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Abstract— The high performance of current deep face recog-
nition systems and their unauthorized usage have raised a
severe concern for privacy in the physical, adversarial, and
digital domains. To protect privacy, users are exploring several
ways, and one such method that recently gained attention is
individuals deliberately obscuring their faces with their hands,
presumably to avoid facial recognition technology. Since deep
face recognition algorithms can handle partial tampering of
faces, this raises a critical question of whether these deliberate
attempts can protect privacy. In the literature, no evaluation
exists that showcases that this type of hiding can bypass the face
recognition algorithms. Therefore, in this first-ever study, we
have performed extensive research by first developing multiple
nose and mouth occlusion datasets using synthetic patches
and real-life objects. Our extensive experimentation reveals
several interesting observations reflecting the fact that even
when a patch is a face patch extracted from an unseen subject,
it can fool the face recognition networks. Further, not only
face recognition networks, but also it is observed that the
proposed patches are effective in deceiving the soft biometric
classifier, i.e., the classifier detecting the gender and ethnicity
of individuals.

I. INTRODUCTION

The growing use of facial recognition technology has
raised concerns about individuals’ privacy, forcing them
to adopt various techniques to hide their identity, such as
covering their faces with hands and scarves or strategically
positioning themselves to avoid being recognized. Fig. 1
demonstrates this behavior using various examples from the
MAFA [6] dataset. In addition, a recent article released in
January 2024 by the New York Post titled “What is ‘nose
cover’ — and why are Gen Zers doing it in family photos?”
delves into the contemporary phenomenon where younger
individuals intentionally conceal specific facial features, par-
ticularly the nose and mouth, as a means of protecting their
identity1. However, a prominent question arises “to what
extent do these types of occlusions help in preserving
the privacy of an individual or obscure their facial
recognition?”, especially when the current deep face recog-
nition algorithms yield high accuracy under the availability
of partial faces [11], [12]. The closest work to this work
is based on the generation of face images where the faces
are partially occluded through masks [31] or using large
devices [25]. Wang et al. [31] have developed the masked
face dataset, and Qiu et al. [25] have showcased the use
of large objects such as mobile phones and big stickers to
evaluate the vulnerability of face recognition algorithms. The

1https://nypost.com/2024/01/11/lifestyle/what-is-nose-cover-and-why-
are-gen-z-teens-doing-it-in-family-photos/

Fig. 1: Examples showcasing the mediums humans can
use intentionally or unintentionally to hide their identity by
fooling the recognition algorithms.

primary limitations of these works are that they do not utilize
natural objects and hence do not reflect the physical world
setting or occlude a large portion of the face, such as face
masks.

To overcome these limitations and effectively address
privacy concerns inspired by current trends of simple face oc-
clusion, we propose multiple nose/mouth occlusion datasets
by simple patches based on ethnicity and skin-agnostic
tone. The patches can also be seen as blind obfuscation in
terms of no access to the deep face recognition networks.
In other words, the patches that hide the mouth and nose
features do not require knowledge of deep face recognition
algorithms. We utilize the 105-classes-pin dataset2, which
contains a collection of celebrity images, to study the effect
of partial face feature occlusion on deep face recognition.
To investigate the influence of occlusions, various forms of
patches are generated to adequately understand the role of
patch features in deceiving the recognition algorithms.

The current existing studies, which are similar to our work,
only address the concern of face recognition; however, we
are aware that face modality is rich in containing other es-
sential attributes such as gender and ethnicity. This research
expands its scope by investigating the impact of the proposed
patches in identifying these soft biometrics attributes, with a
particular focus on identifying gender and ethnicity. For that,
we have utilized the benchmark datasets, namely UTKFace
[34] and Fairface [14], that are balanced in terms of gender
and ethnicity. In brief, the contributions of this research are:

• Simple partial face feature tampering datasets are pro-
posed, and the vulnerability of several deep face recog-
nition networks is analyzed;

• An extensive experimental study is performed to un-
derstand the sensitivity of partial face tampering in

2https://www.kaggle.com/datasets/hereisburak/pins-face-recognition
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identifying soft biometric attributes.
• An inpainting approach without a reference image

mimics real-world scenarios where the original face
is unavailable, offering insights into how well modern
algorithms restore facial regions across different identi-
ties.

