
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIERARCHICAL OBJECT-ORIENTED POMDP PLAN-
NING FOR OBJECT REARRANGEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We present an online planning approach and a new benchmark dataset for solving
multi-object rearrangement problems in partially observable, multi-room environ-
ments. Current object rearrangement solutions, primarily based on Reinforcement
Learning or hand-coded planning methods, often lack adaptability to diverse chal-
lenges. To address this limitation, we propose a Hierarchical Object-Oriented
Partially Observed Markov Decision Process (HOO-POMDP) planner that lever-
ages object-factored belief representations for efficient multi-object rearrangement.
This approach comprises of (a) an object-oriented POMDP planner generating
sub-goals, (b) a set of low-level policies for sub-goal achievement, and (c) an
abstraction system converting the continuous low-level world into a representation
suitable for abstract planning. To enable rigorous evaluation of rearrangement
challenges, we introduce MultiRoomR, a comprehensive benchmark featuring
diverse multi-room environments with varying degrees of partial observability
(10-30% initial visibility), blocked paths, obstructed goals, and multiple objects
(10-20) distributed across 2-4 rooms. Experiments demonstrate that our system
effectively handles these complex scenarios while maintaining robust performance
even with imperfect perception, achieving promising results across both existing
benchmarks and our new MultiRoomR dataset.

1 INTRODUCTION

Multi-object rearrangement with egocentric vision in realistic simulated home environments is
a fundamental challenge in embodied AI, encompassing complex tasks that require perception,
planning, navigation, and manipulation. This problem becomes particularly demanding in multi-room
settings with partial observability, where large parts of the environment are not visible at any given
time. Such scenarios are ubiquitous in everyday life, from tidying up households to organizing
groceries, making them critical for the development of next-generation home assistant robots.

Existing approaches to multi-object rearrangement typically fall into two categories: Reinforcement
Learning (RL) methods and hand-coded planning systems. RL methods (Weihs et al., 2021) struggle
with scaling to complex scenarios, while modular approaches that decompose tasks into subtasks (Gu
et al., 2022) have different limitations. Some use predetermined skill sequences, while others employ
greedy planners (Trabucco et al., 2022), restricting their ability to determine optimal object interaction
orders or to handle novel problems such as blocked paths and obstructed goals. A more general
approach that incorporates high-level planning would enable systems to handle these challenges
without extensive retraining, particularly important for household robots operating in environments
where such obstacles are common.

Although significant progress has been made in rearrangement, the majority of current research
focuses on single-room settings or assumes that a large number of objects are visible at the beginning
of the task, either through a third-person bird’s eye view (Ghosh et al., 2022) or a first-person
view where most of the room is visible (Trabucco et al., 2022). However, as we move towards
the more practical version of the problems, such as cleaning a house, the majority of the objects
to be manipulated are not initially visible, and existing solutions begin to falter. Rearrangement
in realistic multi-room environments introduces several key challenges: 1) uncertainty over object
locations, as the initial positions of objects are unknown; 2) execution efficiency of searching for
objects while simultaneously moving them to the correct goal locations; 3) scalability of planning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

over increasing numbers of objects and rooms; 4) extensibility to scenarios involving blocked goals or
blocked paths; and 5) graceful handling of object detection failures. To enable rigorous evaluation of
these challenges, we introduce MultiRoomR, a comprehensive benchmark dataset featuring diverse
multi-room environments with varying degrees of partial observability, blocked paths, obstructed
goals, and multiple objects distributed across rooms—scenarios that existing datasets like RoomR
(Weihs et al., 2021) do not adequately represent.

Figure 1: a) Agent’s ego-centric view at initialization.
b) Top-down view of the environment showing object
starting positions (dotted boxes) and goal positions (solid
boxes). Lines indicate paths between start and goal states.
Object 1’s path is blocked by object 2, and its goal loca-
tion is blocked by object 3. Object 3’s path is also blocked
by object 2, requiring a specific sequence: move object 2
first, then object 3, and finally object 1. Objects 4 and 5
block each other’s goals, requiring one to be temporarily
placed elsewhere before completing the swap.

To effectively tackle these complex chal-
lenges in multi-room settings, we pro-
pose a Hierarchical Object-Oriented Par-
tially Observable Markov Decision Pro-
cess (HOO-POMDP) planner that com-
bines strategic high-level planning with
specialized low-level execution. Our ap-
proach employs a high-level POMDP
planner that reasons under uncertainty
while leveraging object-factored belief
updates, paired with a set of specialized
low-level policies for executing tasks.

The high-level planning with uncertainty
enables joint optimization over explo-
ration and object manipulation decisions,
determining when to search for unseen
objects and when to rearrange detected
ones based on the current belief state.
Meanwhile, the low-level policies han-
dle the execution details of navigation
and manipulation, freeing the high-level
planner from concerns about continuous
action spaces and perceptual representa-
tions. This separation of concerns al-
lows each component to focus on its
strengths—strategic decision-making at
the high level and specialized task execu-
tion at the low level. Our main contribu-
tions include:

• A hierarchical planner(HOO-POMDP) that combines an object-oriented POMDP planner with
efficient belief updates and state abstraction for scalable rearrangement in multi-room environments.

• A new dataset MultiRoomR featuring blocked path problems and expanded room configurations
alongside existing rearrangement challenges.

• An empirical evaluation of the system in an existing and the new MultiRoomR dataset in AI2Thor.

2 RELATED WORK

Rearrangement: Rearrangement is the problem of manipulating the placement of objects by picking,
moving, and placing them according to a goal configuration. In this work, we are mainly concerned
with the rearrangement of objects by mobile agents in simulated environments such as AI2Thor
(Kolve et al., 2017) and Habitat (Szot et al., 2021) and ThreeDWorld (Gan et al., 2020). There are
many versions of the rearrangement problem in literature. In tabletop rearrangement, a robot hand
with a fixed base moves objects around to achieve a certain configuration in a limited space (Zhai
et al., 2024; Huang et al., 2024). Many current approaches for rearrangement by mobile agents work
by finding the misplaced objects and then use greedy planners to decide what order to move the
objects in (Gadre et al., 2022; Trabucco et al., 2022; Sarch et al., 2022). This can lead to a high
traversal cost since it is not explicitly optimized. The above works and others such as (Mirakhor et al.,
2024a) are also limited to a single-room setting where most objects are visible to the agent.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Rearrangement has also been studied from the Task and Motion Planning (TAMP) perspective (Garrett
et al., 2020a; 2021; 2020b). Garrett et al. (2020b) is limited to a single-room kitchen problem and
assumes perfect detection of objects. Other works, such as Taskography Agia et al. (2022), focus
only on the task planning part and use Learning to Plan (L4P) Silver et al. (2021), Mangannavar
et al. (2025) methods to improve rearrangement. Unlike most previous work, our proposed solution
optimizes the traversal cost and addresses multi-room settings and imperfect object detection in
an integrated POMDP framework. Tekin et al. (2023) and Mirakhor et al. (2024b) address the
multi-room rearrangement problem. However, the decision process of when to explore and when
to move an object in (Tekin et al., 2023) is fixed and assumes perfect object detection. Our planner
optimally combines exploration and manipulation, and naturally addresses object detector failures.
Mirakhor et al. (2024b) assume that objects are always on top of or inside containers. This limits its
extendability to handling new problems, such as blocked paths where the objects could be in the path
of other objects and outside containers. Our approach naturally allows for these possibilities. Large
language models (LLMs) have also been used to solve rearrangement (Chang et al., 2024), but the
advantage of a planner is that it provides a completeness guarantee - given enough time, the planner
will find a solution whereas an LLM does not provide the same guarantee.

