
SymmetricDiffusers: Learning
Discrete Diffusion on Finite Symmetric Groups

Anonymous Author(s)
Affiliation
Address
email

Abstract

Finite symmetric groups Sn are essential in fields such as combinatorics, physics,1

and chemistry. However, learning a probability distribution over Sn poses signif-2

icant challenges due to its intractable size and discrete nature. In this paper, we3

introduce SymmetricDiffusers, a novel discrete diffusion model that simplifies the4

task of learning a complicated distribution over Sn by decomposing it into learning5

simpler transitions of the reverse diffusion using deep neural networks. We identify6

the riffle shuffle as an effective forward transition and provide empirical guidelines7

for selecting the diffusion length based on the theory of random walks on finite8

groups. Additionally, we propose a generalized Plackett-Luce (PL) distribution for9

the reverse transition, which is provably more expressive than the PL distribution.10

We further introduce a theoretically grounded "denoising schedule" to improve11

sampling and learning efficiency. Extensive experiments show that our model12

achieves state-of-the-art or comparable performances on solving tasks including13

sorting 4-digit MNIST images, jigsaw puzzles, and traveling salesman problems.14

1 Introduction15

As a vital area of abstract algebra, finite groups provide a structured framework for analyzing symme-16

tries and transformations which are fundamental to a wide range of fields, including combinatorics,17

physics, chemistry, and computer science. One of the most important finite groups is the finite18

symmetric group Sn, defined as the group whose elements are all the bijections (or permutations)19

from a set of n elements to itself, with the group operation being function composition.20

Classic probabilistic models for finite symmetric groups Sn, such as the Plackett-Luce (PL) model21

[35, 27], the Mallows model [28], and card shuffling methods [9], are crucial in analyzing preference22

data and understanding the convergence of random walks. Therefore, studying probabilistic models23

over Sn through the lens of modern machine learning is both natural and beneficial. This problem is24

theoretically intriguing as it bridges abstract algebra and machine learning. For instance, Cayley’s25

Theorem, a fundamental result in abstract algebra, states that every group is isomorphic to a subgroup26

of a symmetric group. This implies that learning a probability distribution over finite symmetric27

groups could, in principle, yield a distribution over any finite group. Moreover, exploring this problem28

could lead to the development of advanced models capable of addressing tasks such as permutations29

in ranking problems, sequence alignment in bioinformatics, and sorting.30

However, learning a probability distribution over finite symmetric groups Sn poses significant31

challenges. First, the number of permutations of n objects grows factorially with n, making the32

inference and learning computationally expensive for large n. Second, the discrete nature of the data33

brings difficulties in designing expressive parameterizations and impedes the gradient-based learning.34

In this work, we propose a novel discrete (state space) diffusion model over finite symmetric groups,35

dubbed as SymmetricDiffusers. It overcomes the above challenges by decomposing the difficult36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

problem of learning a complicated distribution over Sn into a sequence of simpler problems, i.e.,37

learning individual transitions of a reverse diffusion process using deep neural networks. Based on38

the theory of random walks on finite groups, we investigate various shuffling methods as the forward39

process and identify the riffle shuffle as the most effective. We also provide empirical guidelines40

on choosing the diffusion length based on the mixing time of the riffle shuffle. Furthermore, we41

examine potential transitions for the reverse diffusion, such as inverse shuffling methods and the42

PL distribution, and introduce a novel generalized PL distribution. We prove that our generalized43

PL is more expressive than the PL distribution. Additionally, we propose a theoretically grounded44

"denoising schedule" that merges reverse steps to improve the efficiency of sampling and learning.45

To validate the effectiveness of our SymmetricDiffusers, we conduct extensive experiments on three46

tasks: sorting 4-Digit MNIST images, solving Jigsaw Puzzles on the Noisy MNIST and CIFAR-1047

datasets, and addressing traveling salesman problems (TSPs). Our model achieves the state-of-the-art48

or comparable performance across all tasks.49

2 Related Works50

Random Walks on Finite Groups. The field of random walks on finite groups, especially finite51

symmetric groups, have been extensively studied by previous mathematicians [37, 11, 4, 38]. Tech-52

niques from a variety of different fields, including probability, combinatorics, and representation53

theory, have been used to study random walks on finite groups [38]. In particular, random walks on54

finite symmetric groups are first studied in the application of card shuffling, with many profound55

theoretical results of shuffling established. A famous result in the field shows that 7 riffle shuffles are56

enough to mix up a deck of 52 cards [4], where a riffle shuffle is a mathematically precise model that57

simulates how people shuffle cards in real life. The idea of shuffling to mix up a deck of cards aligns58

naturally with the idea of diffusion, and we seek to fuse the modern techniques of diffusion models59

with the classical theories of random walks on finite groups.60

Diffusion Models. Diffusion models [40, 41, 16, 42] are a powerful class of generative models that61

typically deals with continuous data. They consist of forward and reverse processes. The forward62

process is typically a discrete-time continuous-state Markov chain or a continuous-time continuous-63

state Markov process that gradually adds noise to data, and the reverse process learn neural networks64

to denoise. Discrete (state space) diffusion models have also been proposed to handle discrete data65

like image, text [3], and graphs [45]. Existing discrete diffusion models are applicable for learning66

distributions of permutations. However, they focused on cases where the state space is small or has a67

special (e.g., decomposable) structure and are unable to deal with intractable-sized state spaces like68

the symmetric group. In particular, [3] requires an explicit transition matrix, which has size n!× n!69

in the case of finite symmetric groups and has no simple representations or sparsifications.70

Differentiable Sorting and Learning Permutations. A popular paradigm to learn permutations71

is through differentiable sorting or matching algorithms. Various differentiable sorting algorithms72

have been proposed that uses continuous relaxations of permutation matrices [13, 8, 5], or uses73

differentiable swap functions [33, 34, 20]. The Gumbel-Sinkhorn method [29] has also been proposed74

to learn latent permutations using the continuous Sinkhorn operator. Such methods often focus on75

finding the optimal permutation instead of learning a distribution over the finite symmetric group.76

Moreover, they tend to be less effective as n grows larger due to their high complexities.77

3 Learning Diffusion Models on Finite Symmetric Groups78

We first introduce some notations. Fix n ∈ N. Let [n] denote the set {1, 2, . . . , n}. A permutation79

σ on [n] is a function from [n] to [n], and we usually write σ as
(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)
. The80

identity permutation, denoted by Id, is the permutation given by Id(i) = i for all i ∈ [n]. Let81

Sn be the set of all permutations (or bijections) from a set of n elements to itself, called the finite82

symmetric group, whose group operation is the function composition. For a permutation σ ∈ Sn,83

the permutation matrix Qσ ∈ Rn×n associated with σ satisfies e⊤i Qσ = e⊤σ(i) for all i ∈ [n]. In84

this paper, we consider a set of n distinctive objects X = {x1, . . . ,xn}, where the i-th object is85

represented by a d-dimensional vector xi. Therefore, a ranked list of objects can be represented as86

a matrix X = [x1, . . . ,xn]
⊤ ∈ Rn×d, where the ordering of rows corresponds to the ordering of87

objects. We can permute X via permutation σ to obtain QσX .88

2

⋯⋯⋯

Ascending

<latexit sha1_base64="t1Dk6TBpXh1v1bkdf9N4FeYA2Ro=">AAACJ3icbVDNSgMxGEyq1Vr/Wj16WSyCBym7ItVj0YvHCvYHukvJptk2NNksSVZaln0Nr3r1abyJHn0Ts+0itnUgMMx8H99k/IhRpW37CxY2Notb26Wd8u7e/sFhpXrUUSKWmLSxYEL2fKQIoyFpa6oZ6UWSIO4z0vUnd5nffSJSURE+6llEPI5GIQ0oRtpIrsuRHvtBMk0HzqBSs+v2HNY6cXJSAzlagyosukOBY05CjRlSqu/YkfYSJDXFjKRlN1YkQniCRqRvaIg4UV4yD51aZ0YZWoGQ5oXamqt/NxLElZpx30xmIdWql4n/ef1YBzdeQsMo1iTEi0NBzCwtrKwBa0glwZrNDEFYUpPVwmMkEdamp+UrbCTMwJhf/DKKp0v/SnyemuKc1ZrWSeey7jTqjYerWvM2r7AETsApOAcOuAZNcA9aoA0wiMAzeAGv8A2+ww/4uRgtwHznGCwBfv8AJuqmtQ==</latexit>x1

