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ABSTRACT

Large language models (LLMs) fine-tuning shows excellent implications. How-
ever, vanilla fine-tuning methods often require intricate data mixture and repeated
experiments for optimal generalization. To address these challenges and stream-
line the training process, we propose an efficient and universal solution, Dynamic
Anchor Annealing (DAA). We obtain a global gradient through zero-learning-rate
training on general data, which is subsequently employed for gradient anchor and
dynamic training step correction during domain training. In conjunction with an-
nealing learning, we end up establishing a fine-tuning pipeline that relies solely
on domain data without collapse. By evaluating both general and domain-specific
performance across multiple tasks on several popular base models, DAA achieves
an average improvement of 5.8% in joint performance over vanilla fine-tuning.
Furthermore, since general data is no longer involved in annealing, repeated ex-
periments led by data mixture are also eliminated. According to our tests, the
DAA method can reduce GPU hours by 91.0% compared to the vanilla method.

1 INTRODUCTION

Large Language Models (LLMs) show significant promise in various applications due to their abil-
ity to understand and generate human-like text. Fine-Tuning (FT) LLMs on domain-specific tasks
has become a common approach to enhance their performance in targeted applications Yang et al.
(2023); Zhou et al. (2024); Chen et al. (2024); Huang et al. (2023). However, empirical evidence
suggests that fine-tuned LLMs frequently demonstrate significant degradation of their original per-
formance Chen et al. (2020); Luo et al. (2025); Lin et al. (2023); Korbak et al. (2022). Therefore,
mitigating catastrophic forgetting in the fine-tuning process has emerged as a crucial research focus
for LLMs (Table 1, row 1).

Data Mixture (DM) strategy was the basic and vanilla solution Wen et al. (2023); Wu et al. (2023);
Zhang et al. (2024a); Wu et al. (2024); Held et al. (2025) to solve catastrophic problem. It combines
general and domain-specific data in fine-tuning datasets to mitigate forgetting of general capabili-
ties. Due to the coupling between data from different domains, each fine-tuning requires repeated
experimentation to adjust the data mixture in order to achieve satisfactory performance (Table 1,
row 2). As shown in Figure 1, the effectiveness of DM heavily depends on the mixing ratio, necessi-
tating extensive empirical validation to determine optimal proportions for each domain. Alternative
approaches, such as Low-Rank Adaptation (LoRA) Hu et al. (2021); Yang et al. (2023); Cui et al.
(2023), have demonstrated some success in preserving general capabilities, yet they face inherent
limitations in achieving peak domain-specific performance (Table 1, row 3). This ad-hoc process of
data mixing is not only computationally prohibitive but also lacks scalability, as the optimal ratio
for one domain rarely transfers to another. Consequently, an ideal fine-tuning framework must de-
couple domain adaptation from the costly cycle of data mixture experiments, while still effectively
balancing specialization with the preservation of general knowledge.

To address the above challenges, we propose Dynamic Anchor Annealing (DAA), a streamline
fine-tuning framework that eliminates the requirements for data mixture and repeated experiments.
First, to effectively isolating the contributions of general-domain and domain-specific data, we pro-
pose Global Gradient Anchoring (GGA). Here, “Anchoring” refers to augmenting the domain-
specific gradient with a pre-computed global one. This method initially estimates the global gradient
in the general domain through zero-learning-rate learning. During fine-tuning, the global gradient is
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Figure 1: Comparison between vanilla and DAA. [*] is the part that users need to perform in SFT.

Table 1: Comparison of different methods. Repeated Exps indicates that the method requires hyper-
parameter tuning or recipe adjustment for data mixture ratios to achieve optimal results. Collapse
means losing generalization ability.

Method No Data Mixture No Repeated Exps Reduce Cost No Collapse SOTA

Direct FT ✔ ✔ ✔ ✗ ✗
Vanilla FT ✗ ✗ ✗ ✔ ✗
LoRA-like FT ✔ ✗ ✔ ✔ ✗

DAA (Ours) ✔ ✔ ✔ ✔ ✔

used as guidance, combined with annealing learning, to mitigate catastrophic forgetting. Second, to
achieve global optimal performance in specifics, we propose a domain similarity-guided Dynamic
Correction (DC) strategy. This adaptive parameter update strategy modulates the optimization steps
based on the gradient similarity between specific and general domains. It is important to emphasize
that the fundamental goal of DAA extends beyond the reduction of fine-tuning expenses to specif-
ically address the mitigation of catastrophic forgetting. The efficiency of this method emerges as
a significant inherent benefit of its design, as it delivers comparable or superior performance while
avoiding the substantial costs associated with data mixture search. As demonstrated in Table 1,
DAA achieves superior performance compared to conventional fine-tuning approaches, while sig-
nificantly reducing workload by eliminating the need for data mixing and repeated experiments. Our
contributions are summarized as follows:

• We explore the impact of data mixture on both fine-tuning performance and workload, and
propose new fine-tuning schemes.

• We propose DAA, a novel training framework designed to efficiently fine-tuning by
gradient-based domain decoupling and similarity-guided adaptation.

• We conduct empirical evaluations across various tasks, demonstrating that our method ef-
fectively balances domain-specific performance while maintaining general capabilities with
low workload.

2 MOTIVATION

2.1 RELATED WORK

Recent work on fine-tuning Xie et al. (2023); Zhang et al. (2023b); Bao et al. (2023); Yue et al.
(2023); Chen et al. (2024); Zhou et al. (2024); Yang et al. (2023); Cui et al. (2023) including direct
fine-tuning Xie et al. (2023); Zhu et al. (2024), vanilla fine-tuning Bao et al. (2023); Yue et al.
(2023); Chen et al. (2024); Deng et al. (2023) and LoRA Yang et al. (2023); Chen et al. (2023);
Cui et al. (2023) seeks to mitigate catastrophic forgetting while controlling cost. As shown in Table
1, direct fine-tuning is inexpensive yet the general performance of LLMs can collapse. Vanilla fine
tuning employs data mixtures to suppress forgetting and often preserves general capability, although
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the cost rises sharply. LoRA is effective in reducing both forgetting and cost, but performance in
unfamiliar specific domains remains below that of full-parameter fine-tuning.