II. RELATED WORK

Deep face recognition that utilizes large amounts of data
has shown tremendous success and surpasses the human level
performance [23], [28], [29]. It is observed that the networks
utilizing large-scale face images are generally acquired from
online sources without consent. Further, it is shown that
selfies or group images uploaded on personal social media
platforms have faces that have not consented to be used
as datasets for training models. The above issues show the
valid case of personal privacy and security of an individual’s
digital platform. To tackle this, users and researchers are
exploring methods for privacy-enhancing recognition algo-
rithms [27]. The methods can be broadly divided into two
groups: (i) utilizing noises to perturb the face images [33],
[7] and (ii) use of external components such as masks and
devices [1], [25], [31]. For example, Chhabra et al. [3]
and Mirjalili and Ross [22] proposed a method utilizing
adversarial perturbations to conceal distinct facial character-
istics to achieve gender and smile anonymization. In contrast
to image-based perturbation, Xue et al. [32] proposed the
adversarial perturbations of the feature space to conceal the
identities of facial images. Besides utilizing the perturbation
to anonymize the soft biometric attribute, several adversarial
attacks and morphing algorithms are proposed to fool the
face recognition algorithms. For example, Goswami et al.
[8], [9] have proposed several black-box methods to fool
deep face recognition algorithms. Komkov et al. [16] attach a
basic paper sticker to a hat, while Frearson et al. [5] showcase
using visible light to trick the systems. In addition, Zhu
et al. [35] presented a makeup-based attack to effectively
bypass recognition models. In contrast, Majumdar et al. [19]
investigated the effectiveness of partial morphing of cer-
tain facial regions of deepface recognition networks. While
these methods are found effective in either anonymizing
the soft biometric attributes or fooling the face recognition
algorithms, they have several drawbacks: (i) need access
to models to learn perturbation and are computationally
heavy, (ii) modify facial features drastically [8]. Apart from
the perturbation-based strategy, another formal case where
synthetic data is used to train the model, but is it really as
effective as real data [21].

The second school of thought studies the vulnerability of
deep face recognition utilizing external components such as
mobile phones, masks, and stickers. While face masks and
external components can hide the identity of individuals,
they drastically conceal their facial features. The proposed
research acts as an intermediary between these two schools
of thought, which do not utilize any learnable noise through
the use of face recognition models or drastically hide the
facial features. Further, the proposed occlusions are relevant

TABLE I: Overview of statistical characteristics of different
datasets used in this paper. G and P represent the gallery
and probe, respectively. M and F represent the male and
female gender attributes, respectively, whereas W, B, A, and I
represent the ethnicity attributes, namely white, black, Asian,
and Indian, respectively.

Datasets Task
Recognition Gender and Ethnicity/Race Classification
G P M F W B A I

105-classes-pin 105 315 - - - - - -
UTKFace [34] - - 12,390 11,314 10,077 4522 3,432 3,975
FairFace [14] - - 51,778 45,920 18,606 13,789 26,043 13,835

to protect the privacy of identities and anonymize the soft
attributes, including gender and ethnicity.

III. EXPERIMENTAL SETUP

In this section, we first describe the patches used to
generate a face patch dataset exhibiting the current trend
of occluding nose and mouth features to enhance privacy.
The proposed dataset is not bound to the trend but aims to
reflect the importance of occluded regions and characteristics
of patches. Later, deep face recognition algorithms used
to perform the recognition are described, followed by the
networks used for soft attribute prediction.

A. Proposed Patch Face Datasets

To assess the performance of the occlusion on face
recognition, we employed an unconstrained and challenging
dataset, namely a 105-class Pinterest dataset comprising 105
subjects belonging to distinct celebrities. The images in
the dataset are collected from Pinterest. Further, to analyze
whether the proposed patch generation techniques effectively
anonymize the soft biometric attributes, we have utilized two
benchmark datasets: UTKFace [34] and FairFace [14]. The
UTKFace [34] dataset provides a large-scale collection of
“wild” 23,704 facial images in pose, expression, illumina-
tion, and variations resolution. Each subject has a single
image with annotations for age, gender (11,314 females,
12,390 males), and ethnicity (White, Black, Asian, Indian,
Others). FairFace [14] offers a balanced dataset of 97,698
images with gender (45,920 females, 51,778 males) and
seven racial categories (White, Black, Indian, East Asian,
Southeast Asian, Middle Eastern, Latino). Table I provides
an overview of the datasets mentioned.

We employed various face patch simulations on a des-
ignated dataset to systematically evaluate the influence of
occlusions on facial recognition performance and soft at-
tribute prediction. Our primary patch shape form is rectan-
gular and focuses on 40% of the face width. However, for
generalization, we have also created 25% and 50% of the
face width of rectangular shapes, and an oval-shaped patch
is also introduced with 40% of the face width to analyze the
results on the shape and size of the patch. Fig. 2 (leftmost
block) visualizes the diverse subjects and patches of datasets
used in this study. Fig. 2 (middle) shows the example image
of different shapes and sizes of the patches. Also, some real-
life object patches, such as hand and mobile patches, have
a comparison with the ethnicity and skin-tone patch to the
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Fig. 2: A few images of 105-classes-pin (1st row), UTKFace
(2nd row), and FairFace (3rd row) dataset. From left to right,
images of clean and five different patches (leftmost is BP,
followed by ChP, FPP, GrP, and GrSP) showcase the variation
they bring in the visual appearance of faces. The leftmost
blue block shows uniform rectangular patches, the middle
green block contains images of varying patch sizes and types
(oval), and the rightmost red block contains images with real-
life patches.

real-life object. Fig. 2 (rightmost block) shows the example
image of the real-life object patch consisting of hand and
phone patches. A detailed description of the spectrum of
patches introduced in this research is as follows:

1) Black patch (BP): This uniform black patch simulates
scenarios where objects obstruct the face, and the
complete detail of the face feature is missing.