<latexit sha1_base64="xqk6TyImgA6rWLHTpho4ODyRjyE=">AAACJ3icbVDNSgMxGEzUaq1/rR69LBbBg5TdItVj0YvHCvYHukvJptk2NNksSVZaln0Nr3r1abyJHn0Ts+0itnUgMMx8H99k/IhRpW37C25sbhW2d4q7pb39g8OjcuW4o0QsMWljwYTs+UgRRkPS1lQz0oskQdxnpOtP7jK/+0SkoiJ81LOIeByNQhpQjLSRXJcjPfaDZJoO6oNy1a7Zc1jrxMlJFeRoDSqw4A4FjjkJNWZIqb5jR9pLkNQUM5KW3FiRCOEJGpG+oSHiRHnJPHRqnRtlaAVCmhdqa67+3UgQV2rGfTOZhVSrXib+5/VjHdx4CQ2jWJMQLw4FMbO0sLIGrCGVBGs2MwRhSU1WC4+RRFibnpavsJEwA2N++csoni79K/F5aopzVmtaJ516zWnUGg9X1eZtXmERnIIzcAEccA2a4B60QBtgEIFn8AJe4Rt8hx/wczG6AfOdE7AE+P0DKKKmtg==</latexit>x2

<latexit sha1_base64="4IL4ihmhxh7gFOqP+FYSpMU3JsQ=">AAACJ3icbVBPS8MwHE2n0zn/bXr0EhyCBxmtyvQ49OJxgpuDtYw0S7ewpClJKhulX8OrXv003kSPfhPTrYjbfBB4vPf78Xt5fsSo0rb9ZRXW1osbm6Wt8vbO7t5+pXrQUSKWmLSxYEJ2faQIoyFpa6oZ6UaSIO4z8uiPbzP/8YlIRUX4oKcR8TgahjSgGGkjuS5HeuQHySTtX/QrNbtuzwBXiZOTGsjR6letojsQOOYk1JghpXqOHWkvQVJTzEhadmNFIoTHaEh6hoaIE+Uls9ApPDHKAAZCmhdqOFP/biSIKzXlvpnMQqplLxP/83qxDq69hIZRrEmI54eCmEEtYNYAHFBJsGZTQxCW1GSFeIQkwtr0tHiFDYUZGPGzX0bxZOFfic9TU5yzXNMq6ZzXnUa9cX9Za97kFZbAETgGp8ABV6AJ7kALtAEGEXgGL+DVerPerQ/rcz5asPKdQ7AA6/sHKlqmtw==</latexit>x3
<latexit sha1_base64="t1Dk6TBpXh1v1bkdf9N4FeYA2Ro=">AAACJ3icbVDNSgMxGEyq1Vr/Wj16WSyCBym7ItVj0YvHCvYHukvJptk2NNksSVZaln0Nr3r1abyJHn0Ts+0itnUgMMx8H99k/IhRpW37CxY2Notb26Wd8u7e/sFhpXrUUSKWmLSxYEL2fKQIoyFpa6oZ6UWSIO4z0vUnd5nffSJSURE+6llEPI5GIQ0oRtpIrsuRHvtBMk0HzqBSs+v2HNY6cXJSAzlagyosukOBY05CjRlSqu/YkfYSJDXFjKRlN1YkQniCRqRvaIg4UV4yD51aZ0YZWoGQ5oXamqt/NxLElZpx30xmIdWql4n/ef1YBzdeQsMo1iTEi0NBzCwtrKwBa0glwZrNDEFYUpPVwmMkEdamp+UrbCTMwJhf/DKKp0v/SnyemuKc1ZrWSeey7jTqjYerWvM2r7AETsApOAcOuAZNcA9aoA0wiMAzeAGv8A2+ww/4uRgtwHznGCwBfv8AJuqmtQ==</latexit>x1

<latexit sha1_base64="xqk6TyImgA6rWLHTpho4ODyRjyE=">AAACJ3icbVDNSgMxGEzUaq1/rR69LBbBg5TdItVj0YvHCvYHukvJptk2NNksSVZaln0Nr3r1abyJHn0Ts+0itnUgMMx8H99k/IhRpW37C25sbhW2d4q7pb39g8OjcuW4o0QsMWljwYTs+UgRRkPS1lQz0oskQdxnpOtP7jK/+0SkoiJ81LOIeByNQhpQjLSRXJcjPfaDZJoO6oNy1a7Zc1jrxMlJFeRoDSqw4A4FjjkJNWZIqb5jR9pLkNQUM5KW3FiRCOEJGpG+oSHiRHnJPHRqnRtlaAVCmhdqa67+3UgQV2rGfTOZhVSrXib+5/VjHdx4CQ2jWJMQLw4FMbO0sLIGrCGVBGs2MwRhSU1WC4+RRFibnpavsJEwA2N++csoni79K/F5aopzVmtaJ516zWnUGg9X1eZtXmERnIIzcAEccA2a4B60QBtgEIFn8AJe4Rt8hx/wczG6AfOdE7AE+P0DKKKmtg==</latexit>x2

<latexit sha1_base64="4IL4ihmhxh7gFOqP+FYSpMU3JsQ=">AAACJ3icbVBPS8MwHE2n0zn/bXr0EhyCBxmtyvQ49OJxgpuDtYw0S7ewpClJKhulX8OrXv003kSPfhPTrYjbfBB4vPf78Xt5fsSo0rb9ZRXW1osbm6Wt8vbO7t5+pXrQUSKWmLSxYEJ2faQIoyFpa6oZ6UaSIO4z8uiPbzP/8YlIRUX4oKcR8TgahjSgGGkjuS5HeuQHySTtX/QrNbtuzwBXiZOTGsjR6letojsQOOYk1JghpXqOHWkvQVJTzEhadmNFIoTHaEh6hoaIE+Uls9ApPDHKAAZCmhdqOFP/biSIKzXlvpnMQqplLxP/83qxDq69hIZRrEmI54eCmEEtYNYAHFBJsGZTQxCW1GSFeIQkwtr0tHiFDYUZGPGzX0bxZOFfic9TU5yzXNMq6ZzXnUa9cX9Za97kFZbAETgGp8ABV6AJ7kALtAEGEXgGL+DVerPerQ/rcz5asPKdQ7AA6/sHKlqmtw==</latexit>x3

