOUNDING CCVT,2

In this section, we present the module of our analysis that is dedicated to bounding the metric CCVT,2.
More precisely, we start by finding a generic bound on CCVT,2 that is phrased in terms of the length
of the step-sizes

∑T
t=1 ηt. Our bound, the end result of a progression of three lemmas, is stated

5
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precisely in Lemma 3. The lemmas hold under Assumptions 1 to 4, and their proofs are provided in
the Appendix.
Lemma 1. In the COCO setting, for adversarially chosen convex loss functions ft and con-
vex constraint functions, gt, consider Assumptions 1-4 hold. Then for Algorithm 1, there holds∑T

t=1 dKt(x̂t+1)
2 ≤ O

(∑T
t=1 ηt

)
.

Lemma 1 bounds the cumulative squared-distance of the intermediate step x̂t+1 (which can be sort of
a virtual decision) to the convex set Kt.

The next Lemma 2 leverages this result and obtains a similar bound, but now relative to the decision xt.
Lemma 2. In the COCO setting, for adversarially chosen convex loss functions ft and con-
vex constraint functions, gt, consider Assumptions 1-4 hold. Then for Algorithm 1, there holds∑T

t=1 dKt(xt)
2 ≤ O

(∑T
t=1 ηt

)
.

Lemma 3. In the COCO setting, for adversarially chosen convex loss functions ft and convex
constraint functions, gt, consider Assumptions 1-4 hold. Then for Algorithm 1, there holds CCVT,2 ≤
O
(∑T

t=1 ηt

)
.

Lemma 3, the main result of this section, connects the growth of the CCVT,2 metric with the growth
of the stepsizes. The next section chooses these stepsizes for the convex and strongly convex setting
and bounds the regret, completing our analysis.

3.2 ANALYSIS OF CLASP

Having assembled the necessary elements, we are ready to fully analyze CLASP. The analysis is
reported in Theorem 1 for convex losses, and in Theorem 2 for strongly convex ones.

Convex losses. We suppose that assumptions 1 to 4 hold. Let β be any desired value in (0, 1) and,
accordingly, set the step-sizes to

ηt = 1/tβ , for t ≥ 1, (10)
which complies with Assumption 4. The following Theorem 1 bounds the regret and the CCV of
CLASP for this setting.
Theorem 1 (Convex losses). In the COCO setting, for adversarially chosen convex loss functions ft
and convex constraint functions, gt, consider Assumptions 1-4 hold. Let ηt = 1/tβ , with β ∈ (0, 1).
Then, Algorithm 1 achieves the following regret and CCVT,2 bounds:

RegretT ≤ O(Tmax{β,1−β}) and CCVT,2 ≤ O
(
T 1−β

)
.

Proof. We start by analyzing the RegretT . Express the projection step of CLASP as
xt+1 = argmin

u∈Rn

ht(u),

where
ht(u) = ⟨∇ft(xt), u− xt⟩+

1

2ηt
∥u− xt∥2 + δKt

(u),

with δKt
: Rn → R ∪ {+∞} denoting the indicator function of the convex set Kt (i.e., δKt

(u) = 0
if u ∈ Kt, and δKt

(u) = +∞, if u /∈ Kt).

Note that ht is a proper, closed, and σ-strongly convex function with modulus σ = 1/ηt and global
minimizer xt+1. Thus, from (8), we have

ht(x
⋆
T ) ≥ ht(xt+1) +

1

2ηt
∥x⋆

T − xt+1∥2 . (11)

Observing that both xt+1 and x⋆
T are points in Kt (which implies δKt

(xt+1) = δKt
(x⋆

T ) = 0), we
can re-arrange (11) as

1

2ηt
∥xt+1 − x⋆

T ∥2 ≤ 1

2ηt
∥xt − x⋆

T ∥2 + ⟨∇ft(xt), x
⋆
T − xt⟩ −

1

2ηt
∥xt − xt+1∥2

+ ⟨∇ft(xt), xt − xt+1⟩.
(12)

