
Published at the ICLR 2025 VerifAI: AI Verification in the Wild

NO STRESS NO GAIN: STRESS TESTING BASED SELF-
CONSISTENCY FOR OLYMPIAD PROGRAMMING

Kunal Singh∗, Sayandeep Bhowmick∗, Pradeep Moturi, Siva Kishore Gollapalli
Fractal AI Research
Mumbai, India
{kunal.singh}@fractal.ai

ABSTRACT

We introduce a stress testing approach to improve performance of large language
reasoning models on challenging competitive programming problems. By com-
bining stress testing—inspired from a technique commonly used by expert pro-
grammers—with self-consistency and self-debugging methods, we demonstrate
significant improvements in solution accuracy. Our method generates multiple
brute-force solutions to validate and filter candidate solutions, leading to better
performance than traditional majority voting approaches. Experimental results
show that our approach successfully narrows the gap between pass@k and major-
ity voting scores on the USACO benchmark for both o1-mini and o3-mini mod-
els, solving up to 246 out of 307 problems which is 17 more than the vanilla
self-consistency.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in a
wide array of reasoning and problem-solving tasks, including code generation. Scaling training-time
compute has led to creation of Frontier system 1 (Guan et al., 2025) models such as GPT-4o(OpenAI,
June, 2024), Claude 3.5 Sonnet(Anthropic, 2023) that have completely saturated coding benchmarks
such as HumanEval(Chen et al., 2021) and MBPP(Austin et al., 2021). In addition to scaling pre-
training, studies have also tried augmenting inference time compute/methods to improve code gen-
eration robustness. While methods such as COT(Wei et al., 2022), self-consistency(Wang et al.,
2022), reflexion (Shinn et al., 2023) have shown to improve general reasoning ability, relevant stud-
ies in code generation domain have additionally focused on iterative self-improvement(refinement)
by leveraging execution feedback. Self-debugging(Chen et al., 2023), self-edit(Zhang et al., 2023),
self-refine(Madaan et al., 2023), in a similar fashion, use sample input-output pairs as unit test cases
to generate execution output of the code solution and debug/refine the program similar to how a de-
veloper/programmer would debug. These methods have shown promising improvements on simpler
coding benchmarks such as HumanEval and MBPP.

Due to saturation of performance on simpler code generation benchmarks, competitive program-
ming has emerged as the new test-bed to benchmark the relevant models and methods. Live-
CodeBench(Naman Jain, 2024) presents competitive programming problems of varying difficulties
sourced from platforms such as LeetCode, AtCoder, and CodeForces. Further escalating the diffi-
culty of the benchmarks, another study introduces USACO benchmark (Shi et al., 2024) with 307
highly challenging problems from past USA Computing Olympiad (USACO) competitions. Com-
puting Olympiads contain some of the most challenging problems for humans, requiring complex
algorithmic reasoning, puzzle solving, in addition to generating efficient code. Recent works such as
(Wang et al., 2024; Naman Jain, 2024; Shi et al., 2024) have shown that the frontier system 1 LLMs
have struggled to solve these challenging problems. They even point out that despite augmenting
advanced inference time methods, there is not much accuracy gain.

However, the recent emergence of system 2 (Guan et al., 2025) reasoning models such as o1 (Ope-
nAI, 2024a), DeepSeek R1 (DeepSeek-AI et al., 2025) and o3(OpenAI, 2024b) have shown major

∗Equal contribution (alphabetical order)

1



Published at the ICLR 2025 VerifAI: AI Verification in the Wild

Figure 1: Overview of the stress testing based self-consistency, with a combination with self-
debugging. For a given problem, we generated multiple candidate solutions. An optional step:
When using self-debugging, we iterative to refine the generated solutions(that fail the sample test-
cases) for maximum set attempts. Post this, we have first round of elimination where those candidate
solutions that fail to pass all the sample test-cases are eliminated. In parallel to this, we also gener-
ate stress candidates which are brute-force based solution to the given problem. We use the stress
candidates to predict the outputs of the additional test-cases provided by the benchmark. We select
those test-cases that have reliable outputs (mode 2 or more). This process of output generation and
selection helps in the creation of stress-predicted subset test-cases using only the inputs of the ad-
ditional test-cases. Now, we do our second round of elimination (stress-testing) and eliminate the
candidate solutions that fail to pass all the stress predicted test-cases. Final candidate solution is
selected from the remaining candidate solutions through the process of majority voting. Note: We
enforce the time limits defined in the benchmark for each test case.

step level improvement in the ability of LLMs in solving harder competitive programming problems.
In particular, o1-IOI (OpenAI) performs impressively on live IOI competition and relies on inference
time augmentation framework to make o1 generate synthetic and test-cases. Though, the details of
the framework is not revealed but it clearly shows the need for further-test time augmentation and
that test-cases could be useful for system 2 reasoning models as well.

In this study, we try to make the following the contributions: a) We show and observe a big gap in the
pass@k and maj@k scores on USACO benchmark with o1-mini and o3-mini. We make an attempt
to close this gap through the efforts mentioned below. b) Stress testing(Ibrahim) is a very popular
technique used by top human coders to debug their codes. Inspired by it, we implement stress testing
to improve self-consistency by leveraging the additional test cases provided by the benchmark. c)
We further combine self-debugging (Chen et al., 2023) (unit test feedback) to iteratively improve
the solutions that fail on sample input-output test cases.