<latexit sha1_base64="t1Dk6TBpXh1v1bkdf9N4FeYA2Ro=">AAACJ3icbVDNSgMxGEyq1Vr/Wj16WSyCBym7ItVj0YvHCvYHukvJptk2NNksSVZaln0Nr3r1abyJHn0Ts+0itnUgMMx8H99k/IhRpW37CxY2Notb26Wd8u7e/sFhpXrUUSKWmLSxYEL2fKQIoyFpa6oZ6UWSIO4z0vUnd5nffSJSURE+6llEPI5GIQ0oRtpIrsuRHvtBMk0HzqBSs+v2HNY6cXJSAzlagyosukOBY05CjRlSqu/YkfYSJDXFjKRlN1YkQniCRqRvaIg4UV4yD51aZ0YZWoGQ5oXamqt/NxLElZpx30xmIdWql4n/ef1YBzdeQsMo1iTEi0NBzCwtrKwBa0glwZrNDEFYUpPVwmMkEdamp+UrbCTMwJhf/DKKp0v/SnyemuKc1ZrWSeey7jTqjYerWvM2r7AETsApOAcOuAZNcA9aoA0wiMAzeAGv8A2+ww/4uRgtwHznGCwBfv8AJuqmtQ==</latexit>x1

<latexit sha1_base64="xqk6TyImgA6rWLHTpho4ODyRjyE=">AAACJ3icbVDNSgMxGEzUaq1/rR69LBbBg5TdItVj0YvHCvYHukvJptk2NNksSVZaln0Nr3r1abyJHn0Ts+0itnUgMMx8H99k/IhRpW37C25sbhW2d4q7pb39g8OjcuW4o0QsMWljwYTs+UgRRkPS1lQz0oskQdxnpOtP7jK/+0SkoiJ81LOIeByNQhpQjLSRXJcjPfaDZJoO6oNy1a7Zc1jrxMlJFeRoDSqw4A4FjjkJNWZIqb5jR9pLkNQUM5KW3FiRCOEJGpG+oSHiRHnJPHRqnRtlaAVCmhdqa67+3UgQV2rGfTOZhVSrXib+5/VjHdx4CQ2jWJMQLw4FMbO0sLIGrCGVBGs2MwRhSU1WC4+RRFibnpavsJEwA2N++csoni79K/F5aopzVmtaJ516zWnUGg9X1eZtXmERnIIzcAEccA2a4B60QBtgEIFn8AJe4Rt8hx/wczG6AfOdE7AE+P0DKKKmtg==</latexit>x2

<latexit sha1_base64="4IL4ihmhxh7gFOqP+FYSpMU3JsQ=">AAACJ3icbVBPS8MwHE2n0zn/bXr0EhyCBxmtyvQ49OJxgpuDtYw0S7ewpClJKhulX8OrXv003kSPfhPTrYjbfBB4vPf78Xt5fsSo0rb9ZRXW1osbm6Wt8vbO7t5+pXrQUSKWmLSxYEJ2faQIoyFpa6oZ6UaSIO4z8uiPbzP/8YlIRUX4oKcR8TgahjSgGGkjuS5HeuQHySTtX/QrNbtuzwBXiZOTGsjR6letojsQOOYk1JghpXqOHWkvQVJTzEhadmNFIoTHaEh6hoaIE+Uls9ApPDHKAAZCmhdqOFP/biSIKzXlvpnMQqplLxP/83qxDq69hIZRrEmI54eCmEEtYNYAHFBJsGZTQxCW1GSFeIQkwtr0tHiFDYUZGPGzX0bxZOFfic9TU5yzXNMq6ZzXnUa9cX9Za97kFZbAETgGp8ABV6AJ7kALtAEGEXgGL+DVerPerQ/rcz5asPKdQ7AA6/sHKlqmtw==</latexit>x3

Probability Forward Step

Reverse Step

Merged Reverse Step

123
<latexit sha1_base64="oXFT89DAY4Rrl1C6jls0dTrDwyc=">AAACWXicbVBNS8NAEN3Er1q/Wnv0slgED1ISlerBQ9GLRwWrhSaWzXbTLu5mw+5EWkL/jL/Gq97EP+OmFrHVBwNv3swwMy9KBTfgeR+Ou7S8srpWWi9vbG5t71Squ/dGZZqyNlVC6U5EDBM8YW3gIFgn1YzISLCH6OmqqD88M224Su5gnLJQkkHCY04JWKlXuQgEi6EbSALDKM5Hk55/hH9lx3PZSaD5YAjhYx6ASie9St1reFPgv8SfkTqa4aZXdVaCvqKZZAlQQYzp+l4KYU40cCrYpBxkhqWEPpEB61qaEMlMmE/fnOADq/RxrLSNBPBU/T2RE2nMWEa2szjZLNYK8b9aN4P4PMx5kmbAEvq9KM4EBoULz3Cfa0ZBjC0hVHN7K6ZDogkF6+z8FjFQtmEoj34Yp6O5v/JIFsb5izb9JffHDb/ZaN6e1luXMwtLaA/to0PkozPUQtfoBrURRS/oFb2hd+fTddySW/5udZ3ZTA3Nwa19AYdDtz8=</latexit>

[x1,x2,x3]
>

<latexit sha1_base64="9XkRTfgnQK0jiCJ9n58j8EXui+4=">AAACSXicbVBNS8NAEN20Vmv9avXoZbEIHkpJVKrHohePFewHNKFstpt26W4SdjfSEvIn/DVe9eov8Gd4E09u2iD98MHAmzczzMxzQ0alMs1PI5ffKmzvFHdLe/sHh0flynFHBpHApI0DFoieiyRh1CdtRRUjvVAQxF1Guu7kPq13n4mQNPCf1CwkDkcjn3oUI6WlQblmxzZHaux68TQZWDW4lF2uZFd2MihXzbo5B9wkVkaqIENrUDEK9jDAESe+wgxJ2bfMUDkxEopiRpKSHUkSIjxBI9LX1EecSCeev5XAc60MoRcIHb6Cc3V5IkZcyhl3dWd6plyvpeJ/tX6kvFsnpn4YKeLjxSIvYlAFMPUIDqkgWLGZJggLqm+FeIwEwko7ubqFjQLdMOa1P0bxdOWv2OWpcda6TZukc1m3GvXG43W1eZdZWASn4AxcAAvcgCZ4AC3QBhi8gFfwBt6ND+PL+DZ+Fq05I5s5ASvI5X8BFUuzDg==</latexit>{x1,x2,x3}
<latexit sha1_base64="HM10/XvgJOzzp/cDI8WzZP6kQF0=">AAACJnicbVDNSgMxGEzUaq1/rR69BIvgQcquSPVY9OKxgv2B7VKyabYNTTZLkhXL0sfwqlefxpuINx/FbLuIbR0IDDPfxzeZIOZMG8f5gmvrG4XNreJ2aWd3b/+gXDlsa5koQltEcqm6AdaUs4i2DDOcdmNFsQg47QTj28zvPFKlmYwezCSmvsDDiIWMYGMlryewGRHM0+60X646NWcGtErcnFRBjma/Agu9gSSJoJEhHGvtuU5s/BQrwwin01Iv0TTGZIyH1LM0woJqP51lnqJTqwxQKJV9kUEz9e9GioXWExHYySyjXvYy8T/PS0x47acsihNDIzI/FCYcGYmyAtCAKUoMn1iCiWI2KyIjrDAxtqbFK3wo7cBInP8yRp4W/pUGIivOXa5plbQvam69Vr+/rDZu8gqL4BicgDPggivQAHegCVqAAAmewQt4hW/wHX7Az/noGsx3jsAC4PcPgPemYw==</latexit>X

