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ABSTRACT

Contrastive self-supervised learning critically depends on stochastic augmenta-
tions to generate positive pairs without quality-guaranteed mechanism. The poten-
tial low-quality positives, inclusive of false positives and trivial positives, hinder
models from learning effective representations. To address these issues, we pro-
pose View Selection via 2-Fold Indicators (VS-2FI). It identifies the low-quality
pairs of both types respectively via two indicators before eliminating them. On
the one hand, in order to identify false positives, we introduce Semantic Consis-
tency, and approximate it via the likelihood of two views co-occurring beyond
chance. On the other hand, in order to identify trivial positives, we design Align-
ment Level, and estimate it by the minimum network depth required to align two
views. VS-2FI discards view pairs that are either low in Semantic Consistency
(potential false positives) or low in Alignment Level (potential trivial positives) to
improve the overall quality of positive pairs. Extensive experiments elucidate the
isolated and integrated effects of the two indicators, and demonstrate the consis-
tent gains of VS-2FI across different contrastive learning frameworks.

1 INTRODUCTION

Modern computer-vision systems increasingly rely on self-supervised representation learning (SSL)
to escape the bottleneck of large-scale manual annotation (Vincent et al.|, 2008} [Komodakis & Gi-
daris), |2018}; [LeCun & Misra, [2021}; He et al., [2022). Among the many SSL paradigms, contrastive
learning (CL) has emerged as a cornerstone because of its conceptual simplicity and strong perfor-
mance (Chen et al.l 2020a; [Zbontar et al., 2021} |Assran et al.l 2022; |Siméoni et al.l 2025). At its
core, CL seeks representations that are invariant to data augmentations: by enforcing alignment be-
tween positive views (i.e., augmented views of the same image), the model learns to ignore nuisance
variation (e.g., changes in scale, color, or lighting), while preserving meaningful semantics of image
content (e.g., object categories) (Tian et al., [2020a; Misra & Maatenl 2020; Mitrovic et al., [2020).

In order to learn representations that faithfully capture semantics, the generated pairs should share
the same semantics while differing in nuisance variables (Tian et al., 2020b). Guided by this princi-
ple, most CL methods carefully design their augmentation operators for generating separate views,
and apply them twice to the same image to form a positive pair (Chen et al 2020a; Grill et al.,
2020). However, since each view of the positive pair is generated independently, the inter-view re-
lationship between the two views is often overlooked, leading to two kinds of low-quality positives:
false positives and trivial positives. False positives occur when the two views fail to share the same
semantics. For example, as illustrated in the top row shows two views containing different
objects (i.e., a cat and a dog), and the bottom row shows one view containing a dog while the other
containing only background. Such false positives may lead the model to mistakenly associate fea-
tures of semantically unrelated content (Peng et al.l |2022). Trivial positives, in contrast, arise when
the two views are near-duplicates without nuisance disparity. As shown in both rows of
even though each view is heavily augmented, the augmentations coincide in such a way that the two
views remain visually similar. During training, the model may exploit low-level cues, such as color
histograms, to align them, failing to learn high-level semantic features (Chen et al., 2021a)).

To tackle the issues, we design two novel indicators: Semantic Consistency and Alignment Level,
that respectively identify false positives and trivial positives. On the one hand, Semantic Consistency
quantifies how likely the two views share the same semantics. Accordingly, false positives that
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(a) High-quality positives. (b) False positives. (c) Trivial positives.

Figure 1: Different types of positive pairs. The types are labeled by our proposed VS-2FIL.

are semantically different should exhibit low Semantic Consistency. On the other hand, Alignment
Level quantifies the minimum level of features required to align the two views. Thus, trivial positives
that share low-level cues should exhibit low Alignment Level. To make the indicators tractable,
we define proxies to respectively estimate each indicator, where the computation of both proxies
is realized via a dedicated estimator model}'| To estimate Semantic Consistency, we leverage the
insight that semantically inconsistent view pairs (e.g., a cat and a dog) are less likely to co-occur in
the same image, and tend to appear in different images. Then, the proxy for Semantic Consistency is
defined as posterior probability that two views co-occur, given their embedding similarity produced
by the estimator. We theoretically guarantee that this proxy reflects the likelihood of two views co-
occurring beyond chance by relating it to PMI (Church & Hanks}, [1990). For Alignment Level, the
proxy is defined as the minimum network depth of the estimator required to align the two views. This
is motivated by a well-established understanding that representations at shallower layers capture
features at lower levels of abstraction 2017). Thus, this minimum network depth serves
as a proxy for the minimum level of features required to align the two views (Alignment Level).
Leveraging the two indicators, we develop View Selection via 2-Fold Indicators (VS-2FI), which
improves the overall quality of positive pairs by discarding the identified false and trivial positives.

Our contributions are summarized as follows:

* We design a novel framework, VS-2FI, which improves the quality of positive pairs in
contrastive learning by identifying and eliminating both false and trivial positives.

* To identify false positives, we design Semantic Consistency, and estimate it via a proxy
that is theoretically related to the likelihood of two views co-occurring beyond chance.

* To detect trivial positives, we introduce Alignment Level, and approximate it by the mini-
mum network depth required to align two views.

» Extensive experiments analyze the respective and combined effects of the two indicators,
and show that, by leveraging both indicators, VS-2FI consistently enhances representation
quality across various contrastive learning frameworks.

2 RELATED WORK

Contrastive learning. Existing contrastive learning methods can be broadly categorized into three
families based on their training objectives: instance-discrimination (Wu et all, 2018}, [Chen et all}
2021b)), self-distillation (Grill et al, 2020} [Chen & He), 2021)), and feature decorrelation (Zbontar
et al., 2021}, [Bardes et al), 2022). We provide a detailed overview of these objective families in
Appx. F.1l Despite their differences in formulation, all these methods build on the same assump-
tion: positive pairs share semantic content while differing in nuisance variables [20200b).
However, this is not strictly satisfied in practice, resulting in false positives and trivial positives. Our
goal is to address these issues through an approach applicable to all three objective families.