POMDP Planning: Our work builds upon Wandzel et al. (2019)’s object-oriented POMDP (OO-
POMDP) for 2D multi-object search, later extended to 3D environments by Zheng et al. (2023) and
Zheng et al. (2022). While these OO-POMDP approaches are limited to search tasks, we extend the
formulation to include rearrangement actions with corresponding belief updates. Our HOO-POMDP
further introduces action abstraction, distinguishing it from existing hierarchical POMDP work (Ser-
rano et al., 2021) which lacks object-oriented belief maintenance. This combination of hierarchical
planning with object-oriented beliefs enables efficient planning for complex rearrangement tasks that
would be intractable in flat POMDP representations.

3 PROBLEM FORMULATION

Environment and Agent: Our agent is developed for the AI2Thor simulator environment (Kolve
et al., 2017). It consists of a simulated house with a set of objects located in one or more rooms. The
agent can take the following low-level actions: As = (MoveAhead, MoveBack, MoveRight,
MoveLeft, RotateLeft, RotateRight, LookUp, LookDown, PickObjecti, PlaceObject,
Startloc, Done). The Move actions move the agent by a distance of 0.25m. The Rotate ac-
tions rotate the agent pitch by 90 degrees. The Look actions rotate the agent yaw by 30 degrees.
Start action starts the simulator and places the agent at the given location, and the Done action ends
the simulation. After executing any of the actions, the simulator outputs the following information:
a) RGB and Depth images, 2) the agent’s position (x, y, pitch, yaw), and 3) whether the action was
successful. There are two types of objects in the world - interactable objects that can be picked and
placed, and receptacle objects that are not movable but can hold other objects.

Task Setup: Rearrangement is done in 2 phases. Walkthrough phase and rearrange phase. The
walkthrough phase is meant to get information about stationary objects. The 2D occupancy map is
generated in this phase, as well as the corresponding 3D Map. We get the size of the house (width
and length) from the environment and uniformly sample points in the environment. We then take
steps to reach these locations (if possible - some might be blocked). This simple algorithm ensures
we explore the full house. At each of the steps, we receive the RGB and Depth. Using this, we create
a 3D point cloud at each step and combine them all to get the overall 3D point cloud of the house
with stationary objects. We then discretize this point cloud into 3D map (M3D) voxels of size 0.25m,
we further flatten this 3D map into a 2D map (M2D) of grid cells (location in the 2D map is occupied
if there exists a point at that 2D location at any height in the 3D map). While doing this traversal,
we also get information about the receptacles by detector on the RGB images we receive during
this traversal. This ends the walkthrough phase, which needs to be done only once for any house
configuration of stationary objects - walls, doors, tables, etc. Then, objects are placed at random
locations (done using AI2Thor environment reinitialization). This is when the rearrangement phase
begins, with the planner taking the following as input: the map generated in the walkthrough phase,
the set of object classes to move, and their goal locations.

3.1 REARRANGEMENT AS A OBJECT ORIENTED POMDP (OO-POMDP) PROBLEM

POMDP: A POMDP is a 7-tuple (S,A, T,R, γ,O,Omodel) (Kaelbling et al., 1998). The state space
S is the set of states in which the agent and the objects in the environment can be. Action space A is

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the set of actions that can be taken in the environment. The transition function T (s, a, s′) = p(s′|s, a)
is the probability of reaching the state s′ when the action a is taken in the current state s. The
probability of observing z ∈ O after having taken action a in a state s is defined by the observation
model Omodel(s, a, z) = p(z|s, a). The reward function R(s, a) defines the reward received when
taking action a in state s, and γ is the discount factor. In a partially observed world, the agent does
not know its exact state and maintains a distribution over possible states, i.e., a belief state b. The
belief is updated when an action a is taken, and observation z is received with the following equation,
where η is the normalizing constant:

b′(s′) = ηOmodel(s
′, a, z)

∑
s∈S

T (s, a, s′)b(s) (1)

Object Oriented POMDP: Object-oriented POMDP factors the state and observations over the
objects. Each state s is represented as a tuple of its n objects s = (s1, . . . , sn), each observation
z = (z1, . . . , zn) and the belief state b is factorized as b =

∏n
i=0 bi (Wandzel et al., 2019).

Rearrangement as OO-POMDP: We now instantiate the rearrangement problem as an abstract
POMDP. In our definition of the abstract OOPOMDP, we make an object independence assumption -
that at any given time, the observation and state of any object do not depend on any other object. More
formally, P (zi|sj , zj , si) = P (zi|si), observation zi is independent of the states and observations of
other objects, conditioned on its own state si. Similarly, we also assume P (s′i|si, sj , a) = P (s′i|si, a)
where j ̸= i, i.e., the next state of object i only depends on its own previous state and the action.
This allows us to represent the state and observation factored by objects, which in turn helps make
independent belief updates for each object (Algorithm 1).
• State Space: We use a factored state space that includes the robot state sr, and the target

object states stargets. The complete state is represented as s = (sr, stargets). stargets =
(starget1 , . . . , stargetn) where n is the number of objects to be moved. stargeti = (loci, picki,
placelocs, is_held, at_goal, gi) : loci is the current location of the object, picki corresponds to
the location from where this object can be picked, placelocs corresponds to the set of locations
(absolute 2D coordinates) from where this object can be placed, and gi is the goal location of the
object. All locations are discretized grid coordinates in M2D.

• Action Space: The action space consists of abstract navigation and interaction actions.
A = {MoveAB , Rotateangle, PickPlaceObjecti−goalloc , Done}

• Transition Model :
– MoveAB - The move action moves the agent from location A to location B.
– Rotateangle - The rotate action rotates the agent to a given angle.
– PickPlaceObjecti−goalloc - The PickPlace action picks Objecti from the current position of the

robot and places it at the given goalloc.
• Observation Space: We use a factored observation space similar to state space factorization. Each

observation can be divided into the robot observation and object observation z = (zrobot, zobjects),
where zobjects = (ztarget1 , . . . ztargetn). Each observation ztargeti ∈ L ∪ Null - is a detection of
the object i’s location or Null based on the detector’s output for object i (L is the set of all possible
locations in M2D).

• Observation model: By definition of z above, Pr(z|s) = Pr(zr|sr) Pr(zobjects|stargets) and
Pr(zr|sr) = 1 since the robot pose changes deterministically. Under the conditional independence
assumption, Pr(zobjects|s) can be compactly factored as follows:
Pr(zobjects|s) = Pr(ztarget1 , . . . , ztargetn |starget1 , . . . stargetn , sr) (2)

=

n∏
i=1

Pr(ztargeti |starget1 , . . . , stargetn , sr) (all ztargeti are independent) (3)

=

n∏
i=1

Pr(ztargeti |stargeti , sr) (ztargeti does not depend on state of other objects)

(4)

Pr(zi|stargeti , sr) is defined differently for each object based on the object detector’s capability to
detect the object of interest and the current state. More details are in A.1.2.

• Reward Function:
– MoveAB : The cost of moving from location A to B [Cost = −1 ∗Na (where Na number of

required actions)].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

– Rotateangle: The cost of rotating the agent from the current rotation to the final given angle.
– PickPlaceObjecti−goalloc : Cost of moving from current location to goal location + cost of pick

+ cost of place. It gets an additional reward of 50 if the object is being placed at its goal location
gi and this gi is free in the current state.

– Done - This action receives a reward of 50 if all objects have been placed at their goal location
and −50 otherwise.

4 HIERARCHICAL OBJECT ORIENTED POMDP (HOO-POMDP) PLANNING

This section presents our hierarchical planning solution designed to solve multi-object rearrangement
problems in partially observable, multi-room simulated home environments.

