

000 ASYNCHRONOUS MATCHING WITH DYNAMIC SAM- 001 PLING FOR MULTIMODAL DATASET DISTILLATION 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Multimodal Dataset Distillation (MDD) has emerged as a vital paradigm for
010 enabling efficient training of vision-language models (VLMs) in the era of multi-
011 modal data proliferation. Unlike traditional dataset distillation methods that focus
012 on single-modal tasks, MDD presents distinct challenges: (i) the effective distilla-
013 tion of heterogeneous multimodal knowledge, complicated by feature space mis-
014 alignment and asynchronous optimization dynamics; and (ii) the lack of discrete
015 class guidance, which hinders the distribution coverage and representativeness of
016 synthetic data due to the vastness and continuity of the semantic space. To address
017 these challenges, this paper proposes an Asynchronous Matching with Dynamic
018 sampling (AMD) framework. AMD enables asynchronous trajectory matching by
019 decoupling the selection of starting points for image and text trajectories. Addi-
020 tionally, a Semantics-Aware Prototype Mining module is introduced, which re-
021 places random initialization by leveraging feature-space clustering to identify rep-
022 resentative prototypes, enhancing the coverage and representativeness of the dis-
023 tillated samples. Extensive experiments demonstrate that AMD achieves superior
024 distillation performance on Flickr30k and COCO (e.g., IR@1, IR@5, and IR@10
025 **gains of 4.5%, 9.6%, and 10.9%**, respectively, on Flickr30k 200 pairs.) with
026 negligible computational overhead..
027

028 1 INTRODUCTION 029

030 In the era of massive data, the substantial storage, transmission, and computational expenses as-
031 sociated with large-scale datasets pose a significant bottleneck for deep learning model training
032 and iteration. Dataset distillation (DD) (Wang et al., 2018; Zhao et al., 2020; Zhao & Bilen, 2023;
033 Cazanavette et al., 2022) emerged to address this challenge, with the aim of distilling a small amount
034 of synthetic data that allows models trained on this reduced set to achieve performance similar to
035 the original. This approach significantly reduces data volume, lowers training costs, accelerates
036 research, and aids in data privacy protection (Dong et al., 2022; Loo et al., 2023).
037

038 However, most existing DD research is mainly focused on single-modal tasks. With the explosion
039 of multimodal data like image-text pairs and the rise of Vision-Language Models (VLMs) (Radford
040 et al., 2021), efficiently processing and utilizing this massive multimodal data presents a new and
041 critical challenge. Consequently, research specifically targeting Multimodal Dataset Distillation
042 (MDD) is becoming exceptionally crucial, offering a vital pathway for efficient multimodal model
043 training and deployment.
044

045 Despite its vital role, MDD faces unique challenges distinct from prior dataset distillation paradigms
046 such as image classification (Zhao & Bilen, 2023; Wang et al., 2022; Zhao et al., 2023; Du et al.,
047 2023) and text classification (Li & Li, 2021; Maekawa et al., 2025). MDD presents two main chal-
048 lenges: **(i) Effective distillation of heterogeneous multimodal knowledge.** The core of MDD
049 lies in extracting and condensing effective joint knowledge from heterogeneous modalities like im-
050 age and text into synthetic data. This process is much more complex than single-modal tasks, as
051 it involves misalignment between modality-specific feature spaces and asynchronous optimization
052 dynamics during training; the latter, in particular, has been largely overlooked in previous work (Wu
053 et al., 2023; Xu et al., 2024) but is crucial for capturing precise cross-modal correlations. **(ii) Distri-
054 bution coverage and representativeness without discrete class guidance.** Traditional DD meth-
055 ods often benefit from the natural guidance and structure provided by discrete classes. However,

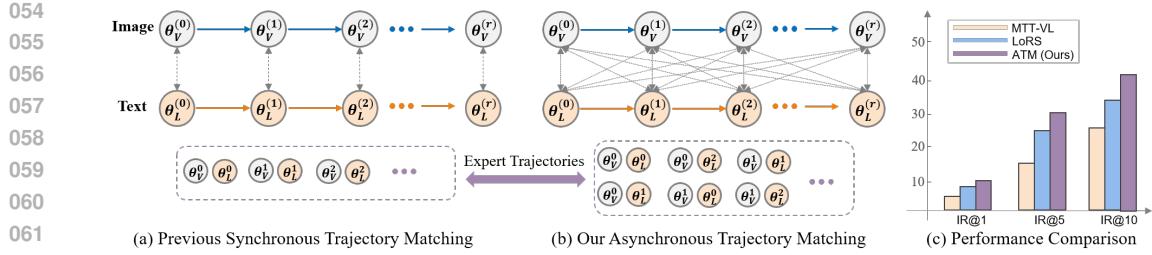


Figure 1: Synchronous vs. Asynchronous Matching: (a) Previous synchronous matching only paired same-time expert parameters. (b) Our asynchronous matching explores more flexible and richer cross-modal expert parameter combinations. (c) Performance on Flickr30k: synchronous methods (Wu et al., 2023; Xu et al., 2024) vs. our AMD.

MDD lacks such clear class distinctions. Coupled with the vastness and continuity of the image-text data’s semantic space, simple random initialization struggles to effectively cover the diverse joint distribution of the original data. Without clear guidance, initial points selected by random methods in previous work may lack representativeness (e.g., corresponding to ambiguous descriptions or low-quality images), affecting distillation quality and subsequent optimization.

To address the aforementioned challenges and limitations, this paper proposes a novel Asynchronous Trajectory Matching (AMD) framework for MDD. In contrast to prior approaches that typically synchronize image and text trajectories by selecting model parameters from the same training stage, as shown in Figure 1(a), our preliminary experiments suggest that such a rigid synchronization is suboptimal for synthesizing modality-specific data representations. This limitation stems from the inherent heterogeneity in the learning dynamics of different modalities. To overcome this, our framework adopts an asynchronous trajectory matching strategy, illustrated in Figure 1(b), that decouples the sampling stages of image and text trajectories, allowing for more diverse combinations of image and text model parameters drawn from different training epochs. This increased flexibility facilitates the optimization of synthetic image-text pairs. Additionally, to address the absence of a discrete set of classes to guide the distillation process, we introduce a Semantics-Aware Prototype Mining module that constructs cluster centers to serve as grounding references. This module performs clustering in the feature space to identify representative sample prototypes. These prototypes replace the randomly selected initial points used in prior methods and are employed to initialize the synthesis process, thereby substantially enhancing the diversity and representativeness of the distilled samples. Notably, these improvements are achieved with negligible additional computational overhead compared to existing methods.

Our main contributions are summarized as follows:

- We propose a novel asynchronous matching with dynamic sampling for MDD that addresses the limitations of synchronous methods by enabling asynchronous sampling of image and text trajectory points to explore richer cross-modal learning dynamics.
- We introduce a semantics-aware prototype mining module that identifies representative prototypes via clustering in the joint semantic space to provide a high-quality initialization, significantly enhancing the coverage and diversity of distilled samples.
- Extensive experiments demonstrate that our method achieves significant performance improvements on Flickr30k and COCO. For instance, on Flickr30k (200 pairs), Image Retrieval metrics IR@1, IR@5, and IR@10 improve by 4.5%, 9.6%, and 10.9%, respectively.

