

CLASP: AN ONLINE LEARNING ALGORITHM FOR CONVEX LOSSES AND SQUARED PENALTIES

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We study Constrained Online Convex Optimization (COCO), where a learner
 012 chooses actions iteratively, observes both unanticipated convex loss and convex
 013 constraint, and accumulates loss while incurring penalties for constraint violations.
 014 We introduce CLASP (Convex Losses And Squared Penalties), an algorithm that
 015 minimizes cumulative loss together with squared constraint violations. Our analysis
 016 departs from prior work by fully leveraging the firm non-expansiveness of convex
 017 projectors, a proof strategy not previously applied in this setting. For convex
 018 losses, CLASP achieves regret $O(T^{\max\{\beta, 1-\beta\}})$ and cumulative squared penalty
 019 $O(T^{1-\beta})$ for any $\beta \in (0, 1)$. Most importantly, for strongly convex problems,
 020 CLASP provides the first logarithmic guarantees on both regret and cumulative
 021 squared penalty. In the strongly convex case, the regret is upper bounded by
 022 $O(\log T)$ and the cumulative squared penalty is also upper bounded by $O(\log T)$.

1 INTRODUCTION

027 We consider a setting where at each iteration $t \in \{1, 2, 3, \dots\}$, a learner selects an action x_t from
 028 a convex set $\mathcal{K} \subset \mathbb{R}^n$, then a loss function f_t is revealed, and the learner incurs loss $f_t(x_t)$. The
 029 learner's goal is to perform nearly as well dynamically as the best fixed action in hindsight. i.e, keep
 030 the regret

$$\text{Regret}_T = \sum_{t=1}^T f_t(x_t) - \sum_{t=1}^T f_t(x_T^*). \quad (1)$$

034 growing sublinearly in T , so that, asymptotically, the average loss of the learner is no worse than the
 035 optimal fixed action, $x_T^* = \arg \min_{x \in \mathcal{K}} \sum_{t=1}^T f_t(x)$.

037 Online Convex Optimization (OCO) is the special case of Online Learning in which the action set \mathcal{K}
 038 is convex, and the loss functions f_t are convex. The OCO setup has been extensively studied over the
 039 years (Shalev-Shwartz et al., 2012; Hazan et al., 2016; Zinkevich, 2003; Duchi et al., 2011; Bubeck
 040 et al., 2012; Hazan & Kale, 2012; Hazan & Minasyan, 2020; Hazan & Singh, 2021). OCO assumes
 041 that operational constraints on the possible actions are static in time, being fully captured by the fixed
 042 set \mathcal{K} .

043 In many applications, however, operational constraints do change at each iteration: at time t , the
 044 action x_t must satisfy not only $x_t \in \mathcal{K}$ but also an extra constraint $g_t(x_t) \leq 0$, with g_t a convex
 045 function. The challenge here is that the learner must choose an action x_t also *before* knowing the
 046 constraint function g_t . This more difficult setup generalizes OCO and is known as Constrained Online
 047 Convex Optimization (COCO).

048 To conclude, the COCO learner wishes not only to bound the regret (1), now with

$$x_T^* = \arg \min_{x \in \mathcal{K} \cap \mathcal{C}_T} \sum_{t=1}^T f_t(x), \quad \mathcal{C}_T = \bigcap_{t=1}^T \mathcal{C}_t, \quad \mathcal{C}_t = \{x : g_t(x) \leq 0\}, \quad (2)$$

053 but also wishes to bound some notion of cumulative constraint violation (CCV), as detailed in the
 next section.

054 1.1 RELATED WORK
055

056 Early work on COCO (Mahdavi et al., 2012; Jenatton et al., 2016; Yuan & Lamperski, 2018; Yu &
057 Neely, 2020) focused on soft constraint violations, allowing the learner to compensate over time
058 by balancing positive and negative violations. In those settings the performance is measured by the
059 cumulative constraint violation $CCV_T = \sum_{t=1}^T g_t(x_t)$. However, this metric has a critical weakness:
060 The sum may become negative even if many rounds incur positive violations, thereby masking the
061 severity or frequency of actual constraint breaches.

062 Such arithmetic compensation is often unsuitable in practice, as many applications demand a more
063 direct and monotonic measure of constraint violation. We thus focus on the hard metrics
064

$$065 CCV_{T,1} = \sum_{t=1}^T g_t^+(x_t), \quad \text{or} \quad CCV_{T,2} = \sum_{t=1}^T (g_t^+(x_t))^2, \quad (3)$$

066 where $g_t^+(x) = \max\{0, g_t(x)\}$. Under these definitions, violations cannot be offset over time:
067 these cumulative sums are nondecreasing in T . Both metrics are of practical relevance, and authors
068 generally commit to one as their principal violation measure. A natural question is whether a bound
069 on $CCV_{T,1}$ can be turned into one on $CCV_{T,2}$ by redefining g_t as $(g_t^+)^2$. This reduction, however,
070 is generally invalid: key assumptions often required for $CCV_{T,1}$ bounds—such as the existence of a
071 Slater point \tilde{x} with $g_t(\tilde{x}) < 0$ for all t —cannot hold for $(g_t^+)^2$, which is always nonnegative. Other
072 structural properties (e.g., convexity or Lipschitz constants) may also be lost under squaring. For
073 these reasons, we directly analyze $CCV_{T,2}$ rather than rely on such a transformation. Moreover,
074 even if the reduction were possible, it would not yield our main result: to the best of our knowledge,
075 no $O(\log T)$ bound exists for $CCV_{T,1}$ in the strongly convex setting, so our logarithmic $CCV_{T,2}$
076 guarantee cannot be inferred from prior $CCV_{T,1}$ results.
077

078 We now review the closest work in COCO, organized by whether the constraints are **static** ($g_t = g$
079 for all t) or **dynamic** (g_t may vary adversarially). Our focus is on the dynamic case, but it is useful to
080 contrast with the static regime first.
081

082 **Static constraints.** As the focus of this paper is on dynamic constraints, we restrict ourselves here
083 for brevity to convex loss functions, omitting the results for strongly convex ones. The early work of
084 (Mahdavi et al., 2012) uses a regularized Lagrangian update and achieves $\text{Regret}_T \leq O(\sqrt{T})$ and
085 soft violation $CCV_T \leq O(T^{3/4})$. (Jenatton et al., 2016) refine this approach via adaptive weightings
086 of primal and dual step sizes, obtaining $\text{Regret}_T \leq O(T^{\max\{\beta, 1-\beta\}})$ and $CCV_T \leq O(T^{1-\beta/2})$ for
087 any $\beta \in (0, 1)$. (Yu & Neely, 2020) push further by bounding $CCV_T \leq O(1)$ (constant violation)
088 while preserving $O(\sqrt{T})$ regret. Yi et al. (Yi et al., 2021), in turn, address *hard* violations by showing
089 $\text{Regret}_T \leq O(T^{\max\{\beta, 1-\beta\}})$ and $CCV_{T,1} \leq O(T^{(1-\beta)/2})$. Finally, (Yuan & Lamperski, 2018)
090 focus directly on the squared-penalty metric $CCV_{T,2}$, proving $\text{Regret}_T \leq O(T^{\max\{\beta, 1-\beta\}})$ and
091 $CCV_{T,2} \leq O(T^{1-\beta})$. Their work penalizes large violations more heavily, preventing cancellation
092 that occurs under soft violation metrics.
093

094 **Dynamic constraints.** When the constraints g_t may vary arbitrarily with t , the problem becomes
095 significantly more challenging.
096

097 (Guo et al., 2022) introduce the Rectified Online Optimization (RECOO) algorithm, which exploits a
098 first-order approximation of the regularized Lagrangian at each round. For convex losses, RECOO
099 achieves $\text{Regret}_T \leq O(\sqrt{T})$ and $CCV_{T,1} \leq O(T^{3/4})$. In the strongly convex case, it improves to
100 $\text{Regret}_T \leq O(\log T)$ and $CCV_{T,1} \leq O(\sqrt{T \log T})$.
101

102 (Yi et al., 2023) extend these ideas in a distributed setting, with results that can be transposed
103 to the centralized regime. For convex losses, they establish $\text{Regret}_T \leq O(T^{\max\{\beta, 1-\beta\}})$ and
104 $CCV_{T,1} \leq O(T^{1-\beta/2})$ for any $\beta \in (0, 1)$. For strongly convex losses, their guarantees become
105 $\text{Regret}_T \leq O(T^\beta)$ and $CCV_{T,1} \leq O(T^{1-\beta/2})$.
106

