
Expanding Search Space with Diverse Prompting Agents: An Efficient
Sampling Approach for LLM Mathematical Reasoning

Anonymous EMNLP submission

Abstract

Large Language Models (LLMs) have exhib-001
ited remarkable capabilities in many complex002
tasks including mathematical reasoning. How-003
ever, traditional approaches heavily rely on en-004
suring self-consistency within single prompt-005
ing method, which limits the exploration of006
diverse problem-solving strategies. This study007
addresses these limitations by performing an008
experimental analysis of distinct prompting009
methods within the domain of mathematical010
reasoning. Our findings demonstrate that each011
method explores a distinct search space, and012
this differentiation becomes more evident with013
increasing problem complexity. To leverage014
this phenomenon, we applied efficient sam-015
pling process that uniformly combines samples016
from these diverse methods, which not only ex-017
pands the maximum search space but achieves018
higher performance with fewer runs compared019
to single methods. Especially, within the subset020
of difficult questions of MATH dataset named021
MATH-hard, The maximum search space was022
achieved while utilizing approximately 43%023
fewer runs than single methods on average.024
These findings highlight the importance of in-025
tegrating diverse problem-solving strategies to026
enhance the reasoning abilities of LLMs.027

1 Introduction028

Recent advancements in large language models029

(LLMs) have significantly enhanced their reason-030

ing abilities, particularly in mathematical reason-031

ing and code generation. High-performing mod-032

els such as GPT-4o (OpenAI, 2024), Claude Opus033

(Claude, 2024) have demonstrated their capabili-034

ties in these challenging domains, showcasing their035

advanced performance. These models are typically036

employed through step-by-step natural language037

reasoning methodologies named Chain-of-Thought038

(CoT) to ensure the validity and accuracy of their039

solutions (Wei et al., 2023). Particularly in solving040

math problems, existing approaches either focus041

Figure 1: Line graph of maximum search space’s accu-
racy achieved by sampling 21 runs per methods. The
three grey horizontal lines represent the upper bound
values within a single method. The star markers indi-
cate the points at which these upper bound values were
achieved using our proposed Uniform Sampling method.
It can be observed that for text, code, and CR, the same
upper-bound was reached while utilizing approximately
48%, 45%, and 35% fewer runs, respectively.

on validating the logical sequence during the so- 042

lution process (Zhang et al., 2024; Zihao et al., 043

2024; Zhou et al., 2024), seek verification support 044

for complex calculations (Chen et al., 2023; Zhou 045

et al., 2023; Zhong et al., 2024), or aim to secure 046

both logic validation and calculation accuracy (Gou 047

et al., 2024). A common feature of these methods is 048

the use of sampling and voting processes to achieve 049

self-consistency (CoT-SC) by generating multiple 050

solutions (Wang et al., 2023). 051

While these methods have been effective in 052

verifying the solutions provided by LLMs and 053

enhancing their reliability, they heavily rely on 054

temperature adjustments to increase the diversity 055

of problem-solving approaches. This reliance on 056

self-consistency within their own generated solu- 057

tions limits their ability to explore a wider range 058

of problem-solving strategies. In contrast, human 059

problem solvers invest significant effort not only in 060

verifying the validity and accuracy of their calcula- 061
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tions but also in exploring many potential solutions.062

