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ABSTRACT

Multimodal Dataset Distillation (MDD) has emerged as a vital paradigm for en-
abling efficient training of vision-language models (VLMs) in the era of multi-
modal data proliferation. Unlike traditional dataset distillation methods that focus
on single-modal tasks, MDD presents distinct challenges: (i) the effective distilla-
tion of heterogeneous multimodal knowledge, complicated by feature space mis-
alignment and asynchronous optimization dynamics; and (ii) the lack of discrete
class guidance, which hinders the distribution coverage and representativeness of
synthetic data due to the vastness and continuity of the semantic space. To address
these challenges, this paper proposes an Asynchronous Matching with Dynamic
sampling (AMD) framework. AMD enables asynchronous trajectory matching by
decoupling the selection of starting points for image and text trajectories. Addi-
tionally, a Semantics-Aware Prototype Mining module is introduced, which re-
places random initialization by leveraging feature-space clustering to identify rep-
resentative prototypes, enhancing the coverage and representativeness of the dis-
tilled samples. Extensive experiments demonstrate that AMD achieves superior
distillation performance on Flickr30k and COCO (e.g., IR@1, IR@5, and IR@10
gains of 4.5%, 9.6%, and 10.9%, respectively, on Flickr30k 200 pairs.) with
negligible computational overhead..

1 INTRODUCTION

In the era of massive data, the substantial storage, transmission, and computational expenses as-
sociated with large-scale datasets pose a significant bottleneck for deep learning model training
and iteration. Dataset distillation (DD) (Wang et al., 2018; Zhao et al., 2020; Zhao & Bilen, 2023;
Cazenavette et al., 2022) emerged to address this challenge, with the aim of distilling a small amount
of synthetic data that allows models trained on this reduced set to achieve performance similar to
the original. This approach significantly reduces data volume, lowers training costs, accelerates
research, and aids in data privacy protection (Dong et al., 2022; Loo et al., 2023).

However, most existing DD research is mainly focused on single-modal tasks. With the explosion
of multimodal data like image-text pairs and the rise of Vision-Language Models (VLMs) (Radford
et al., 2021), efficiently processing and utilizing this massive multimodal data presents a new and
critical challenge. Consequently, research specifically targeting Multimodal Dataset Distillation
(MDD) is becoming exceptionally crucial, offering a vital pathway for efficient multimodal model
training and deployment.

Despite its vital role, MDD faces unique challenges distinct from prior dataset distillation paradigms
such as image classification (Zhao & Bilen, 2023; Wang et al., 2022; Zhao et al., 2023; Du et al.,
2023) and text classification (Li & Li, 2021; Maekawa et al., 2025). MDD presents two main chal-
lenges: (i) Effective distillation of heterogeneous multimodal knowledge. The core of MDD
lies in extracting and condensing effective joint knowledge from heterogeneous modalities like im-
age and text into synthetic data. This process is much more complex than single-modal tasks, as
it involves misalignment between modality-specific feature spaces and asynchronous optimization
dynamics during training; the latter, in particular, has been largely overlooked in previous work (Wu
et al., 2023; Xu et al., 2024) but is crucial for capturing precise cross-modal correlations. (ii) Distri-
bution coverage and representativeness without discrete class guidance. Traditional DD meth-
ods often benefit from the natural guidance and structure provided by discrete classes. However,
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Figure 1: Synchronous vs. Asynchronous Matching: (a) Previous synchronous matching only paired same-
time expert parameters. (b) Our asynchronous matching explores more flexible and richer cross-modal expert
parameter combinations. (c) Performance on Flickr30k: synchronous methods (Wu et al., 2023; Xu et al., 2024)
vs. our AMD.

MDD lacks such clear class distinctions. Coupled with the vastness and continuity of the image-text
data’s semantic space, simple random initialization struggles to effectively cover the diverse joint
distribution of the original data. Without clear guidance, initial points selected by random meth-
ods in previous work may lack representativeness (e.g., corresponding to ambiguous descriptions or
low-quality images), affecting distillation quality and subsequent optimization.

To address the aforementioned challenges and limitations, this paper proposes a novel Asynchronous
Trajectory Matching (AMD) framework for MDD. In contrast to prior approaches that typically
synchronize image and text trajectories by selecting model parameters from the same training stage,
as shown in Figure 1(a), our preliminary experiments suggest that such a rigid synchronization
is suboptimal for synthesizing modality-specific data representations. This limitation stems from
the inherent heterogeneity in the learning dynamics of different modalities. To overcome this, our
framework adopts an asynchronous trajectory matching strategy, illustrated in Figure 1(b), that de-
couples the sampling stages of image and text trajectories, allowing for more diverse combinations
of image and text model parameters drawn from different training epochs. This increased flexibility
facilitates the optimization of synthetic image-text pairs. Additionally, to address the absence of a
discrete set of classes to guide the distillation process, we introduce a Semantics-Aware Prototype
Mining module that constructs cluster centers to serve as grounding references. This module per-
forms clustering in the feature space to identify representative sample prototypes. These prototypes
replace the randomly selected initial points used in prior methods and are employed to initialize the
synthesis process, thereby substantially enhancing the diversity and representativeness of the dis-
tilled samples. Notably, these improvements are achieved with negligible additional computational
overhead compared to existing methods.

Our main contributions are summarized as follows:

* We propose a novel asynchronous matching with dynamic sampling for MDD that ad-
dresses the limitations of synchronous methods by enabling asynchronous sampling of im-
age and text trajectory points to explore richer cross-modal learning dynamics.

* We introduce a semantics-aware prototype mining module that identifies representative
prototypes via clustering in the joint semantic space to provide a high-quality initialization,
significantly enhancing the coverage and diversity of distilled samples.

* Extensive experiments demonstrate that our method achieves significant performance im-
provements on Flickr30k and COCO. For instance, on Flickr30k (200 pairs), Image Re-
trieval metrics IR@1, IR@5, and IR@10 improve by 4.5%, 9.6%, and 10.9%, respectively.

