Published as a conference paper at ICLR 2026

CONSTRAINED DECODING OF DIFFUSION LLMS
WITH CONTEXT-FREE GRAMMARS

Niels Miindler, Jasper Dekoninck, Martin Vechev

Department of Computer Science

ETH Zurich, Switzerland

{niels.muendler, jasper.dekoninck,martin.vechev}@inf.ethz.ch

@ https://constrained-diffusion.ai
) https: //github.com/eth-sri/constrained-diffusion

ABSTRACT

Large language models (LLMs) have shown promising performance across di-
verse domains. Many practical applications of LLMs, such as code completion
and structured data extraction, require adherence to syntactic constraints specified
by a formal language. Yet, due to their probabilistic nature, LLM output is not
guaranteed to adhere to such formal languages. To address this, prior work has
proposed constrained decoding to restrict LLM generation to particular formal
languages. However, existing works are not applicable to the emerging paradigm
of diffusion LLMs, as this requires supporting token generation in arbitrary order
instead of the traditional left-to-right order. In this paper, we address this chal-
lenge and present the first constrained decoding method for diffusion models, one
that can handle formal languages captured by context-free grammars. Our method
relies on solving a newly defined additive infilling problem, which asks whether a
partial output with holes can be completed to a valid word in the target language.
We reduce this problem to deciding whether the intersection of the target language
and a particular regular language is empty, and present an efficient decision algo-
rithm for context-free languages. Empirical results on various applications, such
as C++ code infilling and structured data extraction in JSON, demonstrate that our
method achieves near-perfect syntactic correctness while consistently preserving
or improving functional correctness. Importantly, our efficiency optimizations en-
sure that the computational overhead remains practical.

1 INTRODUCTION

Large language models (LLMs) have recently achieved promising performance across a wide range
of tasks (OpenAl, 2023; Google DeepMind, 2025). Due to their capabilities in code synthesis, they
achieve impressive scores on diverse code benchmarks (Chen et al., 2021; Vero et al., 2025; Jimenez
et al., 2024; Jain et al., 2025) and are integrated into developer workflows as programming copilots
(GitHub, 2025; Tabnine, 2025). Further, they are used for processing information into machine-
readable formats in various domains (Schmidt et al., 2025; Schilling-Wilhelmi et al., 2024; Goel
et al., 2023). Despite these successes, LLMs are inherently probabilistic and offer no guarantees
about syntactic validity of generated output, providing an inherent limitation for LLM users.

Constrained decoding A promising approach that mitigates this limitation is constrained decod-
ing (Poesia et al., 2022; Beurer-Kellner et al., 2024; Ugare et al., 2024; Melcer et al., 2024). This
technique leverages the formal grammar of a target language to guide the generation process, ensur-
ing that the output remains within the language’s bounds. Constrained decoding leverages parsing
and validation of the generated output in lockstep with the incremental generation process, allowing
the model to avoid invalid continuations without restarting inference. It has been widely adopted in
practice, with commercial providers offering the option to restrict output to JSON or context-free
grammars (OpenAl, 2025a; Anthropic, 2025).

Current limitations of constrained decoding Constrained decoding is usually applied to context-
free grammars (CFGs), which capture the syntax of common programming languages and popular
data formats, like C++ and JSON (Knuth, 1965; Cogumbreiro, 2020). In this context, they can
only be applied to left-to-right prefix completion, a common LLM generation setting. However,

https://constrained-diffusion.ai
https://github.com/eth-sri/constrained-diffusion

Published as a conference paper at ICLR 2026

Input x e ~
-->[int () { return 2]—y [Update =’ ~ M () J
Proposal ¢ Proposal V

Constraint Language (CFG) [int foo() () { return 2] -’[i”t foo () { return 2]

S — Def () { Lines } Regex 3 Regex
Lines — Line ; Lines | € - [int foo() () { return 2 *] [int foo () { return 2 .x]

Def — <type> <name>

(er))]

:
y v
Rejected /

Output =’

- [int foo () { return 2 }

. J

Figure 1: An overview of our approach. In each step, the input consists of a partial text z with
arbitrarily many infilling regions and a context-free grammar (CFG) specifying formal constraints.
During decoding, we sample an updated input 2’ from M, obtained, e.g., by inserting a token in one
of the regions in . Our method then intersects the CFG with the regular language of all possible
completions of x’. If the intersection is empty, the update is rejected and a new z’ is sampled.
Otherwise, it is accepted and the decoding continues from z’. In the example, the invalid update
inserting "foo()" is rejected and "foo" is accepted instead.

this setting does not capture more advanced use cases with LLMs, such as diffusion LLMs. While
Melcer et al. (2024) extend constrained decoding to completions between a fixed prefix and suffix,
and Suresh et al. (2025) constrain diffusion LLMs to regular languages, no prior work supports
diffusion LLM constraining with CFGs.

This work: Constrained decoding for MRI and DLMs In this work, we present a generalized
method for constrained decoding of diffusion LLMs (DLM), which also naturally subsumes the pre-
viously unaddressed setting of multi-region infilling (MRI). We first generalize the formal framework
of constrained decoding to support unordered updates of a partial output with arbitrarily many infill-
ing regions, capturing both MRI and DLM. The decoding process is illustrated in Figure 1. A model
iteratively updates, e.g., inserting a token in a specific location. We verify that the updated output
is valid by intersecting the target language’s CFG with the language of all possible partial output
completions. This intersection is non-empty if and only if a valid completion exists.

A key challenge in this approach is efficiently determining the intersection’s emptiness. To this end,
we first show that the set of possible completions is described by a regular language, allowing us to
describe the intersection using standard formal language operations. We then drastically reduce the
worst case cubic cost of checking the emptiness of the resulting intersection language using special-
ized methods for grammar size reduction and search optimizations, including a custom normal form
and an implicit search that avoids generating the entire language.

Experimentally confirmed consistent improvements Our experiments demonstrate a substantial
improvement in the reliability of formal language adherence across all evaluated settings. Specif-
ically, the algorithm guarantees valid completions in all settings, up to sampling timeouts. Addi-
tionally, it improves functional correctness by up to 7%. Importantly, our approach incurs no initial
latency and only modest runtime overhead on tested models, with inference time less than doubling
on average, enabling practical usage even for complex constraining grammars.

Key contributions Our three key contributions are: (i) a generalized formal constrained decoding
framework for the MRI and DLM settings, (ii) a novel constrained decoding algorithm for these
settings, and (iii) an extensive evaluation of our method using state-of-the-art open-weight infilling
and diffusion LLMs, demonstrating consistent improvements in syntactic and functional correctness
on C++ code generation, JSON schema extraction, and chemical molecule description.

2 BACKGROUND

We outline the necessary background relevant to this work, including generation paradigms with
LLMs, constrained decoding, and the relevant properties of regular and context-free languages.

Published as a conference paper at ICLR 2026

PRE int main() {
FIM int () { return 2;}

MRI <type> (DR <int>;}

®@ 06

(a) Generation paradigms (b) NFA accepting all possible completions of the MRI example.

Figure 2: We consider three left-to-right (PRE, FIM, MRI) and one out-of-order (DLM) generation
paradigms (a). The NFA in (b) describes the language of all additive completions for the MRI task.

2.1 LLM GENERATION PARADIGMS

We focus on four generation settings with LLMs illustrated in Figure 2a. The first three approaches
are commonly used with autoregressive models and generate outputs left-to-right.

PRE, FIM and MRI The first approach, Prefix generation (PRE) completes a fixed prefix, and
is commonly used for synthesizing text or code from scratch. Second, Fill-In-the-Middle (FIM)
completes text between a given prefix and suffix, and is widely used in code completion assistants
(GitHub, 2025; JetBrains, 2025). Third, Multi-Region Infilling (MRI) generalizes FIM by allowing
prefix and suffix constraints as well as fixed segments in between, with the model infilling the gaps.
This enables more flexible editing, useful for repository-level code modifications (Wei et al., 2024).

Generation with DLMs Diffusion Language Models (DLMs) (Ye et al., 2025; Nie et al., 2025)
iteratively insert tokens into an initially empty or partially filled sequence (1,2, ..., 2,) where
each z; is either a token from the vocabulary V' or a mask _L. At each step, the model predicts one or
more indices k of a masked token, i.e., z = L, and atoken ¢t € V to produce the updated sequence
(z1,..-,Tk-1,t,Tkt1,...,Zy). This process continues until no masks remain. The number of
predicted indices and tokens per forward pass is a hyperparameter that controls a trade-off between
increased generation speed and quality (Nie et al., 2025). In the example in Figure 2a, the model
would generate one index and token at a time, first producing the return keyword @, then the
function name (2), and finally the return value @

Constrained generation Constrained generation restricts the model to produce outputs that con-
form to predefined syntactic or structural rules, ensuring syntactically valid code or adherence to
structural patterns (Poesia et al., 2022). Formally, the model must generate an output w € L, where
L is a formal language defining admissible outputs for the given task. Constrained generation is
implemented by restricting the model’s probability distribution, either using precomputed masks
(Ugare et al., 2024; Poesia et al., 2022), sampling and rejecting invalid tokens (Melcer et al., 2024;
Miindler et al., 2025) or a combination of these (Dong et al., 2024; Beurer-Kellner et al., 2024).

2.2 REGULAR AND CONTEXT-FREE LANGUAGES

We briefly outline the properties and notation of regular and context-free languages that are relevant
to our method. We provide a more detailed introduction in Appendix A.

Regular Languages A regular language is a set of strings that can be described by a deterministic
finite automaton (DFA). A DFA is defined as a tuple (Q, X, 6, qo, F'), where: (1) @ is a finite set
of states, (2) X is a finite alphabet of symbols, (3) 6 : @ x X — (@ is a transition function that
maps a state and an input symbol to the next state, (4) gy € @ is the initial state, and (5) F' C @
is the set of accepting states. The language of a DFA consists of those strings that transition the
automaton from the initial to an accepting state through the transition function. Non-deterministic
finite automata (NFA) additionally allow multiple next states for the same state and symbol and
traversing e-transitions without consuming a symbol. An example is depicted in Figure 2b. Every
NFA is equivalent to some DFA.

Context-Free Languages Context-free languages (CFLs) are a superset of regular languages, in-
cluding languages that enforce recursive structures, such as balanced parentheses or nested control
statements. They can be described by context-free grammars (CFGs). A CFG is a tuple (V, 3, P, S),
where: (1) V is a finite set of nonterminals, (2) X is a finite set of terminals (with V N Y = @), (3)

Published as a conference paper at ICLR 2026

P is a set of productions A — «, with A € V and o € (VUX)*, and (4) S € V is the start symbol.
The language is defined as all strings generated by the following procedure: Starting with .S, apply
arule A — « from P to replace nonterminal A with «, until the result contains only terminals.

3 CONSTRAINED DECODING FOR INFILLING AND DIFFUSION

In this section, we first define the decision problem that enables MRI and DLM generation settings,
and then introduce our algorithm for efficiently deciding the problem. We then provide adapted
constrained decoding algorithms for MRI and DLM. Finally, we show how to apply the algorithm to
LLMs, where additional challenges arise from the need to handle tokens instead of terminals.

3.1 THE CONSTRAINED INFILLING PROBLEM

Constrained decoding with infilling First, let us define a Rlgorithm 1 Constrained decoding

partial output x as a sequence of strings x; € X* interleaved Input: Input x, model M, target language L
with infilling regions 0 ¢ ¥, i.e., X = 21023 ...0%,. In Output: Completed output x € L
constrained decoding, illustrated in Algorithm 1, we com- 1 while true do

plete x using model M and target language L. We iteratively 2 ?;' ~ M(x) It
sample an updated partial output x’ from M (Lines 1 and 2). i ! Cgl\ij,TABLE(X L) then
All updated outputs are derived via additive modifications to s if 0 ¢ x then

X, meaning they either insert a string into infilling regions, ¢ return x

e.g., insert b into adc resulting in a0bdc, or remove a region ; elsereject o

by merging adjacent strings, e.g., converting aobdc to adbc.
We then check whether the updated output can be completed into a valid word in L (Line 3). If not,
we reject the update and remove it from the model distribution, preventing the loop from resampling
the update (Line 8). However, if the update is completable, we replace x with x’ (Line 4) and return
the output if the update removes the last infilling region (Lines 5 and 6). This is valid since x is
both completable and has no infilling regions, implying x € L. Since completability is preserved in
updates, there always exists a series of additive updates that completes x to be in L.

Deciding update validity To enable constraining additive generation, we need an incremental
verifier COMPLETABLE to determine whether the regions in a partial output can be filled to produce
a valid output in L. We formalize the decision problem solved by COMPLETABLE as follows:

Definition 1 (Constrained infilling problem). For a language L, partial output x = x10%s ... 0%y,
with x; € ¥ and O denoting infilling regions, the constrained infilling problem asks whether there
exists a list of n — 1 words y = (y1,...,Yn—1) suchthat w = x1 -y - To - ... Yp—1 - Ty isin L.

Thus, with the incremental verifier deciding the constrained decision problem, we have effectively
reduced constrained decoding with infilling to the constrained infilling problem.

Applications of the constrained infilling problem We now reduce constrained decoding for MRI
and DLM generation to the constrained infilling problem. For MRI, the list of words corresponds to
the list of fixed strings x;, with infilling regions in between. For the DLM setting, we add implicit €
tokens at the beginning and end of the partially filled sequence and then merge all consecutive non-
mask tokens to build x. For example, the sequence (a, L, L, b, ¢, 1) becomes x = aobcoe. Note
that, similar to prior work (Beurer-Kellner et al., 2024; Ugare et al., 2024), we slightly overapprox-
imate the space of possible completions in these representations by allowing infillings of arbitrary
size. In practice, there might be practical limitations to the number of tokens an LLM could insert.
We discuss this in more detail in Appendix E.

3.2 DECIDING THE CONSTRAINED INFILLING PROBLEM EFFICIENTLY

Overview We now give a brief overview of how to solve the constrained infilling problem effi-
ciently. The problem is determined by two separate constraints: (1) the structural constraints on
the output, described by the context-free language L, and (2) all possible completions of the partial
output x, which form a language C. For example, L could be the language of syntactically valid
C++ programs, and Cx the language of completions of partial program x =into(){o2;}. The
infilling problem is answered positively if and only if the intersection Ln = L N Cx is not empty,
i.e., some infilling of the partial output exists to generate a valid word in L. We will show that C
is a regular language that we can describe with a simple DFA, and that L~ can be described by a

Published as a conference paper at ICLR 2026

context-free grammar, which we can construct from L’s grammar and Cx’s DFA. The constrained
infilling problem is then reduced to checking whether L is empty, for which we design an efficient
algorithm. In the example, a word in the intersection language is int main() {return 2;}.

Constructing the regular language The language Cx of all possible completions of x =
x10...0x, contains all words that start with 1, end with z,,, and contain the strings z; (1 < i < n)
in the correct order, with arbitrary symbols in between. We prove that C is regular by constructing
an NFA that accepts Cx. We first construct automata D;, which accept exactly x;. Then, we con-
catenate D; with an additional state ¢; that accepts any string in X%, i.e., §(¢;,0) = ¢; forall o € X.
For the concatenation, we add an e-edge from the accepting states of D; to ¢; and from g; to the
start state of D;; ;. A visualization for the prior example is shown in Figure 2b. In our algorithm,
we construct this NFA for each update. We then transform it into an equivalent DFA and minimize
the DFA using standard methods (Hopcroft and Ullman, 1979), as shown in Figure 3b.

Constructing the intersection language We leverage the well-established facts that (a) the inter-
section LA of CFL L and regular language Cy is a CFL, whose grammar can be constructed from
L’s grammar G and Cy’s DFA, and (b) that the emptiness of a CFL can be checked in time polyno-
mial to the size of the grammar (Gasarch, 2014; Hopcroft and Ullman, 1979). The symbols in the

intersection language have the form PA? for p,q € ¥ and A € V, where each symbol intuitively
represents deriving a word from A that also traverses the DFA from state p to q. The language is

nonempty if we can derive a word from S for start symbol S and initial and final state gy and
gs. An example of deriving a word in the intersection language is shown in Figure 3c. The inter-
section grammar G = (V, X, P, Sn) will have a cubic size in nonterminals and productions,
with [V| € O(|V||Q|?) and |Pr| € O(|P||Q|® + |P||Q|?|%|) (Gasarch, 2014; Bar-Hillel et al.,
1961). While we can not reduce the worst case complexity of this blowup, we carefully construct
the intersection language to keep its size at a minimum, and employ several heuristics to reduce the
practical cost of determining its emptiness, explained next.

Efficient normalization The standard intersection algorithms require G to be transformed to
Chomsky normal form, which only allows rules of the foom A — BC or A — a, where
A,B,C € Vand a € ¥ (Hopcroft and Ullman, 1979). The resulting grammar may have a quadratic
increase in the number of production rules (Lange and Leil3, 2009). To avoid this increase, we ex-
tend the standard construction to support CFGs in C2F"¢, a normal form that additionally allows
productions of the form A — ¢ and A — B. We provide an example of the normalized C++ gram-
mar in Figure 3a. This normal form can be obtained with only a linear increase in production rules
(Lange and Leif3, 2009). Our adaptations to the standard intersection algorithm and a proof of its
correctness are provided in Appendix B.1. In Appendix B.2, we describe several further heuristics
to reduce the size of the normalized CFG of G. After this step, we can intersect the languages and
determine the emptiness of the intersection language.