6
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We now use the easily-checked fact

max

{
− 1

2η
∥u∥2 + ⟨v, u⟩ : u ∈ Rn

}
=

η

2
∥v∥2 ,

which holds for all η > 0 and v ∈ Rn, and amounts simply to compute the peak value of the concave
quadratic function inside the braces. Using this fact with η = ηt and v = ∇ft(xt), we can bound the
sum of the last two terms on the right-hand side of (12), thereby arriving at

1

2ηt
∥xt+1 − x⋆

T ∥2 ≤ 1

2ηt
∥xt − x⋆

T ∥2 + ⟨∇ft(xt), x
⋆
T − xt⟩+

ηt
2
∥∇ft(xt)∥2 . (13)

The convexity of ft implies ⟨∇ft(xt), x
⋆
T − xt⟩ ≤ f(x⋆

T )− f(xt) (e.g., see (7) with m = 0), which,
when plugged in (13), yields

ft(xt)− ft(x
⋆
T ) ≤

1

2ηt
∥xt − x⋆

T ∥2 −
1

2ηt
∥xt+1 − x⋆

T ∥2 +
ηt
2
∥∇ft(xt)∥2. (14)

For t = 1, inequality (14) implies

f1(x1)− f1(x
⋆
T ) ≤

1

2η1
D2 − 1

2η1
∥x2 − x⋆

T ∥
2
+

η1
2

∥∇f1(x1)∥2 , (15)

where Assumption 1 was used to bound the first term in the right-hand side of (14). For t ≥ 2, we
have

1

2ηt
∥xt − x⋆

T ∥2 =
1

2ηt−1
∥xt − x⋆

T ∥2 +
(

1

2ηt
− 1

2ηt−1

)
∥xt − x⋆

T ∥2

≤ 1

2ηt−1
∥xt − x⋆

T ∥2 +
(

1

2ηt
− 1

2ηt−1

)
D2, (16)

where the last inequality uses Assumptions 1 and 4.

Plugging (16) in (14) gives

ft(xt)− ft(x
⋆
T ) ≤

1

2ηt−1
∥xt − x⋆

T ∥2 −
1

2ηt
∥xt+1 − x⋆

T ∥2 +
ηt
2
∥∇ft(xt)∥2

+

(
1

2ηt
− 1

2ηt−1

)
D2,

(17)

which is valid for t ≥ 2. Finally, summing (15) to (17) (instantiated from t = 2 to T ) yields

RegretT ≤ 1

2ηT
D2 +

T∑
t=1

ηt
2
∥∇ft(xt)∥2

≤ T βD2

2
+

L2

2

T∑
t=1

1

tβ

≤ O(Tmax{β,1−β}),

where the second inequality follows from Assumption 2 and (10).

We now turn to the analysis of CCVT,2: combining Lemma 3 with (10) gives directly CCVT,2 ≤
O(T 1−β) and concludes the proof.

Strongly convex losses. We suppose assumptions 1 to 4 are still in force and further assume that
there exists m > 0 such that each convex loss ft is m-strongly convex for t ≥ 1. The step-sizes are
set to

ηt = 1/(mt), for t ≥ 1, (18)
thereby satisfying Assumption 4.
Theorem 2 (Strongly convex losses). In the COCO setting, for adversarially chosen m-strongly-
convex loss functions ft and convex constraint functions, gt, consider Assumptions 1-4 hold. Let
ηt = 1/(mt). Then, Algorithm 1 achieves the following regret and CCVT,2 bounds:

RegretT ≤ O(log T ) and CCVT,2 ≤ O(log T ).

7
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Proof. Looking first at RegretT and replaying the opening moves in the proof of Theorem 1, we may
assume that inequality (13) holds, an inequality that we reproduce here for convenience of the reader:

1

2ηt
∥xt+1 − x⋆

T ∥2 ≤ 1

2ηt
∥xt − x⋆

T ∥2 + ⟨∇ft(xt), x
⋆
T − xt⟩+

ηt
2
∥∇ft(xt)∥2 . (19)

The strong convexity of ft implies, via (7),

⟨ft(xt), x
⋆
T − xt⟩ ≤ ft(x

⋆
T )− ft(xt)− (m/2) ∥xt − x⋆

T ∥
2
,

which, when inserted in (19), gives

ft(xt)− ft(x
⋆
T ) ≤

m(t− 1)

2
∥xt − x⋆

T ∥
2 − mt

2
∥xt+1 − x⋆

T ∥
2
+

ηt
2
∥∇ft(xt)∥2 (20)

(where we used (18) to replace ηt in some terms). Adding (20) from t = 1 to T yields

RegretT ≤
T∑

t=1

ηt
2
∥∇ft(xt)∥2

≤ L2

2

T∑
t=1

1

mt

= O(log T ),

where the second inequality is due to Assumption 2 and (18).