Algorithm 1: HOO-POMDP Planner
1. env ← INITIALIZEENV() ;
2. agent← INITIALIZEAGENT()
3. belief ← INITIALIZEBELIEFSTATE()
4. loc← RANDOM()
5. lowLevelAct← STARTloc

6. while NOT TASKCOMPLETE() do
7. rgb, depth← env.EXECUTE(lowLevelAct)
8. obs← PERCEPTIONSYSTEM(rgb, depth)
9. belief ← BELIEFUPDATE(belief, obs,

lowLevelAct)
10. absState← GENERATEABSSTATE(belief)
11. absAct← POUCTPLANNER(absState,

belief)
12. if absAct = DONE then
13. return
14. lowLevelPolicy ← GETLOWLEVELPOL-

ICY(absAct)
15. lowLevelAct← lowLevelPolicy.GETACT

(absAct, rgb, depth)

Algorithm 2: BELIEFUPDATE

1. Input: beliefState b, observation z, action a
2. for each object i in b do
3. for each possible state sij of object i do
4. if action ∈ {Pick, Place} and successful then
5. if action is pick then
6.

b′i(sij)←

{
1 if si = action.agentLocation
0 otherwise

7. if action is place then
8.

b′i(sij)←

{
1 if sij = action.goalLocation
0 otherwise

9. else
10. b′i(sij)← p(zi|sij)bi(sij)
11. end if
12. end for
13. end for
14. return b′

Figure 2: The agent receives RGB and depth images
from environment at the start. The vision module creates
the observation from this input and sends it to the belief
update system. Belief is updated based on observation,
and an abstract state is generated, which is sent to the
OO POMDP Planner that outputs sub-goals. The sub-
goals are used by the low-level policy executors to plan
and execute low-level actions in the environment.

Overview: Once the initial list of recepta-
cles and M3D have been generated, they,
along with the goal information, are sent
to the HOO-POMDP planner. The sys-
tem operates in a cyclic fashion, integrat-
ing perception, belief update, state abstrac-
tion, abstract planning, and action execu-
tion (see Figure 2 and Algorithm 1). First,
the perception system detects objects in the
RGB and depth image and outputs the ob-
servation z, which is used by the belief up-
date system to update its belief state. The
belief state consists of the probability of
each object being at a certain location in
M2D. The abstraction system uses this in-
formation to update its abstract state. The
updated abstract state is sent to the abstract
POMDP planner, which outputs a sub-goal
that corresponds to a low-level policy. The
low-level policy executor executes the low-
level policy corresponding to the sub-goal.
This might involve navigating to a specific location, grasping an object, or placing an object in a new
position. After each action is executed, the environment state changes. The agent receives new output
from the environment, and the cycle repeats until the overall rearrangement task is completed. In the
rest of this section, we will discuss each of the subsystems and their interaction.

Abstract OOPOMDP Planner: Given a task defined as an abstract OOPOMDP and an initial
abstract state, we use partially observable UCT (PO-UCT) (Silver & Veness, 2010) to search through

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the space of abstract actions to find the best sub-goal. POUCT extends the UCT algorithm Kocsis
& Szepesvári (2006) to partially observable settings, building a search tree over histories rather
than states, where a history is a sequence of actions and observations ht = (a1, z1, . . . , at, zt). For
each history node T (h), the algorithm maintains a count variable N(h) and a value variable v(h)
representing visit frequency and expected value. The algorithm samples a state from the belief space

b and selects the action with the best value using V (ha) = V (ha)+ c
√

logN(h)
N(ha) when all child nodes

exist. Otherwise, it uses a random rollout policy for simulations before updating the tree and selecting
the best action. The full algorithm appears in Algorithm 3 in the Appendix.

In our HOO-POMDP planner, abstract actions are initialized based on the abstract state for each
object si = (loci, picki, placelocs, is_held, at_goal). A separate MoveAB is initialized with
A = agent_pos and B = all pick locations defined for all objects. Rotateangle - for all objects, less
than 2m from the agent, the angle is computed based on the agent’s required orientation to view the
object from its current position. PickPlace - is defined for each object where the agent is less than
2m away from that particular object, for all locations in the placelocs as goalloc initializing a set of
PickPlace actions for each object.

Low-Level Policy Executor: Each sub-goal (instantiated abstract action) output by the abstract
planner corresponds to a policy. When the planner outputs a sub-goal, the information in the sub-goal
is used to initialize the low-level policy. The output from the low-level policy is a sequence of
low-level actions. We then execute the first low-level action in this sequence in the environment.

The Move sub-goal corresponds to the Move policy, which uses the A∗ algorithm to move from
location A to B. The Rotate policy also uses the A∗ algorithm. The PickPlace policy consists of 2 RL
agents and A∗ that picks the object from the current location and places it at the goal location.
• Sub-goal MoveAB gives the Move policy the location B to move to from location A, which is used

to initialize the A∗ algorithm and get a sequence of low-level move actions to reach goal location
B. The action space available to the system is all the Move actions and all the rotate actions. It
uses an Euclidian distance-based heuristic.

• Sub-goal Rotateangle gives the Rotate policy the final angle to be at, which is used as the final state
the A∗ system must reach. A∗ outputs a sequence of rotate actions.

• Sub-goal PickPlaceObjecti−goalloc provides the object to interact with and which location to place
it at. The policy takes this information as input and outputs a sequence of actions consisting of
Pick, Place, and navigation actions. The PickPlace consists of 3 separate components a) An RL
model trained to pick an object, b) the A∗ navigation model to go its destination c) An RL model
trained to place the object when the agent is near the goal. All 3 of these run sequentially and make
up the PickPlace Policy. It is designed this way to improve modularity and reduce the complexity
of each part. All details of the RL policy training are described in appendix A.5

Perception System: Once the agent executes the low-level action, it receives an RGB and Depth
image. A detector is used to detect objects in the RGB image, and the depth map is used to get their
3D location in the world. This is used to generate the object-oriented observation z = (z1, . . . , zn).

Belief Update: Algorithm 2 presents the belief update function for our HOO-POMDP. The
UpdateBelief function takes as input the current belief state b, the performed action a, and
the received observation z (Line 1.). For each object i in the belief state and each possible state sij
(j = 1, . . . , L, where L is the set of all its possible locations in M2D) of that object, the algorithm
updates the belief based on the action type and its success status. For successful ‘pick’ and ‘place’
actions (Line 4.), the belief update is deterministic. When a ‘pick’ action succeeds, it assigns a belief
of 1 if the object’s state corresponds to the agent’s location and 0 otherwise (Line 6.). For successful
‘place’ actions, it sets the belief to 1 if the object’s state matches the action’s goal location, and 0
otherwise (Line 8.). For navigation actions or when ‘pick’/‘place’ actions fail, the algorithm applies a
probabilistic update using the observation model p(zi|sij) (details in Appendix A.1.2) and the prior
belief bi(sij) (Line 10.).

Generating Abstract State: We now have a belief state over the set of all possible locations for each
object. We need to generate the abstract object-wise state consisting of object location information
and their corresponding pick-and-place information. The information that needs to be computed for
each object is as follows: picki, placelocs, is_held, at_goal.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The value for is_held comes from the previous low-level action and previous state. If the previous
state had is_held as false and low-level action was to pick the object of interest, is_held is set to
true. If the previous action was not a pick or a pick action for a different object, then the variable
remains unchanged. If the previous action was place and is_held is true, then it is set to False.

The value for at_goal is copied from the previous state if the last low-level action was not the place
action. If it was, and if is_held was true in the previous state, then at_goal is set to true.

The values for placelocs are sampled from the object goal location and three nearby receptacles as
alternate goal locations for the object. For each of these goal locations, a location from where the
object can be placed is sampled.

The location picki is sampled based on the belief distribution of where the object could be. It is
the location from which the object can be picked. If the distribution over location is spread out, we
sample multiple locations (by ensuring each sampled location is far from the other sampled locations
for the same object). For both the locations in placelocs and for the location picki, we then check if
they are reachable. If they are not, those locations are discarded.