107 A major step forward is due to Sinha & Vaze (2024), who introduced the Regret Decomposition
108 Inequality, an elegant analytical tool that extends the drift-plus-penalty framework (Neely, 2010).
109

108 They show that suitably modified AdaGrad variants can achieve $\text{Regret}_T \leq O(\sqrt{T})$ and, for the
 109 first time, $\text{CCV}_{T,1} \leq O(\sqrt{T} \log T)$ for convex loss functions. For strongly convex functions, the
 110 results are $\text{Regret}_T \leq O(\log T)$ and $\text{CCV}_{T,1} \leq O(\sqrt{T \log T})$, with the CCV bound improved to
 111 $\text{CCV}_{T,1} \leq O(\log T)$ for the specialized setting of non-negative regrets.
 112

113 Building on this line Vaze & Sinha (2025) propose the *Switch* algorithm, which explicitly leverages the
 114 geometry of the constraint sets C_t (2). Although the strongly convex case is not explicitly addressed,
 115 for convex loss functions *Switch* guarantees $\text{Regret}_T \leq O(\sqrt{T})$ and $\text{CCV}_{T,1} \leq O(\sqrt{T} \log T)$ across
 116 all instances, the novelty being that the bound on CCV can drop to $O(1)$ for special geometrical
 117 instances of C_t . Our proposed algorithm, CLASP, bears certain similarities with Algorithm 2 in (Vaze
 118 & Sinha, 2025), as we elaborate in the next section.
 119

120 To conclude, we highlight an interesting line of COCO research on low-complexity, projection-free
 121 algorithms, which avoid projection onto \mathcal{K} . Representative work is (Garber & Kretzu, 2024; Sarkar
 122 et al., 2025; Wang et al., 2025; Lu et al., 2025). For example, the recent work (Lu et al., 2025) exploits
 123 a separation oracle to achieve $\text{Regret}_T \leq O(\sqrt{T})$ and $\text{CCV}_{T,1} \leq O(\sqrt{T} \log T)$ for convex loss
 124 functions; and $\text{Regret}_T \leq O(\log T)$ and $\text{CCV}_{T,1} \leq O(\sqrt{T \log T})$ for strongly convex ones.
 125

126 1.2 CONTRIBUTIONS

127 We propose **CLASP**, an online COCO algorithm for dynamic constraints with Convex Losses And
 128 Squared Penalties, where the violation metric of interest is $\text{CCV}_{T,2}$ (3). Our contributions can be
 129 summarized as follows:
 130

- 131 • **Strongly convex losses.** CLASP achieves $\text{Regret}_T \leq O(\log T)$ and $\text{CCV}_{T,2} \leq O(\log T)$. To the
 132 best of our knowledge, this is the first result to guarantee logarithmic bounds on *both* regret and
 133 squared violations. The closest prior work, (Sinha & Vaze, 2024), establishes $\text{Regret}_T \leq O(\log T)$
 134 and $\text{CCV}_{T,1} \leq O(\log T)$, but only in the restricted setting of non-negative regrets. CLASP removes
 135 this limitation by providing guarantees without assuming the sign of the regret. *Furthermore, by*
 136 *the Cauchy-Schwarz inequality, we have*

$$138 \quad \text{CCV}_{T,1} = \sum_{t=1}^T (g_t)^+(x_t) \leq \sqrt{T} \sqrt{\text{CCV}_{T,2}} \leq O(\sqrt{T \log T}),$$

141 thus CLASP also attains the best-known bound for $\text{CCV}_{T,1}$ in the strongly convex setting.

- 142 • **Convex losses.** For general convex losses, CLASP guarantees

$$144 \quad \text{Regret}_T \leq O(T^{\max\{\beta, 1-\beta\}}), \quad \text{CCV}_{T,2} \leq O(T^{1-\beta}), \quad \forall \beta \in (0, 1).$$

145 This matches the rates reported by Yuan & Lamperski (2018), whose results were derived for static
 146 constraints; CLASP extends them to the dynamic regime *and within the same analysis framework*,
 147 *unifying the results under a single line of reasoning*.

- 148 • **Algorithmic simplicity.** Each CLASP iteration consists of a gradient step with respect to the latest
 149 loss, followed by a single projection onto the current feasible set $\mathcal{K} \cap C_t$. In contrast, Algorithm 2 of
 150 Vaze & Sinha (2025) requires two projections per iteration, one onto the full historical intersection
 151 $\mathcal{K} \cap \bigcap_{\tau=1}^t C_\tau$. Thus CLASP is more memory-efficient, avoiding the need to retain past constraints.
 152 Moreover, the analyses of the two methods differ fundamentally, as discussed in Sections 3.2 and 4.
- 153 • **Analytical novelty.** Our analysis relies on the *firm non-expansiveness* (FNE) of projections
 154 onto closed convex sets—a stronger property than the standard non-expansiveness typically used.
 155 Exploiting FNE allows a clean modular proof structure, where regret and constraint violation are
 156 analyzed separately. This modularity also makes the analysis more extensible, e.g., to multiple
 157 dynamic constraints or persistent constraints (Section 4).

158 **Relevance to Machine Learning Practice.** Recent empirical and theoretical work suggests that
 159 strong convexity and sharper penalties for violations are practically meaningful in constrained ML
 160 settings. For example, Wang et al. (2025) shows that under strong convexity of regret, both regret
 161 and constraint violations drop substantially, and experiments in that paper confirm that algorithms

162 exploiting strong convexity perform better on real datasets. The authors of Ma et al. (2025) empirically
 163 validate that in resource allocation problems with hard constraints plus regularization, faster rates
 164 (logarithmic regret) are achievable. The work Banerjee et al. (2023) finds that many practical deep
 165 models satisfy restricted strong convexity, and fast (geometric) convergence is observed in training.
 166 These works show that assumptions like strong convexity are not merely theoretical and that penalties,
 167 and constraints (Ramirez et al. (2025)), matter in real ML systems. However, prior work usually
 168 measures constraint violation linearly (or counts violations) rather than providing log-rate guarantees
 169 on both regret and the *severity* of violations (e.g., squared penalties). The squared penalty can be
 170 useful in applications where large violations of the constraints are a reason for concern. For example,
 171 in model predictive control, the inequality $g(x) \leq 0$ might be encoding a current saturation limit on
 172 an actuator, say, torque or thrust; here, small deviations are tolerable, but large deviations can become
 173 dangerous. As another example, in robot trajectory planning, the inequality might represent a signed
 174 distance to a harmful region. Here, violating the constraint means the robot is at risk, a risk that might
 175 not scale linearly in the sense that every extra unit of penetration does not cost the same and might be
 176 best accounted for by a quadratic increase. Yet another example might occur in a vehicle following a
 177 mobile target. Here, the constraint might model the wish to stay within a given radius of the target. If
 178 the distance becomes too large, the vehicle might lose sight of the target and fail the tracking mission.
 179

2 PRELIMINARIES

181 We summarize the technical tools used in the analysis of CLASP and state our assumptions.
 182

183 **Projection operators and distance functions.** For a non-empty, closed convex set $S \subset \mathbb{R}^n$, we let
 184 $P_S : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be the associated orthogonal projection operator. Thus, $P_S(u)$ is the projection of
 185 the point u onto the set S and denotes the point in S that is closest to u with respect to the Euclidean
 186 norm $\|\cdot\|$. Such projectors are firmly non-expansive (FNE) operators, which means they satisfy the
 187 inequality

$$\|P_S(u) - P_S(v)\|^2 \leq \|u - v\|^2 - \|(u - P_S(u)) - (v - P_S(v))\|^2, \quad (4)$$

188 for all $u, v \in \mathbb{R}^n$ (see, e.g., Bauschke & Combettes (2017, Proposition 4.8)). Property (4) implies the
 189 popular non-expansiveness (NE) property, $\|P_S(u) - P_S(v)\| \leq \|u - v\|$.
 190

191 We let $d_S : \mathbb{R}^n \rightarrow \mathbb{R}$ denoted the associated distance function, $d_S(u) = \min \{\|v - u\| : v \in S\}$.
 192 Thus, $d_S(u) = \|u - P_S(u)\|$ and, from (4),
 193

$$\|P_S(u) - v\|^2 \leq \|u - v\|^2 - d_S(u)^2, \quad (5)$$

194 for all $u \in \mathbb{R}^n$ and $v \in S$.
 195

196 Finally, the function d_S is Lipschitz continuous with constant 1, that is, $|d_S(u) - d_S(v)| \leq \|u - v\|$
 197 for all $u, v \in \mathbb{R}^n$ (see, e.g., Bauschke & Combettes (2017, page 59, Chapter 4)).
 198