It remains to account for CCVT,2. For this, concatenate Lemma 3 with (18) to get CCVT,2 ≤
O(log T ), thereby closing the proof.

4 EXTENSIONS

We now briefly mention two straightforward extensions of CLASP: one to accommodate multiple
constraints; the other to handle persistent constraints.

Multiple dynamic constraints. In deriving CLASP, Algorithm 1, we assumed that only one
constraint function gt is revealed at iteration t. In some applications, however, several constraints
might be revealed, say, M constraint functions, denoted gt;m for 1 ≤ m ≤ M . Accordingly, CCV
might be adjusted to

CCV1
T,2 =

T∑
t=1

M∑
m=1

(
g+t;m(xt)

)2
or CCV∞

T,2 =

T∑
t=1

max
{
(g+t;m(xt))

2 : 1 ≤ m ≤ M
}
.

Adapting CLASP to this setting is easy: it suffices to define the set Kt as K ∩ Ct;mt
, where Ct;m =

{x ∈ Rn : gt;m(xt) ≤ 0} and mt denotes the index of the constraint incurring the largest violation
at xt, and correspondingly upgrade Assumption 3 so as to suppose the existence of x⋆

T ∈ K ∩ CT ,
with CT = ∩T

t=1 ∩M
m=1 Ct;m. It can be readily verified that the proofs of Lemmas 1 to 3 remain

valid. In particular, Lemma 3 now asserts that
∑T

t=1(g
+
t;m(xt))

2 ≤ O
(∑T

t=1 ηt

)
for any fixed

m ∈ {1, . . . ,M}. This and the fact that there is a finite number M of constraints imply that the
statement of Lemma 3 continues to hold when CCVT,2 is replaced by CCV1

T,2 or CCV∞
T,2. Owing

to the modular structure of the CLASP proof, which treats regret and CCV separately, Theorems 1
and 2 remain valid as well. To conclude, the theoretical guarantees of CLASP are preserved.

Persistent constraints. The canonical interpretation in the COCO literature about dynamic con-
straints is that they are transient: the constraint gt should be satisfied by decision xt, but not necessarily
by future decisions xt+1, xt+2, . . .. This interpretation can be read in the common definitions of
CCVs in that they penalize only the violation of xt induced by gt—if that was not the case, if
constraints were to be interpreted as persistent, then the definition of a CCV would have to keep the

8
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score of violations of xt induced by the history of constraints g1, g2, . . . , gt so far, say, through the
much more stricter metric

CCVhist
T,2 =

T∑
t=1

t∑
τ=1

(g+τ (xt))
2. (21)

The underlying interpretation of dynamic constraints as being transient can also be inferred from
standard COCO algorithms, in the sense that they generate the decision xt without worrying, let
alone enforcing, that it satisfies previously revealed constraints (in this regard, the only exception that
we know of is Vaze & Sinha (2025), though the authors do not articulate that such property is built-in
in their algorithm to address explicitly persistent constraints).

In any case, although we are not aware of specific applications that are best modeled by persistent
constraints, CLASP can be effortlessly adjusted to such settings if needed by defining Kt = K ∩⋂T

t=1 Ct, with Ct = {x ∈ Rn : gt(x) ≤ 0}. This forces xt to comply with all constraints revealed
so far, that is, gτ (xt) ≤ 0 holds for τ < t, in which case CCVhist

T,2 collapses back to CCVT,2, and the
theoretical analysis goes through unchanged, keeping the guarantees of CLASP intact.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed algorithm CLASP with the AdaGrad-
based algorithm of Sinha & Vaze (2024), the RECOO algorithm of Guo et al. (2022), the Frank-
Wolfe-based algorithm of Wang et al. (2025), and the Switch algorithm of Vaze & Sinha (2025). We
report results for the cumulative loss and for the violation metrics CCVT,1 and CCVT,2.