2) Cheek patch (ChP): While perturbing facial regions,
we have utilized a personalized feature approach. A
patch is extracted from each subject’s cheek region,
replicating self-occlusion by mimicking their unique
skin tone and texture. We assert that this kind of
perturbation can also help us understand if the facial
features are present and duplicated; such a perturbation
can fool the networks.

3) Face-pixel patch (FPP): In this patch attack, in place
of utilizing the face patches from each perturbing
subject, we utilize a global patch template. This global
patch template is outsourced from an unseen subject
outside the original dataset used for evaluation. In
contrast to the above ChP perturbation, this injects
identity-independent facial features. The FPP and ChP
patches are close to real-world methods, where skin
pixels (hand) are used for privacy preservation.

4) Gray patch (GrP): A neutral gray patch is employed
to analyze the effect of non-descript occlusions with a
medium level of contrast.

5) Gray-scale patch (GrSP): This patch converts the
images to grayscale, enabling the assessment of how
the loss of color information impacts recognition per-
formance.

6) Hand Patch (HP): In this perturbation, a patch sim-
ulating a hand is applied over the facial region, repli-
cating a common real-world scenario where a person
covers their face partially with their hand.

7) Phone Patch (PhP): The phone patch is designed
to simulate the scenario where a person is holding a
phone to their face, obscuring key facial features such
as the nose, mouth, and part of the cheek.

Each dataset comprises eight probe/testing sets, including
one set of clean images (C) and seven different patches.

Fig. 3: Schematic diagram of the proposed face, gender, and
ethnicity recognition setup.

These patches include five synthetic rectangular patches:
black patch (BP), cheek patch (ChP) in which the cheek
pixel of each individual is taken to create a patch, gray patch
(GrP), gray-scale patch (GrSP), and face-pixel patch (FPP),
as well as two real-life object patches: hand patch (HP) and
phone patch (PhP). Fig. 3 illustrates the architecture diagram
of the face, gender, and ethnicity setup, highlighting the
flow from patch generation, training, and testing on patched
datasets. The pseudo-code for the generation of this patched
dataset is mentioned in the supplementary material.

B. Deep Face Recognition Networks

To comprehensively understand the impact of proposed
patches, we have used state-of-the-art (SOTA) deep face
recognition models: (i) ArcFace [4], (ii) Dlib [15], (iii) VGG-
Face [24], (iv) FaceNet [26], (v) FaceNet-512, (vi) DeepFace,
and (vii) SphereFace [18]. To perform matching using the
feature extraction from the above pretrained models, we
have employed distance matching metrics, including cosine
(Cos) [30], Euclidean (Euc) [20], and EuclideanL2 (EucL2)
[20]. For face recognition, we have utilized an image as
a gallery, and three images of each subject are used as a
probe set. The patch images are generated by modifying the
probe set and used for evaluation only. By integrating these
sophisticated models, distance metrics, and a methodical
comparison framework, our methodology offers a nuanced
and comprehensive exploration of face recognition technol-
ogy.

C. Occluded Soft Biometric Recognition

In recent years, soft biometrics has emerged as a powerful
tool to enhance recognition systems by helping segregate
the ample search space. Further, as mentioned, faces in-
herently contain soft biometric attributes, including gender
and ethnicity. The protection of not only identity but also
these attributes is equally essential. Henceforth, we have
conducted soft attribute anonymization through black-box
patches for the first time. For the prediction of gender
and ethnicity soft attributes, we have used two current and
SOTA models –ViT-B/32 (ViT) [10], and DenseNet-121
(DNet) [13]. The recent Vision Transformer (VT) network
utilizes a self-attention mechanism, whereas DenseNet-121
is a conventional pure convolutional neural network (CNN)
architecture with residual connections for adequate gradi-
ent flow. To comprehensively evaluate the effectiveness of
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TABLE II: Face recognition accuracy reflecting the privacy gained using different patches occluding nose and mouth features.
The values on clean face images are bold, the values of the best-performing patch are underlined and blue-colored, and the
values of the second-best-performing patch are colored green for better visibility and understanding. The lower the value on
the patch images, the better the privacy.