Recent efforts in the field of LLM’s high rea-063

soning have focused on integrating diverse agentic064

problem-solving methods to address these limita-065

tions (Du et al., 2023; Liu et al., 2023). Although066

these studies have shown promising performance067

on benchmarks such as MATH (Hendrycks et al.,068

2021) and GSM8K (Cobbe et al., 2021), they lack a069

comprehensive analysis of why different agents col-070

lectively achieve high performance. Furthermore,071

there is an absence of methodologies that explore072

how the unique characteristics of each approach073

can be effectively integrated, beyond merely im-074

proving performance metrics.075

Therefore, this study aims to address these gaps076

by performing an experimental analysis of the077

problem-solving strategies employed by various078

LLM agents within the domain of mathematical079

reasoning. Furthermore, we propose an efficient080

sampling process to effectively combine these di-081

verse agents. Key observations obtained by exper-082

imental analysis and our contributions are as fol-083

lows.084

Observation To specifically evaluate the high085

reasoning abilities of LLMs, we analyzed state-of-086

the-art methodologies on the MATH dataset, which087

requires higher capabilities than GSM-8K. We cat-088

egorized the approaches into three main prompting089

methods: Text, Code, and CR (Cumulative Reason-090

ing). We discovered that each method explores a091

distinct search space when generating correct an-092

swers, and this differentiation becomes more evi-093

dent as the complexity of the problems increases.094

Contribution We observed that each prompting095

method explores a different search space, and this096

realization led us to an efficient sampling strategy.097

Instead of inefficiently generating multiple samples098

within a single method, we demonstrated that uni-099

formly mixing samples from these distinct methods100

significantly increases the maximum search space.101

As shown in Figure 1, within the MATH-hard sub-102

set, the maximum search space was achieved while103

utilizing approximately 43% fewer runs than single104

methods on average.105

2 Method106

2.1 Expanding search space107

Figure 2 shows a Venn diagram visualizing the108

maximum search space within the MATH-hard109

Figure 2: Maximum search space for methods result on
MATH- hard (* 280 test subset). From above, the Venn
diagram’s B ∪ C −A represents the proportion of the
search space that method A fails to explore.

problems for the three prompting methods. We in- 110

creased the sample sizes sequentially from (1,1,1) 111

to (5,5,5) in intervals of 4, and finally up to 112

(21,21,21) to see if this phenomenon persisted. The 113

results showed that as the sample sizes increased, 114

the overlap in the center gray area, representing the 115

shared search space, grew. Although the absolute 116

size of each unique search space decreased, the pro- 117

portion of the search space that any single method 118

(Method A) could not explore B∪C −A remained 119

within a certain bound. This demonstrated that even 120

as the sample size k increased, the search spaces of 121

each method remained robustly distinct. 122

Prompting methods We selected three prompt- 123

ing methods to analyze the differences in problem- 124

solving approaches within the MATH dataset, 125

building on the assumption that each method ex- 126

plores a distinct search space. We chose the follow- 127

ing three prompting methods: (1) Text, (2) Code 128

and (3) CR. 129

1. Text: As reported in Wei et al., 2023, 130

this prompting method encourages natural 131

language explanations using the Chain-of- 132

Thought (CoT) approach. This serves as the 133

base reasoning method of LLMs. The token 134

cost for CoT-SC is used as the baseline. 135

2. Code: This method directs the model to ex- 136

tract and execute code to derive the answer. 137

Inspired by Chen et al., 2023, we specifically 138

adopted the prompt presented in Gou et al., 139

2024, characterized by converting natural lan- 140
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guage problems into local code interpreter. Ac-141