On evaluating CCVT,2. In line with prior COCO work, we measure CCVT,2 a posteriori to
illustrate how this theoretically motivated quantity behaves in practice.

Further synthetic and real-data experiments can be found in Appendix A.4. All results were averaged
over 100 trials and are reported with 95% confidence intervals 1. The experiments were performed on
a 2020 MacBook Air 13”, with an 8-core Apple M1 processor and 16 GB of RAM.

5.1 ONLINE LINEAR REGRESSION

This experiment is similar to the one presented by Guo et al. (2022) for the setting of adversarial
constraints with a synthetic dataset. At each iteration t, the loss function is given by ft(x) = ∥Ht x−
yt∥2, with Ht ∈ R4×10, x ∈ R10 and yt ∈ R4, where Ht(i, j) ∼ U(−1, 1), 1 ≤ i ≤ 4, 1 ≤ j ≤ 10,
and yt(i) = Ht(i)1+ ϵi, such that 1 := (1, . . . , 1) ∈ R10 and ϵi denotes the standard normal random
variable. On the other hand, the constraint function is given by gt(x) = At x− bt, with At ∈ R4×10

and bt ∈ R4, where At(i, j) ∼ U(0, 2) and bt(i) ∼ U(0, 1), for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 10. Note
that gt is a vector-valued map taking values in R4, and thus corresponds to multiple constraints of the
form gt,m(x) ≤ 0, for 1 ≤ m ≤ 4. However, we can replace it with a single scalar function, which
is the pointwise maximum of the constraints gt(x) = max{gt,m(x) : 1 ≤ m ≤ 4} (see Section 4
for details). The static decision set is given by K =

{
x ∈ R10 : 0 ≤ xi ≤ 1, for i = 1, . . . , 10

}
. The

vector x1 ∈ Rn in all algorithms was initialized such that xi ∼ U(0, 1), for 1 ≤ i ≤ n, where U(a, b)
stands for the uniform distribution supported on the interval (a, b).

Figure 1 reports cumulative loss, linear violation (CCVT,1), and squared violation (CCVT,2) over
iterations. The AdaGrad-based method (blue) attains the lowest cumulative loss, but only by incurring
much larger constraint violations. By contrast, CLASP (orange) controls both CCVT,1 and CCVT,2

at levels comparable to RECOO (green), while remaining simpler and more memory-efficient. The
Frank-Wolfe-based algorithm (red) achieves similar cumulative loss as CLASP, RECOO, and Switch,
at the cost of higher cumulative constraint violation. Switch (purple) achieves the smallest overall
violations, but at the cost of higher per-iteration complexity. Notably, on the squared violation metric
CCVT,2—the focus of our analysis—CLASP is competitive with the best-performing baselines,
confirming in practice that it can keep violation severity sublinear while maintaining reasonable
regret.

1The source code for the numerical experiments can be found in https://anonymous.4open.
science/r/CLASP-45D2
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Figure 1: Online linear regression with adversarial constraints. We report (a) cumulative loss, (b)
linear violation CCVT,1, and (c) squared violation CCVT,2. AdaGrad achieves the lowest loss but
at the cost of very large constraint violations. CLASP controls both violation metrics competitively
with RECOO, while remaining more memory-efficient than Switch. Frank-Wolfe attains higher
cumulative constraint violation compared with CLASP, RECOO, and Switch while not attaining
relevant reduction in the cumulative loss. Switch attains the smallest violations overall but with
higher per-iteration complexity. All CCVT,2 values are reported a posteriori.

6 CONCLUSIONS

Limitations and Future Work. While CLASP attains state-of-the-art guarantees for the squared
cumulative constraint violation CCVT,2, we do not pursue sharp bounds for the linear metric CCVT,1

in the convex regime. Obtaining such bounds would require a dedicated analysis of CLASP, rather
than a loose Cauchy-Schwarz conversion, and constitutes a natural continuation of the modular FNE-
based framework developed here. A second direction concerns projection-free variants of CLASP,
which would broaden its applicability in domains where projections onto K ∩Ct are computationally
costly. We regard both extensions as promising and complementary avenues for future research.