199 **Convex and strongly convex functions.** Let $h : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ be an extended real-valued
 200 function. It is said to be *proper* if its domain, $\text{dom } h = \{x \in \mathbb{R}^n : h(x) < +\infty\}$, is a non-empty set;
 201 it is *closed* if each lower level set $\{x \in \mathbb{R}^n : h(x) \leq \alpha\}$ at height $\alpha \in \mathbb{R}$ is a closed set; and it is
 202 *convex* if there exists an $m \geq 0$ such that

$$h((1 - \lambda)u + \lambda v) \leq (1 - \lambda)h(u) + \lambda h(v) - \frac{m}{2}\lambda(1 - \lambda)\|u - v\|^2, \quad (6)$$

203 for all $\lambda \in (0, 1)$ and $u, v \in \mathbb{R}^n$. If m can be taken to be strictly positive, then h is said to be
 204 *m-strongly convex*.
 205

206 If h is a proper, closed, and convex function, then
 207

$$h(v) \geq h(u) + \langle \nabla h(u), v - u \rangle + \frac{m}{2}\|v - u\|^2, \quad (7)$$

208 for all $u, v \in \mathbb{R}^n$, where, from now on, $\nabla h(u)$ denotes a sub-gradient of h at u . ($\langle \cdot, \cdot \rangle$ is the usual
 209 inner-product). If, furthermore, h is m -strongly convex, then it has a unique global minimizer, say,
 210 u^* , (see, e.g., Bauschke & Combettes (2017, Corollary 11.16)); the zero vector is then a sub-gradient
 211 of h at u^* , implying via (7) that
 212

$$h(v) \geq h(u^*) + \frac{m}{2}\|v - u^*\|^2 \quad (8)$$

213 for all $v \in \mathbb{R}^n$.
 214

216 **Assumptions.** Throughout, we impose the following standard COCO assumptions:
 217

218 **Assumption 1.** *The action set \mathcal{K} is a non-empty, compact convex subset of \mathbb{R}^n . It follows that the
 219 diameter of \mathcal{K} is upper-bounded by some constant, say, $D \geq 0$, which entails $\|u - v\| \leq D$ for all
 220 $u, v \in \mathcal{K}$.*

221 **Assumption 2.** *The loss functions $f_t : \mathbb{R}^n \rightarrow \mathbb{R}$ are convex for all $t \geq 1$, with the magnitude of their
 222 sub-gradients bounded by L , when evaluated at points in \mathcal{K} : $\|\nabla f_t(u)\| \leq L$ for all $u \in \mathcal{K}$ and $t \geq 1$.*

223 **Assumption 3.** *The constraint functions $g_t : \mathbb{R}^n \rightarrow \mathbb{R}$ are convex for all $t \geq 1$, with the magnitude
 224 of their sub-gradients bounded by L , when evaluated at points in \mathcal{K} : $\|\nabla g_t(u)\| \leq L$ for all $u \in \mathcal{K}$
 225 and $t \geq 1$.*

226 Moreover, $\mathcal{K} \cap \bigcap_{t=1}^T C_t$ is non-empty for all $T \geq 1$ (where $C_t = \{x \in \mathbb{R}^n : g_t(x) \leq 0\}$), so as to
 227 ensure the existence of the regret comparator x_T^* —recall (2))

228 Assumptions 2 and 3 imply that

$$230 |f_t(v) - f_t(u)| \leq L \|v - u\| \quad \text{and} \quad |g_t(v) - g_t(u)| \leq L \|v - u\| \quad (9)$$

231 for all $u, v \in \mathcal{K}$ and $t \geq 1$ (as a consequence, e.g., of the mean-value theorem (Hiriart-Urruty &
 232 Lemaréchal, 1993, Theorem 2.3.3)).

233 **Assumption 4.** *The sequence (of step-sizes) $(\eta_t)_{t \geq 1}$ satisfies $0 < \eta_{t+1} \leq \eta_t$ for all $t \geq 1$. Hence,
 234 there exists $\theta > 0$ such that $\eta_t^2 \leq \theta \eta_t$ for all $t \geq 1$ (e.g., take $\theta = \eta_1$).*

237 3 THE CLASP ALGORITHM

238 In this section, we introduce our algorithm CLASP, which stipulates how the decisions x_{t+1} are
 239 made, given the stream of losses f_t and constraints g_t observed up to time t . CLASP is a conceptually
 240 simple algorithm that, at each iteration (after the first), takes a gradient step with respect to the most
 241 recently observed loss function, and then projects onto the most recently observed constraint function,
 242 see Algorithm 1.

245 Algorithm 1 CLASP

246 **Require:** action set \mathcal{K} , horizon $T \geq 1$, step-sizes η_t for $1 \leq t \leq T - 1$
 247 Choose $x_1 \in \mathcal{K}$ and observe f_1, g_1
 248 Accumulate loss $f_1(x_1)$ and penalty $(g_1^+(x_1))^2$
 249 **for** $t = 1, \dots, T - 1$ **do**
 250 Choose $x_{t+1} = \mathcal{P}_{\mathcal{K}_t}(x_t - \eta_t \nabla f_t(x_t))$ and observe f_{t+1}, g_{t+1}
 251 Accumulate loss $f_{t+1}(x_{t+1})$ and penalty $(g_{t+1}^+(x_{t+1}))^2$
 252 **end for**

253 Here, $\nabla f_t(x_t)$ represents a sub-gradient of f_t at x_t . The projection step in CLASP is onto the set
 254 $\mathcal{K}_t = \mathcal{K} \cap C_t$, with $C_t = \{x \in \mathbb{R}^n : g_t(x) \leq 0\}$ (as defined in (2)). Note that the set \mathcal{K}_t is non-empty,
 255 as per Assumption 3, and that this projection, typically realized as a convex optimization problem,
 256 sets CLASP apart from the projection-free methods in Section 1.1. The step-sizes η_t are chosen
 257 according to whether the loss functions are convex or strongly convex and are specified further ahead
 258 in Section 3.2. We write $\hat{x}_{t+1} = x_t - \eta_t \nabla f_t(x_t)$, and rewrite CLASP as $x_{t+1} = p_{\mathcal{K}_t}(\hat{x}_{t+1})$ for
 259 $t \geq 1$.

260 We now analyze CLASP, finding upper-bounds for both Regret_T (see (1) and (2)) and the hard
 261 constraint violation $\text{CCV}_{T,2}$ (see (3)).

262 Our analysis is modular, one module bounding the metric $\text{CCV}_{T,2}$ (Section 3.1) and the other module
 263 bounding the regret (Section 3.2).

266 3.1 BOUNDING $\text{CCV}_{T,2}$

267 In this section, we present the module of our analysis that is dedicated to bounding the metric $\text{CCV}_{T,2}$.
 268 More precisely, we start by finding a generic bound on $\text{CCV}_{T,2}$ that is phrased in terms of the length
 269 of the step-sizes $\sum_{t=1}^T \eta_t$. Our bound, the end result of a progression of three lemmas, is stated

270 precisely in Lemma 3. The lemmas hold under Assumptions 1 to 4, and their proofs are provided in
 271 the Appendix.

272 **Lemma 1.** *In the COCO setting, for adversarially chosen convex loss functions f_t and convex
 273 constraint functions, g_t , consider Assumptions 1-4 hold. Then for Algorithm 1, there holds
 274 $\sum_{t=1}^T d_{\mathcal{K}_t}(\hat{x}_{t+1})^2 \leq O\left(\sum_{t=1}^T \eta_t\right)$.*

275 Lemma 1 bounds the cumulative squared-distance of the intermediate step \hat{x}_{t+1} (which can be sort of
 276 a virtual decision) to the convex set \mathcal{K}_t .

277 The next Lemma 2 leverages this result and obtains a similar bound, but now relative to the decision x_t .

278 **Lemma 2.** *In the COCO setting, for adversarially chosen convex loss functions f_t and convex
 279 constraint functions, g_t , consider Assumptions 1-4 hold. Then for Algorithm 1, there holds
 280 $\sum_{t=1}^T d_{\mathcal{K}_t}(x_t)^2 \leq O\left(\sum_{t=1}^T \eta_t\right)$.*

281 **Lemma 3.** *In the COCO setting, for adversarially chosen convex loss functions f_t and convex
 282 constraint functions, g_t , consider Assumptions 1-4 hold. Then for Algorithm 1, there holds $CCV_{T,2} \leq$
 283 $O\left(\sum_{t=1}^T \eta_t\right)$.*

284 Lemma 3, the main result of this section, connects the growth of the $CCV_{T,2}$ metric with the growth
 285 of the stepsizes. The next section chooses these stepsizes for the convex and strongly convex setting
 286 and bounds the regret, completing our analysis.