This sampling method enables our system to handle scenarios involving blocked goals, object swaps,
and blocked paths effectively. If an object’s path is blocked, the planner will receive information
indicating that there is no accessible location from which to pick up the object, necessitating the
relocation of other objects first. When placing objects, we provide alternative receptacle locations.
This approach allows us to move an object to another location if its goal position is blocked,
thereby freeing up its current location. This strategy addresses both blocked goal and swap scenarios.
Furthermore, this sampling process enhances our system’s extensibility. We can incorporate additional
constraints based on new object properties. For example, if opening an object requires interaction from
a distance, the sampler can ensure that the sampled location is sufficiently far to enable successful
opening. After creating this abstract state, it is sent to the abstract planner, and the cycle starts again.

5 EXPERIMENTS

5.1 DATASETS

• RoomR: This is the rearrangement challenge dataset proposed by Batra et al. (2020). It contains
single-room environments with 5 objects to be rearranged. It has 25 room configurations with 40
different rearrangements for each room configuration.

• ProcTHORRearrangement (Proc): This is a dataset present in AI2Thor, which is bigger in
terms of the rooms (two rooms, five objects) and, hence, partial observability. It has 125 room
configurations with 80 rearrangements for each room configuration.

• Multi RoomR: We introduce a novel dataset designed to address more challenging problems,
featuring larger environments (2-4 rooms) and an increased number of objects (10-20 objects). It
has 400 room configurations. More details in Appendix A.2.5.

5.2 METRICS

• Scene Success (SS): 1 if all objects have been moved to the correct goal locations, 0 otherwise.

• Object Success (OS): 100* (Total Objects successfully moved)/(Total objects to move) - this
metric captures the percentage of objects moved to the correct goal location.

• Total Actions taken (TA): The average number (rounded up) of actions taken during successful
runs where the scene was fully rearranged, which is a measure of the efficiency of the system.

5.3 METHODS AND BASELINES DEFINITION

• HOOP (HOO-POMDP Planner): Our proposed solution. In this, we will solve the rearrangement
challenge where the agent handles perception uncertainty (the detector fails to detect objects in the
visual field) along with the object’s position uncertainty using the proposed HOO-POMDP planner.

• Frontier Exploration + Hand-Coded Interaction (FHC) : This baseline employs a frontier
exploration strategy that systematically explores the environment until objects that need rearrange-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison between all methods. The difficulty is represented in terms of the following: a) #BP:
Number of objects blocking the path that need to be moved out of the way, b) #Rm: Number of rooms in the
environment, c) #V: Number of objects initially visible. NA: Not applicable as no scene was fully rearranged.
NC - Not computable as the method cannot handle blocked paths

.
Methods Ablation Oracle Settings

Dataset Objs #BP #Rm #V HOOP FHC VRR MSS HOOP-HP PK PD

SS↑ OS↑ TA↓ SS↑ OS↑ TA↓ SS↑ OS↑ TA↓ SS↑ OS↑ TA↓ SS↑ OS↑ TA↓ SS↑ OS↑ TA↓ SS↑ OS↑ TA↓

RoomR 5 0 1 3-4 49 71 211 38 58 269 7 31 256 21 44 267 13 33 302 63 88 176 62 87 189

Proc 5 0 2 2-3 46 68 352 32 61 411 2 19 382 14 29 395 9 29 410 60 82 203 60 81 269

Multi
RoomR

10 0 2 2-3 32 65 710 20 44 931 0 13 NA 8 25 920 5 25 1029 41 78 457 40 78 529
10 1 2 2-3 21 49 789 12 38 993 0 9 NA NC NC NC 2 19 1092 33 69 489 29 67 587

10 0 3-4 1-2 30 62 1189 19 34 1345 0 8 NA 0 14 NA 3 16 1408 39 75 726 37 74 834
10 1 3-4 1-2 18 44 1321 9 26 1490 0 5 NA NC NC NC 1 7 1549 32 70 789 31 70 985

15 0 3-4 2-3 22 59 1228 12 31 1605 0 9 NA 0 11 NA 0 5 NA 32 78 895 30 74 921
15 1 3-4 2-3 14 41 1416 7 23 1886 0 5 NA NC NC NC 0 6 NA 29 71 988 25 69 965

20 0 3-4 2-4 17 55 1621 0 18 NA 0 6 NA 0 9 NA 0 5 NA 27 75 1168 27 74 1197
20 1 3-4 2-4 10 36 1786 0 11 NA 0 4 NA NC NC NC 0 4 NA 22 70 1307 20 68 1336

ment are discovered. It uses a confidence-based approach where an object is considered detected
when the belief probability exceeds 70%. Once detected, the object is immediately rearranged, and
the system resumes exploration for the next undetected object. More details in appendix A.6

• VRR: This is the model from Weihs et al. (2021) trains and RL agent using PPO (Schulman et al.,
2017) and imitation learning with RGB images as input, builds a semantic map using Active Neural
Slam (Chaplot et al., 2020) and outputs low-level actions directly.

• MSS : System from Trabucco et al. (2022) first builds a 3D map of the whole world, then navigates
to each object that needs to be moved and rearranges it.

• HOOP-HP (ablation): In this ablation setting, we remove the hierarchical planning and use the
POMDP planner to output low-level actions directly.

• Perfect Knowledge (PK): In this oracle setting of our system, we will start with all the information
about the world. That is, we know the initial locations of all the objects. This is the upper limit of
the system’s performance, as there is no uncertainty to manage.

• Perfect Detector with partial observability (PD): In this oracle setting of our system, we solve our
multi-object rearrangement problem with a perfect detector (objects in the visual field are detected
with 100% probability). The challenge is to find all objects and move them around efficiently.

Experimental setup: Each experimental setting was evaluated across 100 distinct rearrangement
configurations. For the RoomR dataset, we utilized 25 different room setups, with four rearrangement
configurations per setup. For the other datasets, we employed 100 unique room configurations, each
with one rearrangement configuration. In the blocked path scenario, all scenes contained a minimum
of one object that needed to be moved to its goal position from its initial location to enable the
rearrangement of other objects. Results for blocked goal and swap cases in table 3 in the appendix.

6 RESULTS AND DISCUSSION

Methods comparison: PK represents our agent’s upper performance bound with no uncertainty.
As shown in Table 1, the PD setting achieves comparable scene success and object success rates
to PK, demonstrating our POMDP planner effectively handles partial observability. The primary
difference appears in action count—PD requires more steps than PK due to PD actually needing
to look for the objects and plan with this uncertainty. HOOP system with imperfect detection
and partial observability shows reduced success rates as the planner must account for detection
failures. Despite only 50-60% detection success across object classes, HOOP still solves many
problems comparable to PD, demonstrating its effectiveness in handling detector failures. The
increased exploration necessitated by detector failures results in more steps than other methods. The
substantial performance gap between HOOP and HOOP-HP demonstrates the critical importance of
our hierarchical abstraction approach.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Comparison to baselines : Our system significantly outperforms all baselines, demonstrating the
clear advantages of a principled planning approach. While VRR’s pure reinforcement learning
strategy struggles to scale beyond simple environments, failing dramatically as complexity increases,
both hand-coded methods (FHC and MSS) also show substantial limitations. FHC not only struggles
with complex spatial reasoning but also fails to handle object detection failures effectively, as it lacks
a belief-based framework to account for perceptual uncertainty. MSS’s rigid explore-then-rearrange
strategy prevents it from addressing blocked paths and causes inefficient execution even in simpler
scenarios. These results highlight that planning-based approaches provide essential flexibility and
robustness for real-world rearrangement tasks where uncertainty and complexity are inevitable,
outperforming both end-to-end learning and hand-engineered heuristic methods.