Avoiding nongenerating nonterminals The standard algorithm to determine whether language L
is empty determines whether the start symbol S is generating, i.e., whether there is a sequence of
production applications S — --- — w such that w € ¥*. This property can be decided in time
linear to the size of L (Hopcroft and Ullman, 1979). When applied to intersection language L, it is
important to note that intersection languages contain a significant fraction of non-generating symbols
(Nederhof and Satta, 2008; Hanneforth, 2011). We therefore adopt a bottom-up search, that by
construction only explores generating symbols (Sipser, 1996), and adapt it to C2F"¢. The algorithm
starts with symbols that generate terminals or empty strings directly, i.e., all A with productions
A — o and A — &. It marks these symbols as generating and inserts them into a queue. Next, for
each symbol X in the queue, it checks whether some production has X on the right-hand side (i.e.,
either A - XC, A — BX or A — X), and whether the other symbol (B or C') in the production
was previously marked as generating. If so, A is marked as generating and added to the queue. As
soon as the start symbol .S is marked, we conclude that the language is non-empty.We confirm in
our experiments that this avoids exploring 98% to 99.99% of productions in L.

Searching through the implicit intersection language To speed up the emptiness check, we
avoid constructing the entire intersection language. Instead, we only construct the parts of the lan-

guage visited during the search. All symbols in the intersection language have the form PA for
p,q € ¥ and A € V. All production rules in the intersection grammar are directly derived from

corresponding rules in the original CFG. Specifically, all rules of the form PA' s cand "4 o

Published as a conference paper at ICLR 2026

(a) Normalized CFG (C2F %) (b) Minimized DFA of all possible completions

S — Def 51 _)@dypp@ ¢ @) m { @dnb@ ; @ } f
}

S1 = T(S2
Sz =Ty S3
S3 — T{ S4 bl PR
S4 — Lines T}
Lines — Line Linesy
Lines; — T, Lines di—dy dy—dg d6d7
Lines — & Tenanes Lines Ty
Def — T<type> Defy
Def1 — T<names>

<type> <name>

dog—dy dy—dy
T Tetypes Defy
Ty = A

T =}

T, =

T<type> —> <type>
T<name> — <name>

dg—dq dp—dy do—dy
Def 1 S

(¢) Derivation of word in L

Figure 3: Examples of Figures 1 and 4 processed during our method. (a) The grammar is first
normalized into C2F*¢, and (b) the NFA is transformed into a minimal DFA. (c) To determine

do = d7
emptiness of Ln, the algorithm then searches the initial state S through the productions in
reverse, starting from the terminals.

are based on corresponding rules A — ¢ and A — o in the original grammar without further depen-
dencies, allowing us to iterate over directly generating symbols without constructing the remaining

ST 2 q

grammar. Further, all other rules are of the form PAYSPB"'C " and"A "= "B based on original
productions A — BC and A — B, for all p,q,r € @. This enables enumerating all such rules

for a given 'B T, ‘G or "B during the search. We present the corresponding pseudo-code and

additional explanations in Appendix B.3.

Sampling a valid completion from the intersection language The algorithm presented above
decides intersection emptiness. We now extend it to return a valid completion from the intersection
language. To achieve this, we modify the algorithm to track production rules that were applied
when marking symbols as generating. These rules describe a parse tree for some word w in the
intersection language. We traverse the terminals at the leaf nodes of this tree from left to right to
reconstruct a valid completion in the intersection language. This completion is used after a fixed
number of rejected updates from the LLM. Since the algorithm leverages the results from the prior
emptiness search, it can be run at no additional cost.

3.3 APPLICATION OF CONSTRAINED INFILLING TO LLMS

We now briefly outline how to apply the algorithm from §3.2 to LLMs, which generate arbitrary
Unicode text rather than language terminals. Full details are provided in Appendix C.

Lexing For typical applications of CFGs, a string of Unicode characters u is converted to terminals
xr = t1...1; in a process called lexing. First, note that every terminal ¢ corresponds to a regular
language R; over Unicode characters. During lexing, ¢; is obtained by finding the terminal ¢ such
that R, matches a prefix p of u, i.e., u = p - s. The lexing process then recurses on v’ = s to obtain
the remainder of z, continuing until the string is empty. In principle, to apply this procedure to a
sequence with infilling regions s; L so L . .. si, we would lex each consecutive string s; to obtain x =
tio...ot,. For example, int L () { L 2;} would be lexed to <type> o0 () { O <int> ; }.
However, several caveats to this procedure need to be addressed.

Handling infilling regions First, it does not accurately handle partial terminals that border infilling
regions, since LLM tokens are Unicode strings that may not align with terminals. For example, the
partial LLM output | 2 could correspond to both <int> and <ident>. The ambiguity stems from the
possibility to fill the gap with, e.g., either the token x or 1, resulting in x2 or 12 respectively.

To address this, we treat the text around an infilling region as possibly belonging to an incomplete
terminal. Specifically, in the lexing process, we additionally look for terminals ¢ such that the current
output u is a prefix of a word in R; right before an infilling region or a suffix right after a region.
Further, we include terminals ¢ that could span across one or more infilling regions by determining
if prefixes and suffixes can be infilled to form a single word in R;, as in the example above. We

Published as a conference paper at ICLR 2026

can thus generate all terminal sequences consistent with a partial output. If any such sequence can
be completed to a valid program, then the partial output itself admits a valid completion. In the
example above, our algorithm would yield two possible lexings, both O <int>and o <ident>, and
intersect both with the context-free grammar..

Efficiency optimizations The number of possible terminal sequences grows quickly with the num-
ber of regions and ambiguities. To improve efficiency, we introduce two optimizations. First, for
each x, we directly construct a single NFA for all possible terminal sequences. This allows us to
apply the intersection algorithm once rather than for each sequence. Second, we reduce ambigu-
ity by preprocessing terminals: whenever the accepted language of terminal ¢< is contained within
terminal ¢, we remove the overlap from ¢> and adapt the CFG to allow t< wherever ¢ is allowed.

Sampling a valid completion The sampling method from §3.2 returns a sequence of terminals
rather than Unicode characters. To sample a Unicode completion, we first concatenate the regular
languages of the terminals in the sampled completion. We then construct a regular language for the
current partial LLM output and intersect the two languages. Sampling a random string from this
intersection yields a valid completion at the Unicode level. In the given example, we would con-
struct regular language of terminals R(<type>) R(<name>) R(() R()) R({) R(<int>) R(})
and intersect it with int .* (){ .* 2;}, resulting in int x(){2;}.

3.4 SOUNDNESS, COMPLETENESS, AND ALIGNMENT

In this subsection, we briefly analyze desirable properties of our algorithm. We first show that the
algorithm is sound and complete with respect to the constrained grammar, and fulfills the minimal
invasiveness guarantees introduced by Beurer-Kellner et al. (2024).

Soundness and Completeness Our algorithm is sound, i.e., all generated output is valid according
to the formal grammar and lexer. This requires the assumption that the lexer of the target language
uses maximal munch for lexing, as is common in many programming languages (Park et al., 2024;
Melcer et al., 2024). Moreover, our algorithm is complete, i.e., it allows sampling any token that
would result in a correct output. A detailed proof of these properties is provided in Appendix C,
together with a more precise description of the employed lexing algorithm.

Minimally invasive Our algorithm is minimally invasive (Beurer-Kellner et al., 2024). This means
that, if the model M without constraints would generate a valid output w € L, it will also produce
the valid output when our constraining algorithm is applied. This follows from the algorithm’s
completeness; it does not reject any partial variants of a valid output. Therefore, in Algorithm 1 for
the case where M suggests only valid partial outputs, each x” would be marked as completable, and
the algorithm thus would return the same output as if the check was not present.

4 EXPERIMENTAL EVALUATION

We evaluate our method across a range of tasks and models, first in the MRI setting, and then in
DLM, demonstrating improvements in both syntactic and functional correctness. We provide further
experimental details, ablate DLM diffusion steps, and provide a case study in Appendix D.

4.1 EXPERIMENTAL SETUP

Metrics We compute two main metrics to evaluate the effectiveness of our method. First, we de-
termine the percentage of syntactically correct completions (Syntax), which indicates how many of
the obtained completions adhere to the specified grammar. We also measure functional correctness
(Functional) by either comparing the sample to a golden solution, or by reporting the percentage of
solutions that pass all test cases, pass@1, depending on the dataset. All results are averaged over
four independent runs with different seeds. We compute confidence intervals at 95%, boldface the
best method, and underline all methods over which the increase is not significant. The usual size of
the confidence interval is 1% to 2%.

Compared methods We run unconstrained LLM sampling, reported as Vanilla (Van.) and con-
strained decoding with our method (Con.). This includes sampling random completions when gen-
eration aborts. As an ablation, we report Con.” , where these aborted instances are marked as syn-
tactically and functionally invalid. To decide the cutoff for aborting generation, we run our method

Published as a conference paper at ICLR 2026

on a development set of C++, JSON and SMILES tasks. We observe that if a task requires more
than 50 resamples, it is functionally correct in only 0.7% of cases. Thus, we significantly speed
up the sampling process without losing performance by aborting after 100. Further, all tested tasks
can be solved within 256 tokens, which we set as a maximum output size for all methods. On the
instruction tuned DLMs, we further compare to the baseline of Grammar Prompting (G.P.) (Wang
et al., 2023), where the model is provided with the Grammar Rules in its prompt.

4.2 FILL-IN-THE-MIDDLE AND MULTI-REGION-INFILLING

Models We compare the performance of five recent open-weight infilling models, including STAR-
CoODER2 7B (Lozhkov et al., 2024b), CODEGEMMA 7B (Zhao et al., 2024), and the DEEPSEEK
CODER Family (Guo et al., 2024), covering 7B parameter models from three distinct model families
and model sizes from 1.3B to 33B.

Tasks and benchmarks Infilling is commonly used to complete partial code (Bavarian et al.,
2022; Fried et al., 2023). We therefore evaluate our method on the C++ translation of the HumanEval
dataset (Zheng et al., 2023; Chen et al., 2021), of 164 diverse basic coding tasks. Similar to Bavarian
et al. (2022), we construct an infilling dataset by removing random spans from the human-written
reference implementation. We evaluate up to three removed spans, resulting in 1-MRI, being equiv-
alent to FIM, and 2-MRI and 3-MRI, with two and three infilling regions respectively. We design a
CFG for the subset of C++ syntax needed to solve the tasks in HumanEval. We report adherence
to this CFG as syntactic correctness. Functional correctness is measured by computing the pass@1
score on provided test cases (Brown et al., 2020). In Appendix D.4, we also evaluate our method
when removing specific lines of code rather than random spans, observing similar improvements.

Syntactic correctness As shown in Table 1, our method increases syntactic correctness signifi-
cantly across all models and numbers of infilling regions. Our method (Con.) recovers a syntac-
tically valid completion in on average 95.8% of instances. Remaining errors are due to timeouts.
Constrained decoding without completions (Con. ™) increases syntactic correctness more for code
with multiple regions. This coincides with models struggling more, achieving an absolute increase
of 5.2%, 22.5%, and 31.5% for 1-MRI, 2-MRI, and 3-MRI, respectively. These improvements are
consistent across model families and sizes, ranging between 17% and 21% per model.

Functional correctness In the lower half of Table 1, we observe that constraining (Con.) consis-
tently increases functional correctness, on average by 2.8%, and even without randomly sampling
valid completions (Con. ™), the average increase is 2.4%. This is expected, as syntactically incorrect
completions can not be functionally correct and are effectively prevented by our method.

Runtime overhead We compare the time per token between constrained and vanilla decoding.
The median runtime overhead of constrained decoding is 4.2 ms, where the overhead on the small
DEEPSEEK CODER 1.3B is higher (5.8 ms) than on the 7B models (4.6 ms) and DEEPSEEK CODER
33B (4.3 ms). Moreover, median overhead increases with more complex infilling, growing from
3.1ms on 1-MRI to 7.7 ms on 3-MRI. Further details on runtime are provided in Appendix D.4.

4.3 DIFFUSION LANGUAGE MODELS

Models We evaluate our method on the instruction-tuned versions of four state-of-the-art diffusion
language models, LLADA 8B (Nie et al., 2025), DREAM 7B (Ye et al., 2025), DREAMCODER 7B
(Xie et al., 2025) and DIFFUCODER 7B (Gong et al., 2025). We run all models with 32 steps on 256
tokens and with a temperature of 0.2.

Tasks and benchmarks As DLMs are generic text generation models with many different appli-
cations, we design three distinct and diverse tasks:

C++ Based on the dataset used in §4.2, the model should generate the entire function
specified in natural language (Chen et al., 2021; Zheng et al., 2023).

JSON The model should extract relevant information from natural language input, adhering
to a JSON-Schema specification (NousResearch, 2024).

SMILES The model should write down a chemical molecule described in natural language in
the SMILES specification language (Weininger, 1988).

For SMILES and JSON we generate synthetic benchmarks using GEMINI-2.5-PRO (Google Deep-
Mind, 2025) with verification to ensure that the generated samples are correct and solvable, resulting

Published as a conference paper at ICLR 2026

Table 1: Our method consistently improves the percentage of syntactically and functionally correct
infillings for varying numbers of regions in MRI under standard decoding (Van.), constrained decod-
ing (Con.), and completing partially completed outputs (Con.).

1-MRI 2-MRI 3-MRI
Model Van. Con.” Con. Van. Con.” Con. Van. Con.” Con.
STARCODER?2 7B 88.2 950 98.9 554 777 96.3 245 572 88.3
CODEGEMMA 7B 92.5 97.2 100.0 61.5 856 99.0 299 664 96.0

DEEPSEEK C. 1.3B 86.5 91.7 98.7 515 729 931 2277 4777 83.0
DEEPSEEK C. 6.7B 93.9 98.3 100.0 62.0 84.0 973 329 649 94.6
DEEPSEEK C. 33B 93.1 97.6 100.0 66.3 86.5 97.8 364 67.8 93.5

STARCODER2 7B 538 56.1 563 205 237 242 75 103 11.0
CODEGEMMA 7B 57.1 59.6 59.6 248 29.0 29.2 87 126 128
DEEPSEEK C. 1.3B 46.5 464 47.2 161 184 192 49 54 65
DEEPSEEK C.6.7B 648 67.1 673 298 327 332 119 135 135
DEEPSEEK C. 33B 69.8 712 714 298 340 343 126 143 154

Syntax

Functional

in 167 and 272 instances respectively. We implement the syntax of each language as a CFG and use
it to enforce and evaluate the syntactic correctness of the generated output. For C++, we measure
functional correctness using pass@1 as in §4.2. For JSON and SMILES, correctness is evaluated by
normalizing and comparing to a golden solution. More details about the dataset generation proce-
dure and the correctness evaluation are provided in Appendix D.3.

Syntax errors We observe that our method consistently increases syntactic correctness for all
tasks and models, as shown in Table 2, in stark contrast to the mixed impact of the non-constraining
baseline (G.P.). Without sampling valid completions (Con. ™), our method increases the percent-
age of syntactically correct instances by 16.1%, 14.7%, and 26.0% for C++, JSON, and SMILES,
respectively. We observe that many models fail to generate syntactically correct output even under
constraints, with, for example, only 19.0% correct C++ generations for DREAMCODER 7B. How-
ever, sampling valid completions (Con.) recovers the failed instances, increasing to 99.2%. In JSON,
constrained decoding with completion achieves 100% syntactic correctness.

Functional correctness As shown in the lower half of Table 2, the consistent positive effect of
constraining on functional correctness is also present for DLM, with an average increase in func-
tional correctness without completions (Con. ™) of 1.9%, and a slight additional boost with comple-
tions (Con.) to 2.2%. Notably, DREAM 7B performance on JSON increases by 6.9%. DREAM 7B
appears to benefit a lot from being provided the target syntax (G.P.) in C++ and SMILES, where it
outperforms our constraining (Con.). In the SMILES setting, where models generally perform very
poorly at only 1.5% average correctness, syntactic constraints are not able to improve functional
correctness significantly, achieving only a modest average increase of 0.2%.

Runtime overhead We compare the runtime to complete samples in constrained decoding with
the vanilla setting. The median completion overhead is only 0.1 s. We observe both speed-ups of up
to 1s and slowdowns of up to 7.8 s. Speed-ups occur when the decoding is preemptively aborted.
Further details for this experiment are provided in Appendix D.4.

Comparison to DINGO DINGO (Suresh et al., 2025) is a recently proposed method for con-
strained decoding of regular languages in DLMs. In Appendix D.5, we show that while our method
is more general, being able to enforce context-free constraints, it achieves the same syntactic and
similar functional correctness. Furthermore, our method has similar runtime overhead of less than
0.3 ms on the tested tasks, without requiring preprocessing as opposed to DINGO.

5 RELATED WORK

Large language models LLMs have gained traction for diverse tasks such as code generation
(Jiang et al., 2024) and structured output generation (LangChain Developer Documentation, 2025;
OpenAl, 2025b; Anthropic, 2025). While the most common approach trains LLMs for PRE genera-
tion, many modern code models also support FIM settings (Guo et al., 2024; Lozhkov et al., 2024a;

Published as a conference paper at ICLR 2026

Table 2: Constrained decoding (Con. ™) consistently increases the percentage of syntactically correct
completions for DLMs over standard decoding (Van.). Non-constraining baselines like Grammar
prompting (G.P.) do not consistently improve syntactic or semantic performance.

C++ JSON SMILES
Model Van. G.P.Con.” Con. Van. G.P.Con.” Con. Van. G.P. Con.” Con.

DRrREAM 7B 40.5 48.6 58.7 994 224 157 449 100.0 67.7 84.2 93.7 994
DREAMC. 7B 11.0 9.1 19.0 99.2 73.7 73.3 86.6 100.0 73.1 82.1 94.9 100.0
LLADA 8B 133 6.7 36.1 99.7 77.5 76.0 89.0 100.0 58.2 67.4 91.3 100.0
Di1rruC. 7B 39.2 33.1 54.7 99.7 645 449 763 100.0 69.3 57.3 92.2 99.1

DREAM 7B 6.6 11.6 88 95 74 66 114 143 06 27 11 1.1
DREAMC.7B 3.7 06 49 52 446 462 467 467 34 12 34 34
LLADA 8B 38 20 50 53 431 502 495 495 0.7 06 1.0 1.0
DIFFUC. 7B 125 7.6 13.7 148 343 21.0 380 382 1.1 06 11 1.1

Syntax

Funct.