Among these options, vanilla fine-tuning with data mixture offers the best balance between general
and domain-specific performance, yet its experimental cost is substantial. Mixing ratios tend to be
domain- dependent and therefore require repeated experimentation for each target domain Wen et al.
(2023). In addition, when the ratio is swept from 1 : 1 through 1 : N , the total volume of processed
data scales as

∑N
n=1(1 + n) = O(N2) times the size of the specific domain set, which becomes

prohibitive as the domain dataset grows. This computational inefficiency motivates more efficient
and more generalizable fine-tuning methodology.

Recent studies Wu et al. (2024); Dong et al. (2024) investigate the optimization of data mixtures.
For instance, Mixture-of-Skills Wu et al. (2024) utilizes Reinforcement Learning (RL) to optimize
data utilization ratios. While DAA eliminates the need for online mixture search, it is orthogonal to
data selection strategies. Future work could integrate RL-based data curriculum to further enhance
the quality of the Global Gradient Anchor. Additionally, Liang et al. (2025) employs a sample-level
Evolving Interaction-guided Curriculum for multi-domain coordination, DAA adopts a domain-level
strategy through the Global Gradient Anchor. This approach abstracts the general prior into a sta-
ble optimization direction to prioritize computational efficiency and scalability over complex sample
dynamics, which facilitates a streamlined “Finetune Once” workflow. Furthermore, gradient surgery
methods such as PCGrad Yu et al. (2020) and GradNorm Chen et al. (2018) manage gradient con-
flicts in multi-task learning by storing individual task gradients, yet this approach incurs prohibitive
memory costs for LLMs. In contrast, DAA employs a memory-efficient and pre-computed global
anchor to specifically mitigate catastrophic forgetting.

Another related area of research is Continual Learning (CL). CL is defined as a model learning from
a dynamic data distribution Wen et al. (2023). Our setting can be viewed as single task continual
learning in which, after adapting a pretrained model to one instruction task, we aim to mitigate
degradation of its general capabilities.

Besides, it’s important to differentiate the optimization challenges in DAA from those in Multi-
Task Learning (MTL). Prior MTL works often focus on imbalanced domains, where high-resource
tasks dominate the gradient direction at the expense of low-resource tasks Sener & Koltun (2018),
and cross-domain transfer, which aims to leverage knowledge from a source domain to improve
a distinct target domain Liu et al. (2019). In contrast, DAA targets Finetuning to Target Domain ,
where the optimization landscape is defined by the tension between the General Prior and the Tar-
get Domain. 1) Handling Imbalance: Unlike MTL, where multiple specific domains compete for
model capacity, the imbalance in our setting exists between the massive pre-training distribution and
the smaller fine-tuning dataset. DAA explicitly regulates this imbalance through the Global Gra-
dient Anchor and the decay coefficient γt, ensuring that the general prior is not overwhelmed by
the specific domain, regardless of the domain’s data scale. 2) Nature of Transfer: DAA focuses on
General-to-Specific retention rather than Specific-to-Specific transfer. The Global Gradient serves
as a regularization term that enforces the preservation of general reasoning structures while allow-
ing the model to adapt to the target distribution. Thus, the negative transfer or interference often
seen between disjoint domains in MTL is mitigated by anchoring optimization to the robust general
manifold.

2.2 ROLE OF GRADIENT IN FINE-TUNING

During stochastic optimization, gradient variance strongly affects convergence and generalization
Gurbuzbalaban et al. (2021). High variance slows convergence and complicates optimization Agar-
wal et al. (2022); Xia et al. (2024), which can hinder domain adaptation. We provide qualitative and
quantitative analyses of fine-tuning across general and specific domains and expose drawbacks of
multi domain optimization.

First, we qualitatively analyze the differences in convergence trajectory between general and spe-
cific domain by visualizing the loss landscape. Following the methodology in Lucas et al. (2021),
we interpolate between the weights θ0 of Qwen3-1.7B Yang et al. (2025) base model and the fully
fine-tuned weights θD, constructing a two-dimensional slice of the loss landscape. To ensure inde-
pendence, we apply orthogonalization to the interpolation direction.
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(a) General domain loss landscape (b) Specific domain loss landscape

Pre-trained model

Fine-tuned model

(c) Statistic comparison result

Figure 2: Qualitative and quantitative analysis result of general and specific domain.

Figure 2(a) and 2(b) show that the general domain has many local optima and a tortuous path details
in appendix B, while the specific domain news QA details in Section 4.2 shows fewer optima and a
more stable trajectory. General domain training can therefore constrain domain specific fine-tuning.

Second, we follow stochastic optimization methodology Ghadimi & Lan (2013) to compare average
gradient norms and noise scale across the two domains. As shown in Figure 2(c), the general domain
has nearly twice the noise scale of the specific domain. We randomly sample 1,000 instances from
each domain. On the full general domain the gap may be larger. We therefore attempt to freeze
general domain gradients to limit their impact on training.

In multi domain optimization, conflicts between domain gradients degrade efficiency Yu et al.
(2020); Hadsell et al. (2020); Liu et al. (2021). Prior work reduces negative interactions by re-
moving projection components between domain gradients Yu et al. (2020) or by automatic gradient
balancing Liu et al. (2021). This motivates a balancing mechanism between specific and general
domain gradients that preserves generalization while learning specific domain distributions.

3 METHOD

Figure 3: Overview of Dynamic Anchor Annealing. Our approach consists of two stages. In the
first stage, global gradient is estimated in the general domain through zero-learning-rate learning,
which serves as an independent preprocessing stage. In the second stage, the fine-tuning step, global
gradient anchors the specific gradient to preserve general capability, while the similarity between
global and specific gradients adaptively determines the parameter update magnitude. The learning
rate with annealing strategy suppresses degradation.

In this section, we formally introduce the Dynamic Anchor Annealing (DAA) illustrated in Figure
3, which is based on annealing learning. It is worth to note that DAA is a full-parameter fine-tuning
framework in which decoupling refers to the optimization-level separation of general and domain-
specific signals within the gradient space rather than the division of model components. Initially,
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the global gradient is independently estimated in the general domain through zero-learning-rate
learning. During the fine-tuning stage, DAA anchors the gradient to preserve the general capability.
Subsequently, the similarity between the global gradient and specific gradient adaptively selects the
magnitude of parameter update. Finally, the learning rate with the annealing strategy suppresses
degradation effectively.