2 PRELIMINARY

Multimodal Dataset Distillation. We first provide a formal definition of Multimodal Dataset Dis-
tillation (MDD). Given a large-scale image-text dataset 7 = {(z;,v;)},, where z; denotes an
image sample, y; represents the corresponding text description, and N = |7 is the size of the
original dataset. The goal of MDD is to compress 7 into a budget-constrained synthetic dataset
S = {(z;, gjj)}é-w:l with M < N, such that models trained on S approximate the performance of
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those trained on 7. This objective can be formulated as:
U6 (), 0% (y)) — £(65(x), 02())] < e, (1)
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where 9]7; and GZ are parameters of multimodal model trained on 7, 9]‘3 and 6‘2 are trained on S,
Teest 18 the test data distribution, ¢ denotes the performance measure function, € is a small tolerance.

Since vision-language datasets lack the category-level labels found in traditional classification tasks,
methods such as gradient matching (Zhao et al., 2020) and distribution matching (Zhao & Bilen,
2023), which rely on intra-category data compression, struggle to be effective.

Matching Image-Text Trajectories. Existing works (Wu et al., 2023; Xu et al., 2024) employ MTT-
based methods (Cazenavette et al., 2022; Cui et al., 2023) to compress key information and cross-
modal relationships through: (1) expert trajectories buffering and (2) image-text pairs distilling.

During buffering, the multimodal model is first trained on dataset 7 using the bi-directional In-
foNCE loss, which consists of symmetric image-to-text and text-to-image contrastive terms. The
image-to-text contrastive loss can be formulated as:

)

o1 exp (s(0v (@), 02 (y;))/7)

where s(-,-) measures similarity between positive pair (z;,y;) and K negative pairs (z;,y;) in a
batch, with temperature 7. To ensure the generalization capability of the expert trajectories, it is
common practice to perform multiple rounds of retraining and periodically save the parameters of
the image encoder 6y, and the text encoder 6, at different training steps, thereby constructing the

LinfoNCE = —— Z eXp HV ('rl> Or (yl))/T) @)

expert trajectories. One of them can be formalized as: image trajectories = 0](20)7 98), cee 03 )}
and text trajectories = {6, ) 9(1 cee 9(2)}, r is total training epochs.

During the distilling phase, matching is performed between student and expert trajectories in both
the vision (V) and language (£) modalities. At initialization step ¢, the student and expert networks

share identical parameters (98 ), HS)). The expert trajectory undergoes M optimization steps to

reach (H(H_M) 0(t+M)) while the student network performs N gradient descent updates (N < M)

to obtain its final parameters (é‘(,t +N)7 QSJFN)). The matching objective minimizes the normalized

{5-distance between corresponding student and expert trajectories across both modalities:
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where (085 ), 93)) = (ég ), ég)) It is noteworthy that, to optimize memory efficiency, LoRS (Xu
et al., 2024) leverages TESLA (Cui et al., 2023) technology, enabling the this framework to be
executed on a single GPU.

3 METHODOLOGY

3.1 EXPLORATION

Existing MDD methods typically adopt a synchronous sampling strategy for trajectory matching,
perhaps extending the synchronized processing of image and text data in standard VLM training.
However, this paper questions the validity of such a synchronous matching assumption:

First, the inherent architectural differences between the image and text networks lead to asyn-
chronous evolution of their parameter trajectories. Taking NFNet+BERT, a commonly used back-
bone in MDD, as an example, the visual encoder and the text encoder (with BERT often frozen and
followed by a linear layer for optimization) exhibit significantly different parameter update dynam-
ics. Second, from the perspective of data distillation, the optimization spaces of synthesized images
(3%x224x224 pixel space) and synthesized texts (768-dimensional embedding space) possess funda-
mentally different topological properties, making synchronization of their optimization processes
difficult.
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Figure 2: Exploring the Asynchronous Phenomenon: (a) Visualizes the expert trajectories during the buffering
stage; (b) analyzes the parameter update magnitudes; (¢) MTT loss curves during the distillation stage.

To empirically investigate these theoretical reasons and validate our skepticism, we conducted sys-
tematic experimental analyses on the Flickr30k dataset. Our observations provide strong evidence:

Observation 1. Asynchronous Expert Trajectories. Consistent with the notion of inherent archi-
tectural differences, our analysis of expert model training reveals clear asynchrony. As visualized
in Figure 2 (a), expert trajectories during the buffering stage show initial synchronization followed
by clear decoupling in middle and later stages. Furthermore, analysis of parameter update magni-
tudes (Figure 2 (b)) reveals distinct dynamics: the text network undergoes intense initial fluctuations
but quickly converges, whereas the image network maintains a consistently high update intensity
throughout training. This evidence highlights the asynchronous evolution of image and text network
parameters.

Observation 2. Asynchronous Synthetic Data Optimization Speed. Supporting the perspective that
the optimization spaces of synthesized images and texts are fundamentally different, Figure 2 (c)
demonstrates that during the distillation stage, the synthesized text optimizes significantly faster
than the synthesized image. This discrepancy in optimization speed provides direct evidence that
the optimization processes of synthesized image and text data are fundamentally asynchronous.

Based on these empirical findings, we draw two important conclusions:

» The asynchrony of expert trajectories is an inherent characteristic of visual-language mod-
els;

» Synthetic text converges significantly faster than synthetic images, further validating the
asymmetry in the cross-modal optimization process.

Building on these insights, in Section 3.2, we further propose asynchronous trajectory matching —
decoupling the distillation paths of image and text modalities to realize a distillation process that
better aligns with the actual optimization dynamics.