cording to the average of the logged values in142

our experiments, the token cost for Code is143

3.0 times higher than the base text method.144

3. Cumulative Reasoning (CR): The CR frame-145

work, proposed by Zhang et al., 2024, utilizes146

multiple LLMs cumulatively and iteratively147

for mathematical reasoning, mirroring human148

thought processes for problem-solving. We149

used CR with code to remove additional en-150

vironmental variables besides the prompts as-151

pects when comparing with Code (Method 2).152

Selecting (Sampling) Although we secured a153

pool of runs by generating n runs from each154

method, achieving an advantage in exploration over155

CoT-SC from a single method requires that the156

search space covered by these runs is extensive.157

Therefore, selecting a fixed number of runs should158

ensure high accuracy. To achieve this, an appro-159

priate sampling algorithm that can effectively and160

efficiently combine solutions from various methods161

is necessary. To ensure that the final selected runs162

are as diverse as possible, we employed a method163

called uniform sampling.164

Uniform Sampling: Uniform Sampling165

ensures an equal sampling ratio for each166

method. For example, if initial runs show167

the highest performance in the order of168

method A, B, and C, Sampling also fol-169

lows the order of A, B, and C, then re-170

peats (i.e., A, B, C, A, B, C, ...).171

This sampling process provides a basis for effi-172

cient performance enhancements by leveraging a173

broader search space.174

2.2 Verify answer from sampled runs through175

LLM Re-ranking176

Previous sampling and voting methods used for177

maintaining self-consistency (Zhou et al., 2023;178

Wang et al., 2023) have the drawback of not fully179

utilizing the high accuracy upper bound of multiple180

runs. For example, even if the selection process181

includes a run that correctly answers previously182

unsolved problems through improved exploration,183

sampling and voting tend to favor incorrect answers184

due to the prevalence of erroneous runs. Since our185

approach focuses on increasing the search space’s186

upper bound, it is crucial to identify correct an-187

swers even from the prevalence of wrong responses.188

Sampling Methods

Sample k Text Code CR Uniform

base (k=1) 60.00 56.07 46.79 (= Top1)

3 (1,1,1) 70.0 71.07 67.5 70.71
6 (2,) 75.71 77.5 76.07 77.14
9 (3,) 77.86 80.36 78.57 81.79
12 (4,) 78.93 82.14 81.79 84.29
15 (5,) 79.64 82.5 82.5 85.36
18 (6,) 81.79 83.21 83.21 85.36
21 (7,) 83.93 83.21 84.64 86.79

Average 78.27 80.00 79.18 81.63

Table 1: Search space’s upper bound scores on each
sampling methods. Result on MATH-hard (* 280 test
subset): We increased the number of samples by adopt-
ing the default temperature value t=0.7 from CoT-SC.
As mentioned in the Method section, each prompting
method was based on or reproduced from the following:
Text on CoT, Code on CSV (LLM with Local Code
Interpreter), and CR from Cumulative Reasoning.

Therefore, we employ LLM re-ranking to derive 189

optimal performance from the selected runs. The re- 190

ranking process follows the methodology proposed 191

by RankGPT (Sun et al., 2023), which introduces 192

an effective approach for LLM re-ranking. 193

3 Experiments 194

Setup Our experiments are conducted on the sub- 195

set of MATH dataset (Hendrycks et al., 2021), 196

which consists of 12,500 challenging math prob- 197

lems from competitions like AMC and AIME, 198

We sampled data from all mathematical domains 199

within the MATH dataset, focusing on questions 200

with difficulty levels 4 and 5. This resulted in 280 201

challenging questions (comprising approximately 202

11% of the entire dataset), which we refer to as 203

MATH-hard. We used GPT-4o as the base model 204

for all experiments, and it was also utilized as a 205

LLM re-ranker in Section 3.2. The temperature 206

was set to 0.7 to obtain as diverse responses as 207

possible from each prompting method. 208

Further details for ablation studies to assess the 209

impact of different components (model size and 210

difficulty level in MATH dataset) can be found in 211

Appendix A. 212
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3.1 Efficacy of aggregating distinct prompting213