Methods to improve the quality of positives. A prominent line of work tackles low-quality pos-
itives by explicitly intervening in the view generation pipeline. Some works rely on heuristic rules
to control individual augmentation operators (e.g., cropping) to improve pair quality. Specifically,

""The estimator is trained via self-supervision without the need for labeled data.
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Figure 2: The overall framework of VS-2F1. For each positive pair, VS-2FI estimates its Semantic
Consistency and Alignment Level (Sec. 3.2). It then discards pairs with low Semantic
Consistency (potential false positives) or low Alignment Level (potential trivial positives), and se-
lects pairs with high Semantic Consistency and high Alignment Level for CL training (Sec. 3.3).

Peng et al.| (2022)) employ saliency maps to constrain the cropping box around the object of inter-
est, thereby suppressing false positives. |[Zhang et al.| (2025) enforce a large area ratio between the
two cropped views so that they retain a relatively stronger nuisance variation and are less likely to
degenerate into trivial positives. However, these methods do not consider the interactions among
various augmentations, limiting their effectiveness in addressing low-quality positives. In contrast,
Ferreira et al| (2025) consider the interactions. Specifically, it generates multiple candidate views
by the composition of multiple augmentations, and selects the hardest pairs—those with the highest
sample-wise losses—as positives, thereby avoiding trivial positives. However, the sample-wise loss
is not a proper indicator for two reasons. First, when models become capable, the hardest pairs are
often false positives that cannot be easily aligned. Moreover, it is not applicable to CL objectives
like feature decorrelation that cannot be decomposed into sample-wise losses.

Sample selection in supervised learning. In the context of supervised learning, many indica-
tors have been proposed to select high-quality samples for training. For example, in active learn-
ing (Cohn et al.l [1996; Settles| 2009; (Gal et al., 2017; |Sener & Savaresel 2018), uncertainty and
diversity are commonly-used indicators to identify informative samples for annotation. In curricu-
lum learning (Bengio et al., 2009; Kumar et al., 2010; |Guo et al., 2018} [Wang et al., [2021)), both
predefined and automatic difficulty indicators have been explored to identify easy and clean samples
for initial training. In this paper, we study view selection in the context of contrastive self-supervised
learning, and propose two novel indicators: Semantic Consistency and Alignment Level, to respec-
tively identify false and trivial positives before eliminating them.

3 VS-2FI: VIEW SELECTION VIA 2-FOLD INDICATORS

To tackle false and trivial positives, we propose View Selection via 2-Fold Indicators (VS-2FI),
as illustrated in [Fig. 2] Concretely, it relies on two indicators: Semantic Consistency (discussed
in[Sec. 3.1)) and Alignment Level (discussed in to respectively identify false and trivial
positives. In we detail the view selection algorithm leveraging these two indicators to
select high-quality positive pairs.

3.1 SEMANTIC CONSISTENCY

Semantic Consistency as an indicator for false positives. False positives arise when two views
in the positive pair exhibit different semantics, as illustrated in [Fig. 1b] To identify these false
positives, Semantic Consistency quantifies how likely the two views share the same semantics, with
low Semantic Consistency indicating potential false positives.

The proxy to approximate Semantic Consistency. Determining whether two views share the
same semantics is fundamentally challenging without human annotations, as the semantic label of
each view is unobservable. To tackle this challenge, we draw on the intuition that semantically
inconsistent views (e.g., a cat and a dog) are less likely to co-occur within the same image, and
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Figure 3: Estimating Semantic Consistency. The estimator is trained with InfoNCE loss to
estimate Semantic Consistency. [(b)] The proxy for Semantic Consistency reflects co-occurrence of
two views; low co-occurrence implies low Semantic Consistency and potential false positives.

tend to appear more frequently in different images than semantically consistent onesﬂ This intuition
underpins our approach: the proxy for Semantic Consistency should reflect the likelihood of two
views co-occurring beyond chance. The estimation process is sketched in[Fig. 3] Specifically, the
estimation of Semantic Consistency requires an estimator model, which encodes each view z into
an embedding z(z) and measures the co-occurrence likelihood of a pair (z1,z2) by embedding
similarity sim(z(z1), z(x2)). To learn the embedding similarity, the estimator is trained to minimize
InfoNCE loss (Oord et al.l [2018):

esim(z(mf),Z(I;))/T

sim(z(m;r),z(z/))/"' ,

(D

Linfonce = — log
w’E{w;}UNe

where (2], z3) are two augmented views of the same image (a positive pair), N is a set of views
drawn from different images, and 7 is the temperature hyperparameter. The loss encourages the
embedding similarity to be higher for co-occurring views than for views from different images,
making the similarity act as a measure of co-occurrence. Thus, in order to make the proxy for
Semantic Consistency reflect co-occurrence of two views, the proxy should be defined as a function
of the embedding similarity. To formally establish the relationship between the proxy for Semantic
Consistency and co-occurrence, we define the proxy as the posterior probability that two views co-
occur, given their embedding similarity. Let pos denote the event that (x1,x2) is jointly sampled
from the same image, and neg the event that it is independently sampled from different images. The
definition of the proxy is then given as follows:

Definition 3.1 (Proxy for Semantic Consistency). Given two views x1 and x5 with similarity score
S :=sim(z(x1), z(x2)), the proxy for Semantic Consistency is defined as

p(S | pos)p(pos)
(S | pos)p(pos) + p(S | neg)p(neg)’

where p(S | pos),p(S | neg) denote the similarity distributions of positive and negative pairs,
respectively, and p(pos), p(neg) are the prior probabilities of events pos and neg, respectively.