3.2 ASYNCHRONOUS MATCHING WITH DYNAMIC SAMPLING.

Building upon the empirical findings presented in the previous section, which revealed the funda-
mental asynchronous nature of both expert trajectories and the optimization of synthesized data, we
propose a novel Asynchronous Matching with Dynamic sampling (AMD) Framework for mul-
timodal Dataset Distillation. Unlike conventional synchronous methods that ignore this inherent
asynchrony by strictly aligning expert trajectories based on the same training steps (¢, = t;), AMD,
as shown in Figure 3, enables the independent and flexible selection of starting points (%,,, ;) for the

image (05; )) and text (Gg)) expert trajectories (where ¢ is the training step).
The expert and student trajectories whose states are matched in AMD are generated by the standard

visual-language model training process using a contrastive loss like InfoNCE. The expert trajectory
is generated by training the network on the real dataset 7:

(64D 00Ty — (6861 — a7V Ligtonce (T 65, 00 )
Similarly, the student trajectory corresponds to training a network on the synthetic dataset S:
0y, 6570) = (61).67)) — asV Lnionce(S: 6,67, )
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Asynchronous Trajectories Matching. AMD then aims to optimize the synthetic data S such
that points on its resulting student trajectory match points on the expert trajectory. Specifically, it
minimizes the asynchronous trajectory matching loss (L 47 p), which compares student parameters
after NV steps of optimization on (&, §) (corresponding to an expert state) to expert parameters after
M steps, starting from ¢,, and ¢;. Extending the standard MTT-VL (Wu et al., 2023) formulation, this
objective minimizes the normalized Lo distance between student parameters and expert parameters:

PR i il O Y/ Sl
R N e & (6)

s.t.  ty € [O,Rv}, t € [0,}%[,}7

where Ry and R, denote the sampling ranges for visual and text.

Maximum Mean Discrepancy based Dynamic Sampling. We utilize the actual convergence
speed differences of the visual and text expert trajectories to determine the dynamic sampling ranges.
As shown in Figure 2 (b), we first obtain the Maximum Mean Discrepancy (MMD) of the trajec-
tory parameters between consecutive epochs. To precisely quantify the parameter update magnitude
between training steps, we formally define the MMD for visual modality as the Maximum Mean
Discrepancy with linear kernel, which reduces to the squared euclidean distance between the aver-
age parameter vectors of consecutive epochs:

2

MMDy, = MMD(B Y 01y = 7)
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Similarly, MMD, . is computed for the text modality. We employ the median Ticdian Of the trajec-
tory ratio as an adaptive baseline:

o . MMDy 4
Tmedian = Median <{MMDL¢ |t e [1,T}}) (8)

The visual and text sampling ranges Ry, and Ry are then defined based on Tppegian:

_ MMDy '

Ry = max{t | 7MMDL¢ < 7Ined1an} ©
o MMDy, _

RV S mln{t | 7MMDL¢ > ﬂnedlan}

This approach is designed to prevent excessive asynchronicity between the sampled visual and text
trajectories, which could lead to instability in the synthetic dataset optimization. Inspired by the
faster dynamics and earlier convergence of the text modality (Figure 2 (b)&(c)), we dynamically
establish the boundaries for the two modalities: Ry is truncated earlier when the ratio first exceeds
the median, signifying that the text modality’s relative dynamics have significantly stabilized. Con-
versely, Ry is allowed a wider range, continuing until the ratio first increase beyond the median. By
leveraging this data-driven, differential range sampling strategy, our method adaptively captures the
inter-modal learning speed discrepancies without relying on predefined empirical hyperparameters,
which fundamentally enhances the robustness and generalizability of the ATM framework, leading
to higher-quality synthetic data.

3.3 SEMANTIC-AWARE PROTOTYPE MINING

Multimodal Dataset Distillation for non-categorical data like image-text pairs faces the critical chal-
lenge of insufficient synthetic data coverage and diversity. Due to the data’s continuous and complex
nature, traditional random initialization of synthetic samples often selects semantically redundant
pairs, significantly harming coverage and diversity. To mitigate this, we propose a novel Semantics-
aware Prototype Mining (SPM) module. SPM analyzes the joint semantic feature space of the
original dataset to identify representative prototypes, which are utilized as initialization points for
the B synthetic samples {(Zx, §x)}2_,.
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Algorithm 1 Asynchronous Matching with Dy- Start

namic Sampling
Input: Real set 7; Expert Trajectories
{05;)}{:0, {9(2) }_o; Max start epochs Ry, Ry;
Synthetic data learning rate 7g.
Output: Synthetic dataset S
1: Initialize S = (&,7) using Semantics-
aware Prototype Mining
2: repeat
3:  Select the start epoch separately: ¢, €
[07 Rv] and t; € [O, RL}
4:  Get expert trajectories {6’1(;)}?:1{% and

{O(t)}lerM Image-Text
L Jt=l, F— E . .
xpert Trajectories

1 match

2 match

3 match

Student |
Trajectories :

5.  Initialize the student network
(eg}tu) 9%1))
6:  Train (Hgv),OS’)) on S for N steps an

d Figure 3: Illustration of Asynchronous Trajec-
tory Matching: Dashed lines represent expert tra-

get {9\(; )}i!{fv and {e(ﬁt) }i“;l_zN jectories saved during buffering, while solid lines

7. Compute AMD loss using Eq. 6 are student trajectories matched during distilla-

8: Update synthetic image-text pairs: tion. Columns represent decoupled expert start-

(2,9) « (Z,9) — nsV (&5 Lamp ing points ((t, = 0,¢; = 1) left, (¢, = 1,t, = 0)

9: until convergence right), and rows depict subsequent matching steps.
10: return S

SPM involves several steps. First, we extract corresponding visual features v; = 6y (x;) and text
features [; = 0,(y;) for every image-text pair (x;,y;) in the original dataset D = {(x;, yl)}!g1
using trained image and text encoders ¢y, and 6. Second, to capture the joint semantic information
of each pair, we construct a joint image-text feature f; by simple feature concatenation: f; = [v;;1;].

This builds a representation { fl}izll of the original dataset in the joint feature space. Next, we
perform K-means clustering on {f;} in this space, setting the number of clusters K equal to the
synthetic dataset budget B (K = B). This yields B cluster centroids {cx }Z_,, each representing a
semantic prototype from the original data distribution:

{e}ily = C{f}2) K = B), (af,f) = argmin| i — ci* Vke{l....B}.  (10)
For each cluster k € {1,..., B}, we select the original dataset sample (z}, y;) whose joint feature
fr is closest to the centroid cy, as the representative prototype for that cluster.