287 3.2 ANALYSIS OF CLASP

288 Having assembled the necessary elements, we are ready to fully analyze CLASP. The analysis is
 289 reported in Theorem 1 for convex losses, and in Theorem 2 for strongly convex ones.

290 **Convex losses.** We suppose that assumptions 1 to 4 hold. Let β be any desired value in $(0, 1)$ and,
 291 accordingly, set the step-sizes to

$$292 \eta_t = 1/t^\beta, \quad \text{for } t \geq 1, \quad (10)$$

293 which complies with Assumption 4. The following Theorem 1 bounds the regret and the CCV of
 294 CLASP for this setting.

295 **Theorem 1** (Convex losses). *In the COCO setting, for adversarially chosen convex loss functions f_t
 296 and convex constraint functions, g_t , consider Assumptions 1-4 hold. Let $\eta_t = 1/t^\beta$, with $\beta \in (0, 1)$.
 297 Then, Algorithm 1 achieves the following regret and $CCV_{T,2}$ bounds:*

$$304 \text{Regret}_T \leq O(T^{\max\{\beta, 1-\beta\}}) \quad \text{and} \quad CCV_{T,2} \leq O(T^{1-\beta}).$$

305
 306
 307 *Proof.* We start by analyzing the Regret_T . Express the projection step of CLASP as

$$308 \quad x_{t+1} = \arg \min_{u \in \mathbb{R}^n} h_t(u),$$

309 where

$$310 \quad h_t(u) = \langle \nabla f_t(x_t), u - x_t \rangle + \frac{1}{2\eta_t} \|u - x_t\|^2 + \delta_{\mathcal{K}_t}(u),$$

311 with $\delta_{\mathcal{K}_t} : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ denoting the indicator function of the convex set \mathcal{K}_t (i.e., $\delta_{\mathcal{K}_t}(u) = 0$
 312 if $u \in \mathcal{K}_t$, and $\delta_{\mathcal{K}_t}(u) = +\infty$, if $u \notin \mathcal{K}_t$).

313 Note that h_t is a proper, closed, and σ -strongly convex function with modulus $\sigma = 1/\eta_t$ and global
 314 minimizer x_{t+1} . Thus, from (8), we have

$$315 \quad h_t(x_T^*) \geq h_t(x_{t+1}) + \frac{1}{2\eta_t} \|x_T^* - x_{t+1}\|^2. \quad (11)$$

316 Observing that both x_{t+1} and x_T^* are points in \mathcal{K}_t (which implies $\delta_{\mathcal{K}_t}(x_{t+1}) = \delta_{\mathcal{K}_t}(x_T^*) = 0$), we
 317 can re-arrange (11) as

$$318 \quad \frac{1}{2\eta_t} \|x_{t+1} - x_T^*\|^2 \leq \frac{1}{2\eta_t} \|x_t - x_T^*\|^2 + \langle \nabla f_t(x_t), x_T^* - x_t \rangle - \frac{1}{2\eta_t} \|x_t - x_{t+1}\|^2 \\ 319 \quad + \langle \nabla f_t(x_t), x_t - x_{t+1} \rangle. \quad (12)$$

324 We now use the easily-checked fact
 325

$$326 \max \left\{ -\frac{1}{2\eta} \|u\|^2 + \langle v, u \rangle : u \in \mathbb{R}^n \right\} = \frac{\eta}{2} \|v\|^2, \\ 327$$

328 which holds for all $\eta > 0$ and $v \in \mathbb{R}^n$, and amounts simply to compute the peak value of the concave
 329 quadratic function inside the braces. Using this fact with $\eta = \eta_t$ and $v = \nabla f_t(x_t)$, we can bound the
 330 sum of the last two terms on the right-hand side of (12), thereby arriving at

$$331 \frac{1}{2\eta_t} \|x_{t+1} - x_T^*\|^2 \leq \frac{1}{2\eta_t} \|x_t - x_T^*\|^2 + \langle \nabla f_t(x_t), x_T^* - x_t \rangle + \frac{\eta_t}{2} \|\nabla f_t(x_t)\|^2. \\ 332$$

333 The convexity of f_t implies $\langle \nabla f_t(x_t), x_T^* - x_t \rangle \leq f(x_T^*) - f(x_t)$ (e.g., see (7) with $m = 0$), which,
 334 when plugged in (13), yields
 335

$$336 f_t(x_t) - f_t(x_T^*) \leq \frac{1}{2\eta_t} \|x_t - x_T^*\|^2 - \frac{1}{2\eta_t} \|x_{t+1} - x_T^*\|^2 + \frac{\eta_t}{2} \|\nabla f_t(x_t)\|^2. \\ 337$$

338 For $t = 1$, inequality (14) implies
 339

$$340 f_1(x_1) - f_1(x_T^*) \leq \frac{1}{2\eta_1} D^2 - \frac{1}{2\eta_1} \|x_2 - x_T^*\|^2 + \frac{\eta_1}{2} \|\nabla f_1(x_1)\|^2, \\ 341$$

342 where Assumption 1 was used to bound the first term in the right-hand side of (14). For $t \geq 2$, we
 343 have

$$344 \frac{1}{2\eta_t} \|x_t - x_T^*\|^2 = \frac{1}{2\eta_{t-1}} \|x_t - x_T^*\|^2 + \left(\frac{1}{2\eta_t} - \frac{1}{2\eta_{t-1}} \right) \|x_t - x_T^*\|^2 \\ 345 \\ 346 \leq \frac{1}{2\eta_{t-1}} \|x_t - x_T^*\|^2 + \left(\frac{1}{2\eta_t} - \frac{1}{2\eta_{t-1}} \right) D^2, \\ 347$$

348 where the last inequality uses Assumptions 1 and 4.
 349

350 Plugging (16) in (14) gives

$$351 f_t(x_t) - f_t(x_T^*) \leq \frac{1}{2\eta_{t-1}} \|x_t - x_T^*\|^2 - \frac{1}{2\eta_t} \|x_{t+1} - x_T^*\|^2 + \frac{\eta_t}{2} \|\nabla f_t(x_t)\|^2 \\ 352 \\ 353 + \left(\frac{1}{2\eta_t} - \frac{1}{2\eta_{t-1}} \right) D^2, \\ 354$$

355 which is valid for $t \geq 2$. Finally, summing (15) to (17) (instantiated from $t = 2$ to T) yields
 356

$$357 \text{Regret}_T \leq \frac{1}{2\eta_T} D^2 + \sum_{t=1}^T \frac{\eta_t}{2} \|\nabla f_t(x_t)\|^2 \\ 358 \\ 359 \leq \frac{T^\beta D^2}{2} + \frac{L^2}{2} \sum_{t=1}^T \frac{1}{t^\beta} \\ 360 \\ 361 \leq O(T^{\max\{\beta, 1-\beta\}}), \\ 362$$

363 where the second inequality follows from Assumption 2 and (10).
 364

365 We now turn to the analysis of $\text{CCV}_{T,2}$: combining Lemma 3 with (10) gives directly $\text{CCV}_{T,2} \leq$
 366 $O(T^{1-\beta})$ and concludes the proof. \square
 367

368 **Strongly convex losses.** We suppose assumptions 1 to 4 are still in force and further assume that
 369 there exists $m > 0$ such that each convex loss f_t is m -strongly convex for $t \geq 1$. The step-sizes are
 370 set to

$$371 \eta_t = 1/(mt), \quad \text{for } t \geq 1, \\ 372$$

373 thereby satisfying Assumption 4.