3.1 GLOBAL GRADIENT ANCHORING

The global gradient serves as a stable optimization anchor. Our design is motivated by two key
factors: 1) Variance Reduction: ĝG acts as a low-variance regularizer for the high-variance domain
gradient gD,t, preventing severe oscillations (see Eqn. 4). 2) Trajectory Smoothing: As shown in
Figure 2(a), ĝG points towards regions of good generalization, helping the optimizer bypass poor
local optima in the general domain landscape. The term “Anchoring” is metaphorical. We anchor
or augment the domain-specific gradient at each step with this pre-computed stable anchor. This
approach is distinct from traditional Gradient Boosting Machines.

In the joint learning of general and specific domains, the gradient is a weighted sum of the general
gradient and the specific gradient, with weights determined by the data mixing ratio λ, that is

gM,t = λgG,t + (1− λ)gD,t. (1)

We define ĝG as a fixed estimator of gG,t in joint training to diminish the volatility of the combined
gradient.

gB,t = γtĝG + (1− γt)gD,t, (2)

where γt is the anchoring magnitude. The expectation and variance of gB,t are given by

E[gB,t] = γtĝG + (1− γt)E[gD,t], (3)

E[∥gB,t − E[gB,t]∥2] = (1− γt)
2E[∥gD,t − E[gD,t]∥2]. (4)

By fixed ĝG, we can significantly mitigate the randomness of parameter update while maintaining
the regularization effect on optimization.

To estimate the global gradient ĝG, according to the derivation of Adam Kingma & Ba (2017),
when the exponential decay rate for the 1st momentum estimates β1 → 1, the momentum mG,t

approximates the expectation of the gradient.

ĝG = E [gG,i] = s−1
s∑

i=1

gG,i = lim
β1→1

mG,s. (5)

Therefore, we trained the LLM on the general domain with a learning rate of 0 and a decay rate
β1 → 1, then stored the final momentum after s training steps. Notably, ĝG can be applied across
all domains, rather than being obtained per domain. The acquisition of ĝG is consistent with the
findings of LIMA Zhou et al. (2023) that prioritize diversity and quality over sheer quantity. As the
general dataset attains sufficient diversity, the direction of ĝG stabilizes, which implies that massive
datasets are not strictly required for robust anchoring.

(a) Gradient norm (b) Loss

Figure 4: Comparative results of global gradient boosted learning. Figure 5: Norm of gradient projection.
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We refer to this method as Global Gradient Anchoring (GGA). The stored mG from the general
domain supplies a stable guidance signal during specific domain optimization and steers updates
toward a joint optimum. As shown in Figure 4, GGA markedly reduces gradient norm and loss,
especially early in fine-tuning, which indicates improved training stability on the specific domain
with preservation of general capability.

The anchoring magnitude can be adapted over training. We set γt = k0
(
1− t

T

)
, so that the model

increasingly emphasizes the specific domain near the end of fine tuning. Accounting for exponential
averaging in Adam Kingma & Ba (2017), the exponential average of γtmG yields an effective
coefficient α:

αt = k0

(
1− t

T

)
+

k0β1

(
1− tβt−1

1 + (t− 1)βt
1

)
T (1− β1)(1− βt

1)
. (6)

The nonlinear term is monotonically increasing and is bounded by
k0β1(1−tβt−1

1 +(t−1)βt
1)

T (1−β1)(1−βt
1)

. Since
the cumulative contribution of the global gradient should be comparable across domains, it suffices
to choose k0 inversely proportional to T . With T ≫ k0, the nonlinear term becomes negligible
and we use the approximation αt ≈ k0

(
1− t

T

)
. This schedule is simple to implement and robust.

Hyperparameter details and sensitivity analyses are provided in the Appendix A.

For deployment efficiency, storing mG in 32 bit precision is memory intensive. We therefore apply
singular value decomposition to mG and retain a rank r = 512 approximation. During training, we
reconstruct the low rank estimate of the global gradient and add it to each step. This saves memory
and emphasizes the most informative components of the global signal.

3.2 DYNAMIC CORRECTION

Pre-trained language models have demonstrated remarkable capabilities by incorporating data from
diverse domains during pre-training. However, these models often struggle with domains that are
either private or temporally distinct from the pre-training distribution, necessitating extensive exper-
iments for optimal performance. Applying uniform strategies across domains with varying degrees
of familiarity can lead to suboptimal outcomes. To address this challenge, we propose a Dynamic
Correction (DC) mechanism that modulates the magnitude of parameter update based on gradient
similarity. The core intuition is to adjust the learning step based on the interference strength st.
When st ≈ 0, gradients are orthogonal (low interference), allowing larger steps. When st ≈ 1,
gradients are correlated (high interference), requiring smaller steps to preserve general knowledge.

To quantify the alignment between general domain and specific domain, we introduce a gradient
similarity metric based on the L2 norm of the normalized projection of specific gradient gD,t onto
the estimation of the global gradient mG:

st =
||gD,t · ĝG||

||gD,t|| · ||ĝG||
, (7)

where gD,t denotes gradients for the specific domain at time step t, and ĝG represents global gradient
of the general domain. Our empirical analysis encompasses both familiar domains (finance Yang
et al. (2023), medicine Wang et al. (2024), and law Fei et al. (2023)) and a temporally restrictive
domain (news QA, details shown in section 4.2). As shown in Figure 5, each domain maintains a
characteristic similarity range with the general domain. Notably, familiar domains exhibit similar
magnitude, while the unfamiliar domain demonstrates significantly lower similarity values, differing
by more than an order of magnitude.

Leveraging this similarity measurement, we introduce a dynamic correction coefficient:

ct = st + c0, (8)

where c0 represents a base coefficient that prevents excessive parameter updates and potential over-
fitting when similarity values are minimal. We set c0 = 0.01 in practice. The resulting parameter
update rule incorporating the dynamic correction is:

∆θ = −η
m̂t√

ctv̂t + ε
. (9)
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3.3 ANNEALING LEARNING

In the training of MiniCPM Hu et al. (2024) and Llama3 Grattafiori et al. (2024), Annealing Learning
(AL) is applied at the final stage of pre-training. Using learning rate with minimal initialization and
decay strategy, LLMs can learn downstream task knowledge from high-quality domain data without
forgetting. Suppose the conventional initialization of learning rate is η0, and ηa

0 for annealing, the
parameter updates for both schemes are:

∆θt = −η0

(
1− t

T

)
m̂t√
v̂t + ε

, ∆θa
t = −ηa

0

(
1− t

T

)
m̂t√
v̂t + ε

. (10)

Via comparative analysis of Eq. 10, we can measure the influence of annealing on the parameter
updates:

∆θt −∆θa
t = − (η0 − ηa

0)

(
1− t

T

)
m̂t√
v̂t + ε

. (11)

As shown in Eq. 11, annealing suppresses the learning of specific domains. Smaller parameter
updates thus reduce the risk of catastrophic forgetting. Therefore, we use the annealing learning
scheme in DAA. And we set ηa

0 = 1e−7 in the our experiment.