)

Semantic Consistency ~ p(pos | S) =
p

Operationally, the priors p(pos) and p(neg) are hyperparameters (set to 0.5 for simplicity), while
p(S | pos) and p(S | neg) are estimated using histograms over the estimator’s training data (visual-
ized in[Appx. B)). Then the relationship between the proxy and co-occurrence can be established by
connecting the proxy to pointwise mutual information (PMI) (Church & Hanks, [1990).

Proposition 3.1 (Proxy for Semantic Consistency as sigmoid of PMI). Ler §* =
sim(z*(x1), 2*(x2)) be the similarity score produced by a converged encoder z* under the InfoNCE
loss. Then, we have

1
plpos | 8") = — , G)
g) ,—PMI(z1,z
1+ Drposy € (e1:22)
where PMI(x1, x5) = log % is the pointwise mutual information between views x1 and xs.

2To clarify, semantically inconsistent view pairs are only less likely—not absent. Despite their relative rarity,
we aim to eliminate such false positives during training to improve representation learning.
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Figure 4: Estimating Alignment Level. [(a)| The training of the early-exit projectors for estimating
Alignment Level. [(b) The proxy for Alignment Level is defined as the minimum depth required to
align two views; low depth implies low Alignment Level and potential trivial positives.

The proof is presented in The PMI quantifies how likely two views co-occur beyond
chance: a high PMI implies a high probability of co-occurrence p(x1,x2) and a low probability
of independent sampling p(z1)p(z2). Thus, indicates that the proxy likewise reflects the
co-occurrence beyond chance.

3.2 ALIGNMENT LEVEL

Alignment Level as an indicator for trivial positives. Trivial positives occur when two views in
the positive pair are nearly identical without significant variations in low-level features, as illustrated
in|Fig. 1c| To detect such trivial positives, Alignment Level quantifies the minimum level of features
required to align the two views, with low Alignment Level indicating potential trivial positives.

The proxy to approximate Alignment Level. To estimate Alignment Level, we exploit the hier-
archical nature of the features in neural networks (Zeiler & Fergus||2014; Raghu et al.|[2021)): shal-
low layers encode low-level cues (e.g., color histograms), whereas deeper layers represent higher-
level semantics (e.g., object categories). Accordingly, views with low Alignment Level should be
aligned at shallow layers, bypassing the need for deeper semantic representations. In practice, we
define the proxy for Alignment Level as the minimum depth of the estimator required to align the
two views. The estimation process is illustrated in Concretely, for each layer ¢ of the esti-
mator, we attach an early-exit projector g, to the intermediate representation hy(z) at that layer, to
extract features from it. These projectors are trained with InfoNCE loss:

BSim(Ze(m;r)#z(%Jr))/T

sim(zg(d?+)722(m,))/r
’ .+ € !
z’'ef{x; YUN (4)

Qg(l’f, x;)
Qu(af,2f) + X ep Qelaf,27)

Ly = —log

=: —log =: —log Py(x], x3),

where zp(z) := g¢(stop-grad(he(z))), with stop-grad (Chen & He, 2021 which avoids interfering
with the features encoded at layer ¢; Qg (z1, z2) 1= esim(ze(21),20(22))/ 7 apd Pe(x1,x2) is referred
to as the alignment score at layer . By minimizing this loss (i.e., maximizing the alignment score
Pg(xi“, 93; )), each projector learns to align positive pairs by extracting their shared features from
the corresponding layer’s representations. Consequently, views with low Alignment Level should
exhibit high alignment score P,(z7, 24 ) at shallow layers. To operationalize this intuition, we
define the proxy for Alignment Level based on the alignment scores of early-exit projectors:

Definition 3.2 (Proxy for Alignment Level). Let the network have L layers indexed by ¢ €

{1,...,L}. The Alignment Level /5 of a positive pair (x,z3) is defined as the minimum layer
at which its alignment score exceeds a threshold:
Alignment Level ~ ¢a. = min{¢ | Pp(x,23) >y} U{L + 1}, 5)

where 7y € [0, 1) is the threshold hyperparameter.
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Figure 5: Examples of view pairs sampled from different ranges of both approximated indica-
tors. Each subfigure shows three pairs of views sampled from the corresponding indicator range.

More examples can be found in|[Appx. D

In 1mplementati0n we eliminate the randomness introduced by the sampling process of A in
Po(x7, 3 ) by marginalization:

N Qﬁ(xrvx;)
p(=1"N) Qe(xi‘rvx;r) + Zw—e/\/ Qé(xll-i_?x_)’

where the expectation is efficiently approximated by averaging over the histogram bins of
p(>° _i ~ Pe(x,27)), which is pre-computed on the estimator’s training data (visualized in

3.3 THE VIEW SELECTION ALGORITHM

(6)

ﬁf(xrax;r) =E

There are several potential ways to apply the two indicators within a CL pipeline, for example
through view selection (Ferreira et al.| [2025), loss re-weighting 2018), or image synthe-
sis 2023). As a start, we leave the more complex methods for future work, and instead
focus on the view selection method, which only requires a minor modification to the standard CL
pipeline. The typical CL pipeline consists of two main stages. First, for each image x, it applies
two compositions of augmentations 77 and 75 to generate two pos1t1ve views z = 7;(x) and
x5 = Ta(z). Second, it computes and optimizes the loss Lc (o, 23). We leave the second stage
unchanged, and slightly modify the first view generation stage. Specifically, given an image x, we
repeatedly apply either augmentation 7; or 75 to generate a view set {z; }4,, consisting of M
views. These views can be combined into (1\24 ) candidate pairs. We then filter out pairs with low
approximated Semantic Consistency (p(pos|S) < min{ksc, max{p(pos|S)}}) and low estimated
Alignment Level ({a < min{kaL, max{fa.}}), where xsc and xaL are hyperparameters, and the
min-max operation ensures that not all candidates are removed. Finally, we randomly sample a posi-