2 PRELIMINARY

Multimodal Dataset Distillation. We first provide a formal definition of Multimodal Dataset Distillation (MDD). Given a large-scale image-text dataset $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^N$, where x_i denotes an image sample, y_i represents the corresponding text description, and $N = |\mathcal{T}|$ is the size of the original dataset. The goal of MDD is to compress \mathcal{T} into a budget-constrained synthetic dataset $\mathcal{S} = \{(\tilde{x}_j, \tilde{y}_j)\}_{j=1}^M$ with $M \ll N$, such that models trained on \mathcal{S} approximate the performance of

108 those trained on \mathcal{T} . This objective can be formulated as:
109

$$\mathbb{E}_{(x,y) \sim \mathcal{T}_{\text{test}}} |\ell(\theta_{\mathcal{V}}^{\mathcal{T}}(x), \theta_{\mathcal{L}}^{\mathcal{T}}(y)) - \ell(\theta_{\mathcal{V}}^{\mathcal{S}}(x), \theta_{\mathcal{L}}^{\mathcal{S}}(y))| \leq \epsilon, \quad (1)$$

110 where $\theta_{\mathcal{V}}^{\mathcal{T}}$ and $\theta_{\mathcal{L}}^{\mathcal{T}}$ are parameters of multimodal model trained on \mathcal{T} , $\theta_{\mathcal{V}}^{\mathcal{S}}$ and $\theta_{\mathcal{L}}^{\mathcal{S}}$ are trained on \mathcal{S} ,
111 $\mathcal{T}_{\text{test}}$ is the test data distribution, ℓ denotes the performance measure function, ϵ is a small tolerance.
112

113 Since vision-language datasets lack the category-level labels found in traditional classification tasks,
114 methods such as gradient matching (Zhao et al., 2020) and distribution matching (Zhao & Bilen,
115 2023), which rely on intra-category data compression, struggle to be effective.
116

117 **Matching Image-Text Trajectories.** Existing works (Wu et al., 2023; Xu et al., 2024) employ MTT-
118 based methods (Cazenavette et al., 2022; Cui et al., 2023) to compress key information and cross-
119 modal relationships through: (1) expert trajectories buffering and (2) image-text pairs distilling.
120

121 During buffering, the multimodal model is first trained on dataset \mathcal{T} using the bi-directional In-
122 foNCE loss, which consists of symmetric image-to-text and text-to-image contrastive terms. The
123 image-to-text contrastive loss can be formulated as:
124

$$\mathcal{L}_{\text{InfoNCE}} = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(s(\theta_{\mathcal{V}}(x_i), \theta_{\mathcal{L}}(y_i))/\tau)}{\sum_{j=1}^K \exp(s(\theta_{\mathcal{V}}(x_i), \theta_{\mathcal{L}}(y_j))/\tau)}, \quad (2)$$

125 where $s(\cdot, \cdot)$ measures similarity between positive pair (x_i, y_i) and K negative pairs (x_i, y_j) in a
126 batch, with temperature τ . To ensure the generalization capability of the expert trajectories, it is
127 common practice to perform multiple rounds of retraining and periodically save the parameters of
128 the image encoder $\theta_{\mathcal{V}}$ and the text encoder $\theta_{\mathcal{L}}$ at different training steps, thereby constructing the
129 expert trajectories. One of them can be formalized as: image trajectories = $\{\theta_{\mathcal{V}}^{(0)}, \theta_{\mathcal{V}}^{(1)}, \dots, \theta_{\mathcal{V}}^{(r)}\}$
130 and text trajectories = $\{\theta_{\mathcal{L}}^{(0)}, \theta_{\mathcal{L}}^{(1)}, \dots, \theta_{\mathcal{L}}^{(r)}\}$, r is total training epochs.
131

132 During the distilling phase, matching is performed between student and expert trajectories in both
133 the vision (\mathcal{V}) and language (\mathcal{L}) modalities. At initialization step t , the student and expert networks
134 share identical parameters $(\theta_{\mathcal{V}}^{(t)}, \theta_{\mathcal{L}}^{(t)})$. The expert trajectory undergoes M optimization steps to
135 reach $(\theta_{\mathcal{V}}^{(t+M)}, \theta_{\mathcal{L}}^{(t+M)})$, while the student network performs N gradient descent updates ($N \ll M$)
136 to obtain its final parameters $(\tilde{\theta}_{\mathcal{V}}^{(t+N)}, \tilde{\theta}_{\mathcal{L}}^{(t+N)})$. The matching objective minimizes the normalized
137 ℓ_2 -distance between corresponding student and expert trajectories across both modalities:
138

$$(\tilde{x}, \tilde{y}) = \arg \min_{\tilde{x}, \tilde{y}} \left(\frac{\|\tilde{\theta}_{\mathcal{V}}^{(t+N)} - \theta_{\mathcal{V}}^{(t+M)}\|^2}{\|\theta_{\mathcal{V}}^{(t)} - \theta_{\mathcal{V}}^{(t+M)}\|^2} + \frac{\|\tilde{\theta}_{\mathcal{L}}^{(t+N)} - \theta_{\mathcal{L}}^{(t+M)}\|^2}{\|\theta_{\mathcal{L}}^{(t)} - \theta_{\mathcal{L}}^{(t+M)}\|^2} \right), \quad (3)$$

139 where $(\theta_{\mathcal{V}}^{(t)}, \theta_{\mathcal{L}}^{(t)}) = (\tilde{\theta}_{\mathcal{V}}^{(t)}, \tilde{\theta}_{\mathcal{L}}^{(t)})$. It is noteworthy that, to optimize memory efficiency, LoRS (Xu
140 et al., 2024) leverages TESLA (Cui et al., 2023) technology, enabling the this framework to be
141 executed on a single GPU.
142

143 3 METHODOLOGY

144 3.1 EXPLORATION

145 Existing MDD methods typically adopt a synchronous sampling strategy for trajectory matching,
146 perhaps extending the synchronized processing of image and text data in standard VLM training.
147 However, this paper questions the validity of such a synchronous matching assumption:
148

149 First, the inherent architectural differences between the image and text networks lead to asyn-
150 chronous evolution of their parameter trajectories. Taking NFNet+BERT, a commonly used back-
151 bone in MDD, as an example, the visual encoder and the text encoder (with BERT often frozen and
152 followed by a linear layer for optimization) exhibit significantly different parameter update dyna-
153 mics. Second, from the perspective of data distillation, the optimization spaces of synthesized images
154 (3×224×224 pixel space) and synthesized texts (768-dimensional embedding space) possess funda-
155 mentally different topological properties, making synchronization of their optimization processes
156 difficult.
157

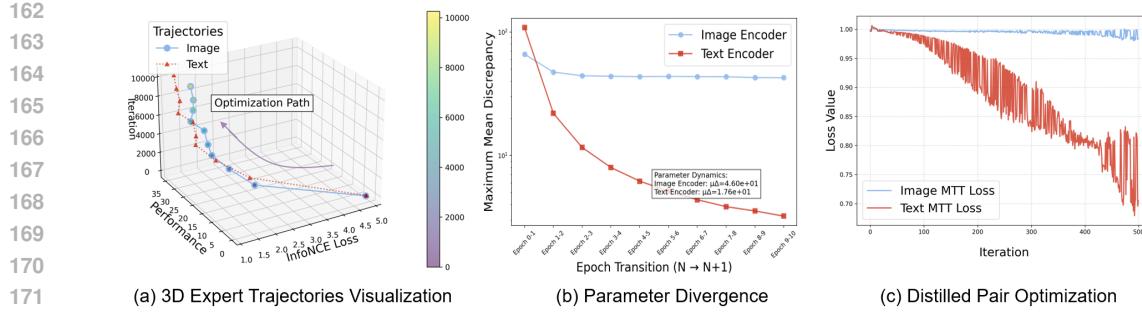


Figure 2: Exploring the Asynchronous Phenomenon: (a) Visualizes the expert trajectories during the buffering stage; (b) analyzes the parameter update magnitudes; (c) MTT loss curves during the distillation stage.

To empirically investigate these theoretical reasons and validate our skepticism, we conducted systematic experimental analyses on the Flickr30k dataset. Our observations provide strong evidence:

Observation 1. Asynchronous Expert Trajectories. Consistent with the notion of inherent architectural differences, our analysis of expert model training reveals clear asynchrony. As visualized in Figure 2 (a), expert trajectories during the buffering stage show initial synchronization followed by clear decoupling in middle and later stages. Furthermore, analysis of parameter update magnitudes (Figure 2 (b)) reveals distinct dynamics: the text network undergoes intense initial fluctuations but quickly converges, whereas the image network maintains a consistently high update intensity throughout training. This evidence highlights the asynchronous evolution of image and text network parameters.

Observation 2. Asynchronous Synthetic Data Optimization Speed. Supporting the perspective that the optimization spaces of synthesized images and texts are fundamentally different, Figure 2 (c) demonstrates that during the distillation stage, the synthesized text optimizes significantly faster than the synthesized image. This discrepancy in optimization speed provides direct evidence that the optimization processes of synthesized image and text data are fundamentally asynchronous.