3.4 SUMMARY

After integrating the above learning strategies, we obtain the complete parameter update of DAA:

∆θDAA
t = −ηa

0

(
1− t

T

)
m̂B,t√

ctv̂B,t + ε
. (12)

The integration of GGA, DC and AL facilitates the adaptation to specific domains while mitigating
forgetting.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

This study evaluates the effectiveness of DAA across diverse vertical domains in both English and
Chinese contexts, including finance, medicine, and law. The general-domain data used in our ex-
periments comprises Chinese and English corpora covering multiple tasks. Its detailed composition
can be found in Appendix B, Table 6. The evaluation utilizes multiple datasets: FinGPT Yang et al.
(2023), CMB Wang et al. (2024) and Fuzi-Mingcha Deng et al. (2023). To avoid the potential con-
tamination or overfitting of evaluation benchmarks during pre-training as new and improved LLMs
are developed Schaeffer (2023); Jain et al. (2024); Zhang et al. (2024b), we constructed a temporal
out-of-distribution (OOD) evaluation benchmark named News QA (details in Section 4.2).

For comparative analysis, we selected several representative fine-tuning methods. In addition to
direct fine-tuning and vanilla fine-tuning, we also compared the performance of LoRAHu et al.
(2021), DoRALiu et al. (2024), GaloreZhao et al. (2024), and our proposed DAA across diverse
vertical domains. Especially, for vanilla fine-tuning, we followed Wen et al. (2023) and combined
our vertical domain fine-tuning experience to choose three distinct data mixture ratios (specific data
: general data = 1:1, 1:3, 1:5). We ensured that the vanilla fine-tuning results presented in the
experimental tables all represent the optimal performance in the specific domain.

In addition, we have validated the effectiveness of the proposed method across multiple foundational
models, including Llama3.1-8B Grattafiori et al. (2024) , Phi4-14B Abdin et al. (2024), and Qwen3-
8B Yang et al. (2025).

4.2 NEWS QA BENCHMARK

We constructed a benchmark comprising QA pairs extracted from news articles. As shown in Table
2, the dataset contains 30,613 news titles across three categories (Politics, Economics, and Culture),
with corresponding true/false questions designed to evaluate factual verification capabilities. The
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task requires binary responses (“true” or “false”) for each statement. To ensure minimal overlap with
foundational models’ pre-training corpus Yang et al. (2024); Grattafiori et al. (2024); Abdin et al.
(2024), we specifically selected news articles published after December 2024. As shown in Table 2,
row 3, all the foundational models exhibits limited factual verification capabilities , achieving only
31.06% average accuracy.

Table 2: Details of news QA benchmark. The first two rows show the data distribution. The third
row presents performance (SD) of Qwen3-8B Yang et al. (2025) on each category.

Split Politics Econ Culture Total

Train set 9823 10120 8670 28613
Test set 700 700 600 2000

SD 29.05 30.70 33.43 31.06

4.3 METRICS

To evaluate the general performance of the models, we selected four benchmarks commonly used
across all LLMs: MMLU Hendrycks et al. (2021a), MMLU-Pro, GSM8K Cobbe et al. (2021),
MATH Hendrycks et al. (2021b) and M3Exam Zhang et al. (2023a). MMLU tests general knowl-
edge across multiple subjects, CMMLU focus on Chinese-specific knowledge and reasoning, while
GSM8K and MATH tests mathematical problem-solving skills. All raw scores for the evaluated
benchmarks were within the interval of [0, 1]. Crucially, no external normalization procedures were
applied during the computation of SD, SG, and S. To evaluate various vertical performance of the
models, we selected suitable public benchmarks for evaluation. For the financial domain, we utilized
the weighted F1 score average across the English FPB Malo et al. (2013), FiQA Maia et al. (2018),
TFNS Zer (2024), and NWGI Yang (2024) financial sentiment analysis test sets as the metric for
this domain. For the medical domain, the accuracy score from the Chinese CMB-Exam Wang et al.
(2024) test set served as the domain-specific metric. For the legal domain, we employed Chinese
LawBench Fei et al. (2023) for a comprehensive evaluation. Our overall metric design is structured
as follows:

SG = Mean({Sx | x ∈ X}), (13)
S = HarmonicMean(SD, SG), (14)

where X = {MMLU, MMLU-Pro, GSM8k, MATH, M3Exam}. SD is the score of the model’s
vertical domain performance, SG is the average score of the model’s general performance. S is
the harmonic mean of SD and ∆SG, meaning the model scores high only if both are large. If
fine-tuning boosts domain performance but reduces general capability significantly, the score nears
0. Conversely, if it enhances domain performance while preserving general capability, the score
approaches 1.

4.4 COST ANALYSIS

To demonstrate the efficiency of our approach, we compared GPU hours across fine-tuning
methods using 16 Nvidia A100 GPUs. As shown in Table 3, DAA requires TDAA ≈
4.2 GPU-hours per domain, similar to direct full-tuning (TDirect ≈ 4.1 GPU-hours) but without
its drop in general-task performance. More importantly, DAA reduces training costs by over 90%
compared to vanilla fine-tuning (TVanilla ≈ 46.7 GPU-hours) while achieving notable gains in ver-
tical (SD) and general (SG) scores.

While LoRA (TLoRA ≈ 3.0 GPU-hours) and DoRA (TDoRA ≈ 3.1 GPU-hours) are faster, DAA
consistently outperforms them and Galore (TGalore ≈ 5.1 GPU-hours) in harmonic-mean score S,
justifying the modest additional GPU time with superior task performance.