This prototype-based approach leverages the semantic structure of the original data to guide the
initialization process. By selecting B initialization pairs {(x},y;)}5_, based on diverse semantic
clusters identified in the joint feature space, it maximizes the coverage of the original data distri-
bution and ensures the initial synthetic samples are highly diverse and representative. This directly
addresses the semantic redundancy issue associated with random initialization, providing a high-
quality starting set for the subsequent distillation optimization.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Datasets and Metrics. Following established MDD protocols (Wu et al., 2023; Xu et al., 2024),
we evaluate our approach on the Flickr30K (Plummer et al., 2015) and COCO (Lin et al., 2014)
datasets, which are standard cross-modal retrieval benchmarks containing 31,783 and 123,287 im-
ages, respectively, each paired with five human-annotated captions. We assess retrieval performance
using standard Recall @K (R@K) metrics with K € {1, 5, 10}, reporting results in both directions:
Image-to-Text (I2T), denoted as IR@K, which measures the hit rate of retrieving correct captions
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Table 1: Performance comparison with four coreset selection and current multimodal dataset distillation meth-
ods on Flickr30k (Plummer et al., 2015) dataset. In line with the fair comparison setting of LoRS (Xu et al.,
2024), both LoRS and AMD use 99, 199, and 499 pairs, while others uses 100, 200, and 500 pairs. The
NFNet (Brock et al., 2021)+BERT (Vaswani et al., 2017) model trained on the full dataset yields: IR@1=27.3,
IR@5=57.1, IR@10=69.7 for I2T, and TR@1=33.9, TR@5=65.1, TR@10=75.2 for T2I. Best results are in
bold.

Pairs Ratio  Metric Coreset Selection Dataset Distillation
Rand Herd K-Cent Forget | MTT-VL LoRS AMD (Ours)
IR@1 1.0 0.7 0.7 0.7 4.7+0.2 8.3+0.2 10.4+0.3
IR@5 4.0 2.8 3.1 2.4 15.7+£0.5 24.1+0.2 30.5+0.7
100 03% IR@10 6.5 5.3 6.1 5.6 24.6+1.0 35.1+0.3 43.0+0.6
99) ’ TR@1 1.3 1.1 0.6 1.2 9.9+0.3  11.8+£0.2 14.4+0.5

TR@5 59 4.7 5.0 4.2 28.3+0.5 35.8+0.6 39.1+0.6
TR@10 | 10.1 79 7.6 9.7 39.1£0.7  49.2+0.5 52.6+0.6

IR@1 1.1 1.5 1.5 1.2 4.6+0.9 8.6+0.3 13.1+0.3

IR@5 4.8 55 5.4 3.1 16.0£1.6  25.3+0.2 34.9+0.6

200 0.7% IR@10 9.2 9.3 9.9 8.4 25.5+2.6  36.6+0.3 47.5+0.7
(199) ' TR@1 2.1 23 22 1.5 10.2+0.8  14.5+0.5 16.9+0.4
TR@5 8.7 8.4 8.2 8.4 28.7+1.0  38.7x0.5 42.3+0.6

TR@10 | 132 144 13.5 10.2 | 41.9¢1.9 53.440.5 56.2+0.8

IR@1 2.4 3.0 35 1.8 6.6+£0.3  10.0+£0.2 15.8+0.4

IR@5 10.5  10.0 104 9.0 20.2+1.2  28.9+0.7 39.8+0.4

500 1.7% IR@10 | 174 170 17.3 159 | 30.0£2.1 41.6+0.6 53.240.5
(499) ’ TR@1 52 5.1 49 3.6 13.3+0.6  15.5+0.7 19.3+0.5

TR@5 | 183 164 16.4 123 | 32.8+1.8 39.8+0.4 46.4+0.4
TR@10 | 25.7 243 233 19.3 | 46.8+0.8 53.7+0.3 60.0+0.6

among the top-K results, and Text-to-Image (T2I), denoted as TR @K, which evaluates the accuracy
of finding matching images based on text queries.

Implementation Details. Following the setup of the LoRS (Xu et al., 2024) baseline, we utilize an
NFNet (Brock et al., 2021) (Normalizer-Free ResNet) pretrained on ImageNet (Deng et al., 2009)
as the image encoder, along with a pretrained BERT (Vaswani et al., 2017) model that includes an
appended linear layer as the text encoder. In accordance with the protocols of previous work (Xu
et al., 2024; Wu et al., 2023), the BERT weights remain frozen during training and distillation, with
only the parameters of the linear layer being optimized. Adhering to the MTT (Cazenavette et al.,
2022), during the buffer phase, we train the image and text encoders on the original dataset for 10
epochs, repeating this process 20 times to generate 20 expert trajectories. We optimize the distilled
data using SGD with momentum 0.5. The reported results are calculated as the mean + standard
deviation over 15 independent evaluations: we generate 3 synthetic datasets, and for each dataset,
we retrain the model 5 times. All experiments are conducted on a single NVIDIA V100 / RTX 4090
GPU. More detailed are provided in the Appendix.

Counterpart Methods. We compared two main categories of methods: Coreset Selection and
Dataset Distillation. Coreset Selection includes commonly used techniques such as Random (Re-
buffi et al., 2017), Herding (Welling, 2009), K-center (Farahani & Hekmatfar, 2009), and For-
getting (Toneva et al., 2018). Dataset Distillation encompasses MTT-VL (Wu et al., 2023) and
LoRS (Xu et al., 2024). MTT-VL is the first work to apply MTT (Cazenavette et al., 2022) (training
trajectory matching) in the multimodal area, while LoRS enhances similarity mining and incorpo-
rates TESLA (Cui et al., 2023) technology to reduce memory overhead.