Zhao et al., 2024). More recently, diffusion language models have been scaled to billion-parameter
sizes and demonstrate promising performance on a variety of tasks (Nie et al., 2025; Gong et al.,
2025; Xie et al., 2025). Meanwhile, LLLMs are prone to errors during generation. For example, they
often make mistakes in niche programming languages (Giagnorio et al., 2025) and fundamentally
struggle to model specific types of formal languages (Strobl et al., 2024; Ebrahimi et al., 2020).

Constrained decoding Constraining LLM generation to context-free languages has been explored
extensively in prior work (Beurer-Kellner et al., 2024; Poesia et al., 2022; Beurer-Kellner et al.,
2023; Willard and Louf, 2023). Most prior works apply these techniques to the PRE setting (Poesia
et al., 2022; Beurer-Kellner et al., 2024; Ugare et al., 2024; Dong et al., 2024; Sun et al., 2025;
Park et al., 2025), with some extensions to FIM and context-sensitive features (Melcer et al., 2024;
Miindler et al., 2025). Suresh et al. (2025) constrain DLMs specifically, but only to regular languages.
To our knowledge, constrained decoding with CFGs has not yet been applied to the MRI or DLM
paradigms. Additionally, unlike prior work that employs masking (Ugare et al., 2024; Poesia et al.,
2022; Beurer-Kellner et al., 2023) or masking-rejection hybrids (Dong et al., 2024; Beurer-Kellner
et al., 2024), our rejection sampling approach incurs no additional latency before starting language
inference, significantly reducing friction of switching to a different CFG.

Leveraging language intersections Two similar works leverage the intersection of CFLs and reg-
ular languages. First, Fazekas et al. (2024) discuss subsequence matching, which asks whether w
is a subsequence of any word in language L. This is a special case of our decision problem, with
X = e0wi0... 0w}, D¢, and can also be solved by using the emptiness check for intersection
languages. Their work is not applicable to our setting, as it only handles this special case, does not
consider practical performance, and does not consider how to handle lexing.

Second, Nederhof and Satta (2008) use intersections of weighted CFGs and DFAs for parsing natural
language words, using the intersection language as a succinct representation of admissible parses of
lexeme sequences. To reduce the size of these intersections, they also filter non-generating symbols
during the intersection construction.

6 CONCLUSION

We presented the first constrained decoding method for diffusion models that is able to handle
context-free languages such as C++ and JSON. We showed how to reduce the problem of valid com-
pletion to an infilling decision problem solvable using formal language techniques. Our optimized
algorithm demonstrates a consistent and significant increase in syntactic and functional correctness
on a variety of benchmarks and models, while still ensuring efficiency at inference time.

10

Published as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We describe our implementation in detail in §4 and Appendix D, including details such as hy-
perparameters and the used compute hardware. Further, all of our experiments were run with
fixed seeds and disabled optimizations that would introduce nondeterminism. To ensure com-
plete reproducibility of our results, we publicly release the code implementation of our method,
as well as datasets, models, and code used for the evaluation at https://github.com/eth-sri/
constrained-diffusion. We also include the content of this released code as an anonymized arti-
fact for the double-blind review.

ACKNOWLEDGEMENTS

This work has been done as part of the grant SAFEAI (Certified Safe, Fair and Robust Artificial In-
telligence). The work has received funding from the Swiss State Secretariat for Education, Research
and Innovation (SERI), contract no. MB22.00088.

REFERENCES

V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles, techniques & tools.
2007.

Anthropic. JSON Mode, 2025. URL https://docs.anthropic.com/en/docs/
build-with-claude/tool-use#json-mode.

Richard L. Apodaca. SMILES Formal Grammar. Depth-First blog post, 2020. URL https://
depth-first.com/articles/2020/04/20/smiles-formal-grammar/.

Y. Bar-Hillel, M. Perles, and E. Shamier. On formal properties of simple phrase structure grammars.
STUF, 1961. URL https://doi.org/10.1524/stuf.1961.14.14.143.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient Training of Language Models to Fill in the Middle. arXiv
preprint, 2022. URL https://arxiv.org/abs/2207.14255.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting Is Programming: A Query
Language for Large Language Models. PLDI, 2023. URL https://doi.org/160.1145/3591300.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding LLMs The Right Way: Fast, Non-
invasive Constrained Generation. In /ICML, 2024. URL https://openreview.net/forum?id=
pXaEYzrFae.

Blue Obelisk Project and OpenSMILES Community. OpenSMILES specification (HTML version),
2025. URL http://opensmiles.org/opensmiles.html.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language Models are
Few-shot Learners. In NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8acl42f64a-Abstract.html.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating Large
Language Models Trained on Code. arXiv Preprint, 2021. URL https://arxiv.org/abs/2107.
03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Tiago Cogumbreiro. CS420: Introduction to the theory of computation, lecture 15: Context-free
grammars, 2020. URL https://cogumbreiro.github.io/teaching/cs420/s20/lecturel5.
pdf.

11

https://github.com/eth-sri/constrained-diffusion
https://github.com/eth-sri/constrained-diffusion
https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
https://depth-first.com/articles/2020/04/20/smiles-formal-grammar/
https://depth-first.com/articles/2020/04/20/smiles-formal-grammar/
https://doi.org/10.1524/stuf.1961.14.14.143
https://arxiv.org/abs/2207.14255
https://doi.org/10.1145/3591300
https://openreview.net/forum?id=pXaEYzrFae
https://openreview.net/forum?id=pXaEYzrFae
http://opensmiles.org/opensmiles.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://cogumbreiro.github.io/teaching/cs420/s20/lecture15.pdf
https://cogumbreiro.github.io/teaching/cs420/s20/lecture15.pdf

Published as a conference paper at ICLR 2026

Leonardo De Moura and Nikolaj Bjgrner. Z3: an efficient smt solver. In Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’08/ETAPS’08, pages 337-340, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 3540787992.

Yixin Dong, Charlie F Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqgi Chen.
XGrammar: Flexible and efficient structured generation engine for large language models. arXiv
preprint arXiv:2411.15100, 2024.

D.W. Solving the emptiness problem for a CFG in Chomsky normal form (linear). Computer
Science Stack Exchange, 2018. URL https://cs.stackexchange.com/q/92314.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How Can Self-attention Networks Recognize Dyck-n
Languages? In EMNLP, 2020. URL https://aclanthology.org/2020.findings-emnlp.384/.

Szilard Zsolt Fazekas, Tore KoB3, Florin Manea, Robert Mercas, and Timo Specht. Subsequence
Matching and Analysis Problems for Formal Languages. In ISAAC, 2024. URL https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.28.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen
tau Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: A Generative Model for Code Infilling and
Synthesis, 2023. URL https://openreview.net/forum?id=hQwb- LbM6EL.

William Gasarch. The Intersection of a CFG and a REG is CFG, 2014. URL https://www.cs.umd.
edu/~gasarch/COURSES/452/F14/cfgreg.pdf.

Alessandro Giagnorio, Alberto Martin-Lopez, and Gabriele Bavota. Enhancing Code Generation
for Low-resource Languages: No Silver Bullet. arXiv Preprint, 2025. URL https://doi.org/
10.48550/arXiv.2501.19085.

GitHub. Introducing GitHub Copilot: your Al pair programmer. GitHub
Blog, 2025. URL https://github.blog/news-insights/product-news/
introducing-github-copilot-ai-pair-programmer/.

Akshay Goel, Almog Gueta, Omry Gilon, Chang Liu, Sofia Erell, Lan Huong Nguyen, Xiaochong
Hao, Bolous Jaber, Shashir Reddy, Rupesh Kartha, Jean Steiner, Itay Laish, and Amir Feder. LIms
accelerate annotation for medical information extraction. arXiv Preprint, 2023. URL https:
//arxiv.org/abs/2312.02296.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. DiffuCoder: Understanding and Improving Masked Diffusion Models for Code
Generation. arXiv Preprint, 2025. URL https://arxiv.org/abs/2506.20639.

Google DeepMind. Gemini Pro, 2025. URL https://deepmind.google/technologies/gemini/
pro/.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, et al. DeepSeek-Coder: When the Large Language Model Meets Program-
ming - The Rise of Code Intelligence. arXiv Preprint, 2024. URL https://doi.org/10.48550/
arXiv.2401.14196.

Thomas Hanneforth. A practical algorithm for intersecting weighted context-free grammars with
finite-state automata. In Andreas Maletti and Matthieu Constant, editors, Proceedings of the
9th International Workshop on Finite State Methods and Natural Language Processing, pages
57-64, Blois, France, July 2011. Association for Computational Linguistics. URL https://
aclanthology.org/W11-4408/.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Compu-
tation. 1979.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and Contamination Free
Evaluation of Large Language Models for Code. In ICLR, 2025. URL https://openreview.
net/forum?id=chfJJYC3iL.

12

https://cs.stackexchange.com/q/92314
https://aclanthology.org/2020.findings-emnlp.384/
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.28
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.28
https://openreview.net/forum?id=hQwb-lbM6EL
https://www.cs.umd.edu/~gasarch/COURSES/452/F14/cfgreg.pdf
https://www.cs.umd.edu/~gasarch/COURSES/452/F14/cfgreg.pdf
https://doi.org/10.48550/arXiv.2501.19085
https://doi.org/10.48550/arXiv.2501.19085
https://github.blog/news-insights/product-news/introducing-github-copilot-ai-pair-programmer/
https://github.blog/news-insights/product-news/introducing-github-copilot-ai-pair-programmer/
https://arxiv.org/abs/2312.02296
https://arxiv.org/abs/2312.02296
https://arxiv.org/abs/2506.20639
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://aclanthology.org/W11-4408/
https://aclanthology.org/W11-4408/
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL

Published as a conference paper at ICLR 2026

JetBrains. Code completion, 2025. URL https://www.jetbrains.com/help/pycharm/
auto- completing- code.html.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A Survey on Large Language
Models for Code Generation. arXiv Preprint, 2024. URL https://doi.org/10.48550/arXiv.
2406.00515.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. SWE-bench: Can Language Models Resolve Real-world Github Issues? In ICLR,
2024. URL https://openreview.net/forum?id=VTF8yNQM66.

Donald E. Knuth. On the Translation of Languages from Left to Right. Inf. Control., 1965. URL
https://doi.org/10.1016/50019-9958(65)90426- 2.

Greg Landrum, Paolo Tosco, Brian Kelley, Ricardo Rodriguez, David Cosgrove, Riccardo Vianello,
sriniker, Peter Gedeck, Gareth Jones, Eisuke Kawashima, Nadine Schneider, Dan Nealschneider,
Andrew Dalke, and tadhurst-cdd et al. rdkit/rdkit: Q1 2025 Release. Zenodo, 2025. URL
https://doi.org/10.5281/zenodo.16439048.

LangChain Developer Documentation. Structured outputs, 2025. URL https://python.
langchain.com/docs/concepts/structured_outputs/.

Martin Lange and Hans Leil. To CNF or not to CNF? An efficient yet presentable version of the
CYK algorithm. Informatica Didactica, 2009.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. StarCoder 2 and The Stack v2:
The Next Generation. arXiv Preprint, 2024a. URL https://doi.org/10.48550/arXiv.2402.
19173.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. StarCoder 2 and The Stack v2:
The Next Generation. arXiv Preprint, 2024b. URL https://doi.org/10.48550/arXiv.2402.
19173.

Daniel Melcer, Nathan Fulton, Sanjay Krishna Gouda, and Haifeng Qian. Constrained Decoding for
Fill-in-the-middle Code Language Models via Efficient Left and Right Quotienting of Context-
sensitive Grammars. arXiv Preprint, 2024. URL https://arxiv.org/abs/2402.17988.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models, 2025. URL https://arxiv.org/abs/2410.05229.

Niels Miindler, Jingxuan He, Hao Wang, Koushik Sen, Dawn Song, and Martin Vechev. Type-
Constrained Code Generation with Language Models. In PLDI, 2025. URL https://doi.org/
10.1145/3729274.

Mark-Jan Nederhof and Giorgio Satta. Probabilistic Parsing. In SCI. 2008. URL https://link.
springer.com/chapter/10.1007/978-3-540-78291-9_7.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large Language Diffusion Models. arXiv preprint, 2025. URL
https://arxiv.org/abs/2502.09992.

NousResearch. json-mode-eval. Hugging Face Datasets, 2024. URL https://huggingface.co/
datasets/NousResearch/json-mode-eval.

Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. Live functional programming with
typed holes. POPL, 2019. URL https://doi.org/10.1145/3290327.

OpenAl. GPT-4 Technical Report. arXiv Preprint, 2023. URL https://doi.org/10.48550/arXiv.
2303.08774.

13

https://www.jetbrains.com/help/pycharm/auto-completing-code.html
https://www.jetbrains.com/help/pycharm/auto-completing-code.html
https://doi.org/10.48550/arXiv.2406.00515
https://doi.org/10.48550/arXiv.2406.00515
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.5281/zenodo.16439048
https://python.langchain.com/docs/concepts/structured_outputs/
https://python.langchain.com/docs/concepts/structured_outputs/
https://doi.org/10.48550/arXiv.2402.19173
https://doi.org/10.48550/arXiv.2402.19173
https://doi.org/10.48550/arXiv.2402.19173
https://doi.org/10.48550/arXiv.2402.19173
https://arxiv.org/abs/2402.17988
https://arxiv.org/abs/2410.05229
https://doi.org/10.1145/3729274
https://doi.org/10.1145/3729274
https://link.springer.com/chapter/10.1007/978-3-540-78291-9_7
https://link.springer.com/chapter/10.1007/978-3-540-78291-9_7
https://arxiv.org/abs/2502.09992
https://huggingface.co/datasets/NousResearch/json-mode-eval
https://huggingface.co/datasets/NousResearch/json-mode-eval
https://doi.org/10.1145/3290327
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774

Published as a conference paper at ICLR 2026

OpenAl. Function calling - openai api: Context-free grammars, 2025a. URL https://platform.
openai.com/docs/guides/function-calling#context-free-grammars. Accessed: 2025-08-
12.

OpenAl. Structured Outputs, 2025b. URL https://platform.openai.com/docs/guides/
structured-outputs.

Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikarpova, and Loris D’Antoni.
Grammar-aligned decoding. NeurIPS, 2024.

Kanghee Park, Timothy Zhou, and Loris D’Antoni. Flexible and efficient grammar-constrained
decoding. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=L6CYAzpO1lk.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. Synchromesh: Reliable Code Generation from Pre-trained Language Models. In ICLR,
2022. URL https://openreview.net/forum?id=KmtVvVD97J43e.

Julien Romero. Pyformlang: An Educational Library for Formal Language Manipulation. In
SIGCSE, 2021. URL https://doi.org/10.1145/3408877.3432464.

Mara Schilling-Wilhelmi, Martifio Rios-Garcia, Sherjeel Shabih, Maria Victoria Gil, Santiago Miret,
Christoph T. Koch, José A. Marquez, and Kevin Maik Jablonka. From text to insight: Large
language models for materials science data extraction. arXiv Preprint, 2024. URL https://
arxiv.org/abs/2407.16867.

Lena Schmidt, Kaitlyn Hair, Sergio Graziosi, Fiona Campbell, Claudia Kapp, Alireza Khantey-
moori, Dawn Craig, Mark Engelbert, and James Thomas. Exploring the use of a large language
model for data extraction in systematic reviews: a rapid feasibility study. arXiv Preprint, 2025.
URL https://arxiv.org/abs/2405.14445,

Michael Sipser. Introduction to the theory of computation. ACM Sigact News, 27(1):27-29, 1996.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What Formal Lan-
guages Can Transformers Express? A Survey. TACL, 2024. URL https://doi.org/10.1162/
tacl_a_00663.

Xintong Sun, Chi Wei, Minghao Tian, and Shiwen Ni. Earley-driven dynamic pruning for efficient
structured decoding. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=6hDNXCdTsE.

Tarun Suresh, Debangshu Banerjee, Shubham Ugare, Sasa Misailovic, and Gagandeep Singh.
Dingo: Constrained inference for diffusion llms. arXiv Preprint, 2025. URL https://arxiv.
org/abs/2505.23061.

Tabnine. Tabnine: Al Code Assistant, 2025. URL https://www.tabnine.com/.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. SynCode:
LLM Generation with Grammar Augmentation. ArXiv Preprint, 2024. URL https://arxiv.
org/abs/2403.01632.

Mark Vero, Niels Miindler, Victor Chibotaru, Veselin Raychev, Maximilian Baader, Nikola Jo-
vanovi¢, Jingxuan He, and Martin Vechev. BaxBench: Can LLMs generate correct and secure
backends? In ICML, 2025. URL https://openreview.net/forum?id=1i13KRr4H9u.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A. Saurous, and Yoon Kim. Grammar
prompting for domain-specific language generation with large language models, 2023. URL
https://arxiv.org/abs/2305.19234.

Jiayi Wei, Greg Durrett, and Isil Dillig. Coeditor: Leveraging repo-level diffs for code auto-

editing. In ICLR, 2024. URL https://proceedings.iclr.cc/paper_files/paper/2024/file/
77c7faabl5002432bal151e8d5cc389a- Paper-Conference.pdf.