tive pair (2", x2 ) from the remaining candidates. The pseudocode of the view selection framework

is presented in [2

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Training the estimator. We train the estimator using the MoCo v3 framework with the InfoNCE
objective. The estimator backbone is a ViT-S/16 with L = 12 transformer blocks. For each block at
layer ¢, we attach a single-layer early-exit projector gy to its frozen representations stop-grad(hy),
and train it with the same hyperparameters for computing loss and optimization as MoCo v3.
We train two estimators separately: one on ImageNet-1K (IN1K) (Deng et al., [2009) and one on
ImageNet-100 (IN100, a 100-class subset of ImageNet).

Using the estimator. We use the estimator trained on IN1K in most experiments, except for the
CL pretraining experiments on IN100, where we use the estimator trained on IN100 to ensure a fair
comparison. For estimating Semantic Consistency, we use the output embeddings of the estimators’
head at the top layer to compute the embedding similarity S and the posterior probability p(pos | S)
as defined in For estimating Alignment Level, we set the per-layer probability threshold
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Figure 6: The relationship between approximated indicators and feature differences. Feature
differences are measured at both[(a)]low-level and[(b)|high-level. The red boxes indicate the selected
view pairs with high Semantic Consistency (> 0.99) and high Alignment Level (> 7).

to v = 1/64 and compute ¢4 by For the histograms used in the approximation of both
indicators, we set the number of bins to 20. During CL pretraining, we generate M/ = 5 candidate
views for each image, and discard candidate pairs with p(pos | §) < ksc = 0.99 (potential false
positives) or with £a1, < ka1, = 7 (potential trivial positives).

4.2 ANALYSIS OF THE INDICATORS’ ISOLATED AND INTEGRATED EFFECTS

In this section, we analyze the isolated and integrated effects of the two proposed indicators by
qualitative and quantitative experiments.

Visualizing view pairs from different indicator ranges. We first qualitatively analyze the iso-
lated effects of the approximated Semantic Consistency and Alignment Level on identifying false
positives and trivial positives. summarizes view pairs sampled from different ranges of both
indicators. In we observe that the sampled view pairs with low approximated Semantic
Consistency (< 0.75) are often semantically different, which are considered as false positives, while
pairs with high Semantic Consistency (> 0.9) are more semantically consistent. In[Fig. 5b] we see
that pairs with low Alignment Level (< 7) tend to be visually similar and thus are considered as
trivial positives, while pairs with high Alignment Level (> 7) exhibit more substantial variations.
These observations validate that the two indicators can do their intended jobs of identifying false
positives and trivial positives, respectively.

Quantifying feature distances at varying indicator values. We further quantitatively analyze
both isolated and integrated effects of the two indicators on selecting high-quality positive pairs.
We divide the ranges of both approximated Semantic Consistency and Alignment Level into four
intervals, resulting in a 4 x 4 grid of indicator value combinations. For view pairs in each cell of the
grid, we compute their averaged low-level and high-level feature distances. For low-level features,
we extract color histograms in the L*a*b* color space and compute their Hellinger distance. A small
distance of color histograms indicates that the two views are visually similar, which is a sign of trivial
positives. For high-level features, we use an image classifier (Steiner et al., 2022) to obtain class
probability distributions and compute their Hellinger distance. A large distance of class probabilities
indicates that the two views are semantically different, which is a sign of false positives. More details
are supplied in[Appx. E.1] [Fig. € presents the results as heatmaps. First, we find that each indicator
alone correlates well with the intended feature distance: Alignment Level positively correlates with
low-level feature distance in [Fig. 6a while Semantic Consistency negatively correlates with high-
level feature distance in This validates the isolated effects of both indicators. Moreover, the
view pairs selected by VS-2FI (red boxes) tend to have large low-level feature distances but small
high-level feature distances, indicating that VS-2FI reliably selects high-quality positive pairs with
large low-level variations yet consistent semantics.

Ablating the two indicators. Previous qualitative and quantitative analyses have validated the
effectiveness of the two indicators in identifying and discarding false positives and trivial positives.
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Figure 7: Benchmark of view selection methods. The larger a polygon in a radar chart is, the better
the corresponding view selection method performs across different objectives and backbones.

We further conduct an ablation study to as- Table 1: Ablation study of indicators. All mod-
sess their individual and combined contribu- els are pretrained on IN100 using MoCo v3 (100
tions to CL performance. The results in epochs) and evaluated via linear probing.

show that using either Semantic Con-

sistency or Alignment Level alone to discard
one type of low-quality positives improves per-

Semantic ~ Alignment Accuracy A

. . . Consistency Level
formance over the baseline without view se-
lection. Furthermore, using both indicators 75.2
together to discard both types of low-quality v 76.3 +1.1
positives achieves the best performance. This v 76.7 +1.5
demonstrates the complementary benefits of the v v 79.7 +4.5

two indicators in improving CL.