Based on these empirical findings, we draw two important conclusions:

- The asynchrony of expert trajectories is an inherent characteristic of visual-language models;
- Synthetic text converges significantly faster than synthetic images, further validating the asymmetry in the cross-modal optimization process.

Building on these insights, in Section 3.2, we further propose asynchronous trajectory matching — decoupling the distillation paths of image and text modalities to realize a distillation process that better aligns with the actual optimization dynamics.

3.2 ASYNCHRONOUS MATCHING WITH DYNAMIC SAMPLING.

Building upon the empirical findings presented in the previous section, which revealed the fundamental asynchronous nature of both expert trajectories and the optimization of synthesized data, we propose a novel **Asynchronous Matching with Dynamic sampling (AMD)** Framework for multimodal Dataset Distillation. Unlike conventional synchronous methods that ignore this inherent asynchrony by strictly aligning expert trajectories based on the same training steps ($t_v = t_l$), AMD, as shown in Figure 3, enables the independent and flexible selection of starting points (t_v, t_l) for the image ($\theta_v^{(t)}$) and text ($\theta_l^{(t)}$) expert trajectories (where t is the training step).

The expert and student trajectories whose states are matched in AMD are generated by the standard visual-language model training process using a contrastive loss like InfoNCE. The expert trajectory is generated by training the network on the real dataset \mathcal{T} :

$$(\theta_v^{(t+1)}, \theta_l^{(t+1)}) = (\theta_v^{(t)}, \theta_l^{(t)}) - \alpha_{\mathcal{T}} \nabla \mathcal{L}_{\text{InfoNCE}}(\mathcal{T}; \theta_v^{(t)}, \theta_l^{(t)}) \quad (4)$$

Similarly, the student trajectory corresponds to training a network on the synthetic dataset \mathcal{S} :

$$(\tilde{\theta}_v^{(t+1)}, \tilde{\theta}_l^{(t+1)}) = (\tilde{\theta}_v^{(t)}, \tilde{\theta}_l^{(t)}) - \alpha_{\mathcal{S}} \nabla \mathcal{L}_{\text{InfoNCE}}(\mathcal{S}; \tilde{\theta}_v^{(t)}, \tilde{\theta}_l^{(t)}). \quad (5)$$

216 **Asynchronous Trajectories Matching.** AMD then aims to optimize the synthetic data \mathcal{S} such
 217 that points on its resulting student trajectory match points on the expert trajectory. Specifically, it
 218 minimizes the asynchronous trajectory matching loss (L_{AMD}), which compares student parameters
 219 after N steps of optimization on (\tilde{x}, \tilde{y}) (corresponding to an expert state) to expert parameters after
 220 M steps, starting from t_v and t_l . Extending the standard MTT-VL (Wu et al., 2023) formulation, this
 221 objective minimizes the normalized L_2 distance between student parameters and expert parameters:

$$223 \quad L_{AMD} = \frac{\|\tilde{\theta}_{\mathcal{V}}^{(t_v+N)} - \theta_{\mathcal{V}}^{(t_v+M)}\|^2}{\|\theta_{\mathcal{V}}^{(t_v)} - \theta_{\mathcal{V}}^{(t_v+M)}\|^2} + \frac{\|\tilde{\theta}_{\mathcal{L}}^{(t_l+N)} - \theta_{\mathcal{L}}^{(t_l+M)}\|^2}{\|\theta_{\mathcal{L}}^{(t_l)} - \theta_{\mathcal{L}}^{(t_l+M)}\|^2} \quad (6)$$

$$224 \quad \text{s.t. } t_v \in [0, R_V], t_l \in [0, R_L],$$

225 where R_V and R_L denote the sampling ranges for visual and text.

226 **Maximum Mean Discrepancy based Dynamic Sampling.** We utilize the actual convergence
 227 speed differences of the visual and text expert trajectories to determine the dynamic sampling ranges.
 228 As shown in Figure 2 (b), we first obtain the Maximum Mean Discrepancy (MMD) of the trajec-
 229 tory parameters between consecutive epochs. To precisely quantify the parameter update magnitude
 230 between training steps, we formally define the MMD for visual modality as the Maximum Mean
 231 Discrepancy with linear kernel, which reduces to the squared euclidean distance between the aver-
 232 age parameter vectors of consecutive epochs:

$$236 \quad \mathcal{MMD}_{\mathcal{V},t} = \mathcal{MMD}(\theta_{\mathcal{V}}^{(t-1)}, \theta_{\mathcal{V}}^{(t)}) = \left\| \frac{1}{n_{\mathcal{V}}} \sum_{i=1}^{n_{\mathcal{V}}} \theta_{\mathcal{V},i}^{(t-1)} - \frac{1}{n_{\mathcal{V}}} \sum_{i=1}^{n_{\mathcal{V}}} \theta_{\mathcal{V},i}^{(t)} \right\|^2 \quad (7)$$

237 Similarly, $\mathcal{MMD}_{\mathcal{L},t}$ is computed for the text modality. We employ the median $\mathcal{T}_{\text{median}}$ of the trajec-
 238 tory ratio as an adaptive baseline:

$$239 \quad \mathcal{T}_{\text{median}} = \text{Median} \left(\left\{ \frac{\mathcal{MMD}_{\mathcal{V},t}}{\mathcal{MMD}_{\mathcal{L},t}} \mid t \in [1, T] \right\} \right) \quad (8)$$

240 The visual and text sampling ranges R_L and R_V are then defined based on $\mathcal{T}_{\text{median}}$:

$$241 \quad R_L = \max \{t \mid \frac{\mathcal{MMD}_{\mathcal{V},t}}{\mathcal{MMD}_{\mathcal{L},t}} < \mathcal{T}_{\text{median}}\} \quad (9)$$

$$242 \quad R_V = \min \{t \mid \frac{\mathcal{MMD}_{\mathcal{V},t}}{\mathcal{MMD}_{\mathcal{L},t}} > \mathcal{T}_{\text{median}}\}$$

243 This approach is designed to prevent excessive asynchronicity between the sampled visual and text
 244 trajectories, which could lead to instability in the synthetic dataset optimization. Inspired by the
 245 faster dynamics and earlier convergence of the text modality (Figure 2 (b)&(c)), we dynamically
 246 establish the boundaries for the two modalities: R_L is truncated earlier when the ratio first exceeds
 247 the median, signifying that the text modality's relative dynamics have significantly stabilized. Con-
 248 versely, R_V is allowed a wider range, continuing until the ratio first increase beyond the median. By
 249 leveraging this data-driven, differential range sampling strategy, our method adaptively captures the
 250 inter-modal learning speed discrepancies without relying on predefined empirical hyperparameters,
 251 which fundamentally enhances the robustness and generalizability of the ATM framework, leading
 252 to higher-quality synthetic data.

253 3.3 SEMANTIC-AWARE PROTOTYPE MINING

254 Multimodal Dataset Distillation for non-categorical data like image-text pairs faces the critical chal-
 255 lenge of insufficient synthetic data coverage and diversity. Due to the data's continuous and complex
 256 nature, traditional random initialization of synthetic samples often selects semantically redundant
 257 pairs, significantly harming coverage and diversity. To mitigate this, we propose a novel **Semantics-
 258 aware Prototype Mining (SPM)** module. SPM analyzes the joint semantic feature space of the
 259 original dataset to identify representative prototypes, which are utilized as initialization points for
 260 the B synthetic samples $\{(\tilde{x}_k, \tilde{y}_k)\}_{k=1}^B$.

270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294

Algorithm 1 Asynchronous Matching with Dynamic Sampling

Input: Real set \mathcal{T} ; Expert Trajectories $\{\theta_V^{(t)}\}_{t=0}^r, \{\theta_L^{(t)}\}_{t=0}^r$; Max start epochs R_L, R_V ; Synthetic data learning rate η_S .