132

312

321 123

213

231

<latexit sha1_base64="oPdGqaSj5SLd6dDvkOsv+VWKj7E=">AAACIXicbVBNS0JBFJ2xLLMvrWWbRxIYhLwXYS2lNi0N/AJ9yLxx1Mn5eM3Mi+Thf2hb235Nu2gX/ZlGfURqBy4czrmXe+8JQka1cd0vmFpbT29sZray2zu7e/u5/EFDy0hhUseSSdUKkCaMClI31DDSChVBPGCkGYxupn7zkShNpaiZcUh8jgaC9ilGxkqNh2KrWzvt5gpuyZ3BWSVeQgogQbWbh+lOT+KIE2EwQ1q3PTc0foyUoZiRSbYTaRIiPEID0rZUIE60H8/OnTgnVuk5falsCePM1L8TMeJaj3lgOzkyQ73sTcX/vHZk+ld+TEUYGSLwfFE/Yo6RzvR3p0cVwYaNLUFYUXurg4dIIWxsQotb2EDahiE/+2UUPy38FQd8YoPzlmNaJY3zklcule8uCpXrJMIMOALHoAg8cAkq4BZUQR1gcA+ewQt4hW/wHX7Az3lrCiYzh2AB8PsHB8+jeA==</latexit>

q(XT)

132

312

321 123

213

231

<latexit sha1_base64="qZuYlo2qEYCi/55iwwb1iFgj7Wo=">AAACIXicbVBdSwJBFJ2xLLMvrcdeliQwCNmNsB6lXno0yA/QRWbHWZ2aj21mNpLF/9BrvfZreoveoj/TqEukduDC4Zx7ufeeIGJUG9f9gpmV1ezaem4jv7m1vbNbKO41tYwVJg0smVTtAGnCqCANQw0j7UgRxANGWsH91cRvPRKlqRS3ZhQRn6OBoCHFyFip+VBu97zjXqHkVtwpnGXipaQEUtR7RZjt9iWOOREGM6R1x3Mj4ydIGYoZGee7sSYRwvdoQDqWCsSJ9pPpuWPnyCp9J5TKljDOVP07kSCu9YgHtpMjM9SL3kT8z+vEJrzwEyqi2BCBZ4vCmDlGOpPfnT5VBBs2sgRhRe2tDh4ihbCxCc1vYQNpG4b85JdR/DT3VxLwsQ3OW4xpmTRPK161Ur05K9Uu0whz4AAcgjLwwDmogWtQBw2AwR14Bi/gFb7Bd/gBP2etGZjO7IM5wO8fy3WjVQ==</latexit>

q(X1)

132

312

321 123

213

231

<latexit sha1_base64="unwo/1nSC6zquuM5QTMeYpHfKa0=">AAACMXicbVBNS8NAFNxUq7V+terNS7AIFaQkItVj0YvHCvYD2hI22027dDcJuy/SGvJfvOrVX9ObePVPuG2D2NaBhWFmHu/tuCFnCixramQ2NrNb27md/O7e/sFhoXjUVEEkCW2QgAey7WJFOfNpAxhw2g4lxcLltOWO7md+65lKxQL/CSYh7Qk88JnHCAYtOYWT0Im7QMcQ9zHgJCm3HevCKZSsijWHuU7slJRQirpTNLLdfkAiQX0gHCvVsa0QejGWwAinSb4bKRpiMsID2tHUx4KqXjw/PzHPtdI3vUDq54M5V/9OxFgoNRGuTgoMQ7XqzcT/vE4E3m0vZn4YAfXJYpEXcRMCc9aF2WeSEuATTTCRTN9qkiGWmIBubHkLHwQ6MBSXv4yR8dK/Ylckujh7taZ10ryq2NVK9fG6VLtLK8yhU3SGyshGN6iGHlAdNRBBL+gVvaF348OYGp/G1yKaMdKZY7QE4/sH+/OqGg==</latexit>

pdata(X0)

<latexit sha1_base64="+ETxEeUTIgDy2UK4EdM0CtdjO+U=">AAACI3icbVDLSgMxFE3Uaq2vVpdugkVwIWVGpLosunFZwT6gHUomzbSheQxJRixDf8Ktbv0ad+LGhf9i2g5iWw9cOJxzL/feE8acGet5X3BtfSO3uZXfLuzs7u0fFEuHTaMSTWiDKK50O8SGciZpwzLLaTvWFIuQ01Y4up36rUeqDVPywY5jGgg8kCxiBFsntbuGDQTu+b1i2at4M6BV4mekDDLUeyWY6/YVSQSVlnBsTMf3YhukWFtGOJ0UuomhMSYjPKAdRyUW1ATp7OAJOnVKH0VKu5IWzdS/EykWxoxF6DoFtkOz7E3F/7xOYqPrIGUyTiyVZL4oSjiyCk2/R32mKbF87AgmmrlbERlijYl1GS1u4QPlGobi/Jcx8rTwVxqKiQvOX45plTQvKn61Ur2/LNdusgjz4BicgDPggytQA3egDhqAAA6ewQt4hW/wHX7Az3nrGsxmjsAC4PcPYwukvA==</latexit>�1
<latexit sha1_base64="odhJm+4JzmU7a5M9KTo3OX3CiGw=">AAACI3icbVDLSgMxFE3Uaq2vVpdugkVwIWVGpLosunFZwT6gHUomzbSheQxJRixDf8Ktbv0ad+LGhf9i2g5iWw9cOJxzL/feE8acGet5X3BtfSO3uZXfLuzs7u0fFEuHTaMSTWiDKK50O8SGciZpwzLLaTvWFIuQ01Y4up36rUeqDVPywY5jGgg8kCxiBFsntbuGDQTu2V6x7FW8GdAq8TNSBhnqvRLMdfuKJIJKSzg2puN7sQ1SrC0jnE4K3cTQGJMRHtCOoxILaoJ0dvAEnTqljyKlXUmLZurfiRQLY8YidJ0C26FZ9qbif14nsdF1kDIZJ5ZKMl8UJRxZhabfoz7TlFg+dgQTzdytiAyxxsS6jBa38IFyDUNx/ssYeVr4Kw3FxAXnL8e0SpoXFb9aqd5flms3WYR5cAxOwBnwwRWogTtQBw1AAAfP4AW8wjf4Dj/g57x1DWYzR2AB8PsH1jOk/w==</latexit>�t

<latexit sha1_base64="FImKq8JBigziI9N01o+CkbnrPCs=">AAACI3icbVBNSwMxEE2q1Vq/Wj16CRbBg5Rdkeqx6MVjhX5Bu5Rsmt2GJpslyYpl6Z/wqld/jTfx4sH/YtouYlsfDDzem2Fmnh9zpo3jfMHcxmZ+a7uwU9zd2z84LJWP2lomitAWkVyqro815SyiLcMMp91YUSx8Tjv++G7mdx6p0kxGTTOJqSdwGLGAEWys1O1rFgo8aA5KFafqzIHWiZuRCsjQGJRhvj+UJBE0MoRjrXuuExsvxcowwum02E80jTEZ45D2LI2woNpL5wdP0ZlVhiiQylZk0Fz9O5FiofVE+LZTYDPSq95M/M/rJSa48VIWxYmhEVksChKOjESz79GQKUoMn1iCiWL2VkRGWGFibEbLW3gobcNIXPwyRp6W/kp9MbXBuasxrZP2ZdWtVWsPV5X6bRZhAZyAU3AOXHAN6uAeNEALEMDBM3gBr/ANvsMP+LlozcFs5hgsAX7/AJ8zpN8=</latexit>�T