4.2  QUANTITATIVE RESULTS

As shown in Tables 1 and 2, our AMD demonstrates significant advantages over existing approaches
across both datasets. On the Flickr30k dataset, AMD achieves a new state-of-the-art performance,
significantly surpassing traditional Coreset Selection methods and existing dataset distillation tech-
niques. For instance, under the setting of 200 image-text pairs, AMD improves 12T over the LoRS
baseline with gains of +4.5%, +9.6%, and +10.9% in IR@1, IR@5, and IR@ 10, respectively. For
T2I, AMD achieves improvements of +2.4%, +3.6%, and +2.8% in TR@1, TR@5, and TR@ 10, re-
spectively. Given that the COCO dataset is 3.9x larger than Flickr30k and contains richer semantic
relationships, the performance for all methods are relatively lower. Nevertheless, AMD maintains its
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Table 2: Performance comparison with coreset selection and dataset distillation methods on COCO (Lin et al.,
2014). For a fair comparison, LoRS (Xu et al., 2024) and AMD use 99, 199, and 499 pairs, while others use
100, 200, and 500 pairs. The NFNet (Brock et al., 2021)+BERT (Vaswani et al., 2017) model trained on the full
dataset achieves: IR@1=16.9, IR@5=41.9, IR@10=55.9 for I2T, and TR@1=19.6, TR @5=45.6, TR@10=59.5
for T2I. Best results are in bold.

Pairs  Ratio  Metric Coreset Selection Dataset Distillation
Rand Herd K-Cent Forget | MTT-VL LoRS AMD (Ours)

IR@1 0.3 0.5 0.4 0.3 1.3+0.1 1.8+0.1 2.8+0.2
IR@5 1.3 1.4 14 1.5 5.4+0.3 7.1+0.2 10.5+0.2
100 0.02% IR@10 2.7 3.5 2.5 2.5 9.5+0.5  12.2+0.2 17.2+0.4
99) ’ TR@1 0.8 0.8 1.4 0.7 2.5+0.3 3.3+0.2 4.1+0.3
TR@5 3.0 2.1 3.7 2.6 10.0+£0.5 12.2+0.3 13.8+0.3
TR@10 | 5.0 4.9 55 4.8 15.7+0.4  19.6+0.3 21.8+0.4
IR@1 0.6 0.9 0.7 0.6 1.7£0.1 2.4+0.1 3.8+0.2
IR@5 2.3 24 2.1 2.8 6.5+0.4 9.3+0.2 13.4+0.3
200 0.04% IR@10 4.4 4.1 5.8 49 12.3+0.8  15.5+0.2 21.4+0.4
(199) ’ TR@1 1.0 1.0 1.2 1.1 3.3+0.2 4.3+0.1 4.6+0.2
TR@5 4.0 3.6 3.8 35 11.9+£0.6  14.2+0.3 15.5+0.6
TR@10 | 7.2 7.7 7.5 7.0 19.4+£1.2  22.6+0.2 24.1+0.5
IR@1 1.1 1.7 1.1 0.8 2.5+0.5 2.8+0.2 4.2+0.2
IR@5 5.0 53 6.3 5.8 8.9+0.7 9.9+0.5 14.2+0.5
500 0.09% IR@10 8.7 9.9 10.5 8.2 15.8+1.5 16.5+0.7 22.3+0.4
(499) ’ TR@1 1.9 1.9 2.5 2.1 5.0+0.4 5.3+0.5 5.7+0.6
TR@5 7.5 7.8 8.7 8.2 17.2+1.3  18.3%1.5 19.3+1.2
TR@10 | 125 13.7 14.3 13.0 | 26.0£1.9 27.9+1.4 28.7+1.0

superiority on the more complex COCO dataset. For example, under the setting of 200 pairs, AMD
achieves improvements of +1.4%, +4.1%, and +5.9% in IR@1, IR@5, and IR@10, respectively,
compared to the LoRS baseline.

Additionally, we observed two noteworthy phenomena. First, as the distillation budget (the num-
ber of image-text pairs) increases, the performance gains from the asynchronous trajectory become
more pronounced. In the case of Flickr30k, AMD outperformed LoRS by 2.1%, 4.5%, and 5.8% in
the IR@1 metric for 99, 199, and 499 pairs, respectively. This suggests that previous synchronous
trajectory strategies may create performance bottlenecks when handling large-scale data, as they
struggle to adapt to the increasing complexity of image-text pairs. Second, the improvements in
I2T retrieval metrics are particularly significant, indicating that the previous synchronous trajec-
tory approach, which forced the matching of imbalanced image and text expert trajectories, led to
optimization challenges for synthetic image-text pairs. In contrast, our proposed asynchronous tra-
jectory technique enables flexible optimization of image and text combinations at different stages,
resulting in substantial performance enhancements.

4.3 ABLATION STUDY

Component Analysis. We conduct a comprehensive ablation study on the proposed AMD frame-
work to analyze the contribution of its key components: (1) Baseline (using the codebase of
LoRS (Xu et al., 2024)), (2) Asynchronous Trajectory Matching (AMD), and (3) Semantic-aware
Prototype Mining (SPM). As shown in Table 9, the Baseline (LoRS) provides a solid starting point.
Adding the AMD component alone yields significant improvements across all metrics (e.g., IR@1
increases from 8.6% to 12.1%), highlighting the effectiveness of explicitly modeling and leveraging
asynchronous learning dynamics during distillation. Adding the SPM component to the baseline also
provides noticeable gains (e.g., IR@1 increases from 8.6% to 9.1%), demonstrating the importance
of semantic-aware initialization for enhancing synthetic data coverage and diversity. Importantly, the
improvement from AMD alone is generally larger than that from SPM alone, particularly for Im-
age Retrieval metrics. When combining both AMD and SPM, our full framework achieves the best
performance across all metrics, reaching 13.1%/34.9 %/47.5 % for IR and 16.9 %/42.3 %/56.2 % for
TR. These results underscore the complementarity of the proposed AMD and SPM components, and
their combined effect leads to superior performance in MDD.