2 METHOD

We briefly introduce common practices in code generation task and then introduce our stress testing
method.

2.1 BACKGROUND

Candidate generation: LLM-based code generation can be a complex task and the LLMs can give
the correct solutions only with a certain probability. Given a problem statement x, and sample test
cases {(ik, ok)}Kk=1, we prompt the model L, to output independent candidate solutions {yj}Nj=1

following self-consistency (Wang et al., 2022). We maintain entire conversation chains {cj}Nj=1. 1

y = L(x⊕ {(ik, ok)}Kk=1) (1)

Self-debugging: Given the probabilistic nature of LLMs, the initial code outputs may not always
be fully accurate. Chen et al. (2023) executes the generated codes {yi}Ni=1 against sample test case

1⊕ denotes concatenation

2



Published at the ICLR 2025 VerifAI: AI Verification in the Wild

{(ik, ok)}Kk=1 using a program executor P in a sandbox environment. Errors on any test cases are
appended to the conversation c and then prompt the LLM to debug itself and update it’s solution.
This is repeated till all sample test cases are passed or maximum attempt limit is breached. Conse-
quently, we filter out candidates that fail to solve the provided test cases.

cj = cj ⊕ {(ik, P (yj , xk), ok),∀P (yj , ik) ̸= ok}Kk=1 (2)
yj = L(cj) (3)

Majority voting: We need to select a single solution out of all the candidates. We do this by
clustering the candidates on their outputs of the additional test cases {(̂ik, ôk)}K̂k=1. Candidates
having same outputs to the additional testcases are considered to be part of the same cluster. We
pick a random candidate from the largest cluster as the final solution.

2.2 STRESS TESTING

From Table 1, We see a significant gap between pass scores (at-least one solution out of all candidate
generations is a correct solution) and majority voting. This informs us that the model is able to
generate correct solution but we are unable to select it as final solution with just majority voting.
Approaches (Chen et al., 2022) have tried using LLMs and other models like CYaRon to generate
test cases to add more reasoning and improve self debugging stage. We build upon this and use the
additional test cases from the benchmark itself utilizing only the inputs to avoid the noise(test-cases
with wrong/invalid inputs) from LLM based test case input generation.

Stress testing is a popular debugging and validation technique employed by top programmers to en-
sure the correctness of their solutions. This method involves implementing brute-force solutions,
which serve as a reliable benchmark for verifying the accuracy of more optimized approaches.
Drawing inspiration from this classical technique, we extend its application to LLMs to enhance
their problem-solving capabilities. Our experiments demonstrate that LLMs are proficient at gener-
ating brute-force code, a skill that we systematically leverage to assess and filter candidate solutions.

We apply candidate generation to generate S brute force solutions termed stress candidates. We
eliminate candidates which fail any sample test case. With remaining candidates, we aim to predict
the ground truth outputs of additional test cases. We obtain outputs for all the test cases with each
candidate using program executor P . For each test case, we consider the mode of outputs with
repetitions greater than 1 as the predicted ground truth else we discard the test case. We obtain a
stress-predicted subset from the entire additional test-cases.

Stress-testing flow, end to end: We perform multiple candidate generation for best program output.
We eliminate candidates which fail any sample test case. Then, we generate stress candidates and
generates outputs for the additional test-cases and obtain a stress-predicted subset of test cases. Now,
we perform stress-testing, that is, we eliminate those candidates that don’t pass any of the test cases
from the stress-predicted subset. Then, we perform majority voting using all additional test cases on
the remaining candidates to select the best solution. We show the entire process in Figure 1

3 EXPERIMENTS

3.1 DATASET

We evaluate on USACO (Shi et al., 2024) benchmark with 307 problems from the USA Computing
Olympiad. The dataset consists of questions of four difficulty levels - bronze, silver, gold and
platinum. Each problem consists of a problem description with the input and the output formats; 0-2
sample tests along with their explanations in some cases; 10-17 additional tests for verifying solution
correctness; time and memory limits verifying solution complexity; and an official human-written
problem analysis explaining the solution in detail with corresponding Python/C++ code.

3.2 RESULTS

All the experiments are run using the OpenAI APIs. We set reasoning effort parameter to medium
for o3-mini. We enforce the time limits defined in the benchmark for each test case.