374 **Theorem 2** (Strongly convex losses). *In the COCO setting, for adversarially chosen m -strongly-
 375 convex loss functions f_t and convex constraint functions, g_t , consider Assumptions 1-4 hold. Let
 376 $\eta_t = 1/(mt)$. Then, Algorithm 1 achieves the following regret and $\text{CCV}_{T,2}$ bounds:*

$$377 \text{Regret}_T \leq O(\log T) \quad \text{and} \quad \text{CCV}_{T,2} \leq O(\log T).$$

378 *Proof.* Looking first at Regret_T and replaying the opening moves in the proof of Theorem 1, we may
 379 assume that inequality (13) holds, an inequality that we reproduce here for convenience of the reader:
 380

$$381 \quad \frac{1}{2\eta_t} \|x_{t+1} - x_T^*\|^2 \leq \frac{1}{2\eta_t} \|x_t - x_T^*\|^2 + \langle \nabla f_t(x_t), x_T^* - x_t \rangle + \frac{\eta_t}{2} \|\nabla f_t(x_t)\|^2. \quad (19)$$

383 The strong convexity of f_t implies, via (7),
 384

$$385 \quad \langle f_t(x_t), x_T^* - x_t \rangle \leq f_t(x_T^*) - f_t(x_t) - (m/2) \|x_t - x_T^*\|^2,$$

386 which, when inserted in (19), gives
 387

$$388 \quad f_t(x_t) - f_t(x_T^*) \leq \frac{m(t-1)}{2} \|x_t - x_T^*\|^2 - \frac{mt}{2} \|x_{t+1} - x_T^*\|^2 + \frac{\eta_t}{2} \|\nabla f_t(x_t)\|^2 \quad (20)$$

389 (where we used (18) to replace η_t in some terms). Adding (20) from $t = 1$ to T yields
 390

$$392 \quad \text{Regret}_T \leq \sum_{t=1}^T \frac{\eta_t}{2} \|\nabla f_t(x_t)\|^2 \\ 393 \quad \leq \frac{L^2}{2} \sum_{t=1}^T \frac{1}{mt} \\ 394 \quad = O(\log T), \\ 395 \\ 396 \\ 397 \\ 398$$

399 where the second inequality is due to Assumption 2 and (18).
 400

401 It remains to account for $\text{CCV}_{T,2}$. For this, concatenate Lemma 3 with (18) to get $\text{CCV}_{T,2} \leq$
 402 $O(\log T)$, thereby closing the proof. □
 403
 404

4 EXTENSIONS

405 We now briefly mention two straightforward extensions of CLASP: one to accommodate multiple
 406 constraints; the other to handle persistent constraints.
 407

408 **Multiple dynamic constraints.** In deriving CLASP, Algorithm 1, we assumed that only one
 409 constraint function g_t is revealed at iteration t . In some applications, however, several constraints
 410 might be revealed, say, M constraint functions, denoted $g_{t;m}$ for $1 \leq m \leq M$. Accordingly, CCV
 411 might be adjusted to
 412

$$413 \quad \text{CCV}_{T,2}^1 = \sum_{t=1}^T \sum_{m=1}^M (g_{t;m}^+(x_t))^2 \quad \text{or} \quad \text{CCV}_{T,2}^\infty = \sum_{t=1}^T \max \{(g_{t;m}^+(x_t))^2 : 1 \leq m \leq M\}.$$

414 Adapting CLASP to this setting is easy: it suffices to define the set \mathcal{K}_t as $\mathcal{K} \cap C_{t;m_t}$, where $C_{t;m} =$
 415 $\{x \in \mathbb{R}^n : g_{t;m}(x_t) \leq 0\}$ and m_t denotes the index of the constraint incurring the largest violation
 416 at x_t , and correspondingly upgrade Assumption 3 so as to suppose the existence of $x_T^* \in \mathcal{K} \cap \mathcal{C}_T$,
 417 with $\mathcal{C}_T = \bigcap_{t=1}^T \bigcap_{m=1}^M C_{t;m}$. It can be readily verified that the proofs of Lemmas 1 to 3 remain
 418 valid. In particular, Lemma 3 now asserts that $\sum_{t=1}^T (g_{t;m}^+(x_t))^2 \leq O\left(\sum_{t=1}^T \eta_t\right)$ for any fixed
 419 $m \in \{1, \dots, M\}$. This and the fact that there is a finite number M of constraints imply that the
 420 statement of Lemma 3 continues to hold when $\text{CCV}_{T,2}$ is replaced by $\text{CCV}_{T,2}^1$ or $\text{CCV}_{T,2}^\infty$. Owing
 421 to the modular structure of the CLASP proof, which treats regret and CCV separately, Theorems 1
 422 and 2 remain valid as well. To conclude, the theoretical guarantees of CLASP are preserved.
 423

424 **Persistent constraints.** The canonical interpretation in the COCO literature about dynamic
 425 constraints is that they are transient: the constraint g_t should be satisfied by decision x_t , but not necessarily
 426 by future decisions x_{t+1}, x_{t+2}, \dots . This interpretation can be read in the common definitions of
 427 CCVs in that they penalize only the violation of x_t induced by g_t —if that was not the case, if
 428 constraints were to be interpreted as persistent, then the definition of a CCV would have to keep the
 429

432 score of violations of x_t induced by the *history* of constraints g_1, g_2, \dots, g_t so far, say, through the
 433 much more stricter metric

$$434 \quad 435 \quad \text{CCV}_{T,2}^{\text{hist}} = \sum_{t=1}^T \sum_{\tau=1}^t (g_{\tau}^+(x_t))^2. \quad (21)$$

437 The underlying interpretation of dynamic constraints as being transient can also be inferred from
 438 standard COCO algorithms, in the sense that they generate the decision x_t without worrying, let
 439 alone enforcing, that it satisfies previously revealed constraints (in this regard, the only exception that
 440 we know of is Vaze & Sinha (2025), though the authors do not articulate that such property is built-in
 441 in their algorithm to address explicitly persistent constraints).

442 In any case, although we are not aware of specific applications that are best modeled by persistent
 443 constraints, CLASP can be effortlessly adjusted to such settings if needed by defining $\mathcal{K}_t = \mathcal{K} \cap$
 444 $\bigcap_{t=1}^T C_t$, with $C_t = \{x \in \mathbb{R}^n : g_t(x) \leq 0\}$. This forces x_t to comply with all constraints revealed
 445 so far, that is, $g_{\tau}(x_t) \leq 0$ holds for $\tau < t$, in which case $\text{CCV}_{T,2}^{\text{hist}}$ collapses back to $\text{CCV}_{T,2}$, and the
 446 theoretical analysis goes through unchanged, keeping the guarantees of CLASP intact.

448 5 NUMERICAL EXPERIMENTS

450 In this section, we evaluate the performance of our proposed algorithm CLASP with the AdaGrad-
 451 based algorithm of Sinha & Vaze (2024), the RECOO algorithm of Guo et al. (2022), the Frank-
 452 Wolfe-based algorithm of Wang et al. (2025), and the Switch algorithm of Vaze & Sinha (2025). We
 453 report results for the cumulative loss and for the violation metrics $\text{CCV}_{T,1}$ and $\text{CCV}_{T,2}$.

455 **On evaluating $\text{CCV}_{T,2}$.** In line with prior COCO work, we measure $\text{CCV}_{T,2}$ *a posteriori* to
 456 illustrate how this theoretically motivated quantity behaves in practice.

457 Further synthetic and real-data experiments can be found in Appendix A.4. All results were averaged
 458 over 100 trials and are reported with 95% confidence intervals¹. The experiments were performed on
 459 a 2020 MacBook Air 13", with an 8-core Apple M1 processor and 16 GB of RAM.

461 5.1 ONLINE LINEAR REGRESSION

463 This experiment is similar to the one presented by Guo et al. (2022) for the setting of adversarial
 464 constraints with a synthetic dataset. At each iteration t , the loss function is given by $f_t(x) = \|H_t x -$
 465 $y_t\|^2$, with $H_t \in \mathbb{R}^{4 \times 10}$, $x \in \mathbb{R}^{10}$ and $y_t \in \mathbb{R}^4$, where $H_t(i, j) \sim U(-1, 1)$, $1 \leq i \leq 4$, $1 \leq j \leq 10$,
 466 and $y_t(i) = H_t(i)\mathbf{1} + \epsilon_i$, such that $\mathbf{1} := (1, \dots, 1) \in \mathbb{R}^{10}$ and ϵ_i denotes the standard normal random
 467 variable. On the other hand, the constraint function is given by $g_t(x) = A_t x - b_t$, with $A_t \in \mathbb{R}^{4 \times 10}$
 468 and $b_t \in \mathbb{R}^4$, where $A_t(i, j) \sim U(0, 2)$ and $b_t(i) \sim U(0, 1)$, for $1 \leq i \leq 4$ and $1 \leq j \leq 10$. Note
 469 that g_t is a vector-valued map taking values in \mathbb{R}^4 , and thus corresponds to multiple constraints of the
 470 form $g_{t,m}(x) \leq 0$, for $1 \leq m \leq 4$. However, we can replace it with a single scalar function, which
 471 is the pointwise maximum of the constraints $g_t(x) = \max\{g_{t,m}(x) : 1 \leq m \leq 4\}$ (see Section 4
 472 for details). The static decision set is given by $\mathcal{K} = \{x \in \mathbb{R}^{10} : 0 \leq x_i \leq 1, \text{ for } i = 1, \dots, 10\}$. The
 473 vector $x_1 \in \mathbb{R}^n$ in all algorithms was initialized such that $x_i \sim U(0, 1)$, for $1 \leq i \leq n$, where $U(a, b)$
 474 stands for the uniform distribution supported on the interval (a, b) .