Cross-Architecture Generation. Cross architecture generation aims to assess the ability of syn-
thetic datasets to generalize to unseen architectures. We employed NFNet+BERT as the distillation
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Table 3: Ablation study of proposed modules. Experiments are conducted on the Flickr30k 200pairs setting.
The best results are in bold.

Baseline AMD SPM ‘ IR@1 IR@5 IR@10 TR@1 TR@5 TR@10
8.6£0.3  25.3+0.2 36.6+0.3 14.5+0.5 38.7+0.5 53.4+0.5

v 12.1£0.3  33.9+0.6 46.7+0.5 16.5+0.4 41.620.6 55.7£0.5
v 9.1#0.1 26.4+0.3 38.5+04 153+04 40.1+0.5 53.9+0.4

v v 13.1+£0.3  34.9+0.6 47.5+0.7 16.9+04 42.3x0.6 56.2+0.8

ANENENEN

Table 4: Cross-architecture generalization: We utilize NFNet+BERT as the dataset distillation model to gener-
ate synthetic images and evaluate performance across various architectures.

Flickr30k
IR@1 IR@5 IR@10 TR@1 TR@5 TR@10
NFNet+BERT | 10.0£0.2 28.9+0.7 41.6+0.6 15.5+0.7 39.8+0.4 53.7+0.3
499  LoRS  ResNet+BERT | 3.3x0.2 12.7#0.3 20.4+0.2 6.8+0.2 19.6+1.3 31.1+0.3
RegNet+BERT | 3.5+0.1 12.6+0.3 21.1204 6.8+0.3 20.8+0.3 30.2+0.3
NFNet+BERT | 15.840.4 39.1+0.4 53.2+0.5 19.3+0.5 46.4+0.4 60.0£0.6
499  AMD  ResNet+BERT | 4.1+0.3 14.2+0.5 22.6:04 7.6£0.4 22.3+0.4 33.2+0.6
RegNet+BERT | 4.0+0.2 144403 23.1+0.5 7.5+0.3 22.8+0.5 32.7+0.4

Pairs  Method Evaluate Model

Table 5: Upper Bound Analysis on Synthetic Data Scale.

Method Image Encoder Text Encoder Ratio | TR@1 TR@10 IR@1 IR@10
AMD NFNet BERT 10% 325 73.9 24.7 67.3
Upper Bound NFNet BERT 100% | 33.9 75.2 27.3 69.7
AMD NFNet CLIP 10% 60.5 91.7 479 86.8
Upper Bound NFNet CLIP 100% | 61.2 92.8 49.8 88.3

a man in a carhart shirt
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Figure 4: Visualization of initial (Left) and synthetic (Right) image-text pairs, with the synthetic data under-
going 3000 distillation steps.

model to generate the synthetic dataset, and then evaluated it using various architectures. Since
BERT is frozen, we followed the baseline approach of LoRS by modifying the image encoder ar-
chitecture, including ResNet (He et al., 2016) and RegNet (Radosavovic et al., 2020). As shown
in Table 4, the dataset generated by our AMD method outperforms the baseline LoRS in cross-
architecture performance.

Upper Bound Analysis. We investigated the AMD performance upper bound by scaling up syn-
thetic data quantity. As detailed in Table 5, with the CLIP encoder, AMD trained on a 10% synthetic
subset achieves 47.9 IR@1, recovering over 96% of the full dataset’s upper bound (49.8). The 10%
synthetic subset, with the BERT encoder, recovers 90.4% of its upper bound (24.7 vs. 27.3 IR@1).
This demonstrates the high performance ceiling and potential of the AMD approach.

4.4 QUALITATIVE RESULTS.

Synthetic Image-Text Pairs Visualization. Figure 4 provides qualitative examples of synthetic
image-text pairs generated by our method. Similar to prior work (Wu et al., 2023; Xu et al., 2024),
our synthetic images exhibit a deepdream-like style (Zeiler & Fergus, 2014), characterized by real
images overlaid with learned high-frequency components. The examples demonstrate that our syn-
thetic text, even if not longer, is significantly more effective at capturing salient objects and rela-
tionships compared to the initial synthetic text (i.e., before optimization). For instance, the last case
clearly describes the performers and their relationships, a detail often lacking initially but crucial for
high-quality VL understanding.

Initialization Strategies Analysis. As shown in Figure 5, t-SNE visualization of the joint image-
text feature space reveals a stark contrast between random initialization and our Semantics-Aware
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t-SNE: Semantic-Aware Prototype Clustering

t-SNE: Random Selection
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Figure 5: t-SNE visualization of initialization strategies. (Left) Random selects samples haphazardly, lead-
ing to semantic redundancy and poor coverage. (Right) SPM (ours) identifies representative prototypes via
clustering, ensuring uniform, diverse coverage of the semantic manifold. Each cluster is color-coded.

Diagonal Similarity vs iteration

(a) Initial Similarity Matrix (b) Sync Matching (LoRS) (c) Async Matching (Ours) (d) Diagonal Similarity Evolution

Figure 6: Qualitative analysis of similarity matrices and their evolution. (a) The initial similarity matrix, where
only diagonal elements are 1.0. (b) The similarity matrix after synchronous matching using the LoRS baseline.
(c) The similarity matrix after asynchronous matching with our AMD framework. (d) The evolution of mean
diagonal similarity over iterations, demonstrating the superior convergence of AMD compared to the LoRS.

Prototype Mining (SPM). Randomly selected prototypes (red stars) cluster redundantly around a few
dominant semantics—such as multiple instances of “dogs running on grass” with only minor vari-
ations in pose or background—failing to capture the diversity of the underlying data manifold and
resulting in a biased, low-coverage initialization. In contrast, SPM leverages K-means clustering to
identify representative prototypes that uniformly span the semantic spectrum: examples include dis-
tinct concepts such as “soccer matches,” “motocross,” and “snowboarding,” each corresponding to
a well-separated cluster. This structured, diversity-driven initialization ensures the synthetic dataset
begins with high semantic fidelity and broad coverage, providing a far more effective foundation for
subsequent distillation.