4.3 COMPARISONS WITH RECENT
METHODS FOR IMPROVING VIEW QUALITY

Experimental setup. We benchmark recent methods for improving view quality, including
CCrop (Peng et al.l 2022), JCrop (Zhang et al., 2025), HVP (Ferreira et al., [2025), our proposed
VS-2FI, and the baseline without view selection. These methods are evaluated across three typi-
cal CL objectives: instance-discrimination (MoCo v2 (Chen et al., 2020b), MoCo v3 (Chen et al.,
2021b)), self-distillation (SimSiam (Chen & He} 2021)) and feature decorrelation (VICReg (Bardes
et al., [2022)), and two popular backbones: ResNet-50 (He et all [2016) (MoCo v2, SimSiam and
VICReg) and ViT-S/16 (MoCo v3). All methods are pretrained on IN100 and evaluated via linear
probing on IN100. More detailed experimental settings are supplemented in [Appx. E.2}

Results and analysis. The results are summarized as radar charts in VS-2FI consistently
outperforms other methods on all objectives and backbones, demonstrating its effectiveness over
prior methods that focus on individual augmentations (CCrop and JCrop) or individual types of
low-quality positives (HVP). Moreover, one advantage of VS-2FI is its generality: it can be broadly
applied to typical CL frameworks and backbone architectures, while CCrop is designed for CNN
backbones and therefore is not applicable to MoCo v3, and HVP is only suitable for per-image
losses and thus cannot be applied to VICReg.

4.4 PRETRAINING ON IMAGENET-1K

Experimental setup. We pretrain MoCo v3 and VICReg on IN1K with and without VS-2FI to
evaluate its effectiveness on large-scale pretraining. The learned representations are then evalu-
ated on the in-domain dataset (IN1K), out-of-domain datasets (C10 and C100 (Krizhevskyl [2009)),
Flwrs (Nilsback & Zissermanl, [2008)), Cars (Krause et al., 2013)), DTD (Cimpoi et al., [2014), Air-
craft (Maji et al.l 2013)). For the pretraining of MoCo v3, we implement gradient accumulation
to achieve an effective batch size of 4096, which results in the same performance as the original
implementation but requires much less GPU memory. See[Appx. E.3|for more experimental details.

Results and analysis. The results are shown in[Tab. 2] Firstly, we observe that VS-2FI consistently
improves the performance of both MoCo v3 and VICReg on IN1K, demonstrating its effectiveness
in improving large-scale CL pretraining. Secondly, we observe that VS-2FI also improves perfor-
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Table 2: Evaluating VS-2F1 on IN1K. The learned representations are evaluated on both in-domain
(IN1K) and out-of-domain datasets (C10, C100, Flwrs, Cars, DTD, Aircraft).

Method INIK C10 C100 Flwrs Cars DTD Acft Avg

MoCov3 732 935 787 900 33.6 743 378 68.7
+VS-2FI 735 943 799 917 370 751 425 70.6

VICReg 70.8 89.1 70.8 90.1 406 759 43.1 68.6
+VS-2FI 715 895 709 917 445 765 45.6 70.0
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) 0 o
© 781 © 78 © 78
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Figure 8: Sensitivity analysis. Models are pretrained on IN100 for 100 epochs.

mance across all out-of-domain datasets for both methods, indicating that the learned representations
generalize better across domains.

4.5 STABILITY ANALYSIS

Pretraining on non-object-centered and

multi-object datasets. Previous pretraining Taple 3: Pretraining on MS-COCO. The learned
was conducted on ImageNet, which is featured  representations are evaluated on IN100.

by being single-object and object-centered. We

further evaluate VS-2FT on less curated datasets v/~ "3 g Spy | VICReg +VS-2FI
characterized by being non-object-centered and
containing multiple objects (MS-COCO (Lin 69.2 71.2 || 669 68.0
et al., [2014)). Such datasets are more prone
to false positives, since different augmented
views of the same image may capture different objects with distinct semantics. We note that,
with the same hyperparameters, the proportion of filtered pairs by Semantic Consistency increases
from 0.08 on ImageNet to 0.12 on MS-COCO, reflecting the higher prevalence of false positives
in multi-object scenes. As shown in VS-2FI consistently improves over the baselines,
highlighting its robustness on such datasets.

Robustness to the choice of main hyperparameters. We conduct sensitivity analysis on the main
hyperparameters xsc, kar, and . The results are shown in VS-2FI achieves consistent
improvements over the baseline across a reasonable range of hyperparameter values, demonstrating
its robustness to the choice of hyperparameters.

5 CONCLUSION

In this paper, we address the issues of both false and trivial positives by a novel view selection frame-
work, VS-2FTI. It filters out low-quality positive pairs based on two indicators: Semantic Consistency
and Alignment Level. Semantic Consistency quantifies how likely two views share the same seman-
tics, and is approximated by the likelihood of two views co-occurring beyond chance. Alignment
Level quantifies the minimum level of features required to align two views, and is approximated by
the minimum network depth required to align them. Experimental results demonstrate the effec-
tiveness of each indicator and the superiority of our VS-2FI framework over existing view selection
methods across various contrastive learning frameworks.
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APPENDIX

A PROOFS OF PROPOSITIONS

This appendix provides formal proofs for the At the global minimizer of the expected
InfoNCE loss, the optimal similarity function satisfies a density-ratio form, as originally shown
by|Oord et al.[(2018)):

Lemma A.1 (InfoNCE optimality implies density-ratio). The expected InfoNCE loss
Ep(mj ot N) [LinfoNce] is minimized when the encoder z* satisfies

S (@1),27 (2))/7 o Pl Ta) forall (xq,3). (7
p(z1)p(22)

In other words, the exponentiated similarity score under the optimal encoder is proportional to an
unnormalized density ratio between the joint distribution and the product of marginals.

Proof of[Lem. A.I| We begin by rewriting the expected InfoNCE loss via a reparameterization.
Originally, the loss is averaged over triplets (z),z3, ') drawn from the joint distribution

pla), 23, N).
We reparameterize the expectation as follows:
* Let 2 be the anchor view.

* Construct a candidate list V = [V7, ..., Viy] that includes the positive view xJ and negative
views N, randomly shuffled.

e Letd € {1,..., N} denote the index of the positive view in V (i.e., V; = x3).