<latexit sha1_base64="9pb0wJ59ZBf5t1HHG0RX60bsPYw=">AAACLnicbVDNSsNAGNxUq7X+tXr0EiyCBymJSPVY9OKxQv+giWGz3aRLd7Nhd6OW0EfxqlefRvAgXn0MN20Q2zqwMMzMx/ft+DElUlnWh1FYWy9ubJa2yts7u3v7lepBV/JEINxBnHLR96HElES4o4iiuB8LDJlPcc8f32R+7wELSXjUVpMYuwyGEQkIgkpLXqXqSBIy6LXvUycWhOGpV6lZdWsGc5XYOamBHC2vahSdIUcJw5FCFEo5sK1YuSkUiiCKp2UnkTiGaAxDPNA0ggxLN53dPjVPtDI0Ay70i5Q5U/9OpJBJOWG+TjKoRnLZy8T/vEGigis3JVGcKByh+aIgoabiZlaEOSQCI0UnmkAkiL7VRCMoIFK6rsUtNOQ6MGJnv4ygp4V/pT7LirOXa1ol3fO63ag37i5qzeu8whI4AsfgFNjgEjTBLWiBDkDgETyDF/BqvBnvxqfxNY8WjHzmECzA+P4BI2apOQ==</latexit>

�0
T

<latexit sha1_base64="A8OaJGMrqOLIsvQ0TY2DJ3AQQ0Y=">AAACLnicbVDLSsNAFJ2o1VpfrS7dBIvgQkoiUl0W3bisYB/QxjCZTtKh8wgzE7WEfopb3fo1ggtx62c4aYPY1gMDh3PO5d45QUyJ0o7zYa2srhXWN4qbpa3tnd29cmW/rUQiEW4hQYXsBlBhSjhuaaIp7sYSQxZQ3AlG15nfecBSEcHv9DjGHoMRJyFBUBvJL1f6ikQM+vo+7ceSMDzxy1Wn5kxhLxM3J1WQo+lXrEJ/IFDCMNeIQqV6rhNrL4VSE0TxpNRPFI4hGsEI9wzlkGHlpdPbJ/axUQZ2KKR5XNtT9e9ECplSYxaYJIN6qBa9TPzP6yU6vPRSwuNEY45mi8KE2lrYWRH2gEiMNB0bApEk5lYbDaGESJu65rfQSJjAkJ3+MoKe5v6VBiwrzl2saZm0z2puvVa/Pa82rvIKi+AQHIET4IIL0AA3oAlaAIFH8AxewKv1Zr1bn9bXLLpi5TMHYA7W9w9bhqlZ</latexit>

�0
t

<latexit sha1_base64="4T58556t6hTueHLDK0+tgTQA6oQ=">AAACLnicbVDNSgMxGMyq1Vr/Wj16CRbBg5Rdkeqx6MVjBfsD7bpk0+w2NNksSVYtSx/Fq159GsGDePUxzLaL2NaBwDAzH9+X8WNGlbbtD2tlda2wvlHcLG1t7+zulSv7bSUSiUkLCyZk10eKMBqRlqaakW4sCeI+Ix1/dJ35nQciFRXRnR7HxOUojGhAMdJG8sqVvqIhR55zn/ZjSTmZeOWqXbOngMvEyUkV5Gh6FavQHwiccBJpzJBSPceOtZsiqSlmZFLqJ4rECI9QSHqGRogT5abT2yfw2CgDGAhpXqThVP07kSKu1Jj7JsmRHqpFLxP/83qJDi7dlEZxokmEZ4uChEEtYFYEHFBJsGZjQxCW1NwK8RBJhLWpa34LC4UJDPnpL6P4ae5fqc+z4pzFmpZJ+6zm1Gv12/Nq4yqvsAgOwRE4AQ64AA1wA5qgBTB4BM/gBbxab9a79Wl9zaIrVj5zAOZgff8A5fSpFg==</latexit>

�0
1

<latexit sha1_base64="7DARMEOgBITw5fyGyUjlUcJBGUQ=">AAACHnicbVDLSgNBEJyJRmN8JXr0shgEDxJ2RaLHoBePEc0DkiXMTmY3Q+axzMyKYckneNWrX+NNvOrfOEkWMYkFDUVVN91dQcyoNq77DXNr6/mNzcJWcXtnd2+/VD5oaZkoTJpYMqk6AdKEUUGahhpGOrEiiAeMtIPRzdRvPxKlqRQPZhwTn6NI0JBiZKx03+m7/VLFrbozOKvEy0gFZGj0yzDfG0iccCIMZkjrrufGxk+RMhQzMin2Ek1ihEcoIl1LBeJE++ns1olzYpWBE0plSxhnpv6dSBHXeswD28mRGeplbyr+53UTE175KRVxYojA80VhwhwjnenjzoAqgg0bW4KwovZWBw+RQtjYeBa3sEjahiE/+2UUPy38lQZ8YoPzlmNaJa3zqler1u4uKvXrLMICOALH4BR44BLUwS1ogCbAIALP4AW8wjf4Dj/g57w1B7OZQ7AA+PUDCSeidA==</latexit>

X0
<latexit sha1_base64="XrT0MP4SxNbA4jqsPOzvWme1YEs=">AAACHnicbVDLSgNBEJyJRmN8JXr0shgEDxJ2RaLHoBePEc0DkiXMTmY3Q+axzMyKYckneNWrX+NNvOrfOEkWMYkFDUVVN91dQcyoNq77DXNr6/mNzcJWcXtnd2+/VD5oaZkoTJpYMqk6AdKEUUGahhpGOrEiiAeMtIPRzdRvPxKlqRQPZhwTn6NI0JBiZKx03+l7/VLFrbozOKvEy0gFZGj0yzDfG0iccCIMZkjrrufGxk+RMhQzMin2Ek1ihEcoIl1LBeJE++ns1olzYpWBE0plSxhnpv6dSBHXeswD28mRGeplbyr+53UTE175KRVxYojA80VhwhwjnenjzoAqgg0bW4KwovZWBw+RQtjYeBa3sEjahiE/+2UUPy38lQZ8YoPzlmNaJa3zqler1u4uKvXrLMICOALH4BR44BLUwS1ogCbAIALP4AW8wjf4Dj/g57w1B7OZQ7AA+PUDCt+idQ==</latexit>

X1

<latexit sha1_base64="yjk+wQo3g4hol0+J+iD6l1h3ydM=">AAACHnicbVDLSgNBEJyJRmN8JXr0shgEDxJ2RaLHoBePEc0DkiXMTmY3Q+axzMyKYckneNWrX+NNvOrfOEkWMYkFDUVVN91dQcyoNq77DXNr6/mNzcJWcXtnd2+/VD5oaZkoTJpYMqk6AdKEUUGahhpGOrEiiAeMtIPRzdRvPxKlqRQPZhwTn6NI0JBiZKx03+mbfqniVt0ZnFXiZaQCMjT6ZZjvDSROOBEGM6R113Nj46dIGYoZmRR7iSYxwiMUka6lAnGi/XR268Q5scrACaWyJYwzU/9OpIhrPeaB7eTIDPWyNxX/87qJCa/8lIo4MUTg+aIwYY6RzvRxZ0AVwYaNLUFYUXurg4dIIWxsPItbWCRtw5Cf/TKKnxb+SgM+scF5yzGtktZ51atVa3cXlfp1FmEBHIFjcAo8cAnq4BY0QBNgEIFn8AJe4Rt8hx/wc96ag9nMIVgA/PoBfgeiuA==</latexit>