Output: Synthetic dataset \mathcal{S}

- 1: Initialize $\mathcal{S} = (\tilde{x}, \tilde{y})$ using Semantics-aware Prototype Mining
- 2: **repeat**
- 3: Select the start epoch separately: $t_v \in [0, R_V]$ and $t_l \in [0, R_L]$
- 4: Get expert trajectories $\{\theta_V^{(t)}\}_{t=t_v}^{t_v+M}$ and $\{\theta_L^{(t)}\}_{t=t_v}^{t_v+M}$
- 5: Initialize the student network $(\theta_V^{(t_v)}, \theta_L^{(t_l)})$
- 6: Train $(\theta_V^{(t_v)}, \theta_L^{(t_l)})$ on \mathcal{S} for N steps and get $\{\tilde{\theta}_V^{(t)}\}_{t=t_v}^{t_v+N}$ and $\{\tilde{\theta}_L^{(t)}\}_{t=t_l}^{t_l+N}$
- 7: Compute AMD loss using Eq. 6
- 8: Update synthetic image-text pairs: $(\tilde{x}, \tilde{y}) \leftarrow (\tilde{x}, \tilde{y}) - \eta_S \nabla_{(\tilde{x}, \tilde{y})} L_{AMD}$
- 9: **until** convergence
- 10: **return** \mathcal{S}

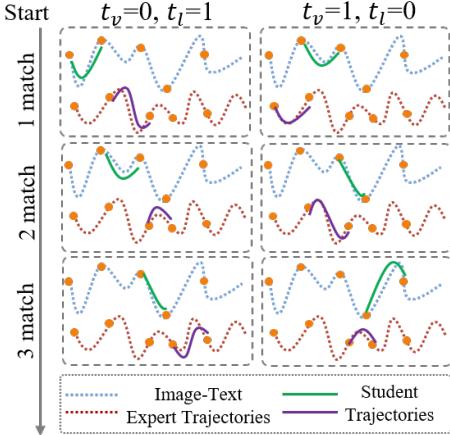


Figure 3: Illustration of Asynchronous Trajectory Matching: Dashed lines represent expert trajectories saved during buffering, while solid lines are student trajectories matched during distillation. Columns represent decoupled expert starting points (($t_v = 0, t_l = 1$) left, ($t_v = 1, t_l = 0$) right), and rows depict subsequent matching steps.

295 SPM involves several steps. First, we extract corresponding visual features $v_i = \theta_V(x_i)$ and text
 296 features $l_i = \theta_L(y_i)$ for every image-text pair (x_i, y_i) in the original dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{|\mathcal{D}|}$
 297 using trained image and text encoders θ_V and θ_L . Second, to capture the joint semantic information
 298 of each pair, we construct a joint image-text feature f_i by simple feature concatenation: $f_i = [v_i; l_i]$.
 299 This builds a representation $\{f_i\}_{i=1}^{|\mathcal{D}|}$ of the original dataset in the joint feature space. Next, we
 300 perform K-means clustering on $\{f_i\}$ in this space, setting the number of clusters K equal to the
 301 synthetic dataset budget B ($K = B$). This yields B cluster centroids $\{c_k\}_{k=1}^B$, each representing a
 302 semantic prototype from the original data distribution:

$$\{c_k\}_{k=1}^B = \mathcal{C}(\{f_i\}_{i=1}^{|\mathcal{D}|}, K = B), (x_k^*, y_k^*) = \arg \min_{x_i, y_i} \|f_i - c_k\|^2 \quad \forall k \in \{1, \dots, B\}. \quad (10)$$

303 For each cluster $k \in \{1, \dots, B\}$, we select the original dataset sample (x_k^*, y_k^*) whose joint feature
 304 f_k^* is closest to the centroid c_k as the representative prototype for that cluster.

305 This prototype-based approach leverages the semantic structure of the original data to guide the
 306 initialization process. By selecting B initialization pairs $\{(x_k^*, y_k^*)\}_{k=1}^B$ based on diverse semantic
 307 clusters identified in the joint feature space, it maximizes the coverage of the original data distribution
 308 and ensures the initial synthetic samples are highly diverse and representative. This directly
 309 addresses the semantic redundancy issue associated with random initialization, providing a high-
 310 quality starting set for the subsequent distillation optimization.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

311 **Datasets and Metrics.** Following established MDD protocols (Wu et al., 2023; Xu et al., 2024),
 312 we evaluate our approach on the Flickr30K (Plummer et al., 2015) and COCO (Lin et al., 2014)
 313 datasets, which are standard cross-modal retrieval benchmarks containing 31,783 and 123,287 images,
 314 respectively, each paired with five human-annotated captions. We assess retrieval performance
 315 using standard Recall@K (R@K) metrics with $K \in \{1, 5, 10\}$, reporting results in both directions:
 316 Image-to-Text (I2T), denoted as IR@K, which measures the hit rate of retrieving correct captions

324
 325 Table 1: Performance comparison with four coreset selection and current multimodal dataset distillation meth-
 326 ods on Flickr30k (Plummer et al., 2015) dataset. In line with the fair comparison setting of LoRS (Xu et al.,
 327 2024), both LoRS and AMD use 99, 199, and 499 pairs, while others uses 100, 200, and 500 pairs. The
 328 NFNet (Brock et al., 2021)+BERT (Vaswani et al., 2017) model trained on the full dataset yields: IR@1=27.3,
 329 IR@5=57.1, IR@10=69.7 for I2T, and TR@1=33.9, TR@5=65.1, TR@10=75.2 for T2I. Best results are in
bold.

Pairs	Ratio	Metric	Coreset Selection				Dataset Distillation		
			Rand	Herd	K-Cent	Forget	MTT-VL	LoRS	AMD (Ours)
100 (99)	0.3%	IR@1	1.0	0.7	0.7	0.7	4.7±0.2	8.3±0.2	10.4±0.3
		IR@5	4.0	2.8	3.1	2.4	15.7±0.5	24.1±0.2	30.5±0.7
		IR@10	6.5	5.3	6.1	5.6	24.6±1.0	35.1±0.3	43.0±0.6
		TR@1	1.3	1.1	0.6	1.2	9.9±0.3	11.8±0.2	14.4±0.5
		TR@5	5.9	4.7	5.0	4.2	28.3±0.5	35.8±0.6	39.1±0.6
		TR@10	10.1	7.9	7.6	9.7	39.1±0.7	49.2±0.5	52.6±0.6
200 (199)	0.7%	IR@1	1.1	1.5	1.5	1.2	4.6±0.9	8.6±0.3	13.1±0.3
		IR@5	4.8	5.5	5.4	3.1	16.0±1.6	25.3±0.2	34.9±0.6
		IR@10	9.2	9.3	9.9	8.4	25.5±2.6	36.6±0.3	47.5±0.7
		TR@1	2.1	2.3	2.2	1.5	10.2±0.8	14.5±0.5	16.9±0.4
		TR@5	8.7	8.4	8.2	8.4	28.7±1.0	38.7±0.5	42.3±0.6
		TR@10	13.2	14.4	13.5	10.2	41.9±1.9	53.4±0.5	56.2±0.8
500 (499)	1.7%	IR@1	2.4	3.0	3.5	1.8	6.6±0.3	10.0±0.2	15.8±0.4
		IR@5	10.5	10.0	10.4	9.0	20.2±1.2	28.9±0.7	39.8±0.4
		IR@10	17.4	17.0	17.3	15.9	30.0±2.1	41.6±0.6	53.2±0.5
		TR@1	5.2	5.1	4.9	3.6	13.3±0.6	15.5±0.7	19.3±0.5
		TR@5	18.3	16.4	16.4	12.3	32.8±1.8	39.8±0.4	46.4±0.4
		TR@10	25.7	24.3	23.3	19.3	46.8±0.8	53.7±0.3	60.0±0.6

347
 348 among the top-K results, and Text-to-Image (T2I), denoted as TR@K, which evaluates the accuracy
 349 of finding matching images based on text queries.
 350

351 **Implementation Details.** Following the setup of the LoRS (Xu et al., 2024) baseline, we utilize an
 352 NFNet (Brock et al., 2021) (Normalizer-Free ResNet) pretrained on ImageNet (Deng et al., 2009)
 353 as the image encoder, along with a pretrained BERT (Vaswani et al., 2017) model that includes an
 354 appended linear layer as the text encoder. In accordance with the protocols of previous work (Xu
 355 et al., 2024; Wu et al., 2023), the BERT weights remain frozen during training and distillation, with
 356 only the parameters of the linear layer being optimized. Adhering to the MTT (Cazenavette et al.,
 357 2022), during the buffer phase, we train the image and text encoders on the original dataset for 10
 358 epochs, repeating this process 20 times to generate 20 expert trajectories. We optimize the distilled
 359 data using SGD with momentum 0.5. The reported results are calculated as the mean \pm standard
 360 deviation over 15 independent evaluations: we generate 3 synthetic datasets, and for each dataset,
 361 we retrain the model 5 times. All experiments are conducted on a single NVIDIA V100 / RTX 4090
 362 GPU. More detailed are provided in the Appendix.