methods214

To quantitatively analyze how effective it is to incor-215

porate various prompting methods, each prompting216

method was run 21 times, generating 21 different217

solutions for the entire 280 questions.218

This experiment analyzes how the accuracy up-219

per bound changes by incrementally adding runs220

along the x-axis, comparing the upper bound accu-221

racy of each prompting method against the upper222

bound obtained through uniform sampling from 21223

* 3 runs generated by all prompting methods.224

Results from Figure 1 demonstrates our method225

achieves the highest accuracy of individual prompt-226

ing methods much earlier; from the 21st to the 11th227

run for text, from the 18th to the 10th run for Code,228

and from the 20th to the 13th run for CR, respec-229

tively. These results support our hypothesis that230

employing diverse prompting techniques allows231

for a more extensive, faster exploration of prob-232

lems that a single methodology fails to solve or233

cannot reach.234

3.2 Comparison Experiment235

In this section, we compared uniform sampling236

method against the traditional single-method237

sampling approach, i.e., Chain-of-Thought Self-238

Consistency (CoT-SC). Our goal is to demonstrate239

that integrating diverse prompting methods and240

employing LLM re-ranking yields superior perfor-241

mance in mathematical reasoning tasks. We eval-242

uated the performance of each sampling method243

with two distinct approaches; (1) Majority Voting244

and (2) LLM re-ranking.245

Table 1 and Table 2 summarize the experimen-246

tal results for each method and the combined247

uniform sampling. The results indicate that our248

proposed uniform sampling method followed by249

LLM Reranking consistently outperforms individ-250

ual methods, achieving higher accuracy with fewer251

samples. This demonstrates that expanding the252

search space through diverse prompting methods253

and effectively exploiting this space with a robust254

verifier leads to superior performance.255

Therefore, to ensure the final performance im-256

proves with the expanded search space, we em-257

ployed an LLM re-ranking method which is ex-258

pected to consistently select correct answers, even259

from sparse values. However, contrary to our ex-260

pectations, neither the traditional self-consistency261

(SC) approach nor the LLM re-ranking method262

Sampling Methods

Sample k Text Code CR Uniform

base (k=1) 60.00 56.07 46.79 (= Top1)

SC (Sample & Voting)
3 (1,1,1) 60.0 60.0 45.36 57.14
6 (2,) 60.0 60.0 48.21 57.5
9 (3,) 57.86 59.29 46.07 58.93
12 (4,) 58.57 61.43 48.57 58.21
15 (5,) 58.21 60.71 47.14 58.57
18 (6,) 59.29 60.71 47.14 59.29
21 (7,) 58.93 60.71 48.57 58.93

Average 58.98 60.41 47.29 58.37

Rerank@1 (RankGPT, GPT-4o)
3 (1,1,1) 63.93 63.93 60.00 62.86
6 (2,) 64.29 66.43 65.36 65.71
9 (3,) 64.64 68.93 66.43 64.64
12 (4,) 65.71 69.29 67.14 66.43
15 (5,) 65.71 71.07 67.50 66.07
18 (6,) 65.71 71.07 67.50 66.07
21 (7,) 65.71 71.07 68.93 65.71

Average 65.00 68.57 66.07 65.36

Table 2: Verifying candidate answers result on MATH-
hard (* 280 test subset). The experimental settings from
Table 1 were maintained, while in Table 2, the verifi-
cation process for candidate answers found within the
search space of each method was performed. The results
compare the effectiveness of sample and voting versus
LLM Reranking methods. Sampling and voting were
performed using Self-Consistency, and LLM Rerank-
ing was implemented using RankGPT (GPT-4o, slid-
ing_window=4, step_size=2). All accuracy metrics are
based on Recall@1.

consistently guaranteed this improvement. 263

4 Conclusion 264

In this work we highlight following observations 265

regarding to mathematical reasoning: 266

• Different prompting methods explore distinct 267

solvable problem spaces, and the disparity be- 268

tween these search spaces is challenging to 269

overcome, even by increasing the temperature 270

within a single method. 271

• Therefore, aggregating multiple methods via 272

the sampling approach can expand the solv- 273

able problem space, thereby raising the upper 274

bound of accuracy. This approach surpasses 275

the exploration and convergence speed of tra- 276

ditional single-method approaches. 277

• The subsequent LLM re-ranking process 278

yields promising results, demonstrating more 279

efficient approach to produce correct solution 280

compared to the traditional majority voting 281

method used in self-consistency. 282
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5 Limitations283