Conclusions. We introduced CLASP, an online COCO algorithm that handles convex losses and
dynamic constraints. CLASP aims at minimizing both loss regret and cumulative constraint violation
(CCV). In this work, the metric is the squared Cumulative Constraint Violation to account for large
violations. For general convex losses, CLASP offers a tunable trade-off between regret and CCV,
matching the best performance of previous works designed for static constraints. More importantly,
for strongly convex losses, CLASP universally achieves logarithmic bounds on both regret and CCV—
an advance that, to the extent of our knowledge, is established here for the first time. Algorithmically,
CLASP consists of just a gradient step followed by a projection at each iteration, while its analysis is
simplified by leveraging the firmly non-expansiveness property of projections. This yields a modular
proof structure that disentangles the treatment of regret from that of CCV. This modularity, in turn,
makes extensions of CLASP to other settings (e.g., multiple or persistent constraints) straightforward.

REFERENCES

Arindam Banerjee, Pedro Cisneros-Velarde, Libin Zhu, and Misha Belkin. Restricted strong con-
vexity of deep learning models with smooth activations. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
PINRbk7h01.

Heinz H. Bauschke and Patrick L. Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. Springer International Publishing, 2017. ISBN 9783319483115. doi: 10.1007/
978-3-319-48311-5.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory,
pp. 144–152, 1992.

10

https://openreview.net/forum?id=PINRbk7h01
https://openreview.net/forum?id=PINRbk7h01


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine
preferences by data mining from physicochemical properties. Decision Support Systems, 47(4):547–
553, 2009. ISSN 0167-9236. doi: https://doi.org/10.1016/j.dss.2009.05.016. URL https://
www.sciencedirect.com/science/article/pii/S0167923609001377. Smart
Business Networks: Concepts and Empirical Evidence.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(null):2121–2159, July 2011.
ISSN 1532-4435.

Dan Garber and Ben Kretzu. Projection-free online convex optimization with time-varying con-
straints. In Proceedings of the 41st International Conference on Machine Learning, volume 235
of Proceedings of Machine Learning Research, pp. 14988–15005. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/garber24a.html.

Hengquan Guo, Xin Liu, Honghao Wei, and Lei Ying. Online convex optimization with hard
constraints: Towards the best of two worlds and beyond. In Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=rwdpFgfVpvN.

Elad Hazan and Satyen Kale. Projection-free online learning. In Proceedings of the 29th International
Coference on International Conference on Machine Learning, ICML’12, pp. 1843–1850, Madison,
WI, USA, 2012. Omnipress. ISBN 9781450312851.

Elad Hazan and Edgar Minasyan. Faster projection-free online learning. In Conference on Learning
Theory, pp. 1877–1893. PMLR, 2020.

Elad Hazan and Karan Singh. Boosting for online convex optimization. In International Conference
on Machine Learning, pp. 4140–4149. PMLR, 2021.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Optimiza-
tion, 2(3-4):157–325, 2016.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis and Minimization Algorithms
I. Springer Berlin Heidelberg, 1993. ISBN 9783662027967. doi: 10.1007/978-3-662-02796-7.

Rodolphe Jenatton, Jim Huang, and Cedric Archambeau. Adaptive algorithms for online convex
optimization with long-term constraints. In Maria Florina Balcan and Kilian Q. Weinberger
(eds.), Proceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pp. 402–411, New York, New York, USA, 20–22 Jun
2016. PMLR. URL https://proceedings.mlr.press/v48/jenatton16.html.

Yiyang Lu, Mohammad Pedramfar, and Vaneet Aggarwal. Order-optimal projection-free algorithm
for adversarially constrained online convex optimization. arXiv preprint arXiv:2502.16744, 2025.

Wanteng Ma, Ying Cao, Danny HK Tsang, and Dong Xia. Optimal regularized online allocation by
adaptive re-solving. Operations Research, 73(4):2079–2096, 2025.

Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. Trading regret for efficiency: online convex
optimization with long term constraints. Journal of Machine Learning Research, 13(1):2503–2528,
September 2012. ISSN 1532-4435.

Michael Neely. Stochastic network optimization with application to communication and queueing
systems. Morgan & Claypool Publishers, 2010.

Juan Ramirez, Meraj Hashemizadeh, and Simon Lacoste-Julien. Position: Adopt constraints over
penalties in deep learning. arXiv preprint arXiv:2505.20628, 2025.

Dhruv Sarkar, Aprameyo Chakrabartty, Subhamon Supantha, Palash Dey, and Abhishek Sinha.
Projection-free algorithms for online convex optimization with adversarial constraints. arXiv
preprint arXiv:2501.16919, 2025.

11

https://www.sciencedirect.com/science/article/pii/S0167923609001377
https://www.sciencedirect.com/science/article/pii/S0167923609001377
https://proceedings.mlr.press/v235/garber24a.html
https://openreview.net/forum?id=rwdpFgfVpvN
https://proceedings.mlr.press/v48/jenatton16.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107–194, 2012.

Abhishek Sinha and Rahul Vaze. Optimal algorithms for online convex optimiza-
tion with adversarial constraints. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Infor-
mation Processing Systems, volume 37, pp. 41274–41302. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/486ff0b164cf92b0255fe39863bcf99e-Paper-Conference.pdf.

Rahul Vaze and Abhishek Sinha. O(
√
T ) static regret and instance dependent constraint violation for

constrained online convex optimization. arXiv preprint arXiv:2502.05019, 2025.

Yibo Wang, Yuanyu Wan, and Lijun Zhang. Revisiting projection-free online learning with time-
varying constraints. Proceedings of the AAAI Conference on Artificial Intelligence, 39(20):21339–
21347, 2025. doi: 10.1609/aaai.v39i20.35434. URL https://ojs.aaai.org/index.
php/AAAI/article/view/35434.

Xinlei Yi, Xiuxian Li, Tao Yang, Lihua Xie, Tianyou Chai, and Karl Johansson. Regret and cumulative
constraint violation analysis for online convex optimization with long term constraints. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 11998–12008. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/yi21b.html.

Xinlei Yi, Xiuxian Li, Tao Yang, Lihua Xie, Tianyou Chai, and Karl Henrik Johansson. Regret and
cumulative constraint violation analysis for distributed online constrained convex optimization.
IEEE Transactions on Automatic Control, 68(5):2875–2890, 2023. doi: 10.1109/TAC.2022.
3230766.

Hao Yu and Michael J. Neely. A low complexity algorithm with O(
√
T ) regret and O(1) constraint

violations for online convex optimization with long term constraints. Journal of Machine Learning
Research, 21(1):1–24, 2020. URL http://jmlr.org/papers/v21/16-494.html.

Jianjun Yuan and Andrew Lamperski. Online convex optimization for cumulative constraints.
Advances in Neural Information Processing Systems, 31, 2018.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pp. 928–936,
2003.

A APPENDIX

A.1 PROOF OF LEMMA 1

Note that x⋆
T ∈ K ∩ CT ⊂ Kt, implying x⋆

T = PKt(x
⋆
T ) for 1 ≤ t ≤ T . We have

∥xt+1 − x⋆
T ∥2 = ∥PKt

(x̂t+1)− PKt
(x⋆

T )∥
2

≤ ∥x̂t+1 − x⋆
T ∥2 − dKt(x̂t+1)

2

= ∥xt − ηt∇ft(xt)− x⋆
T ∥2 − dKt

(x̂t+1)
2

= ∥xt − x⋆
T ∥2 − 2ηt⟨∇ft(xt), xt − x⋆

T ⟩+ η2t ∥∇ft(xt)∥2 − dKt
(x̂t+1)

2

≤ ∥xt − x⋆
T ∥2 + 2ηt∥∇ft(xt)∥∥xt − x⋆

T ∥+ η2t ∥∇ft(xt)∥2 − dKt
(x̂t+1)

2

≤ ∥xt − x⋆
T ∥2 + 2LDηt + L2η2t − dKt

(x̂t+1)
2,

where the first inequality is due to the firm non-expansiveness of the operator PKt (see (5)); the second
inequality is the Cauchy-Schwarz inequality; and the third inequality follows from Assumptions 1
and 2.