14

https://platform.openai.com/docs/guides/function-calling#context-free-grammars
https://platform.openai.com/docs/guides/function-calling#context-free-grammars
https://platform.openai.com/docs/guides/structured-outputs
https://platform.openai.com/docs/guides/structured-outputs
https://openreview.net/forum?id=L6CYAzpO1k
https://openreview.net/forum?id=L6CYAzpO1k
https://openreview.net/forum?id=KmtVD97J43e
https://doi.org/10.1145/3408877.3432464
https://arxiv.org/abs/2407.16867
https://arxiv.org/abs/2407.16867
https://arxiv.org/abs/2405.14445
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.1162/tacl_a_00663
https://openreview.net/forum?id=6hDNXCdTsE
https://arxiv.org/abs/2505.23061
https://arxiv.org/abs/2505.23061
https://www.tabnine.com/
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://openreview.net/forum?id=il3KRr4H9u
https://arxiv.org/abs/2305.19234
https://proceedings.iclr.cc/paper_files/paper/2024/file/77c7faab15002432ba1151e8d5cc389a-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2024/file/77c7faab15002432ba1151e8d5cc389a-Paper-Conference.pdf

Published as a conference paper at ICLR 2026

David Weininger. SMILES, a chemical language and information system. 1. Introduction to method-
ology and encoding rules. JCIM, 1988. URL https://doi.org/10.1021/ci00057a005.

Brandon T. Willard and Rémi Louf. Efficient Guided Generation for Large Language Models. arXiv
Preprint, 2023. URL https://doi.org/10.48550/arXiv.2307.09702.

Zirui Wu, Lin Zheng, Zhihui Xie, Jiacheng Ye, Jiahui Gao, Yansong Feng, Zhenguo Li, Victoria
W., Guorui Zhou, and Lingpeng Kong. Dreamon: Diffusion language models for code infilling
beyond fixed-size canvas, 2025. URL https://hkunlp.github.io/blog/2025/dreamon.

Zhihui Xie, Jiacheng Ye, Lin Zheng, Jiahui Gao, Jingwei Dong, Zirui Wu, Xueliang Zhao, Shansan
Gong, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream-Coder 7B. HKU NLP Blog, 2025.
URL https://hkunlp.github.io/blog/2025/dream- coder.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7B. HKU NLP Blog, 2025. URL https://hkunlp.github.io/blog/2025/dream.

Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen, Siqi Zuo, Andrea Hu, Christopher A.
Choquette-Choo, Jingyue Shen, Joe Kelley, Kshitij Bansal, et al. CodeGemma: Open Code Mod-
els Based on Gemma. arXiv Preprint, 2024. URL https://doi.org/10.48550/arXiv.2406.
11409.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, et al. CodeGeeX: A Pre-Trained Model for Code Generation with Multilin-
gual Benchmarking on HumanEval-X. In SIGKDD, 2023. URL https://dl.acm.org/doi/10.
1145/3580305.3599790.

15

https://doi.org/10.1021/ci00057a005
https://doi.org/10.48550/arXiv.2307.09702
https://hkunlp.github.io/blog/2025/dreamon
https://hkunlp.github.io/blog/2025/dream-coder
https://hkunlp.github.io/blog/2025/dream
https://doi.org/10.48550/arXiv.2406.11409
https://doi.org/10.48550/arXiv.2406.11409
https://dl.acm.org/doi/10.1145/3580305.3599790
https://dl.acm.org/doi/10.1145/3580305.3599790

Published as a conference paper at ICLR 2026

V ={S,B} (Nonterminals)

,b
A b) ¥ ={a,b} (Terminals)
S —aS|bB|e
B — bBJe

(a) A DFA where qo is the start state, {qo, q1,¢2} are (b) A CFG with start symbol S, terminal alphabet
the states, and go and ¢ are the accepting states. The ¥ = {a, b}, and nonterminals V' = {S, B}. The
arrows represent the transition function 4. production rules are the last two lines.

Figure 4: Two representations of a formal language: a DFA (Figure 4a) and a CFG (Figure 4b).
Both accept strings that start with a’s and end with b’s.

A EXTENDED BACKGROUND ON FORMAL LANGUAGES

Formal languages allow to unambiguously specify valid or invalid strings, usually for ensuring
machine-readability, i.e., in the case of JSON schemas, or when specifying the syntactic rules of
programming languages. Formal languages are, in their most general form, defined as a set of
strings over an alphabet . For instance, over the alphabet ¥ = {a, b}, one can define the formal
language {e, b, aa, bb, aabb, aaaabbb, . ..} of strings consisting of any number of a’s followed by
b’s. In this section, we provide a short explanation of two key classes of formal languages: regular
and context-free languages.

A.1 REGULAR LANGUAGES

Regular languages are commonly encountered when describing string patterns with regular expres-
sions. For example, the language of a’s followed by b’s is described by the regular expression a*bx,
where the star denotes zero or more repetitions. A regular language can alternatively be described
through a Deterministic Finite Automaton (DFA) that accepts the language (Hopcroft and Ullman,
1979). A DFA is a state machine that processes an input string symbol by symbol, transitioning be-
tween states based on a deterministic transition function. Thus, a string gets processed by the DFA
by starting in the initial state and following the transitions associated with the current input symbol
until the end of the string is reached. A string is accepted if the DFA ends in an accepting state after
processing the entire string. Formally, a DFA is defined as a tuple (Q, %, 6, qo, F'), where: (1) Q is
the finite set of states, (2) X is the finite alphabet of symbols, (3) § : Q@ x X — (is the transition
function that maps a state and an input symbol to the next state, (4) ¢o € @ is the initial state, and
(5) F C Q@ is the set of accepting states. Figure 4a depicts the DFA recognizing the previously
introduced language of strings with arbitrarily many a’s followed by b’s. Note that in this example,
the transition function ¢ is defined for every state and symbol combination. Per convention, omitted
transitions implicitly transfer to a state like g2, from which no accepting state can be reached.

In DFAs, the next transition is thus uniquely determined for each combination of state and input
symbol. In contrast, nondeterministic finite automata (NFAs) allow multiple transitions for a state
and input symbol combination, making it nondeterministic. One often additionally adds the option
to transition between states without consuming any input symbols, through so-called e-transitions.
This added flexibility allows for a more concise depiction and simplifies construction, which is why
we use them throughout this work. NFAs accept a word if any possible transition according to the
input symbols leads to an accepting state. Every NFA (including e-transitions) can be converted to
an equivalent DFA using a standard algorithm (Hopcroft and Ullman, 1979). The NFAs constructed
for partial LLM outputs in our method are usually converted into a DFA of around the same number
of states, even though the worst-case equivalent DFA can have exponentially many states.

A.2 CONTEXT FREE LANGUAGES

Context-Free Languages (CFLs) extend regular languages by enabling the expression of recursively
nested structures, such as balanced parentheses or properly nested control statements in code. They
are described using Context-Free Grammars (CFGs), which consist of production rules that specify
how strings in the language can be generated (Hopcroft and Ullman, 1979). For most programming
languages, the syntactic rules of the language can be adequately captured by a CFG.

16

Published as a conference paper at ICLR 2026

CFGs operate with two types of symbols: terminals, which are the actual characters of the language,
and nonterminals, which are used to define the language patterns. A CFG is a formal grammar that
consists of a finite set of production rules that describe how strings in the language can be generated.
Formally, a CFG is a tuple (V, X, P, S), where: (1) V' is a finite set of nonterminal symbols, (2) ¥
is a finite set of terminal symbols (with V N X = @), (3) P is a set of production rules of the form
A= a,withA € Vanda € (VUX)*, and (4) S € V is the start symbol. To generate a string,
one starts with S and applies rules from P until the resulting string contains only terminal symbols.
This process defines all valid strings in the language. Figure 4b shows a CFG that generates strings
over {a, b} starting with arbitrarily many a’s followed by b’s, demonstrating that the same language
recognized by a DFA can also be described by a CFG. To generate the string aabb, one could apply
the following sequence of production rules: S — aS — aaS — aabB — aabbB — aabb.

CFGs are often specified in normal forms, which restrict the grammar to certain types of production
rules. The benefit of the resulting language is that it reduces edge cases to handle in productions and
simplifies proofs about properties of the language. The most common normal form is the Chomsky
normal form, where each production rule is of the form A — BC or A — a, with A, B,C € V
and ¢ € X. Many other normal forms exist, such as C2F, which is based on the Chomsky normal
form but additionally allows so-called unit production rules of the form A — B (Lange and LeiB,
2009). Languages in Chomsky normal form and C2F can not produce the empty word, as they lack
productions that generate the empty string € (Hopcroft and Ullman, 1979). We therefore introduce
C2F™¢, which additionally allows production rules of the form A — ¢.

B DETAILS ON EFFICIENT INTERSECTION LANGUAGE SEARCHES

In this section, we first detail generic optimizations to reduce the size of context-free grammars,
then provide a detailed proof of the correctness of our intersection language construction, and finally
provide some more details on the search algorithm we employ to decide emptiness.

B.1 CONSTRUCTION OF THE INTERSECTION LANGUAGE FOR CFGS IN C2F*¢

We now provide the full constructive proof that the intersection of a CFL and a regular language
is a CFL, since it is rarely written out in the literature. We have further adapted it for grammars in
C2F™¢. It forms the basis of Algorithm 2, the core algorithm of our method.

Lemma 1. The intersection language L N R between a context-free language L and the regular
language R is context-free.

Proof. We give a constructive proof by explicitly building a CFG that generates L N R. We provide
the details omitted in the proof given by Gasarch (2014) and extend it to allow grammars in C2F*¢.

Let Lcpr be generated by a CFG G = (V,X,P,S), and let Ly be accepted by a DFA
(@Q,2,9,qo, F). We first convert G to C2F*¢. Then, we construct a new CFG G, whose language
is exactly Ln = LcpL N L.

The idea is to simulate the CFG G and DFA (Q, X, 6, o, F') in parallel. Specifically, we define the

. p2a . .
nonterminals of G~ to be of the form " A °, where A € V is a nonterminal of GG, and p,q € Q
are states of the DFA. We then create production rules in such a way that if there exists a sequence

. P2a . . .
of productions such that A — --- — w, then there exists a sequence of productions in G such
that A — --- — w and w takes the DFA from state p to state g. We then add a start symbol S

and productions Sn — g d for all f € F to ensure that L~ contains exactly the words that can
be derived from the start symbol S of G and that also take the DFA from the start state gy to an
accepting state f € F, i.e., all words that are generated by the grammar and all words that are
accepted by the DFA.

The productions of G are defined as follows (adapting (Gasarch, 2014), additional rules in green):

1. For each production A — o, for all p, ¢ € @ where é(p, o) = ¢, we add A5 o

2. For each production A — ¢, for all p € @, add p/Ip% €

17

Published as a conference paper at ICLR 2026

3. For each production A — BC, and for all p, ¢, € @, we add PA"

P5a95T
B C

4. For each production A — B, for all p, ¢ € @, add /R

The intuition behind the additional rules is that if the automaton is in some state g, we can "switch
the current symbol" (A — B) or "produce an empty string" (A — &) without affecting the state.
These productions cover the two additional allowed productions in C2F+€grammars, which are not
present in CNF grammars.

Finally, we add a new start symbol S’ with productions S" — g d forall f € F.

We show that the language generated by the constructed CFG L is equivalent to the intersection
language of the CFL L¢gy and regular language L, i.e., Ln = Lcp, N Lg. To do so, we first need
some additional notations:

* Forany p,g e Qand A € V, L(pff q) denotes the language generated by the nonterminal
pff ! in the constructed CFG, i.e., the set of all words that can be derived with pff ! as the

(=

start symbol. Note that Ln = {J;cp L(TS f).

» Forany A € V, L(A) denotes the language generated by the nonterminal A in the original
CFQG, i.e., the set of all words that can be derived with A as the start symbol. Note that
LCFL = L(S)

» Forany p,q € @, L(p — q) denotes the language accepted by the DFA with start state p
and final state ¢, i.e., the set of all words that can be accepted by the DFA starting in state
p and ending in state q. Note that Ly = Ufep L(go = f)-

We will show that for any p,q € Qand A € V

P 24q

L(A")=L(A)NL(p -~ q).

This immediately implies that L = Lcp, N Ly, as

o= £ = U@ n L -) =LS)n U Lo ~ /) = Len 1 L
fer feF fer

We prove both inclusions separately.

(S) We show that forany p,qg € Qand A € V, L(pffq) C L(A)NL(p - q). Let the generation
path of w € L(pf_f q) be defined as the sequence of productions that were used to derive w
from "4 ?. Denote

L, (pgq) ={we L(pgq) | the generation path of w has length at most n}.

We show the inclusion by induction over the length of the generation path.

n=1.

We show that Ll(pffq) C L(A)N L(p - q). Since w is a word, the only possible
productions that can be used to derive w from P4 are either rule 1 or rule 2.

In the first case, we know w = o, A — o is a production of the original CFG G, and
d(p,o) = q. Hence, w € L(A) and w € L(p — ¢). In the second case, we have
w = ¢, A — e is aproduction of G, and p = ¢. Hence, w € L(A) and w € L(p - q).

. Suppose that for all p,g € Qand A € V, Ln_l(pgq) CLANL({p - q). Let

w € Ly, (pff q) be a word with a generation path of length n > 1. Then the first
production rule applied to w cannot be rules | and 2, as these would yield a generation
path of length one. Hence, the first rule applied must be either of the rules 3 and 4.

. poT
In the former case, we know there exist two words wy € L,_1(B),ws €

Lyn_1('C") such that w = w; o w,. By induction, we have wy € L(B) N L(p — r)
and wy € L(C)NL(r - q). Since A — BC' is a production of G, we have w € L(A)

18

Published as a conference paper at ICLR 2026

as well. Furthermore, since w; transitions the DFA from p to r and w- transitions
from r to ¢, we have w € L(p — ¢). Hence, w € L(A) N L(p - q).

—

In the latter case, we have w € Ln_l(pB q) for some nonterminal B € V such that
A — B is a production of G. By the induction hypothesis, we have w € L(B) N
L(p = q). Since A — B is a production of GG, we have w € L(A) as well. Hence,
we L(A)NL(p - q).

(2) We show that L(pff q) D L(A)N L(p — q). Let the generation path of w now be measured
with respect to the original CFG, i.e., the sequence of productions that were used to derive
w from A. Denote

L, (A) ={w € L(A) | the generation path of w has length at most n}.

We once again show the inclusion by induction over the length of the generation path.

n=1.

n>1.

We show that for any p,q € Qand A € V, L1 (A)NL(p - q) C L(p/fq). Since w is
a word, the only possible productions that can be used to derive w from A directly are
A—ocorA—e.

In the former case, we have w = o, and since a DFA only consumes symbols one-
by-one, there must be a corresponding state transition, i.e., §(p, o) = ¢. Hence, w €

P 4q

L(A7)byrule 1.

In the latter case, w = &, which immediately implies that p = ¢ since a DFA does not
contain epsilon transitions. Hence, w € L(p/_f q) by rule 2.

Suppose that for all p,g € Qand A € V, L, _1(A)NL(p - q) C L(pffq). Let
w € L,(A) N L(p — q) be a word with a generation path of length n > 1. Then the
first rule applied cannot be A — o or A — ¢, as these would yield a generation path
of length one. Hence, the first rule applied must be either A — BC or A — B for
some nonterminals B,C € V.

In the former case, we know there exist two words w; € L,,—1(B),ws € L,_1(C)
such that w = w; o wy and A — BC' is a production in the original CFG. Since
w € L(p - ¢), we also know that consuming w transitions the DFA from state
p to q. We also know that, starting in ¢, after consuming wi, the DFA will arrive
at some intermediate state r. Clearly therefore w; € L(p — r). Moreover, since
w=wyowzandw € L(p — q), also we € L(r — ¢). By induction, we then have

wy € Lp_1(B)NL(p—-1) C L(pgr) and similarly wy € L(TC_"q). We know that

. paq pgTrr=4q. . . . ep
production A "— "B (' is in the intersection language, due to rule 3 quantifying
over all states in Q. Hence, w € L(pA q).

In the latter case, we have w € L,_1(B) and w € L(p — ¢). By the induction
hypothesis, we have w € L(pg q). Since A — B is a production of the original CFG,
we have w € L(pffq) as well by rule 4.

This completes the proof of the lemma.

B.2 GRAMMAR SI1ZE OPTIMIZATIONS

The size of the grammar used for the intersection generation is of high importance to the overall
runtime, as the number of productions in the intersection grammar scales cubically with the number
of productions in the original grammar. While the size of the intersection grammar also depends on
the size of the intersected DFA, generic and efficient methods to minimize DFAs exist. Meanwhile
minimization of CFGs is undecidable (Hopcroft and Ullman, 1979).

We therefore apply several heuristics to reduce the grammar size:

* Inlinable terminal elimination: Inline the productions of nonterminals that are only used in
a single production. In particular, when B is only used in a single production A — aBj,
with B — -y, remove B and its production and inline it into the production of A to create
A = avp.

19

Published as a conference paper at ICLR 2026

* Shared 2-gram elimination: For the most frequent BC' such that there are several rules of
the form A — aBC 3, (with a, 8 non-empty) introduce A’ — BC and rewrite A — aA’3.
Repeat until no more such BC with more than one occurrence can be found.

o Left factoring: We eliminate shared prefixes using left factoring (Alfred et al., 2007).
Specifically, if two productions of the same nonterminal A — «of and A — a3’ share
the prefix o, we can introduce a new symbol A’ and replace the productions to eliminate
the duplication, concretely introducing A — oA’ and A’ — 8, A’ — .

After applying these heuristics, we convert the resulting CFG to C2F ™ using a standard algorithm,
consisting of several transformation steps, such as terminal elimination and binarization (Lange and
Lei3, 2009). In between each step, we detect and eliminate potentially constructed non-generating
symbols.