CNN
Distance Metrics

Cosine (Cos) Euclidean (Euc) Euclidean-L2 (EucL2)
C BP ChP GrP GrSP FPP C BP ChP GrP GrSP FPP C BP ChP GrP GrSP FPP

ArcFace 94.92 21.59 71.11 72.38 92.38 74.60 70.48 12.38 42.86 42.54 68.25 45.71 93.65 14.29 63.17 64.13 91.75 66.98
Dlib 90.79 23.81 59.68 67.62 86.03 63.81 94.60 41.27 77.78 81.59 89.84 78.73 93.02 37.46 74.60 78.73 88.89 77.46
VGG-Face 88.25 35.87 51.75 55.56 85.40 59.05 89.21 37.14 53.97 57.14 86.03 61.27 89.21 37.14 53.97 57.14 86.03 61.27
SFace 81.27 10.16 42.86 49.21 71.43 46.03 85.40 12.06 50.79 59.68 77.78 53.02 74.60 6.35 33.33 38.73 64.13 35.56
Facenet 80.32 11.11 27.94 30.16 75.87 31.75 67.94 7.94 19.68 19.68 63.81 20.32 64.76 3.17 9.21 12.70 59.68 12.06
Facenet512 52.70 1.59 4.13 4.76 49.52 6.03 91.43 53.33 58.10 58.41 91.75 61.27 94.92 59.05 65.08 66.98 91.75 72.06
DeepFace 45.40 1.27 17.78 23.79 44.13 25.71 48.57 4.76 21.27 29.52 45.71 30.48 36.81 0.32 10.79 14.29 34.29 15.56

the proposed anonymization approach, gender and ethnicity
classification experiments are performed in the same and
cross-dataset settings. The UTKFace [34] and FairFace [14]
datasets are divided into training and testing. The patch
subsets are generated on the test set of each dataset and are
only used for evaluation. In other words, a clean training
subset of both datasets individually is used for training.
For training the gender classification networks, 12799 and
52757 images from UTKFace and FairFace are used, and
the testing has been performed on 538 and 600 images from
both datasets, respectively. Similarly, training of ethnicity
classification has been done using 13204 and 43365 images
and testing using 1022 and 1200 images of UTKFace and
FairFace, respectively. The last few layers of each model
are fine-tuned using the batch size of 32, a learning rate of
0.0001, and an Adam [2] optimizer.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first present face recognition results
and analysis, explaining whether such partial occlusion can
preserve individuals’ privacy. Later, a comprehensive under-
standing of the anonymization of soft biometric attributes
is presented. Finally, an inpainting approach to mitigate the
effects of patches to protect from intruders to fool the system.

A. Occluded Face Recognition
Our research involved an in-depth examination of how

seven cutting-edge facial recognition models, three different
distance metrics, and eight probe sets of different shapes
and sizes interacted to preserve privacy. Table II shows
the comprehensive analysis of face recognition on various
models, along with the combination of 3 distance metrics on
all the different probe sets containing the patches of 40%
face width. The analysis can be broadly divided into three
categories: (i) effectiveness of deep face recognition (DFR)
models, (ii) impact of distance metric in matching, and (iii)
privacy obtained through each patch used to occlude face
features. It can be seen from the results that the ArcFace
[4] and FaceNet512 yield the highest clean accuracy across
all the models used for face recognition. For example, the
ArcFace (with cosine) and FaceNet512 (with EuclL2) models
obtained a clean face recognition accuracy of 94.92%. It
is interesting to note that even the images are clean due
to their visual complexity since they are acquired from an
unconstrained environment, which can lead to low recog-
nition accuracy. For example, the difference between the

Fig. 4: Examples reflecting the success (top row) and failure
(bottom row) of ArcFace + Cosine (first six columns) and
Dlib + Euclidean (last six columns) on clean and in the
presence of nose/mouth occlude patches. Images from left
to right represent clean images followed by the occlusion
using BP, ChP, FPP, GrP, and GrSP patches, respectively.

best-performing network, ArcFace, and the worst-performing
network, DeepFace, is 49.52%, where the cosine distance
metric is used for the match. It shows that the correct use
of the network is also vital for their massive difference in
efficiency. Apart from the chosen face recognition network,
a distance-matching function is also crucial for comparing
gallery and probe features. For instance, the ArcFace and
FaceNet512, which yield the highest performance, are found
sensitive concerning the distance metric. The ArcFace model
performs best with cosine (Cos), while FaceNet512 shows
the highest performance with EuclideanL2 (EucL2).

In terms of patches used, the black patch shows the highest
level of privacy and drastically degrades each network’s
accuracy. The prime reason for its success may be that it
completely occludes the face features and ensures they are
missing for matching. However, it is worth noting that, in
our case, only a tiny fraction of face information is occluded,
which shows that the network is susceptible to such small
perturbations. It is interesting to note that other patches that
utilize the skin pixel (cheek pixels of the same person or
different person) and grayscale provide sufficient privacy. For
instance, while the black patch (BP) reduces the performance
of ArcFace + Cos from 94.92% to 21.59%, the ChP (coming
from the subject-specific cheek region) also reduces the
performance by 23.81%. The performance gap increases
further to 30.48% when the ArcFace model is used with the
EucL2 distance metric, and the ChP patch is used to protect
the privacy of individuals. In place of using the patch coming
from the same individual, when subject-agnostic patch (FPP)
pixels are used for attack, they are found comparable or
better in degrading the performance of each network. The
Dlib + Euc shows an accuracy reduction to 77.78% and
78.73% from 94.60% when an attack is performed using
subject-specific and subject-agnostic patches, respectively.
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TABLE III: Face recognition accuracy reflecting the privacy
gained through the use of different patches occluding nose
and mouth features on varied shapes and sizes of the patch.
The values on clean face images are bold, the values of the
best-performing patch are underlined and blue-colored, and
the values of the second-best-performing patch are colored
green for better visibility and understanding.