It is important to note that our system addresses a variant of the multi-object rearrangement problem
that differs in key aspects from those tackled by existing baselines. The primary distinction is that
we are given information about the classes of objects to be moved, whereas other systems, VRR
(Weihs et al., 2021) and MSS (Trabucco et al., 2022)operate without this knowledge. On the other
hand, our problem formulation introduces its own set of challenges. In particular, while existing
systems report initial visibility of approximately 60% ((Mirakhor et al., 2024b), Table 1) of target
objects at the outset of their tasks, only about 20% of the objects are initially visible in our problem
settings in MultiRoomR, necessitating more extensive and strategic exploration. This reduced initial
visibility significantly increases the complexity of our task in terms of efficient exploration and belief
management, and underscores the effectiveness of our approach.

Comparison across datasets : Our system maintains relatively consistent performance across
datasets when controlling for room and object count. The RoomR (single room) and Proc (two rooms)
datasets show similar success rates despite differing room counts. As we scale to MultiRoomR with
more objects, the object success rate decreases gradually, while the scene success drops more sharply
since it requires all objects to be successfully rearranged.

Performance across challenges : The blocked path variants consistently show lower success rates
due to the increased complexity and limitations in our low-level manipulation policy, which struggles
more with floor objects than tabletop ones. The required PickPlace actions increase for blocked path
scenarios as the agent must execute intermediate movements to clear pathways.

Error analysis : Most failures stem from two factors: low-level policy limitations in pick/place
actions and belief estimation errors from detector failures. When the detector misses an object
multiple times, our belief about its presence decreases, making the planner unlikely to revisit that
area. False positives can also cause manipulation of incorrect objects. Despite these challenges, our
approach significantly outperforms baselines across diverse scenarios.

Limitations: Our system’s object independence assumption fails in cluttered environments, where
object states and observations are influenced by nearby objects. This requires modifying our object-
oriented belief update to handle these interactions. HOO-POMDP also cannot handle an unknown
class of objects. While it is easy enough to categorize all such objects into a single ‘unknown’ class,
the difficult part is to plan to find an empty space to move the unknown object to.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel Hierarchical Object-Oriented POMDP Planner (HOO-POMDP)
for solving multi-object rearrangement problems in partially observable, multi-room environments.
Our approach decomposes the complex task into a high-level abstract POMDP planner for generating
sub-goals and low-level policies for execution. Key components include an object-oriented state
representation, a belief update that handles perception uncertainty, and an abstraction system that
bridges the gap between continuous and discrete planning. Experimental results across multiple
datasets demonstrate the effectiveness of our approach in handling challenging scenarios such as
blocked paths and goals. HOO-POMDP showed robust performance in terms of success rate and
efficiency comparable to oracle baselines with perfect knowledge or perfect detection. Notably,
our method scaled well to environments with more objects and rooms. Future work could partially
relax our object independence assumption to better reflect real-world scenarios and local object
dependencies. Another key direction for future work is deploying our planner on physical robots by
replacing the reinforcement learning controller with a low-level robot controller.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Christopher Agia, Krishna Murthy Jatavallabhula, Mohamed Khodeir, Ondrej Miksik, Vibhav Vineet,
Mustafa Mukadam, Liam Paull, and Florian Shkurti. Taskography: Evaluating robot task planning
over large 3d scene graphs. In Conference on Robot Learning, pp. 46–58. PMLR, 2022.

Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J Davison, Jia Deng, Vladlen Koltun, Sergey
Levine, Jitendra Malik, Igor Mordatch, Roozbeh Mottaghi, et al. Rearrangement: A challenge for
embodied ai. arXiv preprint arXiv:2011.01975, 2020.

Matthew Chang, Gunjan Chhablani, Alexander Clegg, Mikael Dallaire Cote, Ruta Desai, Michal
Hlavac, Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi, Priyam Parashar, et al. Partnr:
A benchmark for planning and reasoning in embodied multi-agent tasks. arXiv preprint
arXiv:2411.00081, 2024.

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan Salakhutdinov.
Learning to explore using active neural slam. arXiv preprint arXiv:2004.05155, 2020.

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador, Winson Han,
Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale embodied ai
using procedural generation. Advances in Neural Information Processing Systems, 35:5982–5994,
2022.

Samir Yitzhak Gadre, Kiana Ehsani, Shuran Song, and Roozbeh Mottaghi. Continuous scene
representations for embodied ai. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14849–14859, 2022.

Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian
De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, et al. Threedworld: A platform
for interactive multi-modal physical simulation. arXiv preprint arXiv:2007.04954, 2020.

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Pddlstream: Integrating
symbolic planners and blackbox samplers via optimistic adaptive planning. In Proceedings of the
international conference on automated planning and scheduling, volume 30, pp. 440–448, 2020a.

Caelan Reed Garrett, Chris Paxton, Tomás Lozano-Pérez, Leslie Pack Kaelbling, and Dieter Fox.
Online replanning in belief space for partially observable task and motion problems. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5678–5684. IEEE, 2020b.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. Annual review of
control, robotics, and autonomous systems, 4(1):265–293, 2021.

Sourav Ghosh, Dipanjan Das, Abhishek Chakraborty, Marichi Agarwal, and Brojeshwar Bhowmick.
Planning large-scale object rearrangement using deep reinforcement learning. In 2022 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2022.

Jiayuan Gu, Devendra Singh Chaplot, Hao Su, and Jitendra Malik. Multi-skill mobile manipulation
for object rearrangement. arXiv preprint arXiv:2209.02778, 2022.

Baichuan Huang, Xujia Zhang, and Jingjin Yu. Toward optimal tabletop rearrangement with multiple
manipulation primitives. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 10860–10866. IEEE, 2024.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
for Visual AI. arXiv, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rajesh Mangannavar, Stefan Lee, Alan Fern, and Prasad Tadepalli. Graph neural network based
action ranking for planning, 2025. URL https://arxiv.org/abs/2412.04752.

Karan Mirakhor, Sourav Ghosh, Dipanjan Das, and Brojeshwar Bhowmick. Task planning for visual
room rearrangement under partial observability. In The Twelfth International Conference on
Learning Representations, 2024a.

Karan Mirakhor, Sourav Ghosh, Dipanjan Das, and Brojeshwar Bhowmick. Task planning for object
rearrangement in multi-room environments. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10350–10357, 2024b.

Gabriel Sarch, Zhaoyuan Fang, Adam W Harley, Paul Schydlo, Michael J Tarr, Saurabh Gupta, and
Katerina Fragkiadaki. Tidee: Tidying up novel rooms using visuo-semantic commonsense priors.
In European conference on computer vision, pp. 480–496. Springer, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Sergio A Serrano, Elizabeth Santiago, Jose Martinez-Carranza, Eduardo F Morales, and L Enrique
Sucar. Knowledge-based hierarchical pomdps for task planning. Journal of Intelligent & Robotic
Systems, 101:1–30, 2021.

David Silver and Joel Veness. Monte-carlo planning in large pomdps. Advances in neural information
processing systems, 23, 2010.

Tom Silver, Rohan Chitnis, Aidan Curtis, Joshua B Tenenbaum, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling. Planning with learned object importance in large problem instances using graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 11962–
11971, 2021.

Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah
Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, et al. Habitat 2.0:
Training home assistants to rearrange their habitat. Advances in neural information processing
systems, 34:251–266, 2021.

Engin Tekin, Elaheh Barati, Nitin Kamra, and Ruta Desai. Effective baselines for multiple
object rearrangement planning in partially observable mapped environments. arXiv preprint
arXiv:2301.09854, 2023.

Brandon Trabucco, Gunnar Sigurdsson, Robinson Piramuthu, Gaurav S Sukhatme, and Ruslan
Salakhutdinov. A simple approach for visual rearrangement: 3d mapping and semantic search.
arXiv preprint arXiv:2206.13396, 2022.