4.5 MAIN RESULTS

Table 3 demonstrates that our DAA method consistently achieves the best balance between vertical
domain ability and general performance retention, as measured by the harmonic mean S, across four
domains and three base models.
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Table 3: Performance metrics across different domains and models. T is the GPU hours. SD is the
score of the model’s vertical domain performance, SG is the average score of the model’s general
performance change. S is the harmonic mean of SD and SG.

Domain Method Llama3.1 Phi4 Qwen3

T ↓ SD ↑ SG ↑ S ↑ T ↓ SD ↑ SG ↑ S ↑ T ↓ SD ↑ SG ↑ S ↑

Finance

Direct FT 3.40 80.01 54.69 64.97 6.22 89.72 77.92 83.41 3.38 85.83 63.74 73.15
Vanilla FT 38.77 79.30 60.50 68.64 71.24 83.42 77.71 80.46 38.74 85.49 71.01 77.58
LoRA 2.50 76.45 61.69 68.28 4.61 87.13 78.27 82.46 2.50 81.68 73.21 77.21
DoRA 2.58 76.12 61.25 67.88 4.71 86.34 78.24 82.09 2.57 82.19 73.27 77.47
Galore 5.09 77.31 60.78 68.06 9.34 86.23 78.55 82.21 5.09 84.37 74.59 79.18
DAA (Ours) 3.45 79.84 61.75 69.64 6.35 87.73 78.50 82.86 3.41 85.32 76.49 80.66

Medicine

Direct FT 12.39 89.23 52.73 66.29 22.78 92.13 78.34 84.68 12.38 92.67 64.44 76.02
Vanilla FT 141.81 87.32 59.47 70.75 260.58 91.24 79.26 84.83 141.81 81.81 68.74 74.71
LoRA 9.18 81.76 59.97 69.19 16.87 90.30 79.02 84.28 8.21 84.00 69.51 76.07
DoRA 9.31 81.21 59.07 68.40 17.05 90.31 78.74 84.13 8.37 84.74 69.67 76.47
Galore 13.68 81.23 58.55 68.05 25.14 91.96 78.56 84.73 13.68 87.57 73.71 80.04
DAA (Ours) 12.54 83.97 60.33 70.22 22.90 92.61 78.82 85.16 12.64 92.24 77.97 84.51

Law

Direct FT 4.39 56.81 48.94 52.58 8.04 42.63 71.06 53.29 4.39 55.28 70.13 61.83
Vanilla FT 50.12 51.37 53.08 52.21 91.98 41.82 72.12 52.94 50.10 52.28 72.95 60.91
LoRA 3.25 46.58 58.06 51.69 5.97 41.87 73.38 53.32 3.25 51.90 76.19 61.74
DoRA 3.43 46.37 56.05 50.75 6.24 41.98 72.36 53.13 3.36 51.91 76.30 61.79
Galore 6.13 47.80 56.13 51.63 11.26 40.12 71.53 51.41 6.13 52.76 77.53 62.79
DAA (Ours) 4.53 49.93 56.68 53.09 8.17 41.95 73.12 53.31 4.60 52.79 79.38 63.41

News QA

Direct FT 1.27 82.38 36.34 50.44 2.32 87.38 26.40 40.55 1.27 79.37 3.83 7.31
Vanilla FT 14.45 80.62 39.73 53.22 16.51 88.23 72.11 79.36 14.45 80.27 52.36 63.38
LoRA 0.94 71.23 48.04 57.38 1.72 83.12 77.46 80.19 0.93 70.27 67.51 68.86
DoRA 0.99 73.71 50.52 59.95 1.80 83.37 76.68 79.88 0.99 70.78 67.81 69.26
Galore 2.02 79.13 53.05 63.52 3.70 85.02 76.27 80.41 2.03 80.88 68.43 74.14
DAA (Ours) 1.32 82.37 52.00 63.76 2.42 89.19 77.91 83.17 1.28 80.82 68.52 74.16

Finance. On Llama3.1, DAA again leads with SD = 79.84%, SG = 61.75% and S = 69.64%,
surpassing all competitors. On Qwen3, direct fine-tuning and vanilla fine-tuning suffer considerable
general-performance drops (SG = 63.74% and 71.01%), whereas DAA attains SG = 76.49%
(an improvement of 1.90 points over the next best) while maintaining a high domain score SD =
85.32%. This yields the highest overall score S = 80.66%, outperforming direct fine-tuning (S =
73.15%) and vanilla fine-tuning (S = 77.58%).

Medicine. On Llama3.1, DAA’s SG = 60.33% and SD = 83.97% produce S = 70.22%, again the
best trade-off. On Phi4, DAA secures the highest domain accuracy (SD = 92.61%) and a strong
general score (SG = 78.82%), leading to an overall S = 85.16%, which exceeds every baseline.
For Qwen3, direct fine-tuning and vanilla fine-tuning obtain only SG = 64.44% and 68.74%, while
DAA achieves SG = 77.97% coupled with SD = 92.24%, resulting in the top harmonic mean
S = 84.51%.

Law. DAA attains the high SG on Llama3.1 (56.68%), Phi4 (73.12%), and Qwen3 (79.38%), and
achieves harmonic means 53.09%, 53.31%, and S = 63.41% respectively. These results outperform
direct fine-tuning and vanilla fine-tuning, both of which incur larger general-performance regres-
sions. A more detailed discussion regarding the performance on the Law dataset is provided in the
Appendix C.

News QA. In this strictly leak-free benchmark, direct fine-tuning collapses on general performance
(SG = 3.83% on Qwen3), while DAA preserves general knowledge (SG = 68.52%) while slightly
exceeding the domain score of direct fine-tuning (SD = 80.82% vs. 79.37%), producing S =
74.16% (versus 7.31%). On Phi4, DAA simultaneously achieves the highest SD = 89.19% and
SG = 77.91%, leading to S = 83.17%, which outperforms the best baseline by 2.76 points.

Overall, across all domains and models, DAA delivers the strongest joint performance S, validating
its effectiveness at vertical domain fine-tuning with minimal general-knowledge degradation.

It is worth noting that the performance gains of DBA are more pronounced on the News QA bench-
mark compared to traditional domains like Finance or Medicine. We attribute this to the strong
pre-training coverage of the latter domains in modern base models, where fine-tuning primarily
serves as alignment. In contrast, News QA represents a Temporal Out-Of-Distribution (OOD) task
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Table 4: Results of ablation on news QA benchmark. AL, GGA and DC are defined in Section 3.