363 **Counterpart Methods.** We compared two main categories of methods: Coreset Selection and
 364 Dataset Distillation. Coreset Selection includes commonly used techniques such as Random (Re-
 365 buffi et al., 2017), Herding (Welling, 2009), K-center (Farahani & Hekmatfar, 2009), and For-
 366 getting (Toneva et al., 2018). Dataset Distillation encompasses MTT-VL (Wu et al., 2023) and
 367 LoRS (Xu et al., 2024). MTT-VL is the first work to apply MTT (Cazenavette et al., 2022) (training
 368 trajectory matching) in the multimodal area, while LoRS enhances similarity mining and incorpo-
 369 rates TESLA (Cui et al., 2023) technology to reduce memory overhead.

370 4.2 QUANTITATIVE RESULTS

371 As shown in Tables 1 and 2, our AMD demonstrates significant advantages over existing approaches
 372 across both datasets. On the Flickr30k dataset, AMD achieves a new state-of-the-art performance,
 373 significantly surpassing traditional Coreset Selection methods and existing dataset distillation tech-
 374 niques. For instance, under the setting of 200 image-text pairs, AMD improves I2T over the LoRS
 375 baseline with gains of +4.5%, +9.6%, and +10.9% in IR@1, IR@5, and IR@10, respectively. For
 376 T2I, AMD achieves improvements of +2.4%, +3.6%, and +2.8% in TR@1, TR@5, and TR@10, re-
 377 spectively. Given that the COCO dataset is 3.9x larger than Flickr30k and contains richer semantic
 378 relationships, the performance for all methods are relatively lower. Nevertheless, AMD maintains its

378
 379 Table 2: Performance comparison with coresets selection and dataset distillation methods on COCO (Lin et al.,
 380 2014). For a fair comparison, LoRS (Xu et al., 2024) and AMD use 99, 199, and 499 pairs, while others use
 381 100, 200, and 500 pairs. The NFNet (Brock et al., 2021)+BERT (Vaswani et al., 2017) model trained on the full
 382 dataset achieves: IR@1=16.9, IR@5=41.9, IR@10=55.9 for I2T, and TR@1=19.6, TR@5=45.6, TR@10=59.5
 383 for T2I. Best results are in bold.
 384

Pairs	Ratio	Metric	Coreset Selection				Dataset Distillation		
			Rand	Herd	K-Cent	Forget	MTT-VL	LoRS	AMD (Ours)
100 (99)	0.02%	IR@1	0.3	0.5	0.4	0.3	1.3±0.1	1.8±0.1	2.8±0.2
		IR@5	1.3	1.4	1.4	1.5	5.4±0.3	7.1±0.2	10.5±0.2
		IR@10	2.7	3.5	2.5	2.5	9.5±0.5	12.2±0.2	17.2±0.4
		TR@1	0.8	0.8	1.4	0.7	2.5±0.3	3.3±0.2	4.1±0.3
		TR@5	3.0	2.1	3.7	2.6	10.0±0.5	12.2±0.3	13.8±0.3
		TR@10	5.0	4.9	5.5	4.8	15.7±0.4	19.6±0.3	21.8±0.4
200 (199)	0.04%	IR@1	0.6	0.9	0.7	0.6	1.7±0.1	2.4±0.1	3.8±0.2
		IR@5	2.3	2.4	2.1	2.8	6.5±0.4	9.3±0.2	13.4±0.3
		IR@10	4.4	4.1	5.8	4.9	12.3±0.8	15.5±0.2	21.4±0.4
		TR@1	1.0	1.0	1.2	1.1	3.3±0.2	4.3±0.1	4.6±0.2
		TR@5	4.0	3.6	3.8	3.5	11.9±0.6	14.2±0.3	15.5±0.6
		TR@10	7.2	7.7	7.5	7.0	19.4±1.2	22.6±0.2	24.1±0.5
500 (499)	0.09%	IR@1	1.1	1.7	1.1	0.8	2.5±0.5	2.8±0.2	4.2±0.2
		IR@5	5.0	5.3	6.3	5.8	8.9±0.7	9.9±0.5	14.2±0.5
		IR@10	8.7	9.9	10.5	8.2	15.8±1.5	16.5±0.7	22.3±0.4
		TR@1	1.9	1.9	2.5	2.1	5.0±0.4	5.3±0.5	5.7±0.6
		TR@5	7.5	7.8	8.7	8.2	17.2±1.3	18.3±1.5	19.3±1.2
		TR@10	12.5	13.7	14.3	13.0	26.0±1.9	27.9±1.4	28.7±1.0

390
 391 superiority on the more complex COCO dataset. For example, under the setting of 200 pairs, AMD
 392 achieves improvements of +1.4%, +4.1%, and +5.9% in IR@1, IR@5, and IR@10, respectively,
 393 compared to the LoRS baseline.

404 Additionally, we observed two noteworthy phenomena. First, as the distillation budget (the num-
 405 ber of image-text pairs) increases, the performance gains from the asynchronous trajectory become
 406 more pronounced. In the case of Flickr30k, AMD outperformed LoRS by 2.1%, 4.5%, and 5.8% in
 407 the IR@1 metric for 99, 199, and 499 pairs, respectively. This suggests that previous synchronous
 408 trajectory strategies may create performance bottlenecks when handling large-scale data, as they
 409 struggle to adapt to the increasing complexity of image-text pairs. Second, the improvements in
 410 I2T retrieval metrics are particularly significant, indicating that the previous synchronous trajec-
 411 tory approach, which forced the matching of imbalanced image and text expert trajectories, led to
 412 optimization challenges for synthetic image-text pairs. In contrast, our proposed asynchronous tra-
 413 jectory technique enables flexible optimization of image and text combinations at different stages,
 414 resulting in substantial performance enhancements.

415 4.3 ABLATION STUDY

417 **Component Analysis.** We conduct a comprehensive ablation study on the proposed AMD frame-
 418 work to analyze the contribution of its key components: (1) Baseline (using the codebase of
 419 LoRS (Xu et al., 2024)), (2) Asynchronous Trajectory Matching (AMD), and (3) Semantic-aware
 420 Prototype Mining (SPM). As shown in Table 9, the Baseline (LoRS) provides a solid starting point.
 421 Adding the AMD component alone yields significant improvements across all metrics (e.g., IR@1
 422 increases from 8.6% to 12.1%), highlighting the effectiveness of explicitly modeling and leveraging
 423 asynchronous learning dynamics during distillation. Adding the SPM component to the baseline also
 424 provides noticeable gains (e.g., IR@1 increases from 8.6% to 9.1%), demonstrating the importance
 425 of semantic-aware initialization for enhancing synthetic data coverage and diversity. Importantly, the
 426 improvement from AMD alone is generally larger than that from SPM alone, particularly for Im-
 427 age Retrieval metrics. When combining both AMD and SPM, our full framework achieves the best
 428 performance across all metrics, reaching **13.1%/34.9%/47.5%** for IR and **16.9%/42.3%/56.2%** for
 429 TR. These results underscore the complementarity of the proposed AMD and SPM components, and
 430 their combined effect leads to superior performance in MDD.