Model C BP ChP GrP GrSP FPP
Oval Patch

ArcFace 94.92 26.98 72.20 74.44 92.33 76.19
Rectangular Patch size: 25%

ArcFace 94.92 50.16 82.54 83.49 91.11 82.22
Rectangular Patch size: 50%

ArcFace 94.92 16.19 62.22 62.22 91.43 56.19

Fig. 5: Face Recognition accuracy on both real-world
patches, i.e., HP and PhP, on best-performing cosine distance
metrics.

It is interesting to observe that not only color patches
(ChP or FPP) but also gray patches can protect privacy
and significantly reduce the performance of each network.
For example, the color ChP patch reduces the performance
VGG-Face + Cos from 88.25% to 51.75% as compared to
55.56% obtained from the gray patch (GrP). Fig. 4 shows the
correctly and incorrectly recognized images in the presence
of different patches used. It shows that the proposed patches
can provide privacy to each gender (no gender bias) and work
on frontal and pose-inherited faces.

Now, moving towards different shapes and sizes of the
patch, along with the effect of real-life object occlusion.
Regarding the oval patch, the accuracy values are almost
similar to the rectangular patch, as it covers nearly identical
regions, but only due to the curved nature, it exposes some
of the facial landmarks and features, increasing by up to
1% to 2% in accuracy. Table III shows the result analysis
of the best-performing ArcFace (with cosine) combination
on different shapes and sizes of the patch. When the patch
covers 50% of the face width, the ArcFace-cosine accuracy
drops from 21.59% (at 40% width) to 16.19%. Conversely,
reducing the patch to just 25% of the face width raises
accuracy to 28.57%, since exposing key landmarks around
the nose and mouth helps in improving the performance.
We have also applied some real-life object patches with an
accuracy of 87.94% and 77.78% on hand and mobile patches,
respectively, on the ArcFace model with cosine distance. Fig.

Fig. 6: Few correctly classified and misclassified images
when used for gender classification across patches. The
first row shows the correctly classified samples of UTKFace
and FairFace, respectively, and the second row shows the
incorrectly classified samples of UTKFace and FairFace,
respectively.

Fig. 7: ROC of gender prediction of ViT-B/32 model on seen
(left) and unseen (right) datasets.

5 shows the bar graph accuracy visualization for the face
recognition on the best-performing cosine distance metrics.
Refer to the supplementary material for detailed results of
the patch’s different shapes and sizes, along with the real-
life object patch.

B. Occluded Soft Biometric Recognition

As can be seen from the above analysis, the proposed
patches can provide varied levels of privacy, but back the
theory that people recently used to protect themselves by
covering their noses (in turn occluding their mouths as well).
To further strengthen the findings of this research, we have
performed extensive experiments to find whether such phe-
nomena can also anonymize their soft biometric attributes,
i.e., gender and ethnicity/race. First, we analyze the impact of
patch-based occlusion on gender classification. In the end, an
analysis concerning ethnicity/race classification is provided
to show how effective patches are in hiding soft attributes.
For gender and ethnicity classification, we have used two
state-of-the-art deep networks: ViT-B/32 (based on attention
mechanism) and DenseNet-121 (a pure convolutional neural
network).

1) Occluded Gender Classification: The evaluation of
ViT-B/32 [10] and DenseNet-121 [13] (DNet-121) models
for occluded gender recognition across UTKFace and Fair-
Face datasets is shown in Table IV. Similar to the analysis
concerning face recognition, gender classification accuracy
can be described in terms of the following factors: (i) the
capacity of the network, (ii) the anonymization impact of
each patch, and (iii) the robustness and generalizability of
the patches.
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TABLE IV: Gender prediction accuracy under seen and unseen dataset settings in the presence of different patches used
to occlude the nose and mouth facial regions. While it is observed that the patches are found less effective in fooling
transformer models, they are found significantly effective in fooling convolutional networks.

Train
Model

Test Dataset
Dataset UTKFace FairFace

C BP ChP GrP GrSP FPP C BP ChP GrP GrSP FPP

UTKFace ViT-B/32 93.49 87.73 87.92 87.55 88.66 86.78 93.00 90.86 88.79 91.03 91.90 89.66
DNet-121 90.86 79.93 71.56 64.13 75.09 72.22 86.83 75.86 68.10 61.38 74.14 70.86

FairFace ViT-B/32 91.08 88.48 86.62 88.48 86.06 86.78 96.67 93.62 94.31 94.66 93.45 91.72
DNet-121 86.80 79.55 74.91 75.65 74.35 73.75 91.33 85.69 83.79 82.76 81.55 80.34

TABLE V: Gender prediction accuracy under seen and unseen dataset settings in the presence of different size and shape
patches (oval patches and rectangle patches of 25% & 50%). While it is observed that the patches are found less effective
in fooling the ViT-B/32 model, they are found significantly effective in fooling convolutional networks.