B.3 DETAILS ON THE SEARCH ALGORITHM

We explain in detail how the search algorithm for generating nonterminals in the intersection lan-
guage works. The corresponding pseudo-code is presented in Algorithm 2 and based on the algo-
rithm presented by D.W. (2018). We leverage the construction rules of the intersection language to
conduct the search on the implicit intersection grammar, i.e., we only build the parts of the grammar

. . . . P oa
that we need to explore. Nonterminals in the intersection language have the form " A ~ for p,q € X

and A € V. All production rules of the form PA%— ¢ and "A " & are based on the corresponding
productions A — ¢ (Construction 1) and A — & (Construction 2) in the original grammar. We
leverage this insight to perform the initialization of the search, which iterates over all production
rules of this format, at the beginning of the algorithm in Lines 2—5. Further, all other productions are

P49 P49z T b4 =) .
of the form A°— "B 'C and A — "B, as constructed by Constructions 3 and 4. Importantly,
all rules for all combinations of states p, ¢, r exist. This allows us to enumerate all such rules for a
given symbol B or C' on the fly, as done in Lines 9—17, without expending unnecessary execution

. L L Y2
time. For example, in Line 9, we iterate over all production rules in which the nonterminal ~X

occurs. The two states of the DFAs already fixate two of the three states quantified over in Construc-
tion 3. Hence, given a production A — X C in the original grammar, which uses the nonterminal X

and additional nonterminal C', we need to iterate over a single additional state variable g to evaluate
. . Ypd Y2rzzq
all corresponding constructed productions A — X C .

C LEXING WITH LLM TOKENS

The approach described in §3.2 operates directly on the formal language alphabet 2. LLMs produce
Unicode text that can be misaligned with 3. In this section, we describe in more detail how to handle
the resulting discrepancies.

C.1 LEXEMES AND LLM TOKENS

Discrepancies between alphabet and LLM tokens For practical purposes, the alphabet 3 of
the formal language usually consists of lexemes. These represent language components abstractly,
i.e., for programming languages, they could be identifiers, literals, operators, and other syntactic
elements of the language, such as if and else. Before parsing a Unicode string, it thus first needs
to be converted into a string of lexemes. This process is called lexing.

The code generation paradigms MRI and DLM generate code on a Unicode level and thus require lex-
ing before our method can be applied. In addition to the normal lexing process, our approach needs
to handle the partial nature of the LLM outputs, taking into account potential partial lexemes and
consequently several possible lexing sequences for the same character-level output. In the remainder
of this section, we first explain how to convert the partial LLM output to a set of possible lexeme
sequences, and then how to apply the constrained infilling algorithm to these lexeme sequences.

Lexemes and lexing Each lexeme is associated with a regular language R where X is the set of
Unicode characters. For example, the <number> lexeme is associated with regular expression \d+,

20

Published as a conference paper at ICLR 2026

and the <identifier> lexeme with [a-zA-Z_]\w*. Lexing is the process of converting a Unicode-
level string into a sequence of lexemes, i.e., a sequence of strings that match the regular expressions
of the lexemes. We call such a sequence of lexemes a lexeme sequence. The lexing algorithm
extracts these sequences by iteratively matching the maximum match for all lexemes that match a
nonempty string at the beginning of the currently remaining output. Whitespace between lexemes
is commonly stripped. For example, the character-level string "1234 hello12" would be lexed into
the lexeme sequence (<number>,<identifiers).

C.2 CONVERTING PARTIAL OUTPUTS TO LEXEMES AND DFAS

Lexing partial outputs For a partial output x with infilling regions, we extract the represented
lexeme sequences for each chunk of continuous text. For instance, the output "x = 12340hellol2"
would be split into the chunks "x = 1234" and "hellol2", which would be lexed into the two lex-
eme sequences (<identifier>, <=>, <number>) and (<identifier>). Note that the resulting list
of lexeme sequences is a list of words in X that can be directly used to construct the regular lan-
guage for the infilling problem as described in §3.2, for example here forming the infilling problem
<identifier><=><number>O<identifier>.

Handling lexemes spanning infilling regions However, infilling regions complicate the lexing
process. Concretely, we need to handle strings that match lexemes partially on the border of infilling
regions.

Concretely, strings before an infilling region may end with a string that matches a prefix of some
lexeme. For example the output "0123" could be lexed as (<number>). However, the region could
be filled with token "a", resulting in the overall lexing (<identifier>). Similarly, strings may
match suffixes of lexemes after infilling regions.

Additionally, lexemes may span over an entire infilling region. For example, for the output
"1230789", a trivial possible lexing is (<number>, <number>). However, it is also possible to
insert a token "456" into the region, such that the lexing of the final character-level text is just
a single lexeme sequence (<number>). This also holds for any number of infilled gaps, e.g.,
"1230405060789". In particular, for any chunk af ending with a prefix S of a lexeme <a>,
consecutive chunks ~y; that are prefix of a suffix of <a> and a final chunk 7(starting with a suf-
fix n of <a>, then a valid corresponding lexeme sequence for the entire chunk sequence could
be (lex(), <a>, lex(¢)).

We also need to ensure the prefixes and suffixes of the lexeme are compatible. For instance, for fixed-
width lexemes such as <while>, we can not insert a token into the sequence "whilohile" to obtain
a sequence with only a single lexeme, even though both "whil" and "hile" are true prefixes and
suffixes of the lexeme while. We resolve this by determining the intersection of the concrete partially
generated output with the lexeme’s regular language. Concretely, we construct partial character-
level output SOy, 0. . . 07,07 and compute the intersection with the regular language of <a> using
standard algorithms for the intersection and emptiness of regular languages (Hopcroft and Ullman,
1979). If the language is not empty, (<a>) is a valid lexing of the entire sequence. This effectively
generalizes a similar solution to the one proposed by Melcer et al. (2024), in which they explicitly
store the reached states within each prefix and suffix and ensure their reachability.

Lexing algorithm We use some helper operations on character-level DFAs for the lexing algo-
rithm. For DFA D, we define the function MATCH, which returns [, the number of characters in the
string that the suffix language automaton matches maximally. For example, \d+.MATCH(123) = 3
and \d+.MATCH(1lhello) = 1. The function PREFIX(D) returns the true prefix language of D,
where a true prefix is a prefix that can be completed to a full match by appending at least one more
character. For example, 123 is a true prefix for \d+ but not for \d\d\d. 12 is a true prefix for both
regular expressions. The function SUFFIX(D) analogously returns the true suffix language of D.
Further, we denote as w<; the string formed by the first ¢ characters of w and w- ; the string formed
by all characters after the first ¢ characters in w.

The lexing algorithm applied to each chunk of continuous text in x is described in Algorithm 3. The
main mode of operation is to keep track in .S of possible lexings and remainders to be processed,
starting with the empty lexing and the entire string to be processed in Line 1. The method then

21

Published as a conference paper at ICLR 2026

Algorithm 2 Deciding intersection emptiness of a CFG and DFA. The CFG is in CNF. G.ADD(x)
inserts x into G and returns true if x was not in G previously.

Input: CFG C,DFA R = (Q, %, 0, qo, F)
Output: L(C)NL(R) =@
1 G+ o
2 for all productions A — o do > Mark terminal and epsilon productions.
3 G+ GU{AY6(p,o)=¢q}
4 for all productions A — ¢ do
s G Gu{tAf|Ipe@)
6 s+ G.copY()
7 while s # @ do > Explore all remaining productions

s X« s.pop()
9 for all productions A — XC, all ¢ € @Q do

10 it C%c Gand G.ADD(y/_fq) then
Y2
1 s.ADD("A ")
12 for all productions A — BX, all ¢ € @ do
13 it '%c G and G.ADD(qffz) then
qpz
14 s.ADD('A)
15 for all productions A — X do
16 if G.ADD(y/YZ) then
17 s.ADD(y/_l'Z)

18 return G N {q0§ f| f€F} =@ > Whether any start symbol of L(C) N L(R) is generating

Algorithm 3 Extracting lexings of a chunk within a partial output.

Input: Input string w, Terminals T’
Output: Set {(x;, s;, pi) fo<i<n Of n possible lexeme sequences x; and optional partial matches to
the first (s;) or last (p;) lexeme

1 S < {(¢,w,None, None) }

2 fort €T do > Determine if the string starts with a suffix of any terminal
3 if SUFFIX(PREFIX(t)).MATCH(w) = |w| then > If the suffix prefix spans the entire word.

4 S.ADD(t, e, w, w)

5 ! < SUFFIX(t).MATCH(w)

6 if [> 0 then > If the suffix matches a non-zero prefix of w
7 S.ADD(t, ws[, w<;, None)

s while S # @ do

9 (z,w,s,p) + S.POP()

10 if w = ¢ then yield (z, s, p)

11 fort € T do

12 if PREFIX(t).MATCH(w) = |w| then > If the prefix spans the entire remaining word.
13 S.ADD(z ot,e, s, w)

14 [< t.MATCH(w)

15 if [> 0 then > If the suffix matches a non-zero prefix of w
16 S.ADD(x o t,wsy, s, None)

22

Published as a conference paper at ICLR 2026

Algorithm 4 Extracting lexings of an output with infilling regions.

Input: Input string w; DweO . . . Qw,, Terminals T'
Output: A list of partial lexeme sequences « that match the input string.

> Step 1: Collect all possible lexings of partial outputs

1 L+ {}
2 foriin1tondo
3 L.ADD(LEX_PARTIAL(w;, T')) > Apply Algorithm 3

> Step 2: Determine all possible subsequences of lexings

4 C < CROSS_PRODUCT(L)
5 for [(x;, i, pi)|7_, in C do

> Step 2.1: Determine all possible merges of subsequences

6 if not py = s, = None continue > Reject unmatched front or back.

7 M+ {}

8 foriin1ton do > Check for mergeable subsequences.
9 if s; = None continue

10 forjini+1tondo

11 if p; = None break > Are the same lexemes matching partially?.
12 if xl(.fl) # x;o) break

13 ifp; = w; and s; = w; > Case distinction for all scenarios.

14 0 < Os;0w;+10...0p;0

15 elseif p; = w; and s; # w;

16 0+ Ss;j0w;+10...0p;0

17 elseif p; # w; and s; = w;

18 0 4 08;0W;410. .. 0Op;

19 else

20 0 < s;j0w;410...0pP;

21 if xl(.fl) No# o > If lexeme can match the partial output
2 M.ADD(i, 5) we can merge from i to j.
23 if p; # w; break > No further merges possible with s;.

> Step 2.2: Determine all possible combinations of merges

24 N« {[]} > No merge is a possible sequence
25 for (i,7) in M do

26 N.ApD([(, j)])

27 for (i, j1), - .-, (i}, j;)] in N do

28 if [¢, 7] N ([¢4, 71U UliL,5.]) =@ > Non-overlapping merges.
2 N.ADD([(i}, 1), - -+ (i, 54), (3, 5)])

30 for [(ilajl)v"'a(ik7jk)] in N do

31 yield 2,0 ... Oz, 102, 2] 0T, 410 ... 0%, 1 084,25 0T, 10 .. O,

23

Published as a conference paper at ICLR 2026

Figure 5: A union automaton in the second half of the DFA for output "123 g 789", accounts for
the possibility to lex the second half as either <int> or <identifier>. The resulting automaton
accepts both valid lexeme sequences <int><int> and <int><identifiers.

iterates over all these lexings in Line 8, returns them if the remainder is empty (Line 10) or extends
them if a non-empty remainder remains (Line 11). Crucially, Lines 2—7 check whether the text starts
with the suffix of any lexeme. Additionally, Line 12 checks whether the remainder of the current
text is the prefix to some lexeme.

Applying the constrained infilling algorithm Algorithm 4 describes how to apply the lexing
algorithm to a partial output with infilling regions. First, we apply the lexing algorithm to each
continuous chunk of text in Algorithm 4, resulting in a list of sets of possible lexeme sequences for
each chunk. Next, we take the cross product of these sets to obtain all possible combinations of
lexeme sequences for the entire output. Each combination consists of a list of lexeme sequences,
along with potential partial matches to the first and last lexemes in each chunk. Further steps in the
algorithm enable the merging of lexemes that span infilling regions. We first find all possible indices
(4, j) for which such merges are possible by checking the compatibility of the partial matches and the
regular language of the lexeme, as described previously. We then construct all possible combinations
of non-overlapping merges and yield the resulting lexeme-level partial outputs.

Determining non-emptiness The prior algorithm returns a set of possible lexeme-level partial out-
puts for the given character-level partial output. If any of the resulting sequences results in a inter-
section language Ln, then the current character-level partial output is valid, and we can continue
generation. If no lexeme sequence results in a non-empty intersection, then we need to reject the
current output. Thus, we have to apply the infilling algorithm to each of the word lists derived from
the lexing process. In practice, we may derive a large number of lexeme sequences, as different
possibilities from text chunks get combined and result in a combinatorial explosion. To further op-
timize the lexing process, we add two additional optimizations, which we describe in the following
paragraphs.

Optimizing subset lexemes We avoid a combinatorial explosion of possible lexeme sequences by
automatically removing lexemes where the accepted language is a subset of the accepted language
of another lexeme. For example, in SMILES, the string "5" could be interpreted as <digit> or
as <fifteen>, which is a special lexeme only allowing numbers from 1 to 15. We resolve this by
automatically detecting lexemes « that accept a subset of valid strings of another lexeme 3, and a)
remove the subset o from the accepted language of lexeme /3, and b) allow the lexeme « at any
position in the grammar where either the subset token or the full token is allowed, in particular we
substitute terminal 3 with « | /. This optimization reduces the number of extracted sets of possible
lexeme sequences for each continuous chunk of text.

We further manually reduce the number of lexemes that overlap and lexemes that are prefixes or
suffixes of other lexemes, such as <++> and <+>, to further optimize performance.

Combining lexeme sequences to a single NFA To avoid explicitly enumerating all possible com-
binations of lexeme sequences of a string, we directly derive a single, larger NFA that accepts all
possible combinations of lexeme sequences at the same time. This NFA is structurally similar to the
NFAs of each lexeme sequence, but adds alternative paths for mergeable lexemes.

24

Published as a conference paper at ICLR 2026

Figure 6: A skip connection, highlighted in blue, in the DFA for output "123 o 789", accounts for
the possibility to lex the input as a single <int>. The resulting automaton accepts both valid lexeme
sequences for a single int and two ints with intermediate tokens. This construction can be combined
with Figure 5.

If a text chunk has two or more admissible lexings, we replace the constructed D; with an NFA
that accepts the union of admissible lexings. For example, the output "1230789" must also admit
recognizing the second chunk as the suffix of an identifier. Thus, we obtain the two sequence sets
{(<int>)} and {(<int>), (<identifier>)}. By generating a single NFA that accepts both sequences
(<int>) and (<identifier>), we can construct a single NFA by applying the concatenation con-
struction to the standard NFA for the first lexeme sequence and the unionized NFA for the second
sequence. The resulting NFA is presented in Figure 5.

Another example is depicted in Figure 6. Here, for the previously shown output "1230789", the
first chunk ends with a prefix of the lexeme <int>, and the second chunk starts with a suffix of the
same lexeme. In addition to the standard construction for the possible extracted list (<int>, <int>),
we add an <int>-edge from the second-to-last state of Dy to the second state of D1, resulting in an
alternative path that accepts the list (<int>). These paths are constructed by maintaining a list of
suffixes of the previous D; when constructing D; 1, and adding the edge if a suffix matches a prefix
of the lexing of D; 1.

In contrast to the combinatorial explosion observed when considering all possible combinations of
consecutive parsed lexeme sequences, this NFA grows only linearly in the number of sequences. We
also observe that the generated corresponding DFA has a similar number of states, confirming that
this avoids expensive combination enumeration.

C.3 SOUNDNESS AND COMPLETENESS OF LEXING APPROACH

In this section, we show soundness and completeness of our lexing approach under reasonable as-
sumptions. Throughout, lex denotes the lexing function that maps a Unicode string to a lexeme
sequence. Each terminal ¢ has a regular language R, C ¥* over the Unicode alphabet ¥. For a
lexeme x, we will denote R(x) as the regular language of the terminal associated with z. Further,
for a sequence of lexemes x5 . . . ,,, We denote the regular language described by the sequence as
R(zyzo...x,) = R(x1) o R(x2) o ... o R(x,), where o denotes concatenation of languages. We
denote substrings of w;w;41 ... wy, of Unicode strings w = wiws ... wy, k < n with w;.;, where
each wj is a single unicode character. Finally, we say that a lexeme x; consumes a substring w;., if
x; is the part of x that exactly matches the characters w;.j.

We make two standard assumptions about the lexer.

Assumption 1 (Maximum Munch). The lexer matches lexemes by greedily matching the longest
possible lexeme at each position. Concretely, let w = wiws . . . wy, be a Unicode string, where each
wy is a single character, and suppose lex(w) = 123 . . . Ty, Then:

1. There exist indices ko, k1,...,kym with0 = kg < k1 < ... < ky, = n such that for all
1 < i < m, the substring wy, _, 11.x, € R(x;),

2. For each k;, there is no k > k; and terminal t such that the substring wy, ,+1:x € Ry,

Intuitively, Assumption | states that the lexer is greedy: at each position it chooses the terminal that
extends the match as far as possible before emitting a lexeme and moving on.

Assumption 2 (Orthogonal Terminals). Let t1 and ty be two terminals with regular languages R,
and R, and t1 # ts. Then no suffix of any string in Ry is a prefix of any string in Rs.