Xt
<latexit sha1_base64="RZ9H3Vpqr7QOv5Zk5EI9PzFhYfg=">AAACHnicbVBdSwJBFJ21LLMvrcdehiToIWQ3wnqUeunRSE3QRWbH2XVwPpaZ2UgWf0Kv9dqv6S16rX/TqEukduDC4Zx7ufeeIGZUG9f9dnJr6/mNzcJWcXtnd2+/VD5oa5koTFpYMqk6AdKEUUFahhpGOrEiiAeMPASjm6n/8EiUplI0zTgmPkeRoCHFyFjpvtNv9ksVt+rOAFeJl5EKyNDol518byBxwokwmCGtu54bGz9FylDMyKTYSzSJER6hiHQtFYgT7aezWyfwxCoDGEplSxg4U/9OpIhrPeaB7eTIDPWyNxX/87qJCa/8lIo4MUTg+aIwYdBIOH0cDqgi2LCxJQgram+FeIgUwsbGs7iFRdI2DPnZL6P4aeGvNOATG5y3HNMqaZ9XvVq1dndRqV9nERbAETgGp8ADl6AObkEDtAAGEXgGL+DVeXPenQ/nc96ac7KZQ7AA5+sHRweimA==</latexit>

XT

<latexit sha1_base64="A1T6BOi/atCsvKIvOYGO4lDHxoM=">AAACQHicbVDLSsNAFJ34rPWtSzfBIihISUSqy6IblxX6gqaGyfS2HZxJwsyNWGI+wK9xq1v/wj9wJ25dOX0gtnpg4HDOudy5J4gF1+g4b9bc/MLi0nJuJb+6tr6xubW9U9dRohjUWCQi1QyoBsFDqCFHAc1YAZWBgEZwezn0G3egNI/CKg5iaEvaC3mXM4pG8rcKsZ962Aek2aGneU9SP61mN6kXKy4he2j61SOTcorOCPZf4k5IgUxQ8betRa8TsURCiExQrVuuE2M7pQo5E5DlvURDTNkt7UHL0JBK0O10dE1mHxilY3cjZV6I9kj9PZFSqfVABiYpKfb1rDcU//NaCXbP2ykP4wQhZONF3UTYGNnDauwOV8BQDAyhTHHzV5v1qaIMTYHTW0QvMoG+PP5hnN1P3ZUGMjPFubM1/SX1k6JbKpauTwvli0mFObJH9skhcckZKZMrUiE1wsgjeSLP5MV6td6tD+tzHJ2zJjO7ZArW1zeYULD2</latexit>

p✓(�
0
T |XT)

<latexit sha1_base64="cvDyAjHJurjuS49TmalSewpQyBM=">AAACQHicbVDLSsNAFJ1Uq/VtdekmWIQKUhIRdVl047KCrYWmhsn0th06k4SZG7HEfIBf41a3/oV/4E7cunL6QKx6YOBwzrncuSeIBdfoOK9Wbm4+v7BYWFpeWV1b39gsbjV0lCgGdRaJSDUDqkHwEOrIUUAzVkBlIOA6GJyP/OtbUJpH4RUOY2hL2gt5lzOKRvI3S7GfetgHpFnZ07wnqZ9idpN6seISsvumj/sm5VScMey/xJ2SEpmi5hetvNeJWCIhRCao1i3XibGdUoWcCciWvURDTNmA9qBlaEgl6HY6viaz94zSsbuRMi9Ee6z+nEip1HooA5OUFPv6tzcS//NaCXZP2ykP4wQhZJNF3UTYGNmjauwOV8BQDA2hTHHzV5v1qaIMTYGzW0QvMoG+PPhmnN3N3JUGMjPFub9r+ksahxX3uHJ8eVSqnk0rLJAdskvKxCUnpEouSI3UCSMP5JE8kWfrxXqz3q2PSTRnTWe2yQyszy8IX7E2</latexit>

p✓(�
0
t|Xt)

<latexit sha1_base64="mjBcBISz+59+fdNTw0vRqnSy+O4=">AAACQHicbVBNS8NAFNxUq/W76tFLsAgVpCQi1aPoxWMFq4Wmhs32tV26m4TdF7HE/AB/jVe9+i/8B97Eqye3NYhVBxaGmXm8fRPEgmt0nBerMDNbnJsvLSwuLa+srpXXNy51lCgGTRaJSLUCqkHwEJrIUUArVkBlIOAqGJ6O/asbUJpH4QWOYuhI2g95jzOKRvLLldhPPRwA0qzqad6X1E/d7Dr1YsUlZHct3901KafmTGD/JW5OKiRHw1+3il43YomEEJmgWrddJ8ZOShVyJiBb9BINMWVD2oe2oSGVoDvp5JrM3jFK1+5FyrwQ7Yn6cyKlUuuRDExSUhzo395Y/M9rJ9g76qQ8jBOEkH0t6iXCxsgeV2N3uQKGYmQIZYqbv9psQBVlaAqc3iL6kQkM5N434+x26q40kJkpzv1d019yuV9z67X6+UHl+CSvsES2yDapEpcckmNyRhqkSRi5Jw/kkTxZz9ar9Wa9f0ULVj6zSaZgfXwCHdCwsA==</latexit>

p✓(�
0
1|X1)

<latexit sha1_base64="mNy1SaNnkzn3LTM3uDcs9TopPO8=">AAACNXicbVDNSgMxGMxWq7X+tXoRvASLUKGUXZHqsejFYwXbLrRlyaZpG5ps1iQrlnV9Gq969Vk8eBOvvoLpD2JbBwLDzHx8+cYPGVXatt+t1Mpqem09s5Hd3Nre2c3l9xpKRBKTOhZMSNdHijAakLqmmhE3lARxn5GmP7wa+817IhUVwa0ehaTDUT+gPYqRNpKXO7grup4DH6Hr2SXYVrTPkRc7yYmXK9hlewK4TJwZKYAZal7eSre7AkecBBozpFTLsUPdiZHUFDOSZNuRIiHCQ9QnLUMDxInqxJMTEnhslC7sCWleoOFE/TsRI67UiPsmyZEeqEVvLP7ntSLdu+jENAgjTQI8XdSLGNQCjvuAXSoJ1mxkCMKSmr9CPEASYW1am9/C+sIEBrz0yyh+mLsr9nliinMWa1omjdOyUylXbs4K1ctZhRlwCI5AETjgHFTBNaiBOsDgCTyDF/BqvVkf1qf1NY2mrNnMPpiD9f0DVpiqHg==</latexit>

q(X1|X0,�1)
<latexit sha1_base64="/LWOr1LJ65N5hSs1+b8vnhXP4T8=">AAACOXicbVDLSgMxFM1Uq7W+Wl3qIliECrXMiFSXRTcuK9gHtGXIpGkbTGbG5I5Yxtn4NW5165e4dCdu/QHTB2LVA4Fzz7mXm3u8UHANtv1qpRYW00vLmZXs6tr6xmYuv9XQQaQoq9NABKrlEc0E91kdOAjWChUj0hOs6V2fj/3mLVOaB/4VjELWlWTg8z6nBIzk5nZvii0X8D1uuTEcOkkJdzQfSGKq5MDNFeyyPQH+S5wZKaAZam7eSnd6AY0k84EKonXbsUPoxkQBp4Il2U6kWUjoNRmwtqE+kUx348kZCd43Sg/3A2WeD3ii/pyIidR6JD3TKQkM9W9vLP7ntSPon3Zj7ocRMJ9OF/UjgSHA40xwjytGQYwMIVRx81dMh0QRCia5+S1iEJiGoSx9M07v5u6KPZmY4JzfMf0ljaOyUylXLo8L1bNZhBm0g/ZQETnoBFXRBaqhOqLoAT2iJ/RsvVhv1rv1MW1NWbOZbTQH6/MLvnSsZg==</latexit>