AL GGA DC Llama3.1 Phi4 Qwen3

SD ↑ SG ↑ S ↑ SD ↑ SG ↑ S ↑ SD ↑ SG ↑ S ↑
✔ ✗ ✗ 68.22 27.60 39.30 78.07 46.47 58.26 75.50 44.06 55.65
✔ ✔ ✗ 71.25 31.36 43.55 82.14 50.34 62.42 78.62 47.90 59.53
✔ ✗ ✔ 72.99 41.66 53.04 83.35 61.49 70.77 78.73 57.26 66.30
✔ ✔ ✔ 75.65 47.09 58.05 86.24 67.36 75.64 80.82 68.52 74.16

containing knowledge strictly unseen during pre-training. The significant margin achieved by DBA
on News QA demonstrates its capability, validating its effectiveness beyond simple style alignment.

4.6 ABLATION ANALYSIS

Furthermore, we conducted ablation studies on individual modules within the proposed DAA to
quantify their contributions. The results are shown in Table 4. When solely applying annealing
learning (row 1), the model shows decreased domain-specific performance and improved general
domain performance, yet fails to match the overall effectiveness of DM. This indicates that while
the annealing strategy helps mitigate catastrophic forgetting, its effectiveness is limited in isolation.
The incorporation of global gradient anchoring with annealing learning (row 2) leads to enhanced
performance in both domain-specific and general domains, demonstrating the significant impact of
global gradient optimization.

Incorporating dynamic correction into annealing learning (row 3) leads to significant improvements
in both domain-specific and general domain performance. This demonstrates that dynamic cor-
rection effectively optimizes the update step size, thereby enhancing the learning process. The
combination of all three components (row 4) - annealing learning, global gradient anchoring, and
dynamic correction - yields optimal performance across both domains, achieving highest joint per-
formance S of 58.05%, 75.64%, and 74.16% on Llama3.1, Phi4, and Qwen3. These results validate
the synergistic effects of DAA components in enhancing the model’s overall capabilities.

5 CONCLUSION

We present Dynamic Anchor Annealing, a fine-tuning method that mitigates catastrophic forget-
ting in LLMs. Using global gradient anchoring with similarity guided dynamic correction, DAA
improves performance while reducing compute cost over prior methods.

Limitations. DAA is designed for dense models used in vertical domain tasks. Our experiments
cover a few domains such as medical and finance. Robustness across vision, speech, reinforcement
learning, continual fine-tuning, and large scale language modeling remains unverified. Although
DAA scales linearly in theory, extremely deep or wide networks with billions of parameters and
web scale datasets may reveal stability or convergence issues not seen in our mid scale benchmarks.

Applicability Analysis. DAA relies on gradient anchoring learning and magnitude adjustment of
parameter updates, so it applies to other optimizers. In fine-tuning we focus on AdamW Loshchilov
& Hutter (2019), which is widely used.

Future Work. Domain specific LLMs can equip workers with specialized AI in their fields. We will
explore broader applications of DAA to inspire research on domain specific training. We will release
code and associated global gradients, followed by additional global gradients matched to more base
models for the community. Future work will also explore integrating DAA with Parameter-Efficient
Fine-Tuning (PEFT) methods, such as LoRA Hu et al. (2022). By applying the Global Gradient
Anchoring and Dynamic Correction mechanisms specifically to the gradients of low-rank adapters,
we aim to synergize the computational efficiency of DAA, which eliminates the need for data mix-
ture, with the memory efficiency of PEFT. This combination holds the promise of enabling robust,
low-resource domain adaptation on consumer-grade hardware.
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Finetune Once: Decoupling General & Domain Learning
with Dynamic Anchor Annealing

Appendix

This Appendix contains the following parts:

• Hyper Parameters. We delineate the specific hyperparameters for model training and eval-
uation, detailing the settings for gradient expectation estimation, momentum compression,
the AdamW optimizer, and the empirical justification for the anchoring learning coefficient
k0.

• Dataset Details. We provide a comprehensive description of the datasets utilized for both
general and vertical domain fine-tuning, detailing the specific sources, composition, and
quantities for the finance, medicine, law, and the constructed temporal out-of-distribution
News QA domains.

• Performance on the Law Dataset. We provide a contextual analysis of the performance on
the Law dataset, attributing the lower absolute scores to the domain’s complex and hetero-
geneous task mixture while underscoring the robustness of the DAA method in achieving
superior relative performance.

• Practical Implementation Guide. We outline a two-stage practical implementation guide
for DAA, involving a one-time, reusable pre-computation of the global gradient and its
subsequent integration into standard fine-tuning frameworks to ensure efficiency and ease
of adoption.

• Significance Test. We provide statistical validation of our performance gains.
• Cost Analysis. We provide a detailed cost comparison including memory usage and train-

ing time.
• Additional Sensitivity Analysis. We analyze the sensitivity of our method to data quantity

and anchor source.
• Raw Experimental Results. We report the raw scores for general benchmarks.

A HYPER PARAMETERS

This section will introduce the detailed process and hyperparameters involved in model training and
testing. In the main experiments and ablation experiments, we chose Qwen2-7B as our base model.
To obtain the gradient expectation estimation of the general domain, we set the learning rate of the
general domain training ηG = 0, meaning no parameter updates are performed in the general do-
main. Additionally, β1 = 0.999, so the momentum approximates the gradient expectation. The
training batch size is 8, and only the gradient momentum is retained after training. Note that the
computation in the general domain only needs to be done once, and the same momentum is used for
different vertical domains subsequently. Since the original momentum is in F32 data format, loading
it directly into the GPU memory would occupy a large space. We performed singular value decom-
position on the momentum, retaining r = 512 dimensions of singular values and vectors. During
the global gradient anchoring in training, the low-rank approximation of the original momentum is
restored and then added to the gradient. In the fine-tuning phase, we set the initial learning rate
ηD = 1e− 7, which is much lower than the usual fine-tuning learning rate. We used a linear decay
to zero learning rate schedule without warmup. The training batch size is 8, and we train for only
one epoch. We use the AdamW optimizer with β1 = 0.9 and β2 = 0.95. For the global gradi-
ent anchoring coefficients defined in equations (7) and (8), we chose a linear decay scheme with
k0 = 200/T , where T is the total number of steps in vertical domain fine-tuning. We propose the
heuristic k0 ∝ 1/T as a practical guideline. This relationship maintains a consistent total contribu-
tion from global gradients irrespective of the training duration. Specifically, the total ‘regularization
influence’ exerted by ĝG can be approximated by the integral of the anchoringing magnitude γt over
time:

∫ T

0
[k0(1 − t/T )]dt = k0 · T/2. To ensure this total contribution remains a constant C inde-

pendent of the total steps T , k0 must be proportional to 1/T . This ensures that whether fine-tuning
for 1,000 or 5,000 steps, the total ‘pull’ from the global anchor remains consistent.
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Table 5: Extended sensitivity analysis of hyperparameter k0 on the NewsQA benchmark.

k0 S

50/T 57.23
100/T 60.13
150/T 61.98
175/T 62.92
200/T 63.76
225/T 63.28
250/T 63.50
275/T 63.12
300/T 63.39

This is analogous to tuning LoRA, where practitioners often fix the dropout rate and primarily ex-
periment with the rank (r) and scaling factor (α). In our case, the core tuning effort is simplified to a
single, well-behaved parameter governed by a clear rule. As shown in the Table 5, the performance
metric S of Llama3.1 on NewsQA improves as the hyperparameter k0 increases. However, this
growth plateaus after k0 reaches 200/T . Since there is no significant performance gain beyond this
point, we select k0 = 200/T as the value for our experiments.

B DATASET DETAILS

We obtained validated our proposed method across a wide range of vertical domains, covering fi-
nance, medicine, law and news QA.

General Data: Since the vertical domain tasks mainly cover Chinese and English languages and
include multiple-choice and conversational tasks, the general data needs to fully cover similar data
patterns. Therefore, we collected Chinese and English QA data, covering QA, conversations, and
multiple-choice questions. Specifically, the general data includes 54,042 Chinese QA conversation
pairs, 65,596 English QA conversation pairs, and 1,881 Chinese multiple-choice questions.

Table 6: Data sources and quantities

NAME SOURCE QUANTITY

CHINESE QA DATA SELF-BUILT 54,042
ENGLISH QA DATA SELF-BUILT 65,596
CHINESE MCQS SELF-BUILT 1,881

Finance: We referred to the training data and testing methods of FinGPT Yang et al. (2023), se-
lecting its sentiment analysis task as the financial vertical domain. This task requires the model to
analyze the market sentiment of the input text as negative, neutral, or positive. According to Yang
et al. (2023), the training data was collected from FPB Malo et al. (2013), FiQA Maia et al. (2018),
TFNS Zer (2024), and NWGI Yang (2024). FinGPT designed three types of instructions for each
original data, resulting in a total of 76,772 training samples after filtering.

Table 7: Data sources and their quantities.

NAME SOURCE QUANTITY

ENGLISH SENTIMENT DATA

FPB 12,122
FIQA 26,532
TFNS 12,731
NWGI 25,387
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Medicine: We chose the CMB-Exam from the Chinese medicine Benchmark (CMB) Wang et al.
(2024) as the medical domain. This dataset includes 280,839 medicine multiple-choice questions,
covering 124,926 physician questions, 16,919 nursing questions, 27,004 medicine technician ques-
tions, 33,354 pharmacist questions, 62,271 undergraduate exam questions, and 16,365 graduate en-
trance exam questions. We randomly selected 11,200 questions from each category as the test set,
with a total of 269,359 questions in the training set.

Table 8: Questions from various Chinese medicine exams.

NAME SOURCE QUANTITY

PHYSICIAN PHYSICIAN EXAM 124,926
NURSING NURSING EXAM 16,919
TECHNICIAN TECHNICIAN EXAM 27,004
PHARMACIST PHARMACIST EXAM 33,354
UNDERGRADUATE MEDICINE EXAM 62,271
GRADUATE ENTRANCE MEDICINE EXAM 16,365

Table 9: Law Data Statistics

NAME SOURCE QUANTITY

FACT RECALL CAIL-LONG 4,200
CASE SUMMARIZATION CAIL-LONG 5,750

LEGAL QA DATA
LAWGPT 35,000

LAWYER LLAMA 11,000
FUZI 32,050

SYLLOGISTIC REASONING FUZI 11,237

Law: We referred to the data summarized by the Fuzi-Mingcha Deng et al. (2023) to filter suitable
legal vertical fine-tuning data. The fine-tuning data composition is as follows: 4,200 recall data and
5,750 summarization data from CAIL-Long Xiao et al. (2021), 35,000 legal QA data from LawGPT
Zhou et al. (2024), 11,000 legal QA data from Lawyer Llama Huang et al. (2023), 32,050 legal QA
data and 11,237 syllogistic reasoning judgment data independently constructed by Fuzi-Mingcha
Deng et al. (2023). The total training data amounts to 99,237 samples.

News QA: To precisely evaluate the domain decoupling capabilities, we constructed a temporal
out-of-distribution evaluation benchmark comprising QA pairs derived from news articles published
after December 2024 for ablation study. We used Qwen2.5-72B Yang et al. (2024) to extract three
factual QA questions for each headline. We ensured that there is no overlap between the vertical
domain data and the general data.

The above datasets come from diverse sources, and the characteristics and distributions among the
datasets vary significantly, providing ample and credible test scenarios for verifying the effectiveness
of the Dynamic Anchor Annealing scheme.

C PERFORMANCE ON THE LAW DATASET

Task Diversity and Complexity: The Law fine-tuning data is a highly heterogeneous mixture of
tasks, including not only multiple-choice questions but also complex generation tasks like Case
Summarization and reasoning tasks like Syllogistic Reasoning. These generative and reason-
ing tasks are fundamentally more challenging and diverge more significantly from the pre-training
objectives than the classification-style tasks that dominate the Finance, Medicine, and News QA
datasets.

Performance Interpretation: While the absolute score on Law is lower across all methods, it is im-
portant to note that DAA still consistently achieves the best or second-best harmonic mean score (S)
across all three base models (Table 3). For instance, on Qwen2.5, DAA achieves the highest S score
(59.85), significantly outperforming Direct FT (58.27) and Vanilla FT (57.35) by better preserving
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general capabilities (SG). This demonstrates that even in this more complex, generation-heavy do-
main, DAA’s regularization mechanism provides a tangible benefit over baselines by striking a better
balance between domain specialization and knowledge retention.