431 **Cross-Architecture Generation.** Cross architecture generation aims to assess the ability of syn-
 432 synthetic datasets to generalize to unseen architectures. We employed NFNet+BERT as the distillation

432 Table 3: Ablation study of proposed modules. Experiments are conducted on the Flickr30k 200pairs setting.
 433 The best results are in bold.

435 Baseline	436 AMD	437 SPM	438 IR@1	439 IR@5	440 IR@10	441 TR@1	442 TR@5	443 TR@10
✓			8.6±0.3	25.3±0.2	36.6±0.3	14.5±0.5	38.7±0.5	53.4±0.5
✓	✓		12.1±0.3	33.9±0.6	46.7±0.5	16.5±0.4	41.6±0.6	55.7±0.5
✓		✓	9.1±0.1	26.4±0.3	38.5±0.4	15.3±0.4	40.1±0.5	53.9±0.4
✓	✓	✓	13.1±0.3	34.9±0.6	47.5±0.7	16.9±0.4	42.3±0.6	56.2±0.8

440 Table 4: Cross-architecture generalization: We utilize NFNet+BERT as the dataset distillation model to generate
 441 synthetic images and evaluate performance across various architectures.

443 Pairs	444 Method	445 Evaluate Model	446 Flickr30k					
			447 IR@1	448 IR@5	449 IR@10	450 TR@1	451 TR@5	452 TR@10
499	LoRS	NFNet+BERT	10.0±0.2	28.9±0.7	41.6±0.6	15.5±0.7	39.8±0.4	53.7±0.3
		ResNet+BERT	3.3±0.2	12.7±0.3	20.4±0.2	6.8±0.2	19.6±1.3	31.1±0.3
		RegNet+BERT	3.5±0.1	12.6±0.3	21.1±0.4	6.8±0.3	20.8±0.3	30.2±0.3
499	AMD	NFNet+BERT	15.8±0.4	39.1±0.4	53.2±0.5	19.3±0.5	46.4±0.4	60.0±0.6
		ResNet+BERT	4.1±0.3	14.2±0.5	22.6±0.4	7.6±0.4	22.3±0.4	33.2±0.6
		RegNet+BERT	4.0±0.2	14.4±0.3	23.1±0.5	7.5±0.3	22.8±0.5	32.7±0.4

449 Table 5: Upper Bound Analysis on Synthetic Data Scale.

450 Method	451 Image Encoder	452 Text Encoder	453 Ratio	454 TR@1	455 TR@10	456 IR@1	457 IR@10
AMD	NFNet	BERT	10%	32.5	73.9	24.7	67.3
Upper Bound	NFNet	BERT	100%	33.9	75.2	27.3	69.7
AMD	NFNet	CLIP	10%	60.5	91.7	47.9	86.8
Upper Bound	NFNet	CLIP	100%	61.2	92.8	49.8	88.3

461 **Figure 4:** Visualization of initial (Left) and synthetic (Right) image-text pairs, with the synthetic data undergoing
 462 3000 distillation steps.

464 model to generate the synthetic dataset, and then evaluated it using various architectures. Since
 465 BERT is frozen, we followed the baseline approach of LoRS by modifying the image encoder ar-
 466 chitecture, including ResNet (He et al., 2016) and RegNet (Radosavovic et al., 2020). As shown
 467 in Table 4, the dataset generated by our AMD method outperforms the baseline LoRS in cross-
 468 architecture performance.

469 **Upper Bound Analysis.** We investigated the AMD performance upper bound by scaling up syn-
 470 thetic data quantity. As detailed in Table 5, with the CLIP encoder, AMD trained on a 10% synthetic
 471 subset achieves 47.9 IR@1, recovering over 96% of the full dataset’s upper bound (49.8). The 10%
 472 synthetic subset, with the BERT encoder, recovers 90.4% of its upper bound (24.7 vs. 27.3 IR@1).
 473 This demonstrates the high performance ceiling and potential of the AMD approach.

475 4.4 QUALITATIVE RESULTS.

477 **Synthetic Image-Text Pairs Visualization.** Figure 4 provides qualitative examples of synthetic
 478 image-text pairs generated by our method. Similar to prior work (Wu et al., 2023; Xu et al., 2024),
 479 our synthetic images exhibit a deepdream-like style (Zeiler & Fergus, 2014), characterized by real
 480 images overlaid with learned high-frequency components. The examples demonstrate that our syn-
 481 thetic text, even if not longer, is significantly more effective at capturing salient objects and rela-
 482 tionships compared to the initial synthetic text (i.e., before optimization). For instance, the last case
 483 clearly describes the performers and their relationships, a detail often lacking initially but crucial for
 484 high-quality VL understanding.

485 **Initialization Strategies Analysis.** As shown in Figure 5, t-SNE visualization of the joint image-
 486 text feature space reveals a stark contrast between random initialization and our Semantics-Aware

Figure 5: t-SNE visualization of initialization strategies. (Left) Random selects samples haphazardly, leading to semantic redundancy and poor coverage. (Right) SPM (ours) identifies representative prototypes via clustering, ensuring uniform, diverse coverage of the semantic manifold. Each cluster is color-coded.

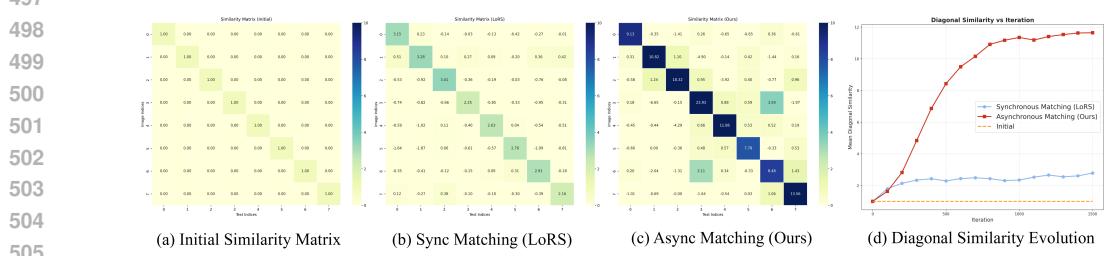


Figure 6: Qualitative analysis of similarity matrices and their evolution. (a) The initial similarity matrix, where only diagonal elements are 1.0. (b) The similarity matrix after synchronous matching using the LoRS baseline. (c) The similarity matrix after asynchronous matching with our AMD framework. (d) The evolution of mean diagonal similarity over iterations, demonstrating the superior convergence of AMD compared to the LoRS.

511 Prototype Mining (SPM). Randomly selected prototypes (red stars) cluster redundantly around a few
512 dominant semantics—such as multiple instances of “dogs running on grass” with only minor variations
513 in pose or background—failing to capture the diversity of the underlying data manifold and
514 resulting in a biased, low-coverage initialization. In contrast, SPM leverages K-means clustering to
515 identify representative prototypes that uniformly span the semantic spectrum: examples include
516 distinct concepts such as “soccer matches,” “motocross,” and “snowboarding,” each corresponding to
517 a well-separated cluster. This structured, diversity-driven initialization ensures the synthetic dataset
518 begins with high semantic fidelity and broad coverage, providing a far more effective foundation for
519 subsequent distillation.

520 **Similarity Matrix Evolution.** As shown in Figure 6, we dynamically visualize the evolution of the
521 low-rank similarity matrix during distillation. Figures 6 (a)–(c) display the similarity matrices at
522 initialization, after LoRS distillation, and after AMD distillation, respectively. AMD, by decoupling
523 image and text trajectories, yields two key advantages: (1) Stable text optimization—since text
524 parameters typically converge rapidly in early stages, asynchronous matching allows the text trajectory
525 to be sampled at its optimal convergence point, reducing later-stage parameter updates that could
526 introduce instability and overfitting; (2) Enhanced image learning—image synthesis is no longer
527 constrained to match the text trajectory at identical training stages, enabling optimization along
528 more informative gradient directions that accelerate visual feature convergence. These mechanisms
529 collectively produce a similarity matrix with stronger diagonal dominance and better-suppressed off-
530 diagonal elements. Figure 6 (d) further validates that AMD achieves faster convergence and higher
531 final diagonal values than LoRS.