q(Xt|Xt�1,�t)
<latexit sha1_base64="IgiTOugJS5vStsnZTU+qedemx4M=">AAACOXicbVDLTgIxFO2gKOILdKmLRmKCCZIZY9Al0Y1LTHhMAmTSKQUa2pmx7RjJOBu/xq1u/RKX7oxbf8ACEyPgSZqce869ub3HDRiVyjTfjdTKanptPbOR3dza3tnN5fea0g8FJg3sM1/YLpKEUY80FFWM2IEgiLuMtNzR9cRv3RMhqe/V1TggXY4GHu1TjJSWnNzhXdF26vAR2k5UP7XiEuxIOuBIV/GJkyuYZXMKuEyshBRAgpqTN9Kdno9DTjyFGZKybZmB6kZIKIoZibOdUJIA4REakLamHuJEdqPpGTE81koP9n2hn6fgVP07ESEu5Zi7upMjNZSL3kT8z2uHqn/ZjagXhIp4eLaoHzKofDjJBPaoIFixsSYIC6r/CvEQCYSVTm5+Cxv4umHIS7+M4oe5uyKXxzo4azGmZdI8K1uVcuX2vFC9SiLMgANwBIrAAhegCm5ADTQABk/gGbyAV+PN+DA+ja9Za8pIZvbBHIzvHxRUrAY=</latexit>

q(XT |XT�1,�T)

<latexit sha1_base64="e44e+KARTmwlYxN5ise3nbJjreo=">AAACPHicbVDPS8MwGE2n0zl/bXr0YHEIE8ZoRabHoRePE9xWWGtJs3QLS9qSpOKoPfrXeNWr/4d3b+LVs9lWxG0+CDzeex9fvudFlAhpGO9abmU1v7Ze2Chubm3v7JbKex0RxhzhNgppyC0PCkxJgNuSSIqtiGPIPIq73uhq4nfvMRckDG7lOMIOg4OA+ARBqSS3dBhVLdd4tFyzZgsyYNBNzPQusSNOGE5Pim6pYtSNKfRlYmakAjK03LKWt/shihkOJKJQiJ5pRNJJIJcEUZwW7VjgCKIRHOCeogFkWDjJ9JJUP1ZKX/dDrl4g9an6dyKBTIgx81SSQTkUi95E/M/rxdK/cBISRLHEAZot8mOqy1Cf1KL3CcdI0rEiEHGi/qqjIeQQSVXe/BY6CFVgyGq/jKCHubsSj6WqOHOxpmXSOa2bjXrj5qzSvMwqLIADcASqwATnoAmuQQu0AQJP4Bm8gFftTfvQPrWvWTSnZTP7YA7a9w+jvq3c</latexit>

p(X0|X1,�
0
1)

<latexit sha1_base64="qBBYvAfbZZbA0HT5YwtiIAtt0s4=">AAACQHicbVDLSsNAFJ1Uq7W+Wl26CRahQi2JSHVZdOOygn1AU8tkOmmHziRh5kYsMR/g17jVrX/hH7gTt66cPhDbemDgcM653LnHDTlTYFnvRmplNb22ntnIbm5t7+zm8nsNFUSS0DoJeCBbLlaUM5/WgQGnrVBSLFxOm+7wauw376lULPBvYRTSjsB9n3mMYNBSN1cIi61uDCd28tjqQslRrC+wFpK72AklEzQ5zuqUVbYmMJeJPSMFNEOtmzfSTi8gkaA+EI6VattWCJ0YS2CE0yTrRIqGmAxxn7Y19bGgqhNPrknMI630TC+Q+vlgTtS/EzEWSo2Eq5MCw0AtemPxP68dgXfRiZkfRkB9Ml3kRdyEwBxXY/aYpAT4SBNMJNN/NckAS0xAFzi/hfcDHRiI0i9j5GHurtgViS7OXqxpmTROy3alXLk5K1QvZxVm0AE6REVko3NURdeohuqIoCf0jF7Qq/FmfBifxtc0mjJmM/toDsb3Dxx6sCQ=</latexit>

p(Xt�1|Xt,�
0
t)

<latexit sha1_base64="O+mYu2b0Boh4aTxgrVdzToloZf8=">AAACPnicbVDNSsNAGNyo1Vr/Wj16iRahQimJSPVY9OKxQn8CTQyb7aZdupuE3Y1YYs4+jVe9+hq+gDfx6tFtG8S2DiwMM/Px7TdeRImQhvGurayu5dY38puFre2d3b1iab8jwpgj3EYhDbnlQYEpCXBbEkmxFXEMmUdx1xtdT/zuPeaChEFLjiPsMDgIiE8QlEpyi0dRxXITmT5abqtqCzJg0E1a6V1iR5wwnJ4W3GLZqBlT6MvEzEgZZGi6JS1n90MUMxxIRKEQPdOIpJNALgmiOC3YscARRCM4wD1FA8iwcJLpLal+opS+7odcvUDqU/XvRAKZEGPmqSSDcigWvYn4n9eLpX/pJCSIYokDNFvkx1SXoT4pRu8TjpGkY0Ug4kT9VUdDyCGSqr75LXQQqsCQVX8ZQQ9zdyUeS1Vx5mJNy6RzVjPrtfrteblxlVWYB4fgGFSACS5AA9yAJmgDBJ7AM3gBr9qb9qF9al+z6IqWzRyAOWjfP68Jr3I=</latexit>

p(Xt|XT ,�0
T)

Figure 1: This figure illustrates our discrete diffusion model on finite symmetric groups. The middle
graphical model displays the forward and reverse diffusion processes. We demonstrate learning
distributions over the symmetric group S3 via the task of sorting three MNIST 4-digit images. The
top part of the figure shows the marginal distribution of a ranked list of images Xt at time t, while
the bottom shows a randomly drawn list of images.

Our goal is to learn a distribution over Sn. We propose learning discrete (state space) diffusion89

models, which consist of a forward process and a reverse process. In the forward process, starting90

from the unknown data distribution, we simulate a random walk until it reaches a known stationary91

“noise” distribution. In the reverse process, starting from the known noise distribution, we simulate92

another random walk, where the transition probability is computed using a neural network, until it93

recovers the data distribution. Learning a transition distribution over Sn is often more manageable94

than learning the original distribution because: (1) the support size (the number of states that can be95

reached in one transition) could be much smaller than n!, and (2) the distance between the initial and96

target distributions is smaller. By doing so, we break down the hard problem (learning the original97

distribution) into a sequence of simpler subproblems (learning the transition distribution). The overall98

framework is illustrated in Fig. 1. In the following, we will introduce the forward card shuffling99

process in Section 3.1, the reverse process in Section 3.2, the network architecture and training in100

Section 3.3, denoising schedule in Section 3.4, and reverse decoding methods in Section 3.5.101

3.1 Forward Diffusion Process: Card Shuffling102

Suppose we observe a set of objects X and their ranked list X0. They are assumed to be generated103

from an unknown data distribution in an IID manner, i.e., X0,X iid∼ pdata(X,X). One can construct a104

bijection between a ranked list of n objects and an ordered deck of n cards. Therefore, permuting105

objects is equivalent to shuffling cards. In the forward diffusion process, we would like to add106