25

Published as a conference paper at ICLR 2026

This assumption can be enforced for any given CFG and set of terminals by preprocessing the
terminals: whenever two terminals share a prefix or suffix in this way, we factor out the intersection
into a new terminal and adjust the grammar accordingly. These assumptions together imply a useful
property:

Corrolary 1 (Unique Lexing). Let w be a Unicode string, and x1 . .. x,, be a lexeme sequence such
that w € R(x1...xy). Suppose further that, whenever w;.; is consumed by xj, in the sequence,
there is no l > j such that w;,; € R(xy). Then, lex(w) = x1 ... Tp.

Proof. Letlex(w) = yi ... y,. We show that z; and y; are equal and consume the same number of
characters from w. Recursively applying this argument then shows that » = m and y; = z; for all
1< <m.

Let x; consume wy.;, and y; consume wi.x,. Suppose, for the sake of contradiction, that either
k1 # ko or z1 # y1. However, either wy.g, is a prefix of wy., or vice versa. By Assumption 2, this
implies that 1 = y;. Now, because of Assumption 1 and the assumptions in the corollary, k1 = ko
must hold as well. O]

We now characterize the outputs of Algorithm 3 and Algorithm 4 under these assumptions. We
denote the first and last lexeme in a lexeme sequence z with z(!) and z(~1), respectively.

Lemma 2. Given a Unicode string w, Algorithm 3 returns exactly all tuples (x, s, p) for which there
exist strings u and v such that u o w o v € R(x) and

1. Ifw; ... w; is consumed by xy, then there is no | > j such that w; . .. w; € R(zy).
2. Ifs =p=w, then |z| = 1 and V) = 2= consumes u o w o v.
3. If s = None, then u = €. Otherwise, unless s = p = w,) consumes u o s.

4. If p = None, then v = €. Otherwise, unless s = p = w, 2D consumes pouw.

Proof. We prove both directions: (1) every tuple produced by the algorithm satisfies the stated
conditions, and (2) every tuple satisfying the conditions is eventually produced by the algorithm.

No other tuples We show that any element (z,w’,s,p) € S (as maintained in Algorithm 3)
satisfies the following:

» w' can be written as w’ = Wji|| for some 1 < 7 < |w| + 1, where we set Wiep|4+1:|w| = E-
* There exist v and v such that u o wy.;_1 o v € R(x) and if j # |w| + 1, then v = ¢.

* Condition 2, Condition 3, and Condition 4 hold with respect to wy.;_1,u and v. Further,
Condition 1 holds with respect to w.

Since the algorithm yields tuples only when w’ = ¢ (Line 10), it follows that all produced tuples
satisfy the lemma’s conditions.

The initial elements inserted in Line 1 and Line 4 satisfy these properties trivially. Likewise, the
element inserted in Line 7 satisfies the conditions: by the check in Line 6, some non-empty prefix
of w is a suffix of some a € I;. Choosing u such that u o w<; = a and setting v = €, one can check
directly that all required conditions hold.

Assume inductively that all elements already in S satisfy the conditions. We show that any new
element added in the loop Lines 8-16 also satisfies the conditions. When Line 9 pops (z, w’, s, p)
from S, we know by the induction hypothesis that there exist u and v such that u 0 w1 ||| 0V €
R(x). The check in Line 10 ensures w’ # ¢, hence v = ¢ and not both s = p = w.

If Line 12 holds, then w’ is a prefix of some a € R;. In Line 13 we add (z o ¢,&,s,w’). Let
a=wov,thenuowov € R(xot). All required conditions now hold:

* By construction, u ow ov € R(x o).

26

Published as a conference paper at ICLR 2026

* j=|w|+ 1since w =e.

¢ Since x satisfies Condition 1, so does z o t.

* Condition 2 does not apply.

* Condition 3 holds by the inductive hypothesis.

» Condition 4 holds since ¢ consumes w’ o v.

Next, consider the element added in Line 16. By Line 14, w’S , is the largest prefix of w’ that matches

t. Therefore, the element (x o ¢, w’ ;, s, None) added in Line 16 satisfies all conditions:

* By construction, u 0 wy.|y|—|w| © Wy € R(z 0t).
* We may take j such that wl; = wj.|,|.

¢ Since x satisfies Condition 1, so does x o t.

* Condition 2 does not apply.

* Condition 3 holds by the inductive hypothesis.

* Condition 4 holds since p = None and v = €.
Thus, all added elements satisfy the conditions, completing this direction of the proof.

All tuples Now let (z, s, p) satisfy the lemma’s conditions. If s = p = w, then |z |= 1 and
1) = £(=1 consumes u o w o v. Thus, w lies in the prefix language of the suffix language of ,
and Line 3 inserts (x, e, w, w) into S. It is therefore yielded in Line 10.

Further, if s # ¢, then by Condition 3, z(!) consumes u o s. Hence when t = z(*) in Line 2, Line 5
inserts (z(1), w4, s, None) into S.

Inductively, suppose (z(Dz(... 2= /' s, None) has been added to S, where w’ is the remain-
ing suffix after consuming the prefix handled by (") ... 2(~1 and 1 < i < |w|. When t = z(?)
in Line 11, the value of [is precisely the length of the prefix of w’ consumed by x(?). Therefore

Line 14 adds (z(Mz® .. 2] wl;, s,None) as required.

Now, if p = None, a similar argument shows that (x,¢, s,None) is added to S, knowing that
(M@ 2(=2) ' s None) was added previously, since 2(~1) fully consumes the remaining
suffix w’ by the conditions.

Finally, we know that (z(Mz® .. 2(=2) p s None) gets added to S, since the lexemes
M .. 2(=2) consume all of w except p. Because p lies in the prefix language of z(~1), con-
dition Line 12 holds when ¢ = 2(~1). Thus, Line 12 inserts (z, ¢, s, p) into S.

This element is eventually popped and yielded in Line 10, completing the proof. O

Lemma 3. Given a Unicode string with holes w10 . . . Ow,,, Algorithm 4 returns exactly all lexeme
sequences r10x20O ... 0T, such that the following conditions hold: For any lexeme sequences
Y1,Y2, -+, Ym—1, there exists a w' € R(wiO...0wy,) N R(x1y122Y2 . . . Ym—1Zm) such that
lex(w) = T1Y1T2Y2 - - - Ym—1Tm, and each full string w; is consumed by a single lexeme sequence
x; for some 1 < j < m.

Proof. We first show that any lexeme sequence returned by the algorithm satisfies the condition.

No other sequences First, let z;0220... 0Oz, be any lexeme sequence returned by the algo-
rithm. By construction, for each chunk w;, there exists a tuple (z}, s;, p;) returned by Algorithm 3
such that 2 is the lexeme sequence for chunk w;. By Lemma 2, there exist strings u; and v;
such that w;w;v; € R(z}). Because of the yield (Line 31), we know that z; is either equal to

x; for some j, or is formed by merging x; and z), for some j < k, where the latter can only

27

Published as a conference paper at ICLR 2026

happen if the intersection as given in Lines 13-20 is non-empty. Looking closely at this inter-
section, it can be easily determined that it implies the existence of strings s;,...s,_1 such that
UjWjSjWj418541 - - - Sk—1WVE € R(x;). We set w, = ujw;v; for chunks that were not merged
and to w; = U;WjSjWj4+155+1 - - - Sk—1 WV for merged chunks. Line 6 implies that u; = v, = ¢,
implying that the concatenation wjoOw)0...0w), € R(wiO...0w,). Further, we find that,
since w} is exactly consumed by x;, wiowbo...ow), N R(z1y122Y2 . . - Ym—1Tm) 7 @ for any
choice of lexeme sequences yi1,%2,...,Ym—1. Now, Corrolary 1 and Assumption 2 shows that
lex(w) = T1Y122Y2 - - . Ym—1Zm forany w € R(wio...ow),) N R(x1y122Y2 - . - Ym—1Tm). Here,
Assumption 2 is necessary to ensure that when we fill the i-th hole with an element from R(y;), we

do not change the lexing of the surrounding lexemes sequences x; and ;1.

All sequences Now, let z10x20. .. Oz, be any lexeme sequence that satisfies the condition. We
show that the algorithm will eventually return x10x20. .. O%,,. Once again, we first define w} as
w;0... 0wy if x; is the lexeme sequence that consumes chunks w;, w41, ..., ws. Now, the char-
acterization presented in Lemma 2 and the simple observation that Algorithm 4 uses a cross-product
(Line 5) and returns lexeme sequences of all possible mergings (Lines 24-31) directly implies that
x10x20 . .. Ox,y, Will eventually be returned by the algorithm. O

This characterization allows us to prove soundness and completeness of our lexing approach. Both
of these proofs are one-liners that directly follow from Lemma 3. Importantly, completeness implies
that if a proposed token by an LLM leads to an updated output that can be lexed to a valid lexeme
sequence, we will accept the token. Further, soundness implies that if we accept a proposed token
by the LLM, there exists a completion of the current output that can be lexed to a valid lexeme
sequence.

Theorem 4 (Soundness). Given a partial Unicode string w = wiOwe0...0w, with infilling
regions, if Algorithm 4 returns a lexeme sequence that can be completed to a valid word in the
language, then there exists a completion w' of w such that lex(w') is a valid word in the language.

Theorem 5 (Completeness). Given a partial Unicode string w with infilling regions, if there exists
a completion w' of w such that lex(w') is a valid word in the language, then Algorithm 4 will return
a lexeme sequence that can be completed to a valid word in the language.

D EXPERIMENTAL DETAILS, ABLATIONS AND CASE STUDY

In this section, we provide additional details about the implementation, hyperparameters, datasets,
runtime overhead, an ablation on the number of diffusion steps, and a case study.

D.1 IMPLEMENTATION

Overview Our implementation is written in around 7000 lines of Python and 5500 lines of Rust.
The main logic, concerning LLM sampling and CFG and DFA construction, is written in Python,
with the more computationally expensive formal language operations, such as Algorithms 2 and 3,
implemented in Rust, compiled as Python bindings. Several low-level formal language operation
implementations are inspired by the educational Python implementations by Romero (2021).

Grammars Our C++ grammar covers a comprehensive but not complete subset of C++, with
all features used in the canonical solutions of the test set implemented, but advanced features like
template functions and user-defined classes are not supported. Moreover, we disallow the insertion
of multi-line comments inside function bodies, as this allows the model to generate arbitrary and
broken code that is syntactically valid as long as it is finally wrapped in the multi-line comment de-
limiters. We further restrict models in the MRI setting to not generate additional function signatures
and bodies to prevent the generation of additional main functions or test cases.

We preprocess all model outputs by marking word boundaries with special (and) tokens that do
not appear in the original text and are never generated by the model'. For example, the string int
main() is converted to (int) (main)(). This enables us to check for such word boundaries inside

'In particular, we use the bytes \x02 and \x03

28

Published as a conference paper at ICLR 2026

the grammar, i.e., being able to distinguish whether white-space was present between symbols even
after it is stripped in the lexing process.

The JSON schema grammars are obtained dynamically based on the JSON Schema for each task. We
recursively build up the grammar based on the provided specification. For SMILES, we implement
the specification described by Apodaca (2020), which is a more precise and efficient variant of prior
specifications (Weininger, 1988; Blue Obelisk Project and OpenSMILES Community, 2025).

Grammar Prompting For the grammar prompting ablation, we append the grammar in a hu-
man readable formatting into the prompt, i.e., without normalization and using descriptive symbol
names. For JSON, the ad-hoc generated terminal names are replaced by a string representation of
the respective regular expression, symbol names are S1 to Sn. An example for SMILES is shown in
Figure 18

D.2 MODELS AND HYPERPARAMETERS

All methods were run four times, with seeds 0 to 4, and we report the averaged results in all tables.
We report the maximum among Van., Con.”, and Con. decoding with boldface. We underline
all results where the confidence interval of the improvement over the given method is not positive
at 95%. We limit the amount of generated tokens to 256 and time out if the generation does not
complete after 300 seconds. We run model inference on NVIDIA RTX A6000 GPUs.

Sampling algorithms and temperature All MRI models were sampled with temperature 1 and
greedy decoding. The diffusion models are sampled with a temperature of 0.2. To pick a token from
the diffusion models distribution, we use the entropy algorithm for the DREAM 7B based models,
DREAM 7B, DREAMCODER 7B, and DIFFUCODER 7B, and low confidence for the LLADA 8B
model, as recommended by the model developers.

Diffusion steps Diffusion language models can be run with a varying number of diffusion steps,
determining how many tokens are sampled from a single model inference (Ye et al., 2025; Nie et al.,
2025). Lower numbers of steps imply more tokens being sampled from each inferred distribution,
which in turn is updated less frequently. One of the key benefits of diffusion language models is
to exploit this ability, resulting in overall faster decoding. At the same time, higher numbers of
steps are usually associated with increased accuracy on the requested task, as the model can adapt
its distribution more frequently to newly inserted tokens. When not explicitly stated otherwise, the
diffusion models are run with 32 diffusion steps. Our choice of step size 32 represents a trade-off
between speed and accuracy.

In each diffusion step, model inference is run once on the current state of the partially filled con-
text window. Afterwards, 7 tokens are sampled from the distribution according to the respective
algorithms (low confidence or entropy) and replace mask tokens in the context window. While
unconstrained decoding allows sampling all 7 tokens in parallel, during constrained decoding, we
iteratively sample single token-index pairs from this distribution, with rejections leading to masking
out the rejected token-index pair and resampling. When a token is accepted, we remove the token’s
index from the distribution. After 7 tokens have been accepted, we run model inference again.

D.3 DATASETS

C++ We leverage the C++ translation of HumanEval in the HumanEval-X dataset (Zheng et al.,
2023). It contains 164 instances of simple programming problems and canonical solutions written by
humans. For the MRI tasks, we remove between 1 and 3 randomly sized spans of 5 to 100 characters
from these canonical solutions, generating one MRI task per instance in the original dataset. If
we end up with insufficient remaining characters after removing the required number of spans, we
resample sizes and positions up to 3 times, aborting if we do not find a valid removal. Additionally,
we remove 5 human-written solutions that are not valid according to our implementation of the
syntax, i.e., because they contain multi-line comments or additional helper functions. This results
in three MRI datasets of 159, 156, and 143 samples in 1-MRI, 2-MRI and 3-MRI respectively. An
example prompt for an instance from the dataset is presented in Figure 9. For DLM, we use all 164

29

Published as a conference paper at ICLR 2026

3.5
DrEAM CODER 7B
3.0 7 DrEAM 7B
Z . LLADA 8B
g DirrUCODER 7B
EE 2.0 A
o
5 1.5
5 1.0 1
o
0.5 1
0.0 f T T T T T T
0 10 20 30 40 50 60 70 80

Grammar size (# productions)

Figure 7: The median runtime overhead of Con. grouped by size of the grammars in JSON, with a
2-degree polynomial fitted against the individual points. A clear increase can be seen, although it
ranges only between 0 and 3 seconds.

tasks of the original dataset and extract the comment before the function as an instruction for the
model. An example prompt is shown in Figure 10.

We check the functional correctness in both settings by checking whether all test cases in the dataset
pass with the model-generated solution.

JSON Schema We extend the JSON-Schema dataset by NousResearch (2024). Concretely, the
dataset originally contains a unique schema per task. We clean the schemas by disallowing properties
other than specified on the top level and repairing instances that accidentally do not require any
fields. We then extend the dataset by sampling GEMINI-2.5-PRO for 10 inputs and completions for
each schema. We filter these samples in three ways to ensure high quality.

First, we filter the resulting extracted outputs for syntactic validity according to the schema and
discard invalid generations. Second, we require GEMINI-2.5-PRO to be able to solve the task, i.e.,
the model must generate a valid JSON object that passes the schema validation if it is only given
the input and the schema. Third, we perform fuzzy matching to deduplicate the resulting samples.
This process results in 272 instances. The prompts used for generation and verification are shown in
Figure 13 and Figure 14. An example prompt for this task is shown in Figure 11.

We evaluate functional correctness on this dataset by checking for exact equality between a normal-
ized JSON dump of the golden solution and the model-generated solution.

SMILES To create a benchmark for SMILES, we query GEMINI-2.5-PRO to generate pairs of
descriptions of molecules and their SMILES notation. Again, we perform three filtering steps to
ensure high quality. First, we verify that the generated molecule is valid using the Rdkit library
(Landrum et al., 2025). Second, we ensure the model can generate the correct SMILES string for
the molecule if it is only given the description. Third, we filter out duplicates using fuzzy matching.
This results in 167 pairs of descriptions and SMILES strings. Prompts for this generation procedure
are shown in Figure 15 and Figure 16. An example prompt for this task is shown in Figure 12.

To check the functional correctness of the model-generated molecule, we parse it using Rdkit and
check the equivalence to the molecule generated by GEMINI-2.5-PRO in canonical representation.

D.4 ADDITIONAL EXPERIMENTS

Runtime overhead For all experiments in §4, we measure the runtime of our constraining method
and unconstrained decoding. We present a detailed comparison in Tables 3 and 4. We further
measure the average number of rejections per sample.

In MRI we compare time per token, as constrained decoding often rejects finalizing the current
output, thus making completions longer and finalization times incomparable. The median runtime

30

Published as a conference paper at ICLR 2026

Table 3: Median overhead per token for different infilling settings in milliseconds and percent in-
crease over unconstrained generation. Larger models with higher inference time experience a lower
slowdown due to constraining. More infilling regions also increase constraining overhead.

#Regions 1-MRI 2-MRI 3-MRI

CODEGEMMA 7B 3.14479 4.1463% 6.4199%
STARCODER2 7B 3.3459% 5.5498% 9.74190%
DEEPSEEK C. 1.3B 3.64158% 5.84045% 11845579
DEEPSEEK C. 6.7B 3.0453% 4.6490% 1. 71153%
DEEPSEEK C. 33B 3.1413% 4.3419% 6.5128%

Table 4: Median time difference per completion for different diffusion models in seconds, and the
overhead over the original completion in percent. When the completion aborts pre-emptively, as no
valid completion is sampled from the model, speed-ups are possible.