Under this reparameterization, the expected InfoNCE loss becomes
B (ot ot a)[Linfonce]
=E, .+ v.a) [~ logp(d|V,27)] ®)

esim(z(mf),z(vd))/f

SN oSz (), 2(Vi) /7

where p(d | V,z]) = , and CE denotes the cross-entropy loss.

By standard results, the cross-entropy loss is minimized when the predicted distribution matches the
true distribution:

esim(z(27),2(Va)) /7 J1V et 9
SN esm(z(a]) (V) /7 =pld[Voay). &
To compute the RHS, we apply Bayes’ rule assuming that negatives are sampled independently from
p(z):
p(Va | #) I1,24P(Vi)

p(d | v, :CIF) = N
> iz (Vi | a7) Hj;ﬁip(vj)
p(Valz}) (10)
_ p(Va)
N p(Vilzf)
Zi:l pp(Vf)
Thus, the optimal score function satisfies
sim(=* (@) @)/ r o P@2l21) _ pley,za) (11
p(362) p(Il)p(xz)
This completes the proof. O
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Note that the form of density ratio in corresponds to pointwise mutual information (PMI)
between the views x; and x5:

p(xl’ $2)
PMI(z1,22) = log ——F—. (12)
( ) p(z1)p(22)
Therefore, the proportionality between the similarity score and the PMI can be expressed as:
esim(z*(wl),z*(wg))/T -C. ePMl(xl,a:g), (13)

where C' > 0 is an unknown proportionality constant independent of the particular pair (27, z2).
Since C' is unknown and can vary across different training runs, the similarity score is not directly
suitable for analysis. However, we can use the proxy for Semantic Consistency defined in [Def. 3.T]
to avoid this issue. This connection is formalized in[Prop. 3.1]

Proof of [Prop_3.1) We begin by expressing the conditional distribution of the similarity score s
using the Dirac delta function:

p(slzr,22) :=0 (eS/T - eSim(z("’“)’Z(“))/T) . (14)
This implies that the similarity score is deterministic given a view pair (z1, z2).

Let pos denote the event that (x1,x2) is jointly sampled from the same image, and neg the event
that it is independently sampled from all images. Then,

p(slpos) = / p(1,@2)8 (¢/7 = /") duyda, (15)
pslneg) = [ pan)p(e2)d (47— /7 dordes, (16)

where § = sim(z(x1), z(22)).
At convergence under the InfoNCE objective, [Eq. (13)|implies

it _ 8 — 5 ()7 — o P@LT2)
(e )‘5<€ Op<x1>p<x2>>' a7

By the sifting property of the Dirac delta function, we then have

p(x1,72)0 (eS/T - CM>

o p(l'l)p(xz) | (18)
€ ; p\Z1, T2
= x1)p(a2)d (/7 — 20 )
- venpten)s (7~ ORIt )
Using this, we obtain the relationship between p(s|pos) and p(s|neg) as:
p(s|pos)
= / eS/Tp(xl)p($2)5 (eS/T — C’I)(Il’xz)) dzydzo
c p(x1)p(z2) (19)
s/T
=~ plslneg).

Therefore, combining [Egs. (13)]and [(19)] we obtain the relationship between their quotient and the
PMI:

p(S*|pos) B eSim(z* (w1),2" (22)) /7 MG )

= (20)
p(S*|neg) c
Finally, substituting into the definition of the proxy for Semantic Consistency in[Eq. (2)]yields
1
p(pos | §¥) = (neg) . (21)
1 _|_ ﬁe—PMKZEl,Ig)
This completes the proof. O
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Figure 9: Visualizing the distributions used to compute the proxy for Semantic Consistency.

(a) Layer 1. (b) Layer 2. (c) Layer 3. (d) Layer 4. (e) Layer 5.

8%, oy Quls

(f) Layer 6.

(g) Layer 7. (h) Layer 8. (i) Layer 9. (j) Layer 10. (k) Layer 11. (1) Layer 12.

Figure 10: Visualizing the distributions used to compute the proxy for Alignment Level. Each
subplot corresponds to one of the {p(log(}", - - Qe(xf,27)))|¢ € [1,12]}.

B VISUALIZATION OF HISTOGRAMS

In this section, we visualize the histograms used to compute the proxy for Semantic Consistency
and the proxy for Alignment Level.

Histograms for Semantic Consistency. In and Ob] we respectively visualize the his-
tograms used to estimate the distributions p(S [ pos) and p(S | neg) in[Eq. (2)} Based on these
two distributions, we plot the Semantic Consistency curve in with values between bins
interpolated linearly.

Histograms for Alignment Level. In [Fig. 10} we present the histograms used to estimate the
distributions p(log(}_, - < Qe(z7,27))) in[Eq. (6)} To compute the expectation in [Eq. (6)| we

approximate it by averaging over the histogram bins.

C PSEUDOCODE OF VS-2FI

The PyTorch-like pseudocode of our VS-2FI method is shown in[Alg. 1}

D MORE EXAMPLES OF VIEWS WITH DIFFERENT INDICATOR VALUES

More examples of view pairs sampled from different ranges of both approximated indicators are
presented in% complementing those in in the main text. In we observe similar
trends as in[Fig. 5| In particular, in we observe that the sampled view pairs with low ap-
proximated Semantic Consistency (< 0.75) are often semantically different, which are considered
as false positives, while pairs with high Semantic Consistency (> 0.9) are more semantically con-
sistent. In[Fig. TTb} we see that pairs with low Alignment Level (< 7) tend to be visually similar and
thus are considered as trivial positives, while pairs with high Alignment Level (> 7) exhibit more
substantial variations. These observations validate that the two indicators can do their intended jobs
of identifying false positives and trivial positives, respectively.
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Algorithm 1 Pseudocode of VS-2FI.