Model
Train Dataset

Test Dataset
UTKFace FairFace

C BP ChP GrP GrSP FPP C BP ChP GrP GrSP FPP

ViT-B/32 UTKFace 93.49 84.48 88.12 86.02 86.4 86.78 93.00 88.45 88.79 90.52 89.66 88.62
FairFace 91.08 85.63 87.74 87.93 88.70 87.93 96.67 92.93 94.31 94.48 94.48 94.31

ViT-B/32 UTKFace 93.49 89.46 90.8 90.61 88.31 89.08 93.00 93.1 91.72 92.59 91.38 90.34
FairFace 91.08 87.36 89.27 88.89 88.31 89.08 96.67 94.48 93.62 94.48 95.00 94.31

ViT-B/32 UTKFace 93.49 85.63 86.02 86.21 87.93 86.4 93.00 89.48 89.83 90.52 90.17 88.28
FairFace 91.08 86.4 88.12 88.12 87.55 86.78 96.67 94.41 92.93 93.28 93.62 92.24

TABLE VI: Ethnicity prediction accuracy under seen and unseen dataset settings in the presence of different patches used
to occlude the nose and mouth facial regions. While it is observed that the patches are found to be less effective in fooling
convolutional networks, they are found to be significantly effective in fooling transformer models.

Train
Model

Test Dataset
Dataset UTKFace FairFace

C BP ChP GrP GrSP FPP C BP ChP GrP GrSP FPP

UTKFace ViT-B/32 88.06 60.30 64.12 61.41 72.96 54.97 69.42 57.78 61.36 60.25 65.68 55.19
DNet-121 93.84 82.21 87.74 86.53 90.05 87.94 64.58 60.62 62.96 61.73 67.90 62.96

FairFace ViT-B/32 78.25 67.41 71.36 69.63 72.84 69.26 77.59 59.80 66.63 60.50 67.04 62.41
DNet-121 87.42 75.68 79.75 78.89 84.44 78.77 81.31 64.22 65.23 64.42 76.84 63.12

Fig. 8: A few correctly classified and misclassified ethnicity
images when perturbed using the proposed patches. The
first row shows the correctly classified samples of UTKFace
and FairFace, respectively, and the second row shows the
incorrectly classified samples of UTKFace and FairFace,
respectively.

Fig. 9: ROC of ethnicity prediction of ViT-B/32 model on
seen (left) and unseen (right) datasets.

It is observed that the ViT model is found to be highly
effective as compared to the DenseNet model in classifying
gender on clean images. When the ViT-B/32 is trained on
clean images of UTKFace and tested on the clean images of
UTKFace, it yields an accuracy of 93.49% as compared to

Fig. 10: Gender and ethnicity prediction accuracy under seen
dataset training and testing setting under real-life patches
bar graph visualization. In the case of ViT, a phone patch
is found to be more effective than a hand patch; however,
the DenseNet model, the majority of the time, has higher
sensitivity to hand patches.

90.86% obtained using the DenseNet-121 (DNet-121) model.
The ViT model is found robust in performing gender classi-
fication even if the dataset images are not seen at the time
of training. As can be seen from the results, the ViT model
yields slightly lower performance (0.49%) when an unseen
dataset is used for evaluation in comparison to the same
training-testing dataset evaluation. Interestingly, the black
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TABLE VII: Ethnicity prediction accuracy under seen and
unseen dataset settings in the presence of different size and
shape patches (Oval patches and rectangle patches of 25%
& 50%). While it is observed that the patches are found less
effective in fooling the D-Net-121 model, they are found
significantly effective in fooling transformer models.

Model
Train

Test
UTKFace FairFace

C BP ChP GrP GrSP FPP C BP ChP GrP GrSP FPP

DNet-121 UTKFace 93.84 82.91 88.24 87.94 91.76 88.54 64.58 63.33 66.54 66.05 69.01 65.68
FairFace 87.42 65.63 70.45 70.45 76.48 68.54 81.31 76.17 83.58 81.73 86.42 81.23

DNet-121 UTKFace 93.84 87.04 90.45 89.65 90.85 90.35 64.58 65.56 66.91 66.42 67.65 65.58
FairFace 87.42 67.14 69.85 70.75 74.87 69.25 81.31 79.14 82.47 82.59 84.32 81.36