Model C++ JSON SMILES

DREAM 7B 1'1T36% 0'4T20% O'OTO%
DREAMC. 7B 7'8T190% 0.175% 0.071%
LLADA 8B -1.0;19% O0510% 0.0:1%
DirruC. 7B 2'2T74% 0'176% O'OTQ%

overhead of constrained decoding is 125%, where the overhead on the small DEEPSEEK CODER
1.3B is higher (320%) than on the 7B model (100%) and DEEPSEEK CODER 33B (20%). This
is both due to the lower inference time of smaller models, and due to smaller models making more
mistakes, with the average number of rejections increasing from 8.8 per instance on 33B, over 9.7 for
7B to 10.5 in 1.3B. Moreover, more infilling regions are more difficult, leading to more rejections,
growing from 4.7 on [-MRI to 14.1 in 3-MRI. This increases the overhead from 67% to 205%
respectively.

For DLM, we compare the total runtime to finish the diffusion decoding process. The average com-
pletion overhead is only 30%, but varies strongly between domains. We observe both speed-ups of
up to 19%, for LLADA 8B on C++, where many decodings are preemptively aborted, and slow-
downs of up to 190%, for DREAMCODER 7B on the same dataset.

We further analyze the runtime overhead based on grammar size and infilling regions. We first
analyze the runtime overhead per size of the normalized grammar, as the normalized grammar is the
basis for our intersection algorithm. The normalized grammar sizes of C++ and SMILES are 167
productions and 46 productions respectively. As shown in Table 4, this corresponds to a median
runtime overhead of 2.5 s and 0.0 s respectively, indicating a strong correlation to the grammar size.
For a closer analysis, we plot the median runtime overhead for each of the JSON tasks in Figure 7,
where each task has an individual grammar, and regress a 2-degree polynomial against the data.
An increase in runtime, according to the asymptotic complexity described in §3.2 is visible, but the
constant appears very small. For an analysis of the impact of infilling regions, we refer to our results
of runtime overhead for increasing number of infilling regions in MRI Table 3, where more infilling
regions increase runtime from 3.2s to 8.4s.

Ablation on diffusion steps We evaluate our method on common diffusion step numbers, from

16 to 256, where the lowest setting 16 implies that a single inference step inserts % = 8 tokens at

once, while the highest setting 256 implies that every inference step inserts only a single token.

We present the results of this ablation on DREAM 7B in Table 5 and demonstrate that our method
consistently improves syntactic correctness in all settings by on average 14%. Functional correct-
ness on JSON also significantly increases by 1.2%, while the increase in C++ is 0.7% and 0.5% in
SMILES. Moreover, the runtime overhead, shown in Table 6, decreases with the number of diffusion
steps, from 14% — 108% down to 9% or even a speed up of 3%.

31

Published as a conference paper at ICLR 2026

Table 5: Percent syntactically and functionally correct generations for DREAM 7B based on varying
number of diffusion steps. Our method consistently increases syntactic correctness in all settings,
even when model accuracy increases with step sizes.

C++ JSON SMILES
#Steps Van. Con.” Con. Van. Con.” Con. . Con.” Con.

Van

16 8.1 203 99.2 73 244 1000 41.1 80.5 99.7
32 40.5 58.7 994 224 449 1000 675 937 994
64 60.1 747 99.8 67.4 732 1000 792 949 100.0
128 81.1 90.7 100.0 90.2 940 1000 80.1 958 100.0
80.7
0.6
0.6
2
3
4

Syntax

256 98.2 982 100.0 952 98.2 100.0 93.4 100.0

1.1 1.1
1.1 1.1
3.0 3.0
40 4.0
52 52

16 14 27 49 1.5 23 34
32 66 88 95 74 114 143
64 21.0 21.8 224 418 421 428
128 245 239 241 507 515 51.5
256 341 341 348 548 548 548

Functional

Table 6: Time difference per completion for different step sizes on DREAM 7B diffusion, in seconds,
and the percentual overhead over the original completion. For larger numbers of diffusion steps,
overhead reduces from 14% — 108% down to 9% or even a speedup of 1%.

#Steps C++ JSON SMILES

16 1.71107% 2.14108% 0.0114%
64 06150 Olug 0255
128 0diioy 021 04,5
256 08195 01,9 024y

32

Published as a conference paper at ICLR 2026

Table 7: When infilling between 1 and 3 missing lines, our method consistently improves syntactic
and functional correctness. Shown below the results of MRI-L under standard decoding (Van.),
constrained decoding (Con.™), and completing partially completed outputs (Con.).

1-MRI-L 2-MRI-L 3-MRI-L
Model Van. Con.” Con. Van. Con.” Con. Van. Con.” Con.
STARCODER?2 7B 84.0 954 98.3 78.5 91.3 96.5 63.5 86.8 95.7
CODEGEMMA 7B 94.8 957 98.8 83.8 939 973 70.1 91.3 96.9

DEEPSEEK C. 1.3B 62.3 69.1 87.2 30.8 445 758 23.8 394 176.7
DEEPSEEK C. 6.7B 64.0 745 957 29.6 526 933 24.1 49.8 89.6
DEEPSEEK C. 33B 652 712 928 30.0 450 873 229 39.1 844

STARCODER2 7B 69.5 71.8 72.0 486 498 498 285 319 319
CODEGEMMA 7B 822 794 794 534 558 558 345 40.5 406
DEEPSEEKC.1.3B 09 52 87 1.1 20 26 05 15 18
DEEPSEEK C. 6.7B 0.6 88 137 12 27 37 00 08 11
DEEPSEEK C. 33B 06 59 10.1 14 34 40 00 14 21

Syntax

Functional

Removing entire lines in MRI The MRI setting is based on the tasks proposed by Bavarian et al.
(2022). In this work, two settings are suggested: removing random spans and removing entire lines
of code. In §4, we presented the results for MRT when removing random spans. Here, we explore the
alternative of removing lines, which we call MRI-L. Crucially, lines are often semantically coherent
and self-contained, thus posing a different challenge. Equivalenty to MRI, we introduce 1-MRI-L,
2-MRI-L and 3-MRI-L, where we remove between one and three lines from the code. If lines are
adjacent, we merge them into a single span to complete.

We present the results in Table 7. We observe that this task appears more difficult for the LLMs,
contrasting the observations by Bavarian et al. (2022). Concretely, model performance for the
DEEPSEEK CODER family drops to near 1%. Meanwhile, matching the results observed in §4
for random spans, in all but one setting our constrained decoding improves model syntactic and
semantic correctness, often significantly.

D.5 COMPARISON TO DINGO

In this section we compare the performance of our method to the method DINGO proposed by
Suresh et al. (2025). This method is specifically designed for diffusion language models, but can
only enforce regular constraints. As such, it is less general than our method, which can enforce
context-free constraints. Since the method is not openly accessible, we attempt matching their gen-
eration settings and datasets here and compare to the results by them.

Datasets Suresh et al. (2025) propose two datasets for constrained decoding.

The first dataset JSON-NOUS is similar to our dataset JSON: The model is provided with a natural
language text and asked to extract data matching a provided JSON schema. The underlying dataset
contains the 100 tasks of NousResearch (2024) on which our dataset JSON is based. As opposed to
our implementation, they count as syntactically correct any output that is generally valid JSON, and
functionally correct any output that adheres to the JSON-Schema.

The second dataset, GSM8K-SYMBOLIC (Mirzadeh et al., 2025), provides the LLM with a symbolic
representation of arithmetic tasks, based on the GSM8K dataset proposed by Cobbe et al. (2021)°.
The LLM should generate an arithmetic expression that uses basic arithmetic operators and specific
variables, and that matches the ground-truth solution. An example is provided in Figure 17. We
exclude the tasks whose golden solutions require conditionals (x if y else z)and interpret int (x)
and frac(y,z) as x and y/z respectively. Syntactically correct outputs must have valid arithmetic
expressions in the last occurring pair of << and >>. Functionally correct outputs provide an equivalent
formula as the golden solution, based on an assessment by Z3 (De Moura and Bjgrner, 2008).

21t should be pointed out however, to avoid confusion, that this evaluation utilizes the dataset produced by
Mirzadeh et al. (2025) in a very different way than suggested by them.

33

Published as a conference paper at ICLR 2026

Table 8: On JSON-NOUS, our method (Con.) achieves the same performance as DINGO. On GSM8K-
SYMBOLIC, DINGO slightly outperformsn Con..

JSON-NOUS GSM8K-SYMBOLIC

Model Van. DINGO Con.” Con. Van. DINGO Con.” Con.

LLADA 8B 93.0 100 88.5 100.0 72.0 100 87.0 100.0
DREAM 7B 89.0 100 91.0 100.0 65.0 100 69.0 100.0

LLADA 8B 86.2 100 87.5 100.0 24.7 29 27.7 27.7
DRrEAM 7B 85.0 100 90.0 100.0 25.0 34 25.0 25.0

Func. | Syn.

Table 9: Pre-procesing time (Prex) and time difference per completion of DINGO and our method
(Con.). We observe that our method has a similar runtime overhead as DINGO while requiring no
preprocessing. Notably, preprocessing is done once per schema, which implies once per task on the
JSON-NOUS dataset.

JSON-NOUS GSM8K-SYMBOLIC
Model Prepingo Precon. DINGO Con. Prepingo Precon,. DINGO Con.
LLADA 8B 13.2 0 0.1 0.3 32.1 0 0.1 0.3
DREAM 7B 11.9 0 0.1 0.1 37.0 0 0.1 0.2

Grammars Although both tasks require context-free grammars to be accurately solved, Suresh
et al. (2025) disallow context-free parts of the JSON-schema language and hard-code a maximum
nesting for arithmetic expressions to allow solving the tasks in these datasets with terms matched by
regular expressions, provided in the Appendix of Suresh et al. (2025). Our implementation for JSON-
NOUS constructs the same grammars as in our dataset JSON. For GSM8K-SYMBOLIC, we introduce
a new grammar that allows the language model to first reason freely (allowing any characters),
and constrains only the content of the last pair of << and >> to a simple, context-free language of
arithmetic expressions with addition, subtraction, multiplication, exponentiation and modulo.

Models and Parameters We compare the performance of LLADA 8B and DREAM 7B with 64
diffusion steps, generation length of 128, 1 generation block and temperature 0.2 and sample 4 times
to compute confidence intervals.

Results The syntactic and functional results are presented in Table 9. We observe that both our
method Con. and DINGO correctly ensure perfect adherence to JSON-Schemas in the task JSON-
NOUS. For GSM8K-SYMBOLIC, we observe that DINGO and Con. both enforce 100% syntactic
correctness, but DINGO slightly outperforms Con. in functional correctness. This can be due to mul-
tiple reasons: The alignment of DINGO is closer to a deeply grammar-aligned solution as proposed
by Park et al. (2024) than the grammar-constrained approach that our method uses. Further, DINGO
hardcodes the maximum nesting of arithmetic expressions, thereby biasing the model towards cor-
rect solutions.

Comparing the runtime overhead of both methods, we observe that our method and DINGO achieve
similar runtime overhead per sample, with both impacting generation by less than 0.3s. Notably,
DINGO requires additional preprocessing for each grammar, which takes up to half a minute. In the
case of JSON-NOUS, this implies additional preprocessing for every sample, as each JSON Schema
defines its own grammar. Meanwhile, our method requires no preprocessing.

D.6 CASE STUDY
For a qualitative evaluation, we manually inspect instances where unconstrained decoding fails and

our constraining approach successfully corrects errors. We showcase three such examples in Ta-
ble 10.

34

Published as a conference paper at ICLR 2026

Table 10: Three examples demonstrating the impact of constrained decoding on DLM and MRI com-
pletion. Left are unconstrained completions (Van.) with problematic tokens highlighted in red , and
right constrained completions (Con.™) with corrections highlighted in green , adapted for clarity.
In (a), our method forces DREAM 7B to generate values of the correct type in a summary of a finan-
cial review for task #30 in our JSON dataset. In (b), generated by DREAMCODER 7B, our method
prevents closing more parentheses than are opened when generating a SMILES molecule for task
#166. In (c), our method forces DEEPSEEK C. 6.7B to add parentheses around a condition in an
if-statement when writing a string processing function in task #150 of our C++ dataset.

Vanilla Constrained
// summarize my financial review // summarize my financial review
{ {
"capitalGains": "5210.5000" , "capitalGains": 5210.5000 ,
@) "interestIncome": "1340.25" , "interestIncome": 1340.25 ,
"totalReturn": ' "4.5" "totalReturn": 4.5
} }
// generate an allene with axial chirality // generate an allene with axial chirality
(b)
C1=CC1=CC(C(00)0)C(00)0)C(00)O C1=CC1=CC(C(00)0)C(00)0
// separate the groups of nested parentheses // separate the groups of nested parentheses
if (chr=="(") if (chr=="(")
level+=1; level+=1;
(© current_paren+=chr; current_paren+=chr;
} }
else if chr=="')" else if (chr==")")
{ {

35

Published as a conference paper at ICLR 2026

vector<string> numerical_letter_grade(vector<float> grades){

1
2 vector<string> out={};

3 for (int i=0;i<grades.size();i++)

4 {

5 if (grades[i]>=3.9999) out.push_back("A+");

6 if (grades[i]>3.7001 and grades[i1]<3.9999) out.push_back("A");

7 if (grades[i1]>3.3001 and grades[i]<=3.7001) out.push_back("A-");
8 if (grades[i]>3.0001 and grades[i]<=3.3001) out.push_back("B+");
9 if (grades[i]>2.7001 and grades[i]<=3.0001) out.push_back("B");
10 if (grades[i]>2.3001 and grades[i]<=2.7001) out.push_back("B-");
11 if (grades[i]>2.0001 and grades[i]<=2.3001) out.push_back("C+");
12 if (grades[i]>1.7001 and grades[i]<=2.0001) out.push_back("C");
13 if (grades[i]>1.3001 and grades[i]<=1.7001) out.push_back("C-");
14 if (grades[i]>1.0001 and grades[i]<=1.3001) out.push_back("D+");
15 if (grades[i]>0.7001 and grades[i]<=1.0001) out.push_back("D");
16 if O i]<=3.0001) out.push_back("B")

17 if (grades[i]>2.3001 and grades[i]<=2.7001) out.push_back("B-");
18 if (grades[i]>2.0001 and grades[i]<=2.3001) out.push_back("C+");

(a) STARCODER?2 7B exceeds the token limit in task #81 in 1-MRI.

Vanilla Constrained ™ Constrained

C6CCCC1) ceccccl)) C6CCCC(c(c)(c))

(b) LLADA 8B leaves a single L for completion in task #153 in SMILES.

Figure 8: Syntax errors may remain when the model has fewer tokens left to complete than would be
required to fulfil the syntactic constraints. This can happen both in MRI (a), when the model exceeds
the maximum number of generated tokens and in DLM (b), when the model has few mask tokens |
remaining.

Preventing use of invalid types In Table 10a, DREAM 7B generates a summary of a financial
review for task #30 in our JSON dataset. The schema requires three values of type float. However,
the model attempts to generate these values as strings. By applying our constraining method, it
can be determined that the strings are misplaced, not constituting one of the required values, and
can not match the intended value type. All attempts at placing such strings are thus rejected during
generation. Instead, our method forces the model to generate the values without inserting quotes,
resulting in a valid and correct result.

Preventing incorrect nesting In Table 10b DREAMCODER 7B generates an invalid SMILES
molecule for task #166 by closing more parentheses than it opened. Since the CFG for SMILES
correctly handles counting of nesting levels, attempts to generate the closing parentheses are re-
jected by our method. Instead, the model decides to end the generation.

Preventing inadequate syntax In Table 10c, DEEPSEEK C. 6.7B uses conditions without paren-
theses in an if-statement when writing a string processing function in task #150 of our C++ dataset.
This confusion may stem from the dominance of Python code in training data, which does not re-
quire parentheses in if-statements. However, this is invalid according to C++ syntax. Our method
can correct this mistake successfully, resulting in a correct infilling.

E DiscussioN

Remaining syntax errors While our method achieves substantial improvements in syntactic cor-
rectness, using only Con.™ still leaves a considerable gap until guaranteeing correctness. We at-
tribute most of this gap to the overapproximation of allowing an arbitrary number of tokens to

36

Published as a conference paper at ICLR 2026

fill regions in the partial output, as done in prior work (Beurer-Kellner et al., 2024; Ugare et al.,
2024). In practice, the LLM is typically limited, i.e., in FIM and MRI it can only generate up to the
user-defined maximum number of tokens, and in DLM it can only generate one token per mask L.
Examples of this issue occurring are presented in Figure 8a for MRI, where the model exceeds the
token limit of 256 tokens as it generates large amounts of unnecessary code, and in Figure 8b, where
the DLM model needs to open several molecule branches in a single remaining token.

One approach to resolve this issue would be to accurately model the remaining number of tokens
in our regular language construction. However, we observe in experiments that this significantly
increases the size of the regular language, as it consequently needs to keep track of the number of
inserted tokens. This drastically increases the size of the intersection language, rendering our current
implementation impractical.

Another approach would be to train the model to signal requiring additional tokens. In MRI, this
naturally occurs when the model does not generate an end-of-string token. For DLM, a special token
could be added that is replaced with two mask tokens after sampling, increasing the size of the
affected infilling region. Concurrent work by Wu et al. (2025) reports that such capabilities appear
to generally improve model performance for code infilling.

Our chosen approach to mitigate the issue is to automatically fill in the output based on the formal
language constraints (Con.). However, this solution cannot rely on the model’s probability distribu-
tion to steer generation. Determining the most effective way to handle this limitation is an important
topic for future work.