Our study has yielded insightful findings in the284

mathematical domain, but it has the following limi-285

tations.286

• Due to the inherent cost issues associated with287

generating multiple solutions to a single prob-288

lem, the number of runs produced by each289

method is not extensive. However, the Ap-290

pendix A describes further experimental re-291

sults based on GPT-4, where the number of292

samples was increased to approximately 32%293

of the total dataset, compared to the 11% used294

in the MATH-hard dataset discussed in the295

main text. These results reaffirm that even296

with an increased number of runs, differences297

between output spaces persist when solving298

difficult problems.299

• The process of verifying the final answer from300

sampled runs through LLM re-ranking has301

shown inconsistent results. Various LLMs (e.g.302

Gemini 1.5) and methods were tested, but the303

data did not consistently demonstrate that an304

increase in the number of runs proportionally305

enhances both the upper bound of the search306

space and the final accuracy. It is anticipated307

that employing a formal math verifier special-308

ized in verification, such as Isabelle(), as pro-309

posed in the DTV paper(), would ensure that310

the final accuracy consistently approaches the311

maximum value of the expanded search space.312

• We did not incorporate a broader range of313

problem-solving approaches. Recent studies314

have introduced promising methodologies315

for mathematical reasoning, such as agentic316

prompting methods (e.g. RAT). We leave the317

evaluation of these diverse methodologies as318

a future research.319
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A Appendix384

A.1 Ablation Study385

Data Sampling Details For all MATH data sam-386

pling, we fixed random_seed=42 and adjusted the387

level, domain, and number of samples to create388

various data samples.389

a) MATH-hard: A subset experimented390

with GPT-4o in the main text. For391

hard levels (4 and 5), without domain392

restrictions (7 domains), 20 samples393

were drawn each, totaling 280 samples394

(11.03% of the test set). This subset,395

called MATH-hard, allows us to verify396

reasoning ability on particularly difficult397

problems.398

Figure 3: Maximum search space for methods result
on MATH-hard (* 280 test subset): Radar graph for
showing the average accuracy per all 7 domains for
each method (Text, Code, CR) based on their 21 runs.

b) MATH-hard-4doms: Our experimen-399

tal results showed that even powerful400

models like GPT-4(o) performed poorly401

in four specific domains within MATH-402

hard: "counting_and_probability," "ge-403

ometry," "intermediate_algebra," and404

"precalculus" (see Figure 3). We in-405

creased the number of samples in these406

four domains from 20 to 50, totaling 400407

samples (31.55% of the four domains),408

creating the MATH-hard-4doms subset.409

c) MATH-all: To verify if the search410

space expands across the entire set of do-411

mains, not just the difficult problems, we412

Figure 4: Maximum search space for methods result on
MATH-hard-4doms (* 400 test subset): Data sampling
details are written in the section above.

sampled 10 samples per domain across 413

all 7 domains and all 5 levels, totaling 414

350 samples (5% of the entire dataset). 415

Smaller Models on MATH-all Previous experi- 416

ments confirmed that broader approaches are more 417

effective on more difficult problems, leading to the 418

MATH-hard subset for experiments based on GPT- 419

4. As an ablation study, we conducted experiments 420

on MATH-all with general models GPT-3.5-Turbo 421

and LLaMA-3-70B (which performs better than 422

GPT-3.5-Turbo but is similar in cost). We exam- 423

ined whether the search space expands for all levels 424

of problems across each prompting method as the 425

number of method runs samples increases. 426

Sampling Methods

Model: GPT-3.5-Turbo Text Code CR Uniform

base (k=1) 48.86 46.29 42.57 (= Top1)

5 (2,2,1) 69.43 66.86 66.86 70.00
10 (4,3,3) 76.86 78.86 73.14 76.57
15 (5,5,5) 78.86 82.29 76.29 81.14
20 (7,7,6) 80.86 84.29 80.00 84.00

Average 85.36 80.07 85.86 87.14

Sampling Methods

Model: LLaMA-3-70B Text Code CR Uniform

base (k=1) 65.14 41.71 61.71 (= Top1)

5 (2,1,2) 80.29 70.29 81.71 82.00
10 (4,3,3) 85.14 80.29 85.71 86.86
15 (5,5,5) 87.43 84.29 87.14 89.43
20 (7,6,7) 88.57 85.43 88.86 90.29

Average 85.36 80.07 85.86 87.14

Table 3: Search space’s upper bound scores on each
sampling methods. Result on MATH-all (* 350 test
subset): Experimental Details are the same with Ta-
ble 1 and data sampling details are written in the section
above.
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