Similarity Matrix Evolution. As shown in Figure 6, we dynamically visualize the evolution of the
low-rank similarity matrix during distillation. Figures 6 (a)—(c) display the similarity matrices at
initialization, after LoRS distillation, and after AMD distillation, respectively. AMD, by decoupling
image and text trajectories, yields two key advantages: (1) Stable text optimization—since text pa-
rameters typically converge rapidly in early stages, asynchronous matching allows the text trajectory
to be sampled at its optimal convergence point, reducing later-stage parameter updates that could
introduce instability and overfitting; (2) Enhanced image learning—image synthesis is no longer
constrained to match the text trajectory at identical training stages, enabling optimization along
more informative gradient directions that accelerate visual feature convergence. These mechanisms
collectively produce a similarity matrix with stronger diagonal dominance and better-suppressed off-
diagonal elements. Figure 6 (d) further validates that AMD achieves faster convergence and higher
final diagonal values than LoRS.

5 CONCLUSION

In this study, we introduce the Asynchronous Trajectory Matching framework for Multimodal
Dataset Distillation, AMD. We propose two novel components: an asynchronous trajectory match-
ing strategy that decouples image and text parameter sampling to leverage differential convergence
rates, and a semantics-aware prototype mining module leveraging clustering for representative ini-
tialization. Experimental results demonstrate AMD achieves superior distillation performance on
Flickr30k and COCO with negligible computational overhead, offering an efficient and scalable
solution for mitigating data bottlenecks.
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Table 6: Ablation study on Text Encoder.

Text Encoder Method | TR@1 TR@10 IR@1 IR@10
MTT-VL 9.9 39.1 4.7 24.6
BERT AMD 144 52.6 10.4 43
MTT-VL | 314 72 17.1 56.2
AMD 41.7 81.2 29.7 76.4

CLIP

A APPENDIX

The supplementary material is organized as follows: Section A.1 reviews related works on dataset
distillation and multimodal dataset distillation. Section A.2 provides a performance comparison
using different text and visual encoders. Section A.3 analyzes the time overhead of the AMD.
Section A.4 provides implementation details and hyperparameter settings.

A.1 RELATED WORK

Dataset Distillation. Dataset distillation Wang et al. (2018); Zhao et al. (2020) has witnessed
rapid advancements in recent years, with the primary goal of generating a compact set of highly
informative synthetic data to replace massive original datasets for model training, thereby dramat-
ically reducing demands on data storage and computational resources. Current research predomi-
nantly focuses on classification tasks, giving rise to three mainstream approaches: gradient match-
ing Zhao et al. (2020), distribution matching Zhao & Bilen (2023), and training trajectory match-
ing Cazenavette et al. (2022).

Gradient matching methods (DC) optimize synthetic samples by minimizing the gradient discrep-
ancies between synthetic and real data during model training. Subsequent improvements include
DSA’s Zhao & Bilen (2021) introduction of differentiable data augmentation to enhance generaliza-
tion, and IDC’s Kim et al. (2022) adoption of multi-formation synthesis techniques for better per-
formance. Distribution matching methods (DM) aim to align the statistical distributions of synthetic
data with real data in feature space, where early works employed Maximum Mean Discrepancy
(MMD) as the distance metric, while advanced approaches like CAFE Wang et al. (2022) extend the
alignment to intermediate network layers beyond final features. Training trajectory matching meth-
ods (MTT) optimize synthetic data by minimizing parameter differences between models trained
on synthetic versus real data across training stages. To address the prohibitive computational and
memory costs of long-horizon trajectory matching, TESLA Cui et al. (2023) reduces memory con-
sumption through loss reparameterization.

Multimodal Dataset Distillation. In multimodal dataset distillation, current research primarily
targets image-text paired datasets. MTT-VL Wu et al. (2023) pioneered the first framework by ex-
tending conventional single-trajectory matching to dual visual-textual trajectory alignment. Building
upon this, LoRS Xu et al. (2024) introduces cross-modal similarity mining with low-rank matrices
to reduce computational overhead, while incorporating TESLA’S memory management techniques
to enable efficient single-GPU training.

A.2 FURTHER ARCHITECTURE EXPERIMENTS

Following the evaluation protocol of MTT-VL Wu et al. (2023), we systematically replaced the text
encoder and the image encoder to verify the generalization performance of AMD.

As shown in Table 6, the performance is significantly stronger when the text encoder utilizes CLIP.
This is attributed to the fact that pre-trained CLIP inherently possesses a more powerful cross-modal
alignment capability and richer semantic information. Furthermore, the performance gain of AMD
compared to MTT-VL (e.g., in terms of the IR@1 metric) is more pronounced when using CLIP as
the text encoder, which fully validates the effectiveness of our proposed method.

In addition, as demonstrated in Table 7, different visual encoders have a more pronounced impact
on the IR performance on synthetic data, where a better visual encoder consistently brings a cer-
tain degree of improvement. For instance, the overall performance is superior when using the more
advanced ViT as the visual encoder compared to using NFNet, NFResNet and NFRegNet. This ob-
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Table 7: Ablation study on Image Encoder.

Image Encoder Method | TR@1 TR@I10 IR@1 [R@10

it MTTVL | 104 387 54 274
AMD | 144 526 104 43

MTTVL | 99 391 47 246
NFNet AMD | 141 519 97 408
MTTVL | 65 281 35 187
NFResNet AMD | 109 434 79 336
MTT-VL | 738 33 33 205
NFRegNet AMD | 118 462 86 357

Table 8: Comparison of per-iteration training time between AMD and LoRS.

Dataset  Method | 100 pairs 200 pairs 500 pairs
. LoRS 6.44s 6.63s 6.56s
Flick30k  \Mp | 6.52 6.67s 6.61s
LoRS 6.13s 6.04s 6.09s
coco AMD 6.21s 6.15s 6.21s

Table 9: Hyperparameters for different experiments.