475 Figure 1 reports cumulative loss, linear violation ($\text{CCV}_{T,1}$), and squared violation ($\text{CCV}_{T,2}$) over
 476 iterations. The AdaGrad-based method (blue) attains the lowest cumulative loss, but only by incurring
 477 much larger constraint violations. By contrast, CLASP (orange) controls both $\text{CCV}_{T,1}$ and $\text{CCV}_{T,2}$
 478 at levels comparable to RECOO (green), while remaining simpler and more memory-efficient. The
 479 Frank-Wolfe-based algorithm (red) achieves similar cumulative loss as CLASP, RECOO, and Switch,
 480 at the cost of higher cumulative constraint violation. Switch (purple) achieves the smallest overall
 481 violations, but at the cost of higher per-iteration complexity. Notably, on the squared violation metric
 482 $\text{CCV}_{T,2}$ —the focus of our analysis—CLASP is competitive with the best-performing baselines,
 483 confirming in practice that it can keep violation severity sublinear while maintaining reasonable
 484 regret.

485 ¹The source code for the numerical experiments can be found in <https://anonymous.4open.science/r/CLASP-45D2>

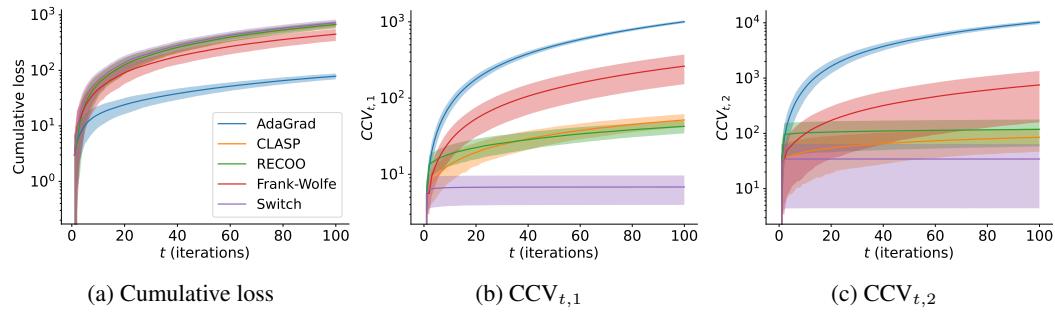


Figure 1: Online linear regression with adversarial constraints. We report (a) cumulative loss, (b) linear violation $CCV_{T,1}$, and (c) squared violation $CCV_{T,2}$. AdaGrad achieves the lowest loss but at the cost of very large constraint violations. CLASP controls both violation metrics competitively with RECOO, while remaining more memory-efficient than Switch. Frank-Wolfe attains higher cumulative constraint violation compared with CLASP, RECOO, and Switch while not attaining relevant reduction in the cumulative loss. Switch attains the smallest violations overall but with higher per-iteration complexity. All $CCV_{T,2}$ values are reported *a posteriori*.

6 CONCLUSIONS

Limitations and Future Work. While CLASP attains state-of-the-art guarantees for the squared cumulative constraint violation $CCV_{T,2}$, we do not pursue sharp bounds for the linear metric $CCV_{T,1}$ in the convex regime. Obtaining such bounds would require a dedicated analysis of CLASP, rather than a loose Cauchy-Schwarz conversion, and constitutes a natural continuation of the modular FNE-based framework developed here. A second direction concerns projection-free variants of CLASP, which would broaden its applicability in domains where projections onto $\mathcal{K} \cap C_t$ are computationally costly. We regard both extensions as promising and complementary avenues for future research.

Conclusions. We introduced CLASP, an online COCO algorithm that handles convex losses and dynamic constraints. CLASP aims at minimizing both loss regret and cumulative constraint violation (CCV). In this work, the metric is the squared Cumulative Constraint Violation to account for large violations. For general convex losses, CLASP offers a tunable trade-off between regret and CCV, matching the best performance of previous works designed for static constraints. More importantly, for strongly convex losses, CLASP universally achieves logarithmic bounds on both regret and CCV—an advance that, to the extent of our knowledge, is established here for the first time. Algorithmically, CLASP consists of just a gradient step followed by a projection at each iteration, while its analysis is simplified by leveraging the firmly non-expansiveness property of projections. This yields a modular proof structure that disentangles the treatment of regret from that of CCV. This modularity, in turn, makes extensions of CLASP to other settings (e.g., multiple or persistent constraints) straightforward.

REFERENCES

Arindam Banerjee, Pedro Cisneros-Velarde, Libin Zhu, and Misha Belkin. Restricted strong convexity of deep learning models with smooth activations. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=PINRbk7h01>.

Heinz H. Bauschke and Patrick L. Combettes. *Convex Analysis and Monotone Operator Theory in Hilbert Spaces*. Springer International Publishing, 2017. ISBN 9783319483115. doi: 10.1007/978-3-319-48311-5.

Christopher M Bishop and Nasser M Nasrabadi. *Pattern recognition and machine learning*, volume 4. Springer, 2006.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for optimal margin classifiers. In *Proceedings of the fifth annual workshop on Computational learning theory*, pp. 144–152, 1992.

540 Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
 541 multi-armed bandit problems. *Foundations and Trends® in Machine Learning*, 5(1):1–122, 2012.
 542

543 Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine
 544 preferences by data mining from physicochemical properties. *Decision Support Systems*, 47(4):547–
 545 553, 2009. ISSN 0167-9236. doi: <https://doi.org/10.1016/j.dss.2009.05.016>. URL <https://www.sciencedirect.com/science/article/pii/S0167923609001377>. Smart
 546 Business Networks: Concepts and Empirical Evidence.
 547

548 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
 549 stochastic optimization. *Journal of Machine Learning Research*, 12(null):2121–2159, July 2011.
 550 ISSN 1532-4435.
 551

552 Dan Garber and Ben Kretzu. Projection-free online convex optimization with time-varying con-
 553 straints. In *Proceedings of the 41st International Conference on Machine Learning*, volume 235
 554 of *Proceedings of Machine Learning Research*, pp. 14988–15005. PMLR, 21–27 Jul 2024. URL
 555 <https://proceedings.mlr.press/v235/garber24a.html>.
 556

556 Hengquan Guo, Xin Liu, Honghao Wei, and Lei Ying. Online convex optimization with hard
 557 constraints: Towards the best of two worlds and beyond. In *Advances in Neural Information
 558 Processing Systems*, 2022. URL <https://openreview.net/forum?id=rwdpFgfVpvN>.
 559

560 Elad Hazan and Satyen Kale. Projection-free online learning. In *Proceedings of the 29th International
 561 Conference on International Conference on Machine Learning*, ICML’12, pp. 1843–1850, Madison,
 562 WI, USA, 2012. Omnipress. ISBN 9781450312851.
 563

563 Elad Hazan and Edgar Minasyan. Faster projection-free online learning. In *Conference on Learning
 564 Theory*, pp. 1877–1893. PMLR, 2020.
 565

565 Elad Hazan and Karan Singh. Boosting for online convex optimization. In *International Conference
 566 on Machine Learning*, pp. 4140–4149. PMLR, 2021.
 567

568 Elad Hazan et al. Introduction to online convex optimization. *Foundations and Trends® in Optimiza-
 569 tion*, 2(3-4):157–325, 2016.
 570

571 Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. *Convex Analysis and Minimization Algorithms
 I*. Springer Berlin Heidelberg, 1993. ISBN 9783662027967. doi: 10.1007/978-3-662-02796-7.
 572

573 Rodolphe Jenatton, Jim Huang, and Cedric Archambeau. Adaptive algorithms for online convex
 574 optimization with long-term constraints. In Maria Florina Balcan and Kilian Q. Weinberger
 575 (eds.), *Proceedings of The 33rd International Conference on Machine Learning*, volume 48 of
 576 *Proceedings of Machine Learning Research*, pp. 402–411, New York, New York, USA, 20–22 Jun
 577 2016. PMLR. URL <https://proceedings.mlr.press/v48/jenatton16.html>.
 578

579 Yiyang Lu, Mohammad Pedramfar, and Vaneet Aggarwal. Order-optimal projection-free algorithm
 580 for adversarially constrained online convex optimization. *arXiv preprint arXiv:2502.16744*, 2025.
 581

581 Wanteng Ma, Ying Cao, Danny HK Tsang, and Dong Xia. Optimal regularized online allocation by
 582 adaptive re-solving. *Operations Research*, 73(4):2079–2096, 2025.
 583

583 Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. Trading regret for efficiency: online convex
 584 optimization with long term constraints. *Journal of Machine Learning Research*, 13(1):2503–2528,
 585 September 2012. ISSN 1532-4435.
 586

587 Michael Neely. *Stochastic network optimization with application to communication and queueing
 588 systems*. Morgan & Claypool Publishers, 2010.
 589

590 Juan Ramirez, Meraj Hashemizadeh, and Simon Lacoste-Julien. Position: Adopt constraints over
 591 penalties in deep learning. *arXiv preprint arXiv:2505.20628*, 2025.
 592

593 Dhruv Sarkar, Aprameyo Chakrabarty, Subhamon Supantha, Palash Dey, and Abhishek Sinha.
 594 Projection-free algorithms for online convex optimization with adversarial constraints. *arXiv
 595 preprint arXiv:2501.16919*, 2025.