Tl, T2: two augmentation compositions

L_CL: CL model and loss function

estimator: estimator model

M: number of candidate views

k_SC: minimum Semantic Consistency threshold
k_AL: minimum Alignment Level threshold

e

if VS_2FI: # enable view selection
# generate candidate view pairs
x_set = [choice([T1l, T2]) (x) for i in range (M)]
candidates = pair(x_set) # num = M » (M - 1) / 2

# estimate Semantic Consistency and Alignment Level
SC, AL = estimator (candidates)

# filter out candidates with low Semantic Consistency and Alignment Level
filter (candidates, SC < min(k_SC, max(SC)))
filter (candidates, AL < min(k_AL, max(AL)))

# sample a pair from the remaining candidates
x1, x2 = choice (candidates)
else:
# standard view generation
x1l, x2 = Tl(x), T2(x)

# compute and optimize the CL loss
loss = L_CL(x1, x2)
optimize (loss)

choice: uniformly choose one element; pair: generate all unique pairs.

ERENrE
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»
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(a) The approximated Semantic Consistency. (b) The approximated Alignment Level.
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Figure 11: More examples of view pairs sampled from different ranges of both approximated
indicators. Each subfigure shows nine pairs of views sampled from the corresponding indicator
range.

E EXPERIMENTAL DETAILS

E.1 EXPERIMENTAL DETAILS FORI[SEC. 4.2

Calculating distance of color histograms. For each view, we first convert the image to L*a*b*
color space, and then compute the color histogram with 30 bins for each channel. Then for a pair of
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views, we calculate the distance between their color histograms using the Hellinger distance:

Z VH\(1)Hy (1), (22)

dHeIIinger(Hla H2) =

\/ \/H1H2N2

where Hy and H) are the color histograms of the two views, I is the bin index, [V is the total number
of bins, and Hy, = + > ; Hy(I) is the mean of histogram Hy.

Calculating distance of class probabilities. For each view, we feed it into a ViT-B/32 model
pretrained on ImageNet-21K (Steiner et al., 2022), and obtain the predicted class probabilities over
21K classes. Then for a pair of views, we calculate the distance between their class probabilities
using the Hellinger distance defined in[Eq. (22)]

E.2 EXPERIMENTAL DETAILS FOR[SEC. 43|

CL frameworks. For each framework (MoCo v2, SimSiam, VICReg and MoCo v3), we follow
the official implementation and hyperparameters by default. We only modify the training epochs
and the batch size to fit our computational resources:

Hyperparameters \ MoCo v2 SimSiam VICReg MoCo v3
Epochs 200 200 200 300
Batch size 256 256 1024 1024

Data augmentations. Following BYOL (Grill et al.| [2020), we use the strengthened augmen-
tations for all methods, including random resized crop, horizontal flip, color jittering, random
grayscale conversion, Gaussian blur and solarization. This strengthened augmentation brings signif-
icant performance improvement over the default augmentation used in MoCo v2 and SimSiam:

Augmentations ‘ MoCo v2 SimSiam VICReg MoCo v3
Not strengthened 72.7 80.9 - -
Strengthened 74.6 83.2 82.7 85.4

Hyperparameters for other view selection methods. For JCrop, we use the hyperparameters
recommended in the original papers for each method. For HVP, we set the number of candidate
views M to 5, which is the same as our method, for a fair comparison. For CCrop, we tune the
hyperparameters (k = 0.4, « = 0.6) to achieve the best performance:

Method ‘ MoCo v2 SimSiam VICReg MoCo v3

Baseline 74.6 83.2 82.7 854
CCrop orig 742 (-04) 82.2(-1.00 82.6(-0.1) -
CCrop tuned 754 (+0.8) 82.9(-0.3) 83.3(+0.6) -

Plotting radar charts. We evaluate the learned representations via linear probing on ImageNet-
100. The original accuracy values are

Method ‘ MoCo v2 SimSiam VICReg MoCo v3
Baseline 74.6 83.2 82.7 854
CCrop 75.4 83.0 83.3 -
JCrop 754 83.4 83.0 854
HVP 75.6 84.1 - 86.1
VS-2FI 78.5 85.0 83.8 86.3

Then we normalize them to [0, 1] for plotting radar charts in

E.3 EXPERIMENTAL DETAILS FORI[SEC. 4.4]

For each CL framework, we use the official implementations and default hyperparameters unless
otherwise noted. We make the following modifications to fit our computational resources. For
VICReg, we reduce the training epochs to 200 and the batch size to 1024. For MoCo v3, we
implement gradient accumulation with 4 steps to achieve an effective batch size of 4096, while
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Algorithm 2 MoCo v3 with gradient accumulation: PyTorch-like Pseudocode

_qg: encoder: backbone + proj mlp + pred mlp
_k: momentum encoder: backbone + proj mlp
momentum coefficient

au: temperature

grad_acc_steps: gradient accumulation steps

e e e e e
3 HhH

for x in loader: # load a minibatch x with N samples
%1, x2 = aug(x), aug(x) # augmentation

# split into grad_acc_steps chunks
x1_steps, x2_steps = xl.chunk(grad_acc_steps), x2.chunk (grad_acc_steps)

# compute keys for all samples
k1l_steps, k2_steps = [], []
for 1 in range(grad_acc_steps): # gradient accumulation
k1l_step, k2_step = f_k(xl_steps([i]), f_k(x2_steps[i]) # keys: [N/grad_acc_steps, C
] each
k1l_steps.append(kl_step)
k2_steps.append (k2_step)
k1, k2 = cat(kl_steps), cat(k2_steps) # concat keys: [N, C] each

# compute queries and loss, accumulate gradients
for i in range(grad_acc_steps): # gradient accumulation
gl_step, g2_step = f_qg(xl_steps[i]), f_g(x2_steps[i]) # queries: [N/grad_acc_steps
, C] each
loss_step = (ctr(gl_step, k2) + ctr(g2_step, kl)) / grad_acc_steps # symmetrized
loss_step.backward()

update (f_q) # optimizer update: f_g
f_ k = mxf_k + (l-m)+f_qg # momentum update: f_k