Arthur Wandzel, Yoonseon Oh, Michael Fishman, Nishanth Kumar, Lawson LS Wong, and Stefanie
Tellex. Multi-object search using object-oriented pomdps. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 7194–7200. IEEE, 2019.

Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and Roozbeh Mottaghi. Visual room rearrangement.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
5922–5931, 2021.

Guangyao Zhai, Xiaoni Cai, Dianye Huang, Yan Di, Fabian Manhardt, Federico Tombari, Nassir
Navab, and Benjamin Busam. Sg-bot: Object rearrangement via coarse-to-fine robotic imagination
on scene graphs. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
4303–4310. IEEE, 2024.

Kaiyu Zheng, Rohan Chitnis, Yoonchang Sung, George Konidaris, and Stefanie Tellex. Towards
optimal correlational object search. In 2022 International Conference on Robotics and Automation
(ICRA), pp. 7313–7319. IEEE, 2022.

Kaiyu Zheng, Anirudha Paul, and Stefanie Tellex. Asystem for generalized 3d multi-object search. In
2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 1638–1644. IEEE,
2023.

11

https://arxiv.org/abs/2412.04752
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 OBJECT DETECTION

A.1.1 DETECTION MODEL : YOLOV10

We collect data from the AI2Thor simulator. We do this by placing the agent in random locations
in 500 scenes and extracting the RGB images along with the ground truth object bounding box
annotations from the simulator. We have 50 pickupable object classes in all our scenes combined. We
train the YoloV10 detector (YoloV10-Large, with 25 million parameters) on 10,000 images collected
from these 500 scenes. It is trained for 500 epochs, batch size 16. It is trained on RTX 3080 for 12
hours.

A.1.2 OBSERVATION PROBABILITY FOR POMDP

The probability of each individual observation based on the current state is the following.

Pr(zi|stargeti , srobot) =



1.0− TP stargeti ∈ V(srobot) ∧ zi = null
δFP/|VE(r)| stargeti ∈ V(srobot) ∧ ∥zi − stargeti∥ > 3σ

δ ∗ TP stargeti ∈ V(srobot) ∧ ∥zi − stargeti∥ ≤ 3σ

1.0− FP stargeti /∈ V(srobot) ∧ zi = null
δFP/|VE(r)| stargeti /∈ V(srobot) ∧ zi ̸= null

The detection model is parameterized by

• TP: Is the True positive of the Detection model for object class i.
• FP: Is the False positive of the Detection model for object class i.
• r: is the average distance between the agent and the object for true positive detections.
• VE(r): It is the visual field of view of 90 degrees within distance r.
• δ : is the distance weight, it is 1 if detection is within VE(r), else δ = 1/d, where d is the distance

from the robot to the object.

The list of TP , FP , and r for the object classes in the dataset is presented in table 2.

A.2 MULTIROOMR DATASET DETAILS

A.2.1 OVERVIEW

Recent advancements in robotic rearrangement have been facilitated by datasets such as RoomR Batra
et al. (2020) and ProcThorRearrangement. However, these datasets exhibit significant limitations
that prevent them from capturing the complexity of real-world rearrangement scenarios. Specifically,
existing datasets are constrained in their scope, typically featuring only 5 objects and limited room
configurations (single room in RoomR, two rooms in ProcThorRearrangement). These constraints fail
to represent the challenges inherent in real-world environments, where rearrangement tasks frequently
span multiple rooms and involve numerous objects.

To address these limitations, we present MultiRoomR, a comprehensive dataset designed to bridge
three critical gaps in existing benchmarks. First, MultiRoomR emphasizes partial observability by
incorporating scenes with 2-4 rooms where most objects are not immediately visible, thereby ensuring
that systems must develop robust strategies for handling incomplete information. Second, the dataset
increases scene complexity by including 10-20 objects per environment, necessitating the development
of efficient and scalable solutions that can handle larger object sets without compromising optimality.
Third, MultiRoomR introduces realistic constraints such as blocked paths, with 50% of scenes
containing at least one object that obstructs access to other objects. This feature specifically tests
a system’s ability to reason about sequential manipulation, as encountered in practical scenarios
where intermediate object movements are necessary to complete the primary rearrangement task. By
incorporating these challenging aspects, MultiRoomR provides a more rigorous evaluation framework
that better aligns with real-world requirements. Systems that demonstrate strong performance on this

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 2: Performance Metrics by Class : TP = True Positive, FP = False positive, r = average distance

Class r (m) TP FP

AlarmClock 3.010 0.383 0.022
Apple 3.298 0.065 0.002
BaseballBat 2.941 0.499 0.011
BasketBall 2.631 0.336 0.003
Book 2.888 0.535 0.101
Bottle 2.733 0.465 0.006
Bowl 2.695 0.448 0.073
Box 3.977 0.225 0.012
Bread 1.523 0.082 0.010
ButterKnife 2.084 0.156 0.009
CD 2.082 0.085 0.001
Candle 3.325 0.048 0.004
CellPhone 2.137 0.327 0.006
CreditCard 1.107 0.042 0.002
Cup 2.505 0.513 0.012
DishSponge 1.714 0.306 0.003
Kettle 2.655 0.415 0.001
KeyChain 1.725 0.154 0.007
Knife 1.226 0.056 0.002
Ladle 2.333 0.015 0.000
Laptop 3.405 0.605 0.019
Lettuce 2.681 0.336 0.003
Mug 2.734 0.529 0.010
Newspaper 2.286 0.264 0.005
Pan 2.757 0.350 0.012
PaperTowelRoll 3.066 0.338 0.018
Pen 2.471 0.081 0.013
Pencil 1.853 0.040 0.015
PepperShaker 2.042 0.310 0.016
Pillow 3.615 0.683 0.037
Plate 2.278 0.355 0.010
Plunger 2.900 0.745 0.005
Pot 4.064 0.417 0.010
Potato 2.138 0.157 0.004
RemoteControl 2.176 0.324 0.025
SaltShaker 1.940 0.098 0.010
SoapBottle 3.147 0.519 0.038
Spatula 1.443 0.134 0.002
SprayBottle 2.744 0.085 0.031
Statue 3.095 0.650 0.033
TeddyBear 3.093 0.417 0.003
TennisRacket 3.111 0.128 0.017
TissueBox 4.087 0.286 0.003
ToiletPaper 2.806 0.383 0.006
Vase 3.230 0.699 0.095
Watch 1.661 0.210 0.006
WineBottle 2.903 0.667 0.003

dataset are likely to be more suitable for deployment in actual home environments, where partial
observability, multi-object manipulation, and complex spatial reasoning are commonplace challenges.
We also provide the dataset 1 and code 2 for the community to use. The dataset consists of 400 distinct
room configurations, with varying complexity in terms of room count and object arrangements. The
dataset composition and room configurations are presented in the rest of this section.

1Dataset submitted as part of supplementary material
2Link to code: https://anonymous.4open.science/r/ICML_POMDP_

rearrangement-4460/

13

https://anonymous.4open.science/r/ICML_POMDP_rearrangement-4460/
https://anonymous.4open.science/r/ICML_POMDP_rearrangement-4460/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2.2 DATASET CREATION CRITERIA

Data generation has 2 parts:

• Basic scene generation is done using ProcThor (Deitke et al., 2022). To increase task
complexity, we (1) add the extra condition, the average distance between an object and its
goal is above 25 steps, and (2) sample goal positions in different rooms for at least 50% of
the objects.

• Second, for generating blocked path scenes, we use the connected components algorithm.
We construct a connected graph of all 2D navigable points in the room. We then find 2*2
grid locations that, if not navigable, will make a portion of the house not reachable. Among
these possible options, we pick the grid that blocks the maximum number of objects from
the current starting location of the agent to ensure that not moving a blocking object (of size
2*2) renders a large number of objects inaccessible. We will add this in the appendix.