Conclusion on Generality: The Law dataset does not necessarily indicate a weakness but rather
highlights DAA’s robust performance on a more challenging and diverse task mixture. It showcases
that DAA’s benefits are not confined to simple classification tasks but extend to complex, mixed-task
scenarios.

D PRACTICAL IMPLEMENTATION GUIDE

While Dynamic Anchor Annealing (DAA) introduces steps beyond a standard fine-tuning script,
it has been designed for high efficiency and straightforward integration. The methodology is in-
tended to serve as a principal approach for domain specialization, analogous to the role of LoRA
in parameter-efficient tuning. The practical implementation can be decomposed into two distinct
stages.

The first stage is a one-time pre-computation of the global gradient ĝG, on general-domain data.
This process is analogous to a standard training procedure but with the learning rate set to zero,
representing a single, non-recurring computational cost. A critical feature of this approach is its
reusability. The resulting gradient artifact is model-specific yet domain-agnostic, meaning that for
a given foundation model like Llama3.1-8B, this computation is performed only once. The same
global gradient can then be applied to fine-tuning tasks across any number of vertical domains, such
as finance, law, or medicine. We propose that this pre-computation could become a standard practice,
wherein foundation model developers release an official global gradient alongside model weights,
leveraging their high-quality pre-training data. Such a community-driven effort would obviate this
step entirely for downstream domain specialists.

The second stage is the integration of Global Gradient Anchoring (GGB) and Dynamic Correction
(DC) into the fine-tuning loop. To facilitate seamless adoption, we have implemented our method
within the LLaMA-Factory and DeepSpeed frameworks. We will release this implementation as
open-source code and submit pull requests to these upstream projects, allowing practitioners to
enable DAA via a simple command-line argument with minimal implementation overhead.

In summary, the initial setup cost of DAA is substantially offset by the elimination of repeated data
mixing and extensive hyperparameter tuning. This modest, one-time investment yields significant
and recurring savings in computational resources and engineering time during the iterative process
of domain adaptation. A ”Practical Implementation Guide” is provided in the Appendix to further
detail these steps and emphasize the long-term efficiency benefits.

E SIGNIFICANCE TEST

We conducted a rigorous significance test using the News QA benchmark on Llama3.1-8B. We
chose this setup as it represents a challenging temporal OOD task. We repeated the experi-
ments for both Vanilla FT (at its optimal mixture ratio) and DAA using 5 different random seeds
{42, 43, 44, 45, 46}.

Table 10: Significance test results on News QA (Llama3.1-8B).
Method Seed 42 Seed 43 Seed 44 Seed 45 Seed 46 Mean (S) Std Dev (σ)
Vanilla FT 53.22 52.15 54.05 52.80 53.75 53.19 0.76
DAA (Ours) 63.76 64.25 63.15 63.88 63.45 63.70 0.42

An independent t-test yields a p-value ≪ 0.001, confirming that the performance improvement
is significant and robust to random initialization. DAA also shows lower variance (σ = 0.42)
compared to Vanilla FT (σ = 0.76), demonstrating that the Global Gradient Anchor effectively
stabilizes the optimization process by reducing the impact of initialization randomness.
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F COST ANALYSIS

We present the training overhead of DAA and Direct Fine-tuning (FT) for Llama3.1-8B on the News
QA dataset using 16 A100 GPUs. As shown in Table 11, DAA’s low-rank gradient anchors occupy
5.5 GB of memory. Relative to Direct Fine-tuning (FT), DAA exhibits a modest 0.7 GB increase in
Peak VRAM, due to the sharded gradient anchors and the computational cost for gradient correction.
Owing to the fact that the anchor gradients are loaded only once, the wall-clock time increased
slightly. Crucially, DAA does not introduce additional memory or I/O overhead for storage and
repeated use during training steps, as anchors are pre-loaded into VRAM. Crucially, DAA does not
introduce additional memory or I/O overhead for storage and repeated use during training steps, as
anchors are pre-loaded into VRAM.

Table 11: Training overhead comparison on Llama3.1-8B / News QA.
Method Anchor Memory Peak VRAM Parameters Wall-clock GPU Hour S

Direct FT - 37.1GB 7B 3.91h 3.40h 50.44
DAA 5.5GB 37.8GB 7B 4.20h 3.45h 63.76

G ADDITIONAL SENSITIVITY ANALYSIS

G.1 SENSITIVITY TO GENERAL DATA

The general dataset used in our paper was filtered from a raw pool of approximately 2.4M samples
using the Platypus method. To evaluate sensitivity, we sampled various ratios from this 2.4M raw
pool. As shown in Table 12, performance (S) remains remarkably stable as data volume increases.
This confirms that ĝG is robust and does not require massive amounts of raw SFT data to be effective.
This aligns with findings from recent studies like LIMA Zhou et al. (2023), suggesting that data
quality and curation strategy outweigh sheer quantity. Once the general dataset achieves sufficient
diversity to cover broad capabilities, the direction of ĝG stabilizes, and the marginal utility of adding
more data diminishes. Consequently, the cost of curating this data recipe is a one-time effort. We
view ĝG as a standard “Model Artifact” as critical as model weights, and advocate for developers to
release these gradients to eliminate data collection costs for end-users.

Table 12: Performance sensitivity to general data sample ratio.
Sample Ratio 20% (Ours) 40% 60% 80% 100%

S 63.76 63.55 63.68 63.71 63.12

G.2 ANCHOR SOURCE

Deriving ĝG from pre-training or post-pretraining data yields even better results, as these gradients
align more closely with the base model’s intrinsic distribution. We conducted a preliminary exper-
iment where we curated 100B tokens of post-pretraining data to compute ĝG, comparing it against
the anchor derived from standard SFT data used in our main paper. As shown in Table 13, the anchor
derived from post-pretraining data achieved a superior joint performance score (S) on the News QA
task.

Table 13: Performance comparison of different anchor sources.
Anchor Source SD SG S

General SFT Data (Ours) 82.37 52.00 63.76
Post-Pretrain Data 82.51 53.85 65.17

H RAW EXPERIMENTAL RESULTS

We provide the raw scores for experiments on general benchmarks here.
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