5 CONCLUSION

534 In this study, we introduce the Asynchronous Trajectory Matching framework for Multimodal
535 Dataset Distillation, AMD. We propose two novel components: an asynchronous trajectory match-
536 ing strategy that decouples image and text parameter sampling to leverage differential conver-
537 gence rates, and a semantics-aware prototype mining module leveraging clustering for representa-
538 tive initialization. Experimental results demonstrate AMD achieves superior distillation performance on
539 Flickr30k and COCO with negligible computational overhead, offering an efficient and scalable
solution for mitigating data bottlenecks.

540 REFERENCES
541

542 Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale
543 image recognition without normalization. In *International conference on machine learning*, pp.
544 1059–1071. PMLR, 2021.

545 George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
546 distillation by matching training trajectories. In *Proceedings of the IEEE/CVF Conference on
547 Computer Vision and Pattern Recognition*, pp. 4750–4759, 2022.

548 Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-
549 1k with constant memory. In *International Conference on Machine Learning*, pp. 6565–6590.
550 PMLR, 2023.

551 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
552 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
553 pp. 248–255. Ieee, 2009.

554 Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How does dataset condensation help
555 privacy? In *International Conference on Machine Learning*, pp. 5378–5396. PMLR, 2022.

556 Jiawei Du, Yidi Jiang, Vincent YF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accumu-
557 lated trajectory error to improve dataset distillation. In *Proceedings of the IEEE/CVF Conference
558 on Computer Vision and Pattern Recognition*, pp. 3749–3758, 2023.

559 Reza Zanjirani Farahani and Masoud Hekmatfar. *Facility location: concepts, models, algorithms
560 and case studies*. Springer Science & Business Media, 2009.

561 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
562 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
563 770–778, 2016.

564 Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-
565 Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization.
566 In *International Conference on Machine Learning*, pp. 11102–11118. PMLR, 2022.

567 Yongqi Li and Wenjie Li. Data distillation for text classification, 2021. URL <https://arxiv.org/abs/2104.08448>.

568 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
569 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer
570 vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6–12, 2014, pro-
571 ceedings, part v 13*, pp. 740–755. Springer, 2014.

572 Noel Loo, Ramin Hasani, Mathias Lechner, Alexander Amini, and Daniela Rus. Understanding
573 reconstruction attacks with the neural tangent kernel and dataset distillation. *arXiv preprint
574 arXiv:2302.01428*, 2023.

575 Aru Maekawa, Satoshi Kosugi, Kotaro Funakoshi, and Manabu Okumura. Dilm: Distilling dataset
576 into language model for text-level dataset distillation. *Journal of Natural Language Processing*,
577 32(1):252–282, 2025.

578 Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svet-
579 lana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-
580 to-sentence models. In *Proceedings of the IEEE international conference on computer vision*, pp.
581 2641–2649, 2015.

582 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
583 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
584 models from natural language supervision. In *International conference on machine learning*, pp.
585 8748–8763. PmLR, 2021.

586 Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
587 network design spaces. In *Proceedings of the IEEE/CVF conference on computer vision and
588 pattern recognition*, pp. 10428–10436, 2020.

594 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 595 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on*
 596 *Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.

597

598 Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
 599 and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
 600 learning. *arXiv preprint arXiv:1812.05159*, 2018.

601 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 602 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 603 *tion processing systems*, 30, 2017.

604

605 Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
 606 Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
 607 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 608 12196–12205, 2022.

609 Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. *arXiv*
 610 *preprint arXiv:1811.10959*, 2018.

611 Max Welling. Herding dynamical weights to learn. In *Proceedings of the 26th annual international*
 612 *conference on machine learning*, pp. 1121–1128, 2009.

613

614 Xindi Wu, Byron Zhang, Zhiwei Deng, and Olga Russakovsky. Vision-language dataset distillation.
 615 *arXiv preprint arXiv:2308.07545*, 2023.

616 Yue Xu, Zhilin Lin, Yusong Qiu, Cewu Lu, and Yong-Lu Li. Low-rank similarity mining for multi-
 617 modal dataset distillation. *arXiv preprint arXiv:2406.03793*, 2024.

618

619 Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
 620 *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12,*
 621 *2014, Proceedings, Part I* 13, pp. 818–833. Springer, 2014.

622

623 Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
 624 *International Conference on Machine Learning*, pp. 12674–12685. PMLR, 2021.

625

626 Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In *Proceedings of the*
 627 *IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 6514–6523, 2023.

628

629 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
 630 *International Conference on Learning Representations*, 2020.

631

632 Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset
 633 condensation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 634 *Recognition*, pp. 7856–7865, 2023.

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649
650 Table 6: Ablation study on Text Encoder.
651
652
653
654
655

Text Encoder	Method	TR@1	TR@10	IR@1	IR@10
BERT	MTT-VL	9.9	39.1	4.7	24.6
	AMD	14.4	52.6	10.4	43
CLIP	MTT-VL	31.4	72	17.1	56.2
	AMD	41.7	81.2	29.7	76.4

656 **A APPENDIX**
657658 The supplementary material is organized as follows: Section A.1 reviews related works on dataset
659 distillation and multimodal dataset distillation. Section A.2 provides a performance comparison
660 using different text and visual encoders. Section A.3 analyzes the time overhead of the AMD.
661 Section A.4 provides implementation details and hyperparameter settings.662 **A.1 RELATED WORK**
663664 **Dataset Distillation.** Dataset distillation Wang et al. (2018); Zhao et al. (2020) has witnessed
665 rapid advancements in recent years, with the primary goal of generating a compact set of highly
666 informative synthetic data to replace massive original datasets for model training, thereby dramat-
667 ically reducing demands on data storage and computational resources. Current research predom-
668 inantly focuses on classification tasks, giving rise to three mainstream approaches: gradient match-
669 ing Zhao et al. (2020), distribution matching Zhao & Bilen (2023), and training trajectory match-
670 ing Cazenavette et al. (2022).671 Gradient matching methods (DC) optimize synthetic samples by minimizing the gradient discrep-
672 ancies between synthetic and real data during model training. Subsequent improvements include
673 DSA’s Zhao & Bilen (2021) introduction of differentiable data augmentation to enhance generaliza-
674 tion, and IDC’s Kim et al. (2022) adoption of multi-formation synthesis techniques for better per-
675 formance. Distribution matching methods (DM) aim to align the statistical distributions of synthetic
676 data with real data in feature space, where early works employed Maximum Mean Discrepancy
677 (MMD) as the distance metric, while advanced approaches like CAFE Wang et al. (2022) extend the
678 alignment to intermediate network layers beyond final features. Training trajectory matching meth-
679 ods (MTT) optimize synthetic data by minimizing parameter differences between models trained
680 on synthetic versus real data across training stages. To address the prohibitive computational and
681 memory costs of long-horizon trajectory matching, TESLA Cui et al. (2023) reduces memory con-
682 sumption through loss reparameterization.683 **Multimodal Dataset Distillation.** In multimodal dataset distillation, current research primarily
684 targets image-text paired datasets. MTT-VL Wu et al. (2023) pioneered the first framework by ex-
685 tendsing conventional single-trajectory matching to dual visual-textual trajectory alignment. Building
686 upon this, LoRS Xu et al. (2024) introduces cross-modal similarity mining with low-rank matrices
687 to reduce computational overhead, while incorporating TESLA’s memory management techniques
688 to enable efficient single-GPU training.689 **A.2 FURTHER ARCHITECTURE EXPERIMENTS**
690691 Following the evaluation protocol of MTT-VL Wu et al. (2023), we systematically replaced the text
692 encoder and the image encoder to verify the generalization performance of AMD.
693694 As shown in Table 6, the performance is significantly stronger when the text encoder utilizes CLIP.
695 This is attributed to the fact that pre-trained CLIP inherently possesses a more powerful cross-modal
696 alignment capability and richer semantic information. Furthermore, the performance gain of AMD
697 compared to MTT-VL (e.g., in terms of the IR@1 metric) is more pronounced when using CLIP as
698 the text encoder, which fully validates the effectiveness of our proposed method.699 In addition, as demonstrated in Table 7, different visual encoders have a more pronounced impact
700 on the IR performance on synthetic data, where a better visual encoder consistently brings a cer-
701 tain degree of improvement. For instance, the overall performance is superior when using the more
advanced ViT as the visual encoder compared to using NFNet, NFRNet and NFRegNet. This ob-