594 Shai Shalev-Shwartz et al. Online learning and online convex optimization. *Foundations and Trends®*
595 in Machine Learning

596 4(2):107–194, 2012.

597 Abhishek Sinha and Rahul Vaze. Optimal algorithms for online convex optimization
598 with adversarial constraints. In A. Globerson, L. Mackey, D. Belgrave,
599 A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information
600 Processing Systems*, volume 37, pp. 41274–41302. Curran Associates, Inc.,
601 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/486ff0b164cf92b0255fe39863bcf99e-Paper-Conference.pdf.

602

603 Rahul Vaze and Abhishek Sinha. $O(\sqrt{T})$ static regret and instance dependent constraint violation for
604 constrained online convex optimization. *arXiv preprint arXiv:2502.05019*, 2025.

605 Yibo Wang, Yuanyu Wan, and Lijun Zhang. Revisiting projection-free online learning with time-
606 varying constraints. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(20):21339–
607 21347, 2025. doi: 10.1609/aaai.v39i20.35434. URL <https://ojs.aaai.org/index.php/AAAI/article/view/35434>.

608

609 Xinlei Yi, Xiuxian Li, Tao Yang, Lihua Xie, Tianyou Chai, and Karl Johansson. Regret and cumulative
610 constraint violation analysis for online convex optimization with long term constraints. In Marina
611 Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine
612 Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 11998–12008. PMLR,
613 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/yi21b.html>.

614

615 Xinlei Yi, Xiuxian Li, Tao Yang, Lihua Xie, Tianyou Chai, and Karl Henrik Johansson. Regret and
616 cumulative constraint violation analysis for distributed online constrained convex optimization.
617 *IEEE Transactions on Automatic Control*, 68(5):2875–2890, 2023. doi: 10.1109/TAC.2022.
618 3230766.

619

620 Hao Yu and Michael J. Neely. A low complexity algorithm with $O(\sqrt{T})$ regret and $O(1)$ constraint
621 violations for online convex optimization with long term constraints. *Journal of Machine Learning
622 Research*, 21(1):1–24, 2020. URL <http://jmlr.org/papers/v21/16-494.html>.

623

624 Jianjun Yuan and Andrew Lamperski. Online convex optimization for cumulative constraints.
625 *Advances in Neural Information Processing Systems*, 31, 2018.

626

627 Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
628 *Proceedings of the 20th international conference on machine learning (icml-03)*, pp. 928–936,
629 2003.

630

631

632 **A APPENDIX**

633

634 **A.1 PROOF OF LEMMA 1**

635 Note that $x_T^* \in \mathcal{K} \cap \mathcal{C}_T \subset \mathcal{K}_t$, implying $x_T^* = P_{\mathcal{K}_t}(x_T^*)$ for $1 \leq t \leq T$. We have

636

$$\begin{aligned} \|x_{t+1} - x_T^*\|^2 &= \|P_{\mathcal{K}_t}(\hat{x}_{t+1}) - P_{\mathcal{K}_t}(x_T^*)\|^2 \\ &\leq \|\hat{x}_{t+1} - x_T^*\|^2 - d_{\mathcal{K}_t}(\hat{x}_{t+1})^2 \\ &= \|x_t - \eta_t \nabla f_t(x_t) - x_T^*\|^2 - d_{\mathcal{K}_t}(\hat{x}_{t+1})^2 \\ &= \|x_t - x_T^*\|^2 - 2\eta_t \langle \nabla f_t(x_t), x_t - x_T^* \rangle + \eta_t^2 \|\nabla f_t(x_t)\|^2 - d_{\mathcal{K}_t}(\hat{x}_{t+1})^2 \\ &\leq \|x_t - x_T^*\|^2 + 2\eta_t \|\nabla f_t(x_t)\| \|x_t - x_T^*\| + \eta_t^2 \|\nabla f_t(x_t)\|^2 - d_{\mathcal{K}_t}(\hat{x}_{t+1})^2 \\ &\leq \|x_t - x_T^*\|^2 + 2LD\eta_t + L^2\eta_t^2 - d_{\mathcal{K}_t}(\hat{x}_{t+1})^2, \end{aligned}$$

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

right-hand side of the first inequality would read as $\|\hat{x}_{t+1} - x_T^*\|^2$, the key term $d_{\mathcal{K}_t}(\hat{x}_{t+1})^2$ no longer present. The disappearance of this term would instantly sever the reasoning of the present lemma; as the subsequent lemmas depend upon it, the entire proof would be invalidated.

Re-arranging the last inequality yields

$$\begin{aligned} d_{\mathcal{K}_t}(\hat{x}_{t+1})^2 &\leq \|x_t - x_T^*\|^2 - \|x_{t+1} - x_T^*\|^2 + 2LD\eta_t + L^2\eta_t^2 \\ &\leq \|x_t - x_T^*\|^2 - \|x_{t+1} - x_T^*\|^2 + (2LD + \theta L^2)\eta_t, \end{aligned}$$

where the last inequality is due to Assumption 4.

Summing up from $t = 1$ to T , we obtain

$$\sum_{t=1}^T d_{\mathcal{K}_t}(\hat{x}_{t+1})^2 \leq \|x_1 - x_T^*\|^2 + \sum_{t=1}^T (2LD + \theta L^2)\eta_t = O\left(\sum_{t=1}^T \eta_t\right).$$

A.2 PROOF OF LEMMA 2

We have

$$\begin{aligned} d_{\mathcal{K}_t}(x_t) &= d_{\mathcal{K}_t}(\hat{x}_{t+1} + (x_t - \hat{x}_{t+1})) \\ &\leq d_{\mathcal{K}_t}(\hat{x}_{t+1}) + \|x_t - \hat{x}_{t+1}\| \\ &= d_{\mathcal{K}_t}(\hat{x}_{t+1}) + \eta_t \|\nabla f_t(x_t)\| \\ &\leq d_{\mathcal{K}_t}(\hat{x}_{t+1}) + \eta_t L, \end{aligned}$$

where the first inequality follows from the Lipschitz continuity of the distance function $d_{\mathcal{K}_t}$ (see Section 2), and the second inequality from Assumption 2.

It follows that

$$\begin{aligned} d_{\mathcal{K}_t}(x_t)^2 &\leq 2d_{\mathcal{K}_t}(\hat{x}_{t+1})^2 + 2\eta_t^2 L^2 \\ &\leq 2d_{\mathcal{K}_t}(\hat{x}_{t+1})^2 + 2\eta_t \theta L^2, \end{aligned}$$

where the first inequality comes from the general fact $(a + b)^2 \leq 2a^2 + 2b^2$ for $a, b \in \mathbb{R}$, and the second inequality from Assumption 4.

Summing up from $t = 1$ to T and using Lemma 1, we obtain

$$\begin{aligned} \sum_{t=1}^T d_{\mathcal{K}_t}(x_t)^2 &\leq 2 \sum_{t=1}^T d_{\mathcal{K}_t}(\hat{x}_{t+1})^2 + 2L^2\theta \sum_{t=1}^T \eta_t \\ &\leq O\left(\sum_{t=1}^T \eta_t\right). \end{aligned}$$

A.3 PROOF OF LEMMA 3

Note that $|g_t^+(u) - g_t^+(v)| \leq |g_t(u) - g_t(v)|$ for all $u, v \in \mathbb{R}^n$. Hence, $|g_t^+(u) - g_t^+(v)| \leq L \|u - v\|$ for all $u, v \in \mathcal{K}$ due to Assumption 3 and its consequence (9).