# contrastive loss

def ctr(qgq, k):
logits = mm(q, k.t()) # [N, N] pairs
labels = range(N) # positives are in diagonal
loss = CrossEntropyLoss(logits/tau, labels)
return 2 x tau * loss

mm: matrix multiplication; k.t (): k’s transpose; x.chunk (n): splits x into n chunks along the batch
dimension; cat: concatenation. The prediction head is excluded from f_k (and thus the momentum update).

keeping the original training epochs (300) unchanged. We present the PyTorch-like pseudocode of
the gradient accumulation in [ATg. 2] This implementation results in the same performance as the
original implementation with a batch size of 4096 (73.2 on IN1K), but requires much less GPU
memory.

F RELATED WORK (FULL VERSION)

F.1 CONTRASTIVE LEARNING

Contrastive learning (CL) has become a powerful paradigm for learning visual representations with-

out human labeling (Balestriero et al., 2023}, [Gui et al.} 2024). Its core mechanism is to learn rep-

resentations that are invariant to nuisance variation while preserving semantics (Tian et al., [2020a}
[Misra & Maaten), 2020; [Mitrovic et al.} [2020). Several objective families have been proposed under
this framework, with three prominent lines of work.

Instance-discrimination. This class of methods treats each image instance as its own category,
aiming to maximize similarity within the category (i.e., positive pairs from the same image) and
minimize similarity across categories (i.e., negative pairs from different images)
Bachman et al., [2019; [He et all 2020} [Chen et al, 2021b}, [Yeh et al.| [2022).

Self-distillation. These methods enforce invariance through a teacher-student framework, where
a momentum-updated teacher encodes one view of a positive pair to produce a representation as the
target, while the online student predicts this target from the alternate view of the positive pair
et all} 2020} |Chen & Hel 2021}, [Caron et al, 2021} [Oquab et al.| [2024).
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Feature decorrelation. Rather than maximizing agreement directly, this line of work constrains
the cross-correlation matrix of positive-view representations to be close to the identity matrix (Zbon-
tar et al.,|2021}; Bardes et al.,|2022). The diagonal terms enforce invariance, while the off-diagonal
terms reduce redundancy across feature dimensions.

Despite their differences in formulation, all three paradigms build on the same foundational assump-
tion: positive pairs share semantic content while differing in nuisance variables (Tian et al.,2020b).
However, this assumption is not strictly satisfied in practice. Standard view generation strategies
produce each positive view independently, often resulting in two failure modes: false positives,
which lack semantic consistency, and trivial positives, which exhibit little nuisance variation. Our
goal is to address these issues through an approach applicable to all three objective families.

F.2 METHODS TO IMPROVE THE QUALITY OF POSITIVES

Existing defenses against false positives and trivial positives fall into two main categories.

More robust objectives. These methods modify the training objective to make it more resilient
to unreliable positive pairs. Robinson et al.[(2021)) alleviate trivial positives by introducing implicit
feature modification to the InfoNCE loss to remove components of the current representations that
are used to discriminate positive and negative pairs. |(Chuang et al.| (2022)) undermine the effect of
false positives by introducing a robust loss that places more emphasis on easy positive pairs with
low representation similarity. However, these methods are largely limited to InfoNCE-style losses
and focus on reducing the impact of low-quality samples rather than addressing their root cause.

Better view generation strategies. A prominent line of work tackles low-quality positives by
explicitly intervening in the view generation pipeline. Some methods employ stronger augmenta-
tion operators—such as color distortion (Chen et al.l 2020a) or jigsaw transformations (Tian et al.,
2020b)—disrupting shared low-level cues to reduce trivial positives. However, while these opera-
tors enhance the quality of individual views, the joint quality of the resulting positive pairs can still
be sub-optimal. Some works rely on heuristic rules to control individual augmentation operators
(e.g., cropping) to improve pair quality. Specifically, Peng et al.| (2022) employ saliency maps to
constrain the cropping box around the object of interest, thereby suppressing false positives. [Zhang
et al.| (2025) enforce a large area ratio between the two cropped views so that they retain a relatively
stronger nuisance variation and are less likely to degenerate into trivial positives. However, these
methods do not consider the interactions among various augmentations, limiting their effectiveness
in addressing low-quality positives. In contrast, Ferreira et al.| (2025) consider the interactions.
Specifically, it generates multiple candidate views by the composition of multiple augmentations,
and selects the hardest pairs—those with the highest sample-wise losses—as positives, thereby avoid-
ing trivial positives. However, the sample-wise loss is not a proper indicator for two reasons. First,
when models become capable, the hardest pairs are often false positives that cannot be easily aligned.
Moreover, it is not applicable to CL objectives like feature decorrelation that cannot be decomposed
into sample-wise losses.

F.3 SAMPLE SELECTION IN SUPERVISED LEARNING

In the context of supervised learning, many indicators have been proposed to select high-quality
samples for training. For example, in active learning (Cohn et al.l |[1996; Settles| |2009; |Gal et al.,
2017; |Sener & Savarese}, [2018)), uncertainty and diversity are commonly-used indicators to identify
informative samples for annotation. In curriculum learning (Bengio et al.,|2009; Kumar et al., 2010;
Guo et al.l 2018} |Wang et al., 2021), both predefined and automatic difficulty indicators have been
explored to identify easy and clean samples for initial training. In this paper, we study view selection
in the context of contrastive self-supervised learning, and propose two novel indicators: Semantic
Consistency and Alignment Level, to respectively identify false and trivial positives before elimi-
nating them.
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