DNet-121 UTKFace 93.84 77.09 84.82 83.32 90.15 86.33 64.58 57.53 61.11 59.63 66.91 60.25
FairFace 87.42 62.81 64.42 63.62 77.49 62.41 81.31 74.32 78.77 77.16 85.19 76.42

patch that drastically reduces face recognition performance
is found to be less effective in fooling gender classification
networks, especially ViT. Further, the network’s vulnerability
decreases when it is evaluated on an unseen dataset. In
other words, the relative difference between the clean images
and patch images’ gender classification accuracy is reduced
further if the network is trained on an unseen dataset. For
instance, the relative difference when the ViT model is
trained on UTKFace and tested on UTKFace is 5.73%, which
reduces to 2.14% when evaluated on an unseen FairFace
dataset. Surprisingly, in contrast to the ViT model, the pure
CNN architecture is found highly vulnerable to patch attacks.
Further, this vulnerability is not affected even when the
model is tested on an unseen dataset. When the DNet-121
model is trained on clean UTKFace and tested on the black
patch images of the UTKFace and FairFace datasets, it shows
a drop of 10.93% and 10.97%, respectively. Surprisingly, the
grayscale patch, found less effective in providing privacy,
is found significantly effective (even higher than the black
patch) in anonymizing the gender and is found resilient in
training and testing conditions. Grayscale patches (GrP) and
subject-agnostic (FPP) patches are found to be effective in
hiding gender information. As can be seen in the majority
of the cases when the FairFace dataset is used for training,
the face pixel patch (FPP) yields the highest reduction in
gender classification accuracy compared to other patches.
The correctly classified and misclassified occluded gender
prediction of each patch is shown in Fig. 6. The ROC
curves of gender classification are shown in Fig. 7. We
have also performed experiments on varied shapes and sizes
of the patch along with the real-life object patch on soft
biometrics recognition, and in gender, we achieve only a 1%
to 2% accuracy difference. Table V shows the best model
performing analysis. The detailed experimental results are
mentioned in the supplementary material.

2) Occluded Ethnicity Classification: Similar to gender
classification, ethnicity classification is also performed un-
der seen and unseen dataset settings using ViT-B/32 and
DenseNet-121 (DNet-121). As shown in Table VI, in contrast
to the gender classification, for ethnicity classification, the
DNet-121 model is found to be highly effective as compared
to ViT. The performance of DNet-121 for ethnicity classifi-
cation on the UTKFace train test is 5.78% higher than ViT
on the clean images of the dataset. The DNet-121 model
shows consistent effectiveness across different datasets, in-

cluding unseen dataset settings, except when trained on
UTKFace and evaluated on FairFace. Further, the ViT model
is found vulnerable to patches when utilized for ethnicity
classification compared to the DNet-121 model, which shows
higher robustness when used for ethnicity classification. The
analysis shows that there is no silver bullet (single network)
that is robust in handling patches when deployed for different
tasks of gender and ethnicity classification. Similar to face
recognition, for ethnicity classification, the stealthy rate of
black patches is found to be high compared to other patches
most of the time. However, the face pixel patch is also
able to reduce the performance significantly and is found
to be effective in fooling ViT. For instance, the ViT model,
which yields 88.06% ethnicity classification performance on
UTKFace, suffers a drop to 54.97% when FPP is applied
to the testing images. We believe such an extensive analysis
is missing in the literature, highlighting that ViT effectively
performs tasks accurately, but its resiliency against different
perturbations drastically varies across tasks. The correctly
classified and misclassified occluded ethnicity prediction of
each patch is shown in Fig. 8. The macro average ROC curve
for predicting ethnicity using the best-performing model ViT-
B/32 on both the seen and unseen datasets is shown in Fig.
9. Similar to gender recognition, the accuracy difference is
only 1% to 2% in ethnicity recognition when experiments
are performed on varied shapes and sizes of the patch, along
with the real-life object patch. Fig. 10 shows the performance
of gender and ethnicity prediction on HP and PhP. Table
VII shows the best-performing model analysis; refer to the
supplementary material for detailed experimentation results.

C. Effect of Inpainting in Mitigating Partial Occlusion

The results demonstrate that the applied patches success-
fully deceive deep face recognition models, but they also
present a potential vulnerability by enabling intruders to
exploit the system. To address this issue, we employ a state-
of-the-art inpainting technique, the Mask-Aware Transformer
(MAT) [17], to restore the occluded regions and counteract
the effects of these patches. Specifically, we use two strong
synthetic patches found in our analysis, i.e., black and cheek,
along with real-life object patches to evaluate the impact
of inpainting on face recognition performance. Table VIII
presents the accuracy of the face recognition models after
applying inpainting. It is observed that while inpainting
alleviates the occlusion effect, its success is not uniform
across different scenarios. For instance, the black patch,
which is highly effective in fooling face recognition models,
has its accuracy significantly improved when inpainted using
the MAT algorithm. However, when the inpainting method
attempts to reconstruct facial regions occluded by real-life
objects, such as hands and phones, the performance of face
recognition models degrades. For example, ArcFace + Cosine
achieves an accuracy of 87.94% with a hand-occluded patch,
but this drops to 73.97% after the MAT algorithm is applied
to reconstruct the region. This analysis highlights that while
inpainting effectively reverses the effects of artificial patches,
it fails to address occlusions caused by real-life objects.
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TABLE VIII: Face recognition accuracy on the face images after inpainting. The bold values show the accuracy of the clean
set. The green values show the best-performing inpainting.