702
703
704 Table 7: Ablation study on Image Encoder.
705
706
707
708
709
710
711

Image Encoder	Method	TR@1	TR@10	IR@1	IR@10
ViT	MTT-VL	10.4	38.7	5.4	27.4
	AMD	14.4	52.6	10.4	43
NFNet	MTT-VL	9.9	39.1	4.7	24.6
	AMD	14.1	51.9	9.7	40.8
NFResNet	MTT-VL	6.5	28.1	3.5	18.7
	AMD	10.9	43.4	7.9	33.6
NFRegNet	MTT-VL	7.8	33.3	3.3	20.5
	AMD	11.8	46.2	8.6	35.7

712
713 Table 8: Comparison of per-iteration training time between AMD and LoRS.
714

Dataset	Method	100 pairs	200 pairs	500 pairs
Flickr30k	LoRS	6.44s	6.63s	6.56s
	AMD	6.52s	6.67s	6.61s
COCO	LoRS	6.13s	6.04s	6.09s
	AMD	6.21s	6.15s	6.21s

715
716 Table 9: Hyperparameters for different experiments.
717
718
719
720
721
722

Dataset Pairs	Flickr30k			COCO		
	100	200	500	100	200	500
lr_image	100	1000	1000	1000	1000	5000
lr_text	100	1000	1000	1000	1000	5000
lr_lr	0.001	0.01	0.01	0.01	0.01	0.01
lr_similarity	10	10	100	5	50	500
synth steps	8	8	8	8	8	8

731
732 servation suggests that AMD can effectively leverage more powerful visual feature representations
733 to enhance the matching accuracy for synthetic data.
734735
736 A.3 TIME COST ANALYSIS
737738 We base our implementation on the LoRS codebase, thus comparing our time cost with LoRS. As
739 shown in Table 8, the per-iteration time costs of AMD and LoRS are highly consistent across datasets
740 and pair counts. Crucially, the average per-iteration time reported for AMD explicitly includes the
741 amortization of the one-time SPM initialization cost (which is only 5-10 minutes). For a complete
742 distillation run (3000 iterations), the total time is approximately 5.4 hours (e.g., 6.52seconds \times
743 3000 \approx 5.43 hours for Flickr30k 100 pairs), which is consistent with the baseline. This confirms
744 our significant performance improvements are achieved with virtually no additional computational
745 cost during distillation.
746747 A.4 MORE IMPLEMENTATION DETAILS
748749 We've released the hyperparameter configuration for AMD, which is aligned with the baseline
750 LoRS Xu et al. (2024).
751752 A.5 MORE VISUALIZATION
753754 We provide more visual comparisons of synthesized images and text before and after distillation, as
755 shown in Figure 7-10.
756

Figure 7: Visualization for Initialized images, iteration=0.

756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775 a group of friends relaxing and enjoying a nice sunny day in the park
 776 a texas baseball player catches the ball as the 12 player from the opposite team slides into base with an umpire standing by, ready to make the call
 777 a orchestra performing a piece
 778 in front of two tents, a man and two children sit near a campfire
 779 a man wears a cold sun mask
 780 kids playing ball in the park
 781 a woman and a man sitting at a table eating
 782 two young boys in casual attire playing twister with other children
 783 two people are riding bicycles along a road
 784 a man in black clothing plays a trumpet
 785 a woman in a bathing suit is diving into a pool
 786 runners at a marathon running a race heading for the finish line
 787 a couple of young kids skateboarding on ramps
 788 a man jumps in the air on his skateboard
 789 a man with a big backpack is walking through a grass trail up a hill
 790 a woman carrying a bag standing next to a man waiting to cross the street
 791 a woman in a blue top is sitting on a bus
 792 two men standing outside next to a building
 793 a man is carving an object out of clay
 794 a bunch of cyclist are riding their bikes down the road
 795 two little boys are playing with toys
 796 two women looking at information in a spiral booklet
 797 a man with a cane is standing on the grass
 798 a woman is helping another woman with the closure on her dress
 799 two women are walking together
 800 a little boy in green pants and a white shirt is standing in the street
 801 a man with a beard and a blue shirt plays a guitar
 802 a boy playing with a wheel on a stick
 803 a young child playing with a empty bucket in the grass
 804 two men and two women are preparing a large meal in the kitchen
 805 two people are climbing a portable rock wall
 806 two opposing hockey players make a play for the puck with opposing fans and team members watching
 807 the musicians are playing
 808 young women practicing marshal arts in a gym
 809 a man cutting open a fruit with a large knife
 810 women are working with baskets of food
 811 two men are drinking beer
 812 a toddler holding a pink piece of yarn
 813 a man holds up a free hugs sign above his head
 814 a little girl looks at a birthday cake while a man holds a baby
 815 a man and woman sit on a park bench
 816 a little girl dressed in yellow splashes in a shallow pool
 817 people are enjoying food at a crowded restaurant
 818 a green sports car with the number 63 is driving on a track
 819 a bride and groom outside with their guests
 820 two brindle dogs running in the grass
 821 a man in a blue suit and brown boots is hanging on a harness on a metal pole
 822 a group of children are sitting on a wall
 823 a man with a red beard pushes a cart along a sidewalk
 824 a man wearing an orange safety vest is holding a rifle

Figure 8: Visualization for Initialized texts, iteration=0.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs solely for checking grammar and polishing writing.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

829 **Figure 9:** Visualization for distilled images, interation=3000.
830
831
832
833
834

835 a group of friends relaxing and enjoying a nice sunny day in the park
836 pitcher caught just after his pitch, body still in pose
guitarist and drummer on stage at a concert
837 grilling ribs, chicken kabobs, and vegetable kabobs
contortionist in strange checkered outfit wearing a white mask
little girl kicking rocks on the beach with her dog
838 women sitting on a couch drinking beer
a child wearing blue tee-shirt playing with an orange pinata without a blindfold
several men are playing ice hockey in an arena
an orchestra performs
839 boy takes a bath with diving mask and snorkel
runners at a marathon running a race heading for the finish line
dogs running and playing in a grassy area
a man jumps in the air on his skateboard
840 old couple walking through a field
young white male child with blond-hair in a red shirt coloring with crayons outside with an adult
a girl with dark hair is gazing out the window of a train car
two men standing outside of a brick building
841 small children in a third world country sitting together
many people out on the street on a clear day riding bikes and walking
842 mother and daughter playing a board game
two women looking at information in a spiral booklet
a smiling man on a horse in front of brush and woods
a bride is being helped into her white wedding dress by one of her bridesmaids, who is wearing a red dress
843 dog watches woman eating alone
a child wearing a brown coat, red hat and snow boots on top of a snow pile near a tree on the corner of a street intersection
asian schoolgirl carrying her bags and a musical instrument
844 kid playing near water fountain
children playing ball in a green field on a sunny day
2 ladies one has her hands on her hips smiling and the other one is holding something up with her other hand behind her
845 climber climbing an ice wall
two green bay packers hi-five to celebrate a touchdown
846 their are three women at a desk and the women with the long braid looks in the microscope
a kickboxer practicing on the heavy bag
847 middle-aged hispanic woman sweeping a sidewalk
black women make cloths in their home
female police officers wearing sunglasses
848 mother holding newborn infant between her grandparents while sitting on a couch
a group of people at the beach jumping in the air simultaneously for the camera
a woman holds a baby while lying on a couch
849 a man and woman sit on a park bench
a child in a blue shirt running under a fountain
asian man drinking at a booth in a restaurant
formula one cars racing which the red car seems to be winning
850 a bride and groom cutting the cake at their wedding
a running greyhound
a man in dark colored clothing skies over ledge, hanging in midair
851 tourists walking a german side street where souvenirs are sold
a woman showing a small dog to an infant
852 group of people outside in the city videotaping a show

860
861
862
863

860 **Figure 10:** Visualization for distilled texts, interation=3000.
861
862
863