It follows that

$$\begin{aligned} g_t^+(x_t) &\leq g_t^+(P_{\mathcal{K}_t}(x_t)) + L \|x_t - P_{\mathcal{K}_t}(x_t)\| \\ &= L d_{\mathcal{K}_t}(x_t), \end{aligned}$$

since $g_t^+(P_{\mathcal{K}_t}(x_t)) = 0$ because $P_{\mathcal{K}_t}(x_t) \in \mathcal{K}_t = \mathcal{K} \cap \{x \in \mathbb{R}^n : g_t(x) \leq 0\}$ and any point $u \in \mathcal{K}_t$ satisfies $g_t(u) \leq 0$.

702 Equivalently, we have $g_t^+(x_t)^2 \leq L^2 d_{\mathcal{K}_t}(x_t)^2$. Summing up from $t = 1$ to T and using Lemma 2,
 703 we obtain

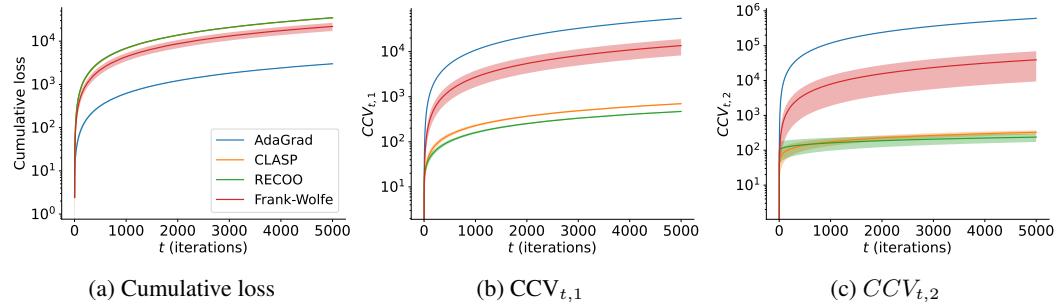
$$\begin{aligned}
 704 \quad \text{CCV}_{T,2} &= \sum_{t=1}^T (g_t^+(x_t))^2 \\
 705 \quad &\leq L^2 \sum_{t=1}^T d_{\mathcal{K}_t}(x_t)^2 \\
 706 \quad &\leq O\left(\sum_{t=1}^T \eta_t\right).
 \end{aligned}$$

714 A.4 ADDITIONAL NUMERICAL EXPERIMENTS

715 In this section, we present additional numerical experiments. In particular, a version of the Online
 716 Linear Regression experiment with additional rounds, and an experiment for Online Support Vector
 717 Machine. The results were obtained by averaging over 100 trials and reported with a 95% confidence
 718 interval.

720 A.4.1 ONLINE LINEAR REGRESSION WITH ADDITIONAL ROUNDS

721 We now present a version of the Online Linear Regression experiment with a larger number of
 722 rounds. As stated in Section 1.2, the Switch algorithm is memory-intensive as the set to which
 723 the algorithm performs the projections incorporates all previously revealed constraint functions.
 724 Therefore, as the iterations unfold, the set becomes increasingly more complex and the associated
 725 projection increasingly more expensive. So, we removed Switch from this experiment, as to be able
 726 to investigate a larger number of rounds.



737 (a) Cumulative loss (b) $\text{CCV}_{t,1}$ (c) $\text{CCV}_{t,2}$

738

739 Figure 2: Online Linear Regression with additional rounds.

740 The results are similar to the ones in Section 5. However, while the Cumulative Constraint Violation
 741 (both $\text{CCV}_{T,1}$ and $\text{CCV}_{T,2}$) attained by CLASP and RECOO are very similar, note that, for the
 742 $\text{CCV}_{T,2}$ metric, for a larger number of rounds, the CLASP algorithm displays diminished variability.

744 A.4.2 ONLINE SUPPORT VECTOR MACHINE

746 In our second experiment, we compare the performance of the algorithms for the online update of a
 747 Support Vector Machine (SVM) (Boser et al., 1992; Bishop & Nasrabadi, 2006). We consider that,
 748 at each iteration t , we receive a new labeled sample (u_t, v_t) , with $u_t \in \mathbb{R}^P$ the feature vector and
 749 $v_t \in \{\pm 1\}$ the label. Thus, at each round t , we can formulate the optimization problem in the COCO
 750 setting as

$$751 \quad \underset{x:=(w,b) \in \mathcal{K}}{\text{minimize}} \quad \frac{1}{2} \|w\|^2, \quad \text{subject to} \quad -v_t (w^T u_t - b) + 1 \leq 0,$$

752 or, in terms of the COCO framework, the revealed loss function is $f_t(x) = \frac{1}{2} \|w\|^2$ and the revealed
 753 constraint function is $g_t(x) = -v_t (w^T u_t - b) + 1$. For this experiment, we use the real-world
 754 dataset about wine quality from their physicochemical properties (for the details about the dataset,

see Cortez et al. (2009))². The dataset contains 6497 samples, each sample contains $P = 11$ features, and the quality of the wine is classified between 1 and 9. Some of the features were in g/dm^3 , while others were in mg/dm^3 . We ensured that all density features were expressed in g/dm^3 . In this experiment, we consider the binary classification setting, where we label with 1 the wine samples with quality equal to or greater than 7, and label with -1 the remaining. Thus, we want our classifier to distinguish between high-quality and low-quality wines. In each trial, we reshuffle the dataset so that the order of samples in each trial is always different. The vector $x_i \in \mathbb{R}^{n+1}$ for all algorithms was initialized such that $x_i \sim U(-1, 1)$, for $1 \leq i \leq n + 1$. The results were obtained by averaging over 100 trials and reported with a 95% confidence interval.

From domain knowledge, we can bound the norm of the feature vector as each physicochemical property has an interval of possible values (for simplicity, we analyzed the possible values encountered in the dataset and concluded that $0 \leq u_t \leq 70$ for all t , thus we can use this to define the Lipschitz constant of the constraint functions $L = 70\sqrt{P}$). While the SVM is an unconstrained problem, our algorithms assume that the decision set is compact; thus, based on the constraints on the feature vectors, we define $\mathcal{K} = \{x = (w, b) \in \mathbb{R}^{P+1} : \|x\| \leq 70\sqrt{P}\}$.

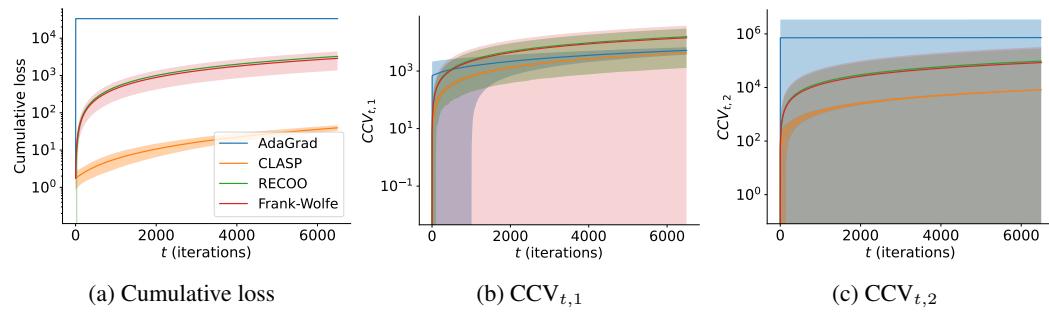


Figure 3: Online Support Vector Machine

Remark. In this experiment, the feasibility assumption is not satisfied, i.e., the set $\mathcal{K} \cap \mathcal{C}_T = \emptyset$, where $\mathcal{C}_T = \bigcap_{t=1}^T \mathcal{C}_t$. Although this property is used in the analysis of the algorithms in COCO to obtain regret and cumulative constraint violation bounds, most of the algorithms in COCO can still be applied to problems without this property. However, the Switch algorithm, due to the exploitation of nested convex bodies, cannot be applied when the feasibility property is not satisfied. Since, at each iteration, the algorithm projects onto the intersection of past constraint functions, then there will be some T_0 , with $1 \leq T_0 \leq T$, such that $\mathcal{C}_{T_0} = \bigcap_{t=1}^{T_0} \mathcal{C}_t = \emptyset$. Therefore, in this experiment, we cannot compare the performance of the Switch algorithm, but compare our algorithm CLASP with the AdaGrad, RECOO and Frank-Wolfe algorithms.

In Fig. 3, we can visualize both the cumulative loss and the CCV of the different algorithms for each round. In this experiment, the more informative results are in Figs. 3b and 3c, as a constraint violation translates as a transgression of the margin. We see for both constraint violation metrics, $CCV_{T,1}$ and $CCV_{T,2}$, the CLASP algorithm achieves better results and with less variability. Furthermore, we see that for the metric $CCV_{T,2}$, the difference in performance is significantly better.

²This dataset is released under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.