Before proceeding, we would like to indicate the pivotal role played by the firmly non-expansiveness
property of the operator PKt . Indeed, if we used only its weaker non-expansiveness property, the
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right-hand side of the first inequality would read as ∥x̂t+1 − x⋆
T ∥

2, the key term dKt
(x̂t+1)

2 no
longer present. The disappearance of this term would instantly sever the reasoning of the present
lemma; as the subsequent lemmas depend upon it, the entire proof would be invalidated.

Re-arranging the last inequality yields

dKt(x̂t+1)
2 ≤ ∥xt − x⋆

T ∥2 − ∥xt+1 − x⋆
T ∥2 + 2LDηt + L2η2t

≤ ∥xt − x⋆
T ∥2 − ∥xt+1 − x⋆

T ∥2 + (2LD + θL2)ηt,

where the last inequality is due to Assumption 4.

Summing up from t = 1 to T , we obtain

T∑
t=1

dKt(x̂t+1)
2 ≤ ∥x1 − x⋆

T ∥2 +
T∑

t=1

(2LD + θL2)ηt = O

(
T∑

t=1

ηt

)
.

A.2 PROOF OF LEMMA 2

We have

dKt
(xt) = dKt

(x̂t+1 + (xt − x̂t+1))

≤ dKt(x̂t+1) + ∥xt − x̂t+1∥
= dKt

(x̂t+1) + ηt∥∇ft(xt)∥
≤ dKt

(x̂t+1) + ηtL,

where the first inequality follows from the Lipschitz continuity of the distance function dKt
(see

Section 2), and the second inequality from Assumption 2.

It follows that

dKt
(xt)

2 ≤ 2dKt
(x̂t+1)

2 + 2η2tL
2

≤ 2dKt(x̂t+1)
2 + 2ηtθL

2,

where the first inequality comes from the general fact (a + b)2 ≤ 2a2 + 2b2 for a, b ∈ R, and the
second inequality from Assumption 4.

Summing up from t = 1 to T and using Lemma 1, we obtain

T∑
t=1

dKt(xt)
2 ≤ 2

T∑
t=1

dKt(x̂t+1)
2 + 2L2θ

T∑
t=1

ηt

≤ O

(
T∑

t=1

ηt

)
.

A.3 PROOF OF LEMMA 3

Note that |g+t (u)−g+t (v)| ≤ |gt(u)−gt(v)| for all u, v ∈ Rn. Hence, |g+t (u)−g+t (v)| ≤ L ∥u− v∥
for all u, v ∈ K due to Assumption 3 and its consequence (9).

It follows that

g+t (xt) ≤ g+t (PKt
(xt)) + L ∥xt − PKt

(xt)∥
= LdKt

(xt),

since g+t (PKt
(xt)) = 0 because PKt

(xt) ∈ Kt = K∩{x ∈ Rn : gt(x) ≤ 0} and any point u ∈ Kt

satisfies gt(u) ≤ 0.
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Equivalently, we have g+t (xt)
2 ≤ L2dKt

(xt)
2. Summing up from t = 1 to T and using Lemma 2,

we obtain

CCVT,2 =

T∑
t=1

(g+t (xt))
2

≤ L2
T∑

t=1

dKt
(xt)

2

≤ O

(
T∑

t=1

ηt

)
.

A.4 ADDITIONAL NUMERICAL EXPERIMENTS

In this section, we present additional numerical experiments. In particular, a version of the Online
Linear Regression experiment with additional rounds, and an experiment for Online Support Vector
Machine. The results were obtained by averaging over 100 trials and reported with a 95% confidence
interval.