Leveraging incremental parsing While we take several steps to improve the efficiency of our
method, it can still require a significant amount of time to determine the emptiness of the intersec-
tion language after each generated token. Future work may leverage the fact that the CFG for the
intersection is fixed and the DFA is only updated using small modifications. This may lead to an
approach for incrementally computing emptiness checks by reusing the results of the previous inter-
section computation. Other approaches to leverage the incremental nature of the parsing, similar to
the approaches of Melcer et al. (2024); Ugare et al. (2024), and Miindler et al. (2025) would likely
also be able to decrease the worst case and practical overhead of the constraining method.

Context-sensitive language features While our method is designed for context-free languages,
an interesting future direction would be extensions to handle more powerful language classes, such
as context-sensitive languages. Similar to Melcer et al. (2024) and Ugare et al. (2024), simple
context-sensitive syntactic features can likely be handled by preprocessing through adequate lexers.
Beyond syntactic features, prior work suggested leveraging more semantic insights, such as type
systems (Miindler et al., 2025), for constructing more powerful constraint systems. Type checkers
with typed holes (Omar et al., 2019) could be leveraged to achieve such systems.

F PROMPTS
In this section, we detail all prompts used for the respective models and tasks.

MRI Since models used for FIM and MRI tasks are not instruction-fine-tuned, we provide the model
with the raw code, including only a comment above the function to guide the model for completions.
We use the standard templating suggested for each model to format the prompt for FIM and MRI
completion. If MRI is not supported explicitly, we emulate it by inserting <TODO> into the remaining
infilling regions and repeatedly prompting the model for FIM completion on the first infilling region.
In order to prevent the models from generating main methods and tests in the MRI setting, we add a
main method at the end of the context that is marked with a TODO comment. An example prompt
for the 2-MRTI setting is provided in Figure 9.

DLM The models used for DLM tasks are instruction-fine-tuned, allowing us to specify the com-
pletion intent in natural language. We provide a general description of the task in the system prompt
and the specific task content as the first user prompt. The assistant response is prefilled with the
start of a code fence and, in the case of C++, with the necessary header declarations and function

37

Published as a conference paper at ICLR 2026

signature to ensure results can be extracted and tests can be executed correctly. The prompts for
C++, JSON and SMILES tasks are presented in Figure 10, 11 and 12 respectively.

Benchmark generation prompts As outlined in Appendix D, we generate the JSON and SMILES
dataset synthetically by prompting GEMINI-2.5-PR0O. We provide the used prompts for generation

and validation of the generated samples in Figures 13—16.

Miscellaneous Prompts The prompt for the GSM8K-SYMBOLIC experiment for DINGO is shown
in Figure 17. An example prompt for the grammar prompting (G.P.) is shown in Figure 18.

38

Published as a conference paper at ICLR 2026

1 region 0
2 /*

3 From a given vector of integers, generate a vector of rolling maximum element found
4 until given moment in the sequence.

5 >>> rolling_max ({1, 2, 3, 2, 3, 4, 2})

6 {1, 2, 3, 3, 3, 4, 4}

7 */

8 #include<stdio.h>

9 #include<vector>

10 using namespace std;

11 vector<int> rolling_max(vector<int> numbers){

12 vector<int> out;

13

14 region 1

15 for (int i=0;i<numbers.size

16
17 region 2

18 return out;
19 }

20

21 int main(){

22 // TODO

23 }

Figure 9: Example prompt for the 2-MRI task #1. The intial comment and function signature in blue
are derived from the dataset prompt, and the remaining code snippets in green are the remainders
of the canonical solution with two randomly removed spans. We append a stub main function to
prevent the model from attempting to generate a main function of its own.

1 system

2 You are an expert in C++ programming. Solve the given problem by writing solution
3 code in C++.

4 When answering, insert the solution code in a ~~“cpp... "~ block. Do neither include
5 test cases not a main function.

6

7 user

8 Check if in given vector of numbers, are any two numbers closer to each other than
9 given threshold.

10 >>> has_close_elements({1.0, 2.0, 3.0}, 0.5)

1 false

12 >>> has_close_elements({1.0, 2.8, 3.0, 4.0, 5.0, 2.0}, 0.3)

13 true

15 assistant

16 cpp
17 #include<stdio.h>

18 #include<vector>

19 #include<math.h>

20 using namespace std;

21 #include<algorithm>

22 #include<stdlib.h>

23 bool has_close_elements(vector<float> numbers, float threshold){

Figure 10: Example prompt for the C++ task #1. The system prompt in black is fixed, whereas the
user prompt in blue is extracted from the comment preceding the function and the assistant response
is prefilled with a codefence, and in green, headers, and the function signature of each task.

39

Published as a conference paper at ICLR 2026

1
2 system

3 You are a helpful assistant that answers in JSON. Here is the JSON schema you must

4 adhere to:

5 <schema>

6 {

7 "type": "object",

8 "properties": {

9 "name": {

10 "type": "string"

1 +

12 "email": {

13 "type": "string"

14 },

15 "shippingAddress": {

16 "type": "string"

17 }

18 +

19 "required": [

20 "name",

21 "email",

22 "shippingAddress"

23 1,

24 "additionalProperties": false

25 }

26 </schema>

27

28 user

29 We are registering 'Global Exports Ltd.' for your services. The main contact person
30 is Samantha Davis, and her corporate email is s.davis@globalexports.co.uk. All ship-
31 ments and correspondence should be directed to our headquarters: Global Exports Ltd.,
32 12 Business Park Road, Manchester, M1 1AB, United Kingdom. We are looking forward to
33 a fruitful partner ship and are particularly interested in your international ship-
34 ping rates.

35

36 assistant

37 " json

Figure 11: Example prompt for the JSON task. The JSON schema in green is task-specific as well as
the the user prompt in blue from which information should be extracted into the given schema. The
system prompt and prefilled assistant response are fixed.

40

Published as a conference paper at ICLR 2026

© ® N R W =

27
28
29
30
31
32

system

You are a specialized AI assistant that generates SMILES (Simplified Molecular Input
Line Entry System) strings from chemical descriptions. You will be given a textual
description of a chemical compound or a related task. Your goal is to produce the
most accurate and valid SMILES string representing that description.

Your Task:
Based on the provided "input" description, generate the corresponding SMILES string.
Output Requirements:

- Provide only the SMILES string as your output.

- Ensure the SMILES string is syntactically valid.

- Represent all specified chemical features accurately (atoms, bonds, rings,
aromaticity, charge, isotopes, stereochemistry).

Output:

- Provide only the smiles molecule as a raw string between triple backticks (*77).
For instance:

T Tsmiles

C1=CC=CC=C1

user

Propan-1l-amine, a primary amine with a three-carbon straight chain and the amino
group on the first carbon.

assistant

smiles

Figure 12: Example prompt for the SMILES task. The user prompt in blue varies per task.

41

Published as a conference paper at ICLR 2026

o S - Y. I N VO R SR

Your goal is to create challenging and diverse “JSON Schema™ problems. You are
given a JSON schema that describes a specific schema for a JSON problem.

You should generate *x{num_samples}** JSON benchmark samples based on the
provided schema. A benchmark sample consists of a natural language description
describing how the JSON schema should be filled out, along with a JSON object
that adheres to the schema.

For each sample, provide a JSON object with the following structure:

i

“json

"input": "A natural language description of how the JSON schema should be
filled out. The input should be a natural query that a user might ask an
LLM. The input will be given to the LLM as a prompt, along with the JSON
schema. Based on this input, the LLM should generate a JSON object that
adheres to the schema.",

"output": "A JSON object that adheres to the provided schema. The output
should be a valid JSON object that matches the schema and reflects the
input description."

i3

*xGuidelines for generating samples:*x*

- *xVariety*x: Describe a wide range of scenarios that can be expressed using
the JSON schema. Ensure that the samples cover a wide range of possible
scenarios, and make them sound natural and plausible.

- #xDifficultyx*x: User queries can and should contain distracting information
and longer backgrounds.

- xxRealismxx*: Test cases should reflect plausible scenarios where the JSON
schema would be used.

- xxReferencexx: Do not reference the JSON schema in the input description. The
input should be a natural query that a user might ask an LLM. It should not
reference JSON at all.

JSON Schema:
{schema}

Example Input (Do not use this in your samples):
{input_query}

Example Output (Do not use this in your samples):
{output_query}

Figure 13: Prompt used to generate additional JSON Schema samples for the JSON task using
GEMINI-2.5-PRO. Several samples were generated at the same time to increase diversity.

42

Published as a conference paper at ICLR 2026

1 user
2 You are a JSON Schema assistant. You will be given a textual description of how
3 a JSON schema should be filled out. Your task is to generate a JSON object that
4 adheres to the provided schema.

5

6 Your Task:

7 - Analyze the textual task.

8 - Construct a JSON object that correctly implements the task based on the

9 provided schema.

10

11 The JSON object should be a valid JSON object that matches the schema and

12 reflects the input description.

13

14 Output:

15 - Provide only the JSON object as a raw string between triple backticks

16 (*""json). Ensure the JSON object satisfies the JSON schema. For instance:
17 T json

18 {

19 "key": "value",

20 "number": 42,

21 "array": [1, 2, 3]

22 1}

23 Tt

24

25 Json Schema:

26 {schema}

27

28 Description:

29 {input_query}

Figure 14: Prompt used to verify additional JSON Schema samples for the JSON task using GEMINI-
2.5-Pro.

43

Published as a conference paper at ICLR 2026

o - . I N VO SR

You are a specialized AI assistant tasked with generating benchmark samples for
SMILES (Simplified Molecular Input Line Entry System) string generation. Your
goal is to create diverse and accurate chemical structure descriptions and their
corresponding SMILES strings.

Please generate **x{num_samples}** benchmark samples.

The difficulty of these samples should be: xx{difficulty_description}xx.

Examples of difficulty levels:

* xxBeginnerxx: Simple acyclic molecules, common functional groups (e.g.,
ethanol, acetic acid, propanamine), small alkanes/alkenes/alkynes.

* xxIntermediatex*: Molecules with single or multiple rings (e.g., cyclohexane,
pyridine, naphthalene), basic stereochemistry (R/S, E/Z using “@@~, “/°, “\7),
common drugs or biomolecules (e.g., aspirin, glucose in its open-chain form).

* xxAdvanced*x: Complex polycyclic systems (e.g., steroids, bridged compounds),
detailed stereochemistry, isotopic labeling, salts, mixtures, or reaction
SMILES (if the task is to represent a reaction).

For each sample, provide a JSON object with the following structure:

“Tjson

{{

"input": "A natural language description of a chemical compound or a task that
uniquely defines a chemical structure representable by a SMILES string.
This could be an IUPAC name, a common name, a structural description, or
a request to modify a base structure.",

"output": "The correct and valid SMILES string for the chemical structure
described in the 'input'. Correctness and validity are paramount."

i3

*xGuidelines for generating samplesxx:

- xxAccuracy*x*: The generated SMILES string in the "output" field MUST
accurately represent the chemical structure described in the "input". Ensure
correct atom types, bond orders, connectivity, aromaticity, charges,
isotopes, and stereochemistry as implied by the input.

- xxValidity*x: ALl generated SMILES strings must be syntactically valid.

- *xxClarity of Inputx*x: The "input" description should be unambiguous and
provide enough information to define a specific chemical structure. Avoid
overly vague descriptions.

- xxVariety*x*: Generate a diverse set of samples covering different chemical
families, structural features (rings, unsaturation, heteroatoms, functional
groups), and complexities according to the specified difficulty.

Output Format:

Return a JSON list containing the {num_samples} generated JSON objects.

Figure 15: Prompt used to generate additional samples for the SMILES task using GEMINI-2.5-PRoO.
Several samples were generated at the same time to increase diversity.

44

Published as a conference paper at ICLR 2026

1 user
2 You are a specialized AI assistant that generates SMILES (Simplified Molecular
3 Input Line Entry System) strings from chemical descriptions. You will be given
4 a textual description of a chemical compound or a related task. Your goal is
5 to produce the most accurate and valid SMILES string representing that
6 description.

7
8 Your Task:
9

10 Based on the provided "input" description, generate the corresponding SMILES
11 string.

12
13 Output Requirements:

14
15 - Provide only the SMILES string as your output.

16 - Ensure the SMILES string is syntactically valid.

17 - Represent all specified chemical features accurately (atoms, bonds, rings,

18 aromaticity, charge, isotopes, stereochemistry).

19

20 Output:

21

22 - Provide only the smiles molecule as a raw string between triple backticks (7).

23 For instance:

24 T smiles

25 C1=CC=CC=C1
26 TtT
27
28 {sample}

Figure 16: Prompt used to verify samples for the SMILES task using GEMINI-2.5-PRO.

45

Published as a conference paper at ICLR 2026

1
2

BT Y Nt}

23

system

You are an expert in solving grade school math tasks. You will be presented with a
grade-school math word problem with symbolic variables and be asked to solve it
.\n\nBefore answering you should reason about the problem (using the <reasoning>

field in the response described below). Intermediate symbolic expressions
generated during reasoning should be wrapped in << >>.\n\nOnly output the
symbolic expression wrapped in << >> that answers the question. The expression
must use numbers as well as the variables defined in the question. You are only
allowed to use the following operations: +, -, /, //, %, *, and xx,

You will always respond in the format described below:
Let's think step by step. <reasoning> The final answer is <<symbolic expression>>

There are {t} trees in the {g}. {g} workers will plant trees in the {g} today. After
they are done, there will be {tf} trees. How many trees did the {g} workers
plant today?

Let's think step by step. Initially, there are {t} trees. After planting, there are
{tf} trees. The number of trees planted is <<tf - t>>. The final answer is <<tf
- >,

If there are {c} cars in the parking lot and {nc} more cars arrive, how many cars
are in the parking lot?

Let™s think step by step. Initially, there are {c} cars. {nc} more cars arrive, so
the total becomes <<c + nc>>. The final answer is <<c + nc>>.

{p1} had {chl} {ol} and {p2} had {ch2} {ol}. If they ate {a} {ol}, how many pieces
do they have left in total?

Let's think step by step. Initially, {pl} had {chl} {ol}, and {p2} had {ch2} {ol},
making a total of <<chl + ch2>>. After eating {a} {ol}, the remaining total is
<<chl + ch2 - a>>. The final answer is <<chl + ch2 - a>>.

{p1} had {11} {ol}. {pl} gave {g} {ol} to {p2}. How many {ol} does {pl} have left?

Let's think step by step. {pl} started with {11} {ol}. After giving {g} {01} to {p2
}, {pl} has <<11 - g>> {01} left. The final answer is <<11 - g>>.

user

{name} picks {nl} {fruit}s on {d1}. Then he picks {n2} {fruit}s on {d2}. On {d3}, he
picks {mult} the number of {fruit}s he did on {d1}. How many {fruit}s does {
name} have?

assistant

Figure 17: Prompt for the GSM8K-SYMBOLIC task with example user prompt in blue at the end.

46

Published as a conference paper at ICLR 2026

1
2
3
4
5
6
7
8

user:

The answer must adhere to the following grammar:

S -> Line

Line -> Atom OptComboChainBranchList

OptComboChainBranchList -> ComboChainBranchList | €

ComboChainBranchList -> ComboChainBranchElement | ComboChainBranchElement
ComboChainBranchList

ComboChainBranchElement -> Chain | Branch

Chain -> . Atom | OptBond ComboAtomRnumList

OptBond -> Bond | €

ComboAtomRnumList -> ComboAtomRnumElement | ComboAtomRnumElement ComboAtomRnumList

ComboAtomRnumElement -> Atom | Rnum

Bond -> - | bond

Branch -> (OptBondOrDotLinelList)

OptBondOrDotLineList -> OptBondOrDotLineElement | OptBondOrDotLineElement

OptBondOrDotLinelList
OptBondOrDotLineElement -> OptBondOrDot Line
OptBondOrDot -> Bond | . | &

Atom -> organicSymbol | BracketAtom

BracketAtom -> [OptionalIsotope Symbol OptionalChiral OptionalHCount OptionalCharge
OptionalMap 1

OptionalIsotope -> Isotope |

OptionalChiral -> chiral | €

OptionalHCount -> HCount | &

OptionalCharge -> Charge | €

OptionalMap -> Map | €

Rnum -> digit | perc digit digit

Isotope -> digit | digit digit | digit digit digit

HCount -> h digit | h

Charge -> + | + + | + fifteen | + digit | - | - - | - fifteen | - digit

Map -> : Isotope

Symbol -> organicSymbol | anorganicSymbol | h

3

Figure 18: For grammar prompting (G.P.), the grammar in EBNF is appended to the user prompt.
The example grammar shown in blue is the SMILES grammar.

47

	Introduction
	Background
	LLM Generation Paradigms
	Regular and Context-Free Languages

	Constrained Decoding for Infilling and Diffusion
	The Constrained Infilling Problem
	Deciding the Constrained Infilling Problem Efficiently
	Application of Constrained Infilling to LLMs
	Soundness, Completeness, and Alignment

	Experimental Evaluation
	Experimental Setup
	Fill-In-the-Middle and Multi-Region-Infilling
	Diffusion Language Models

	Related Work
	Conclusion
	Extended Background on Formal Languages
	Regular Languages
	Context Free Languages

	Details on Efficient Intersection Language Searches
	Construction of the Intersection Language for CFGs in C2F+
	Grammar Size Optimizations
	Details on the Search Algorithm

	Lexing with LLM Tokens
	Lexemes and LLM Tokens
	Converting Partial Outputs to Lexemes and DFAs
	Soundness and Completeness of Lexing Approach

	Experimental Details, Ablations and Case Study
	Implementation
	Models and Hyperparameters
	Datasets
	Additional Experiments
	Comparison to DINGO
	Case Study

	Discussion
	Prompts