Model
Distance Metrics

Cosine Euclidean Euclidean-L2
Clean BP inp ChP inp HP inp PhP inp Clean BP inp ChP inp HP inp PhP inp Clean BP inp ChP inp HP inp PhP inp

ArcFace 94.92 72.70 75.24 73.97 69.84 70.48 26.98 28.57 33.33 32.70 93.65 65.40 66.03 66.03 58.73
Dlib 90.79 72.70 74.92 76.51 64.13 94.60 84.44 85.71 89.21 78.10 93.02 83.81 83.81 87.94 77.78
VGG-Face 88.25 56.19 56.19 53.97 52.06 89.21 57.14 58.73 55.56 52.38 89.21 57.14 58.73 55.56 52.38
SFace 81.27 50.79 57.78 42.86 35.24 85.40 53.65 55.87 54.29 45.40 74.60 40.63 45.40 31.75 27.30
FaceNet 80.32 27.30 34.29 24.13 22.22 67.94 14.92 18.41 12.06 10.79 64.76 12.38 14.29 9.52 7.30
FaceNet-512 52.70 8.57 9.52 6.35 5.40 91.43 53.65 54.92 52.70 49.52 94.92 57.78 60.00 61.27 59.68
DeepFace 45.40 32.70 33.33 33.97 23.17 48.57 37.14 41.27 35.87 28.25 36.81 21.90 24.76 22.22 13.65

Fig. 11: Visualization of different facial attributes patches
obscuring different attributes of the faces. 1st row shows the
rectangular patches and 2nd row shows the facial attribute-
shaped patches, specifically extracted from the cheek region.

Fig. 12: Face recognition accuracy reflecting the privacy
gained by using different patches occluding different facial
attribute features.

Although these occlusions help preserve individual privacy,
their potential to provide intruders with undue advantages,
particularly in cases of real-life object occlusion, presents a
critical challenge that we believe can be mitigated through
strong inpainting methods.

V. ABLATION STUDY

To validate our observation that occluding the nose and
mouth regions offers the most effective privacy preservation,
we conducted an ablation study by creating individual at-
tribute patches targeting specific facial features: eyes, eye-
brows, nose, and mouth. Specifically, we generated patches
for the following facial attributes: both eyes, both eyebrows,
both eyebrow-shaped, both eye-shaped, left eye, left eye-
brow, left eyebrow-shaped, left eye-shaped, mouth, mouth-
shaped, nose, nose-shaped, right eye, right eyebrow, right
eyebrow-shaped, and right eye-shaped. Fig. 11 visualizes
these patches, while Fig. 12 presents the face recognition
accuracy using the ArcFace model combined with the Cosine
distance metric for each attribute patch applied to the best

privacy-preserving black patch. The results reveal that oc-
cluding the nose region (nose and nose-shaped) significantly
reduces face recognition accuracy from 94.92% (clean) to
51.11% and 79.87%, respectively, underscoring the nose’s
critical role in recognition systems. Interestingly, patches
targeting the eyebrows also substantially degrade recogni-
tion performance, with the Both Eyebrows patch reducing
accuracy to 67.41%. Notably, eyebrow occlusions are more
effective in preserving privacy compared to eye occlusions,
where patches such as both eyes, both eye-shaped, left eye,
and right eye-shaped resulted in only minimal decreases in
accuracy (ranging from 74.92% to 93.92%). This indicates
that eyebrows carry more significant biometric information
than eyes in face recognition models. Also, mouth patches
showed a moderate impact, with the standard mouth patch
reducing accuracy to 89.45%, while the mouth-shaped patch
maintained a high accuracy of 94.88%. These findings con-
firm that the nose and eyebrows are more influential in face
recognition models, and their occlusion can more effectively
preserve privacy. This ablation study supports our primary
approach of occluding the nose and mouth regions to enhance
privacy protection against deep face recognition systems.
Refer to the supplementary material for detailed results of
these facial attribute patches on all other patches.

VI. CONCLUSION AND FUTURE WORK

The rising need to protect privacy or avoid social media
trolls due to unauthorized access to facial images requires
significant attention, especially with the success of deep
face recognition. Recently, people have explored hiding their
noses and mouths using their hands to preserve privacy.
Our extensive experiments with the novel occluded datasets
reveal that specific patches can significantly degrade the
performance of face recognition networks and soft biometric
attribute classifiers when these regions are protected. Hence,
we assert that these occluded images can be used for social
media sharing to avoid their unconsented use for AI model
attribute extraction. Further, we demonstrated that strong
inpainting can be a viable solution to prevent any malicious
use of these patches. In the future, we aim to advance privacy
by developing invisible patches so that social media sharing
of images is not hampered and privacy concerns are resolved.
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