A.4.1 ONLINE LINEAR REGRESSION WITH ADDITIONAL ROUNDS

We now present a version of the Online Linear Regression experiment with a larger number of
rounds. As stated in Section 1.2, the Switch algorithm is memory-intensive as the set to which
the algorithm performs the projections incorporates all previously revealed constraint functions.
Therefore, as the iterations unfold, the set becomes increasingly more complex and the associated
projection increasingly more expensive. So, we removed Switch from this experiment, as to be able
to investigate a larger number of rounds.
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Figure 2: Online Linear Regression with additional rounds.

The results are similar to the ones in Section 5. However, while the Cumulative Constraint Violation
(both CCVT,1 and CCVT,2) attained by CLASP and RECOO are very similar, note that, for the
CCVT,2 metric, for a larger number of rounds, the CLASP algorithm displays diminished variability.

A.4.2 ONLINE SUPPORT VECTOR MACHINE

In our second experiment, we compare the performance of the algorithms for the online update of a
Support Vector Machine (SVM) (Boser et al., 1992; Bishop & Nasrabadi, 2006). We consider that,
at each iteration t, we receive a new labeled sample (ut, vt), with ut ∈ RP the feature vector and
vt ∈ {±1} the label. Thus, at each round t, we can formulate the optimization problem in the COCO
setting as

minimize
x:=(w,b)∈K

1

2
∥w∥2, subject to − vt

(
wTut − b

)
+ 1 ≤ 0,

or, in terms of the COCO framework, the revealed loss function is ft(x) = 1
2∥w∥

2 and the revealed
constraint function is gt(x) = −vt

(
wTut − b

)
+ 1. For this experiment, we use the real-world

dataset about wine quality from their physicochemical properties (for the details about the dataset,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

see Cortez et al. (2009))2. The dataset contains 6497 samples, each sample contains P = 11 features,
and the quality of the wine is classified between 1 and 9. Some of the features were in g/dm3, while
others were in mg/dm3. We ensured that all density features were expressed in g/dm3. In this
experiment, we consider the binary classification setting, where we label with 1 the wine samples
with quality equal to or greater than 7, and label with −1 the remaining. Thus, we want our classifier
to distinguish between high-quality and low-quality wines. In each trial, we reshuffle the dataset so
that the order of samples in each trial is always different. The vector x1 ∈ Rn+1 for all algorithms
was initialized such that xi ∼ U(−1, 1), for 1 ≤ i ≤ n+ 1. The results were obtained by averaging
over 100 trials and reported with a 95% confidence interval.

From domain knowledge, we can bound the norm of the feature vector as each physicochemical
property has an interval of possible values (for simplicity, we analyzed the possible values encountered
in the dataset and concluded that 0 ≤ ut ≤ 70 for all t, thus we can use this to define the Lipschitz
constant of the constraint functions L = 70

√
P ). While the SVM is an unconstrained problem, our

algorithms assume that the decision set is compact; thus, based on the constraints on the feature
vectors, we define K = {x = (w, b) ∈ RP+1 : ∥x∥ ≤ 70

√
P}.
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Figure 3: Online Support Vector Machine

Remark. In this experiment, the feasibility assumption is not satisfied, i.e., the set K ∩ CT = ∅,
where CT =

⋂T
t=1 Ct. Although this property is used in the analysis of the algorithms in COCO to

obtain regret and cumulative constraint violation bounds, most of the algorithms in COCO can still
be applied to problems without this property. However, the Switch algorithm, due to the exploitation
of nested convex bodies, cannot be applied when the feasibility property is not satisfied. Since, at
each iteration, the algorithm projects onto the intersection of past constraint functions, then there will
be some T0, with 1 ≤ T0 ≤ T , such that CT0

=
⋂T0

t=1 Ct = ∅. Therefore, in this experiment, we
cannot compare the performance of the Switch algorithm, but compare our algorithm CLASP with
the AdaGrad, RECOO and Frank-Wolfe algorithms.

In Fig. 3, we can visualize both the cumulative loss and the CCV of the different algorithms for each
round. In this experiment, the more informative results are in Figs. 3b and 3c, as a constraint violation
translates as a transgression of the margin. We see for both constraint violation metrics, CCVT,1 and
CCVT,2, the CLASP algorithm achieves better results and with less variability. Furthermore, we see
that for the metric CCVT,2, the difference in performance is significantly better.

2This dataset is released under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
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