A.2.3 DATASET COMPOSITION

Figure 3: Range of percentage of objects visible at the beginning of a scene

• Total Size: 400 room configurations.
• Object Types: Comprehensive selection from AI2Thor environment (see Table 2)
• Object Selection Criteria: Includes the majority of AI2Thor objects, excluding objects too

small for reliable detection even at close range.
• Figure 3 shows the range of the percentage of objects visible at the beginning of the scene.

The lower the objects visible, the more exploration needs to be done thus making the problem
harder. It ranges between 10-40% in our dataset, where it is 60% in Mirakhor et al. (2024b)
Table 1. This implies, only 20-30% of objects are visible in the beginning for two-room
scenes and so on for other room settings.

A.2.4 ROOM CONFIGURATION DISTRIBUTION

Two-Room Configurations

• Total configurations: 200
• Objects per configuration: 10
• Initial visibility: 20-30% of objects visible at the beginning of the scene

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Path characteristics:

– 50% contain blocked paths.
– 10 rearrangements per configuration.

Three-Room Configurations

• Total configurations: 100
• Path characteristics:

– 50% contain blocked paths.
– 30 rearrangements per configuration.
– Distribution: 10 rearrangements each for 10, 15, and 20 objects.
– Initial visibility: 10-20% of objects visible at the beginning of the scene

Four-Room Configurations

• Total configurations: 100
• Path characteristics:

– 50% contain blocked paths.
– 30 rearrangements per configuration.
– Distribution: 10 rearrangements each for 10, 15, and 20 objects.
– Initial visibility: 10-20% of objects visible at the beginning of the scene

A.2.5 OBJECT PLACEMENT CRITERIA

1. Room-wide Movement Requirement: Each room must contain at least one object requiring
movement, ensuring comprehensive exploration by the agent.

2. Blocking and Swapping Scenarios: Configurations include:

• Objects blocking goal locations of other objects.
• Objects mutually blocking each other’s goals (swap cases).

3. Path Blocking Optimization: In scenes with blocked paths, blocking objects are strate-
gically placed to maximize inaccessible house area such that at least one object must be
moved out of the way to access all objects.

A.3 POUCT

A.4 QUALITATIVE RESULTS

We test our system with different depths for the MCTS planner to see how much look-ahead affects
the performance of our system. MCTS search depth is one of the important factors determining the
amount of exploration and the time taken for search at each step. Results are shown in table 3. The
depth for the system - HOOP is 12, and the depth for HOOP-MCTS_1 is 1. From the table, we can
see that the greedy approach of just looking ahead by 1 step is not enough to solve the rearrangement
problem. This is because, when we look ahead only 1 step, we do not get enough reward/feedback
from the world about what is a good path to take, and hence makes it extremely hard to solve the
problem. We can also see that, in the problems it does solve, it takes significantly longer to solve.

We have run our system on the RoomR dataset, and we have results from Mirakhor et al. (2024a) and
Mirakhor et al. (2024b) on the RoomR dataset Batra et al. (2020) and show the results in table 4 We
can see that our success rate is slightly higher but this is with the caveat that we use more information
at the beginning of rearrangement about what objects need to be moved.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 3: POUCT Planner
1. Input: abstractState abs, beliefState b
2. T ← {}
3. For j = 0 to SIMULATIONS:
4. ŝ← SAMPLE(b)
5. SIMULATE(ŝ, {}, 0, abs)
6. Return argmaxa V (ha)
7. Function SAMPLE(b):
8. For each object o:
9. Sample ŝo ∼ bo
10. Return

⋃
ŝo

11. Function SIMULATE(s, h, depth, abs):
12. if γdepth < ϵ: return 0
13. if h /∈ T :
14. Initialize T (ha) for all actions a
15. Return ROLLOUT(s, h, depth, abs)
16. a← selectMaxAction()
17. (s′, z, r) ∼ G(s, a)
18. R← r + γ· SIMULATE(s′, hao, depth+ 1)
19. Update T (ha) with new value and count
20. Return R
21. Function ROLLOUT(s, h, depth, abs):
22. if γdepth < ϵ: return 0
23. a ∼ πrollout(h, abs)
24. (s′, o, r) ∼ G(s, a)
25. Return r + γ· ROLLOUT(s′, hao, depth+ 1)

Table 3: Performance metrics for our method across different depths for MCTS search. Metrics:
Success Score (SS), Object Success Rate (OSR), Task Actions (TA), execution Time in minutes, and
number of objects initially visible (#V). The difficulty parameters include the number of blocked
goals (#BG), objects to be swapped (#Sw), blocking objects (#BP), and number of rooms (#Rm). NA:
Not Applicable as no scenes were fully rearranged.

Dataset Objs #BG #Sw #BP #Rm #V HOOP HOOP-MCSTS_1

ap SS↑ OSR↑ TA↓ Time(m)↓ SS↑ OSR↑ TA↓

RoomR 5 1 0 0 1 3-4 49 71 211 1.61 8 26 565

Proc 5 1 0 0 2 2-3 46 68 352 3.42 2 12 875

Multi
RoomR

10 1 1 0 2 2-3 32 65 710 7.89 0 7 NA
2 1 1 2 2-3 21 49 789 8.98 0 3 NA

10 2 1 0 3-4 1-2 30 62 1189 13.45 0 5 NA
2 1 1 3-4 1-2 18 44 1321 15.97 0 2 NA

15 1 1 0 3-4 2-3 22 59 1228 19.89 0 0 NA
2 1 1 3-4 2-3 14 41 1416 22.12 0 0 NA

20 2 1 0 3-4 2-4 17 55 1621 27.61 0 0 NA
2 1 1 3-4 2-4 10 36 1786 29.79 0 0 NA

A.5 LOW-LEVEL RL POLICY

A.5.1 RL TRAINING

We trained our model using PPO (Schulman et al., 2017) with learning rate α = 2.5 × 10−4,
clip parameter ϵ = 0.1, value loss coefficient c1 = 0.5 entropy coefficient c2 = 0.01,
GAE, recurrent policy, linear learning rate decay, 128 steps per update, 4 mini-batches. We train
for 5 million steps on RTX 3080 GPU for 2 days. Observation Space (environment returns these
at each step): RGB and Depth image. Agent position (M2D location + pitch + yaw). Object pick
location for Pick policy training and object place location for training place policy. We also get

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Comparison on RoomR dataset

Method HOOP Mirakhor et al. (2024a) Mirakhor et al. (2024b)
[Table 2] [Table 4]

Scene Success 49 43 34

information if an action succeeded or failed from the AI2Thor environment. The training process for
the pick model involves randomly positioning the target object within a specified proximity to the
agent. The goal is to pick a selected object successfully. For the place model, the training method-
ology follows a similar approach, with the key distinction being the absence of object detection
requirements, as the agent begins each scenario already holding the object. In all training instances
for the place model, the initial state consists of the agent holding an object, and the task involves
depositing the object at a predetermined location.

A.5.2 ACTION SPACE:

MoveAhead, MoveBack, MoveLeft, MoveRight, LookUp, LookDown, RotateLeft, RotateRight,
PickObject (for Pick policy only), PlaceObject (for Place policy only)

We allow the Pick and Place policies to have navigation actions because we might not always be
in the perfect position to interact with an object, and we want our policy to be able to handle these
scenarios.

A.5.3 REWARD FUNCTION:

Reward function: -1 for each navigation action, +50 for successful interaction action, -50 for failed
interaction.