Dataset Flickr30k COCO
Pairs 100 200 500 100 200 500
Ir_image 100 1000 1000 | 1000 1000 5000
Ir_text 100 1000 1000 | 1000 1000 5000
Irlr 0.001 0.01 0.01 | 0.01 0.01 0.01
Ir_similarity 10 10 100 5 50 500
synth steps 8 8 8 8 8 8

servation suggests that AMD can effectively leverage more powerful visual feature representations
to enhance the matching accuracy for synthetic data.

A.3 TIME COST ANALYSIS

We base our implementation on the LoRS codebase, thus comparing our time cost with LoRS. As
shown in Table 8, the per-iteration time costs of AMD and LoRS are highly consistent across datasets
and pair counts. Crucially, the average per-iteration time reported for AMD explicitly includes the
amortization of the one-time SPM initialization cost (which is only 5-10 minutes). For a complete
distillation run (3000 iterations), the total time is approximately 5.4 hours (e.g., 6.52seconds x
3000 ~ 5.43 hours for Flickr30k 100 pairs), which is consistent with the baseline. This confirms
our significant performance improvements are achieved with virtually no additional computational
cost during distillation.

A.4 MORE IMPLEMENTATION DETAILS

We’ve released the hyperparameter configuration for AMD, which is aligned with the baseline
LoRS Xu et al. (2024).

A.5 MORE VISUALIZATION

We provide more visual comparisons of synthesized images and text before and after distillation, as
shown in Figure 7-10.
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Figure 7: Visualization for Initialized images, interation=0.

a group of friends relaxing and enjoying a nice sunny day in the park
a texas baseball player catches the ball as the 12 player from the opposite team slides into base with an umpire standing by, ready to make the call
a orchestra performing a piece

in front of two tents, a man and two children sit near a campfire

a man wears a gold sun mask

kids playing ball in the park

a woman and a man sitting at a table eating

two young boys in casual attire playing twister with other children

two people are riding bicycles along a road

aman in black clothing plays a trumpet

awoman in a bathing suit is diving into a pool

runners at a marathon running a race heading for the finish line

a couple of young kids skateboarding on ramps

a man jumps in the air on his skateboard

a man with a big backpack is walking through a grass trail up a hill

a woman carrying a bag standing next to a man waiting to cross the street
2 woman in a blue top is sitting on a bus

two men standing outside next to a building

aman is carving an object out of clay

a bunch of cyclist are riding their bikes down the road

two little boys are playing with toys

two women looking at information in a spiral booklet

a man with a cane is standing on the grass

awoman is helping another woman with the closure on her dress

two women are walking together

a little boy in green pants and a white shirt is standing in the street

aman with a beard and a blue shirt plays a guitar

a boy playing with a wheel on a stick

a young child playing with a cmpty bucket in the grass

two men and two women are preparing a large meal in the kitchen

two people are climbing a portable rock wall

two opposing hockey players make a play for the puck with opposing fans and team members watching
the musicians are playing

young women practicing marshal arts in a gym

a man cutting open a fruit with a large knife

women are working with baskets of food

two men are drinking beer

a toddler holding a pink piece of yarn

aman holds up a free hugs sign above his head

a little girl looks at a birthday cake while a man holds a baby

aman and woman sit on a park bench

a little girl dressed in yellow splashes in a shallow pool

people are enjoying food at a crowded restaurant

a green sports car with the number 63 is driving on a track

a bride and groom outside with their guests

two brindle dogs running in the grass

2 man in a blue suit and brown boots is hanging on a harness on a metal pole
a group of children are sitting on a wall

a man with a red beard pushes a cart along a sidewalk

a man wearing an orange safety vest is holding a rifle

Figure 8: Visualization for Initialized texts, interation=0.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs solely for checking grammar and polishing writing.
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Figure 9: Visualization for distilled images, interation=3000.

a group of friends relaxing and enjoying a nice sunny day in the park
pitcher caught just after his pitch, body still in pose

guitarist and drummer on stage at a concert

grilling ribs, chicken kabobs, and vegetable kabobs

contortionist in strange checkered outfit wearing a white mask

little girl kicking rocks on the beach with her dog

women sitting on a couch drinking beer

a child wearing blue tee-shirt playing with an orange pinata without a blindfold

several men are playing ice hockey in an arcna

an orchestra performs

boy takes a bath with diving mask and snorkel

runners at a marathon running a race heading for the finish line

dogs running and playing in a grassy area

aman jumps in the air on his skateboard

old couple walking through a field

young white male child with blond-hair in a red shirt coloring with crayons outside with an adult
a girl with dark hair is gazing out the window of a train car

two men standing outside of a brick building

small children in a third world country sitting together

many people out on the street on a clear day riding bikes and walking

mother and daughter playing a board game

two women looking at information in a spiral booklet

a smiling man on a horse in front of brush and woods

abride is being helped into her white wedding dress by one of her bridesmaids, who is wearing a red dress
dog watches woman cating alone

a child wearing a brown coat, red hat and snow boots on top of a snow pile near a tree on the corner of a street intersection
asian schoolgirl carrying her bags and a musical instrument

kid playing near water fountain

children playing ball in a green field on a sunny day

2 ladies one has her hands on her hips smiling and the other one is holding something up with her other hand behind her
climber climbing an ice wall

two green bay packers hi-five to celebrate a touchdown

their are three women at a desk and the women with the long braid looks in the microscope

a kickboxer practicing on the heavy bag

middle-aged hispanic woman sweeping a sidewalk

black women make cloths in their home

female police officers wearing sunglasses

mother holding newborn infant between her grandparents while sitting on a couch

a group of people at the beach jumping in the air simultancously for the camera

a woman holds a baby while lying on a couch

a man and woman sit on a park bench

a child in a blue shirt running under a fountain

asian man drinking at a booth in a restaurant

formula one cars racing which the red car seems to be winning

a bride and groom cutting the cake at their wedding

a running greyhound

aman in dark colored clothing skies over ledge, hanging in midair

tourists walking a german side street where souvenirs are sold

a woman showing a small dog to an infant

group of people outside in the city videotaping a show

Figure 10: Visualization for distilled texts, interation=3000.

16