3



Published at the ICLR 2025 VerifAI: AI Verification in the Wild

Table 1: Number of problems solved out of 307 from USACO dataset under different settings. SD
max-attempts: maximum refinement attempts allowed per candidate in self debugging stage

Candidates SD max-attempts Stress candidates o1-mini o3-mini

pass@4 - - 202 231
pass@9 - - 220 242

pass@16 - - 224 253
pass@25 - - 234 259

Majority voting

4 - - 191 217
9 - - 195 221
16 - - 201 226
25 - - 204 229

9 - 3 206 230
9 - 5 210 234
9 - 7 212 235
9 - 9 213 236

16 - 3 210 237
16 - 5 213 239
16 - 7 214 243
16 - 9 217 244

9 1 - 204 237
9 3 - 207 240
9 5 - 209 241

9 1 5 210 243
9 3 5 215 244
9 5 5 216 246

Table 1 presents the number of correctly solved questions using different approaches. The results
show that there is a big gap between the pass and majority scores. The baseline majority score for
maj@9 is 195 for o1-mini and 221 for o3-mini. We run self-debugging and observe that there is a
significant improvement and we acheive scores of 209(o1-mini) and 241(o3-mini). These scores are
even higher than maj@25 scores for both the models.

Applying stress testing on 9 chains without self-debugging gives us a score of 213 compared to 195
with majority voting with o1-mini and 236 compared to 221 with majority voting with o3-mini.
This significant improvement is also observed with 16 chains. These scores are also more than the
maj@25 scores for both the models. Using both the methods together, we get highest scores of 216
and 246 for o1-mini and o3-mini respectively which is approximately a 8% point improvement on
the baseline and a 5% point improvement on the maj@25 scores.

4 ABLATIONS

4.1 STRESS TEST ACCURACY

We verify the accuracy of the predicted ground truths of the additional test cases with the ground
truths from the dataset. We are able to obtain an accuracy of 91% with o1-mini and an accuracy
of 97% with o3-mini. Furthermore, we explore the efficacy of the stress solutions in filtering the
candidate codes. We observe that in 80% cases for o1-mini and 84% cases for o3-mini, the stress
solutions help us in filtering the solutions.

4



Published at the ICLR 2025 VerifAI: AI Verification in the Wild

Figure 2: Number of questions solved in different difficulty levels in USACO benchmark. SD max-
attempts: maximum refinement attempts allowed per candidate in self debugging stage

4.2 DIFFICULTY ANALYSIS

The distribution of difficulty level in the dataset is platinum(21), gold(63), silver(100) and
bronze(123). Platinum and gold are the hardest with similar difficulty level as IOI problems. We ob-
serve improvements across all difficulty levels. Moreover, stress testing provides great improvement
even in the harder problems as is evident from the Figure 2.

5 CONCLUSION

Our experiments on the USACO benchmark demonstrate significant improvements over baseline
majority voting methods, with o3-mini achieving particularly strong results. The high accuracy
of predicted ground truths (97% for o3-mini and 91% for o1-mini) validates the effectiveness of
our stress testing approach. Furthermore, the stress solutions proved valuable in filtering candidate
solutions, successfully doing so in 84% of cases for o3-mini and 80% for o1-mini.

REFERENCES

Anthropic. Introducing claude 3.5, 2023. URL https://www-cdn.anthropic.com/
fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_
Addendum.pdf.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests, 2022. URL https://arxiv.org/abs/
2207.10397.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex

5

https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2207.10397


Published at the ICLR 2025 VerifAI: AI Verification in the Wild

Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug, 2023. URL https://arxiv.org/abs/2304.05128.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking, 2025. URL
https://arxiv.org/abs/2501.04519.

Ali Ibrahim. Stress testing. URL https://ali-ibrahim137.github.io/
competitive/programming/2020/08/23/Stress-Testing.html.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Ma-
jumder, Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement
with self-feedback, 2023.

Alex Gu Wen-Ding Li Fanjia Yan Tianjun Zhang Sida Wang Armando Solar-Lezama Koushik Sen
Ion Stoica Naman Jain, King Han. Livecodebench: Holistic and contamination free evaluation of
large language models for code. arXiv preprint, 2024.

OpenAI. Openai o1-ioi. URL https://neurips.cc/virtual/2024/108302.

OpenAI. o1, 2024a. URL https://openai.com/o1/.

OpenAI. o3-mini, 2024b. URL https://openai.com/index/openai-o3-mini/.

OpenAI. ”hello gpt-4o.”, June, 2024. URL https://openai.com/index/
hello-gpt-4o/.

Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can language models solve
olympiad programming?, 2024. URL https://arxiv.org/abs/2404.10952.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm search
for code generation, 2024. URL https://arxiv.org/abs/2409.03733.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Huai hsin Chi, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models. ArXiv, abs/2203.11171,
2022. URL https://api.semanticscholar.org/CorpusID:247595263.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language mod-
els. ArXiv, abs/2201.11903, 2022. URL https://api.semanticscholar.org/
CorpusID:246411621.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor for code gener-
ation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
769–787, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.45. URL https://aclanthology.org/2023.acl-long.45/.

6

https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.04519
https://ali-ibrahim137.github.io/competitive/programming/2020/08/23/Stress-Testing.html
https://ali-ibrahim137.github.io/competitive/programming/2020/08/23/Stress-Testing.html
https://neurips.cc/virtual/2024/108302
https://openai.com/o1/
https://openai.com/index/openai-o3-mini/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2404.10952
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2409.03733
https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://aclanthology.org/2023.acl-long.45/

	Introduction
	Method
	Background
	Stress testing

	Experiments
	Dataset
	Results

	Ablations
	Stress test accuracy
	Difficulty Analysis

	Conclusion