A.5.4 TRANSITION FUNCTION:

The transition function in AI2-Thor is deterministic. For the navigation actions, a move action moves
the agent in the selected direction by 1 unit. Rotation action rotates the agent by 45 degrees in the
given direction. Look action titles the head of the agent by 30 degrees in the given direction.

A.6 FRONTIER EXPLORATION + HAND CODED INTERACTION METHOD DETAILS

A.6.1 OVERVIEW OF THE HEURISTIC APPROACH

Here, we provide a deeper dive into the construction of the hand-coded heuristic method. The heuristic
method serves as an important baseline that replaces the sophisticated MCTS search planning of our
HOO-POMDP with hand-coded expert strategies while retaining the same belief update apparatus.
This approach helps us evaluate the specific contribution of principled planning in handling uncertainty
during rearrangement tasks.

The algorithm presents our hand-coded heuristic method for object rearrangement tasks, serving as a
critical baseline for comparison with the HOO-POMDP approach. As shown in Algorithm 4, this
method maintains the same belief update apparatus while substituting sophisticated MCTS planning
with an expert-designed strategy.

The agent alternates between two phases: exploration (lines 21-23) and object interaction (lines 12-19).
During exploration, the agent identifies frontier clusters at the boundary between known and unknown
space, navigating to the closest frontier to systematically discover objects. The object interaction
phase is triggered when the belief probability for any object exceeds the confidence threshold θ (line
9, 70% for our experiments). When this occurs, the agent temporarily halts exploration to retrieve
and place the object at its goal location. The navigation system uses A* and the PickPlace policy
is the same as in our HOOP system (uses RL pick, A* navigation and RL place policy to achieve
PickPlace).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 4: Hand-Coded Heuristic Method for Object Rearrangement
Input: Environment E, Set of target objects O, Confidence threshold θ (default: 0.7)
Output: Rearranged objects at goal locations
Initialize belief state B over object locations;
Initialize 2D occupancy grid map M (initially all cells unknown);
Initialize empty set of frontier clusters F ;
Initialize empty set of found objects Found;
while not all objects in O are rearranged do

Update belief state B based on current observations;
F ← IdentifyFrontierClusters(M);
foreach object o ∈ O not yet rearranged do

if max(B(o)) > θ and o /∈ Found then
Add o to Found;

if Found ̸= ∅ then
oclosest ← GetClosestObjectFrom(Found);
Remove oclosest from Found;
locobject ← argmax(B(oclosest));
NavigateTo(locobject);
PickPlace(oclosest)

else
fclosest ← GetClosestFrontierCluster(F);
NavigateTo(fclosest);
Update M based on new observations;

This approach provides a direct evaluation of the contribution of principled planning in handling
uncertainty during rearrangement tasks, as it isolates the planning component while maintaining
identical belief representations.

Since this is a simple system,it is limited to basic rearrangement and cannot be generalized to more
complex problems - such as blocked goals. We would have to hand-design a new policy for each new
case whereas our HOOP system can handle and plan for new scenarios much more easily.

A.6.2 CONFIDENCE THRESHOLD SELECTION

The 70% confidence threshold was carefully calibrated for the specific characteristics of our problem:

1. Higher thresholds (>70%): With our imperfect object detector (50-60% success rate), setting
a higher confidence threshold would result in many objects never exceeding the threshold even
when directly observed multiple times. This would lead to excessive exploration and low task
completion rates.

2. Lower thresholds (<70%): Setting a lower threshold increases the risk of false positives, where
the agent attempts to interact with an object that isn’t actually present at the believed location. Our
implementation treats failed pick attempts as definitive evidence that the object is not present, and
the agent will not try again at that location. Therefore, false positives can permanently prevent
successful rearrangement of certain objects.

3. Empirical optimization: The 70% threshold represents an empirically determined balance that
maximizes overall task completion while minimizing both excessive exploration and false positive
interactions.

A.7 COMPONENT GLOSSARY FOR HOO-POMDP

This glossary provides standardized terminology for the key components of our Hierarchical Object-
Oriented POMDP (HOO-POMDP) approach to help readers maintain a clear understanding through-
out the paper.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.7.1 CORE SYSTEM COMPONENTS

Term Definition Algorithm 1
Reference

HOO-POMDP
The complete hierarchical planning system for
object rearrangement in partially observable en-
vironments.

Full Algorithm 1

Perception Subsys-
tem

Processes RGB and depth images to detect ob-
jects and generate observations.

PERCEPTIONSYSTEM()
(line 8)

Belief Update Sub-
system

Maintains and updates probability distributions
over possible object locations.

BELIEFUPDATE()
(line 9)

Fully described in Algorithm 2

Abstraction System
Converts continuous low-level belief state into
discrete abstract state.

GENERATEABSSTATE()
(line 10)

Abstract
OOPOMDP Planner

Uses POUCT to search through abstract actions
and find the best sub-goal.

POUCTPLANNER()
(line 11)

Policy Executor
Converts abstract sub-goals into a sequence of
executable low-level actions.

GETLOWLEVELPOLICY()
(line 14)
lowLevelPolicy.GetAct
(Line 15)

It also executes the first low-level action in the
above sequence in the environment.

ENV.EXECUTE()
(line 7)

A.7.2 KEY DATA STRUCTURES

Term Definition Representation

Belief State
Probability distribution over possible locations
for each object.

b =
∏n

i=1 bi

Abstract State
Discrete representation of the world state used
by the planner.

s =
(sr, stargets)

Observation
Detection of object locations from the perception
system.

z =
(zrobot, zobjects)

2D Occupancy Map
Discretized grid representation of the navigable
space.

M2D

A.7.3 KEY ACTIONS AND POLICIES

Term Definition Examples

Abstract Actions
High-level actions output by the abstract planner. MoveAB,

Rotateangle

Sub-goals
Task-oriented goal states for low-level policies
to achieve.

PickPlaceObjecti−goalloc

Low-level Actions
Primitive actions executed directly in the envi-
ronment.

MoveAhead,
PickObject

Low-level Policies
Controllers that translate abstract actions into
action sequences.

Move, Rotate,
PickPlace

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.7.4 ALGORITHM COMPONENTS

Term Definition Reference

POUCT
Partially Observable UCT - search algorithm for
the abstract planner.

Algorithm 3

Frontier Exploration
Strategy to systematically explore unknown ar-
eas.

Appendix A.6

A∗ Algorithm
Path planning algorithm for navigation between
locations.

Policy Executor
(line 248)

A.7.5 OBJECT STATE REPRESENTATION

Term Definition Components

Object State
Complete representation of an object in the ab-
stract state.

(loci, picki, placelocs,

is_held, at_goal, gi)

Pick Location
Location from which an object can be picked up. picki

Place Locations
Set of locations where an object can be placed. placelocs

Goal Location
Target location for task completion. gi

A.8 LLM USAGE

LLMs were used to correct grammar. They were also used as coding aids.

20

	Introduction
	Related Work
	Problem Formulation
	Rearrangement as a Object Oriented POMDP (OO-POMDP) Problem

	Hierarchical Object Oriented POMDP (HOO-POMDP) Planning
	Experiments
	Datasets
	Metrics
	Methods and Baselines definition

	Results and Discussion
	Conclusion and future work
	Appendix
	Object Detection
	Detection Model : YoloV10
	Observation Probability for POMDP

	MultiRoomR Dataset Details
	Overview
	Dataset Creation Criteria
	Dataset Composition
	Room Configuration Distribution
	Object Placement Criteria

	POUCT
	Qualitative Results
	Low-level RL policy
	RL training
	Action space:
	Reward Function:
	Transition function:

	Frontier Exploration + hand coded interaction Method Details
	Overview of the Heuristic Approach
	Confidence Threshold Selection

	Component Glossary for HOO-POMDP
	Core System Components
	Key Data Structures
	Key Actions and Policies
	Algorithm Components
	Object State Representation

	LLM Usage