“random noise” to the rank list so that it reaches to some known stationary distribution like the107

uniform. Formally, we let S ⊆ Sn be a set of permutations that are realizable by a given shuffling108

method in one step. S does not change across steps in common shuffling methods. We will provide109

concrete examples later. We then define the forward process as a Markov chain,110

q(X1:T |X0,X) = q(X1:T |X0) =
∏T

t=1
q(Xt|Xt−1), (1)

where q(Xt|Xt−1) =
∑

σt∈S q(Xt|Xt−1, σt)q(σt) and the first equality in Eq. (1) holds since X0111

implies X . In the forward process, although the set X does not change, the rank list of objects Xt112

changes. Here q(σt) has the support S and describes the permutation generated by the underlying113

shuffling method. Note that common shuffling methods are time-homogeneous Markov chains, i.e.,114

q(σt) stays the same across time. q(Xt|Xt−1, σt) is a delta distribution δ (Xt = QσtXt−1) since the115

permuted objects Xt are uniquely determined given the permutation σt and Xt−1. We denote the116

neighbouring states of X via one-step shuffling as NS(X) := {QσX|σ ∈ S}. Therefore, we have,117

q(Xt|Xt−1) =

{
q(σt) if Xt ∈ NS(Xt−1)

0 otherwise.
(2)

3

Note that Xt ∈ NS(Xt−1) is equivalent to σt ∈ S and Xt = QσtXt−1.118

3.1.1 Card Shuffling Methods119

We now consider several popular shuffling methods as the forward transition, i.e., random transpo-120

sitions, random insertions, and riffle shuffles. Different shuffling methods provide different design121

choices of q(σt), thus corresponding to different forward diffusion processes. Although all these122

forward diffusion processes share the same stationary distribution, i.e., the uniform, they differ in123

their mixing time. We will introduce stronger quantitative results on their mixing time later.124

Random Transpositions. One natural way of shuffling is to swap pairs of objects. Formally, a125

transposition or a swap is a permutation σ ∈ Sn such that there exist i ̸= j ∈ [n] with σ(i) = j,126

σ(j) = i, and σ(k) = k for all k /∈ {i, j}, in which case we denote σ = (i j). We let S =127

{(i j) : i ̸= j ∈ [n]} ∪ {Id}. For any time t, we define q(σt) by choosing two indices from [n]128

uniformly and independently and swap the two indices. If the two chosen indices are the same, then129

this means that we have sampled the identity permutation. Specifically, q(σt = (i j)) = 2/n2130

when i ̸= j and q(σt = Id) = 1/n.131

Random Insertions. Another shuffling method is to insert the last piece to somewhere in the middle.132

Let inserti denote the permutation that inserts the last piece right before the ith piece, and let133

S := {inserti : i ∈ [n]}. Note that insertn = Id. Specifically, we have q(σt = inserti) = 1/n134

when i ̸= n and q(σt = Id) = 1/n.135

Riffle Shuffles. Finally, we introduce the riffle shuffle, a method similar to how serious card players136

shuffle cards. The process begins by roughly cutting the deck into two halves and then interleaving the137

two halves together. A formal mathematical model of the riffle shuffle, known as the GSR model, was138

introduced by Gilbert and Shannon [11], and independently by Reeds [37]. The model is described139

as follows. A deck of n cards is cut into two piles according to binomial distribution, where the140

probability of having k cards in the top pile is
(
n
k

)
/2n for 0 ≤ k ≤ n. The top pile is held in the141

left hand and the bottom pile in the right hand. The two piles are then riffled together such that, if142

there are A cards left in the left hand and B cards in the right hand, the probability that the next card143

drops from the left is A/(A+B), and from right is B/(A+B). We implement the riffle shuffles144

according to the GSR model. For simplicity, we will omit the term “GSR” when referring to riffle145

shuffles hereafter.146

There exists an exact formula for the probability over Sn obtained through one-step riffle shuffle.147

Let σ ∈ Sn. A rising sequence of σ is a subsequence of σ constructed by finding a maximal148

subset of indices i1 < i2 < · · · < ij such that permuted values are contiguously increasing, i.e.,149

σ(i2) − σ(i1) = σ(i3) − σ(i2) = · · · = σ(ij) − σ(ij−1) = 1. For example, the permutation150 (
1 2 3 4 5
1 4 2 5 3

)
has 2 rising sequences, i.e., 123 (red) and 45 (blue). Note that a permutation151

has 1 rising sequence if and only if it is the identity permutation. Denoting by qRS(σ) the probability152

of obtaining σ through one-step riffle shuffle, it is shown in [4] that153

qRS(σ) =
1

2n

(
n+ 2− r

n

)
=

(n+ 1)/2n if σ = Id

1/2n if σ has two rising sequences
0 otherwise,

(3)

where r is the number of rising sequences of σ. The support S is thus the set of all permutations with154

at most two rising sequences. We let the forward process be q(σt) = qRS(σt) for all t.155

3.1.2 Mixing Times and Cut-off Phenomenon156

All of the above shuffling methods have the uniform distribution as the stationary distribution.157

However, they have different mixing times (i.e., the time until the Markov chain is close to its158

stationary distribution measured by some distance), and there exist quantitative results on their mixing159

times. Let q ∈ {qRT, qRI, qRS}, and for t ∈ N, let q(t) be the marginal distribution of the Markov160

chain after t shuffles. We describe the mixing time in terms of the total variation (TV) distance161

between two probability distributions, i.e., DTV(q
(t), u), where u is the uniform distribution.162

For all three shuffling methods, there exists a cut-off phenomenon, where DTV(q
(t), u) stays around163

1 for initial steps and then abruptly drops to values that are close to 0. The cut-off time is the time164

when the abrupt change happens. For the formal definition, we refer the readers to Definition 3.3 of165

4

[38]. In [38], they also provided the cut-off time for random transposition, random insertion, and166

riffle shuffle, which are n
2 log n, n log n, and 3

2 log2 n respectively. Observe that the riffle shuffle167

reaches the cut-off much faster than the other two methods, which means it has a much faster mixing168

time. Therefore, we use the riffle shuffle in the forward process.169

3.2 The Reverse Diffusion Process170

We now model the reverse process as another Markov chain conditioned on the set of objects X . We171

denote the set of realizable reverse permutations as T , and the neighbours of X with respect to T as172

NT (X) := {QσX : σ ∈ T }. The conditional joint distribution is given by173

pθ(X0:T |X) = p(XT |X)
∏T

t=1
pθ(Xt−1|Xt), (4)

where pθ(Xt−1|Xt) =
∑

σ′
t∈T p(Xt−1|Xt, σ

′
t)pθ(σ

′
t|Xt). To sample from p(XT |X), one simply174

samples a random permutation from the uniform distribution and then shuffle the objects accordingly175

to obtain XT . p(Xt−1|Xt, σ
′
t) is again a delta distribution δ(Xt−1 = Qσ′

t
Xt). We have176

pθ(Xt−1|Xt) =

{
pθ (σ

′
t|Xt) if Xt−1 ∈ NT (Xt)

0 otherwise,
(5)

where Xt−1 ∈ NT (Xt) is equivalent to σ′
t ∈ T and Xt−1 = Qσ′

t
Xt. In the following, we will177

introduce the specific design choices of the distribution pθ(σ′
t|Xt).178

3.2.1 Inverse Card Shuffling179

A natural choice is to use the inverse operations of the aforementioned card shuffling operations in180

the forward process. Specifically, for the forward shuffling S, we introduce their inverse operations181

T := {σ−1 : σ ∈ S}, from which we can parameterize pθ(σ′
t|Xt).182

Inverse Transposition. Since the inverse of a transposition is also a transposition, we can let183

T := S = {(i j) : i ̸= j ∈ [n]} ∪ {Id}. We define a distribution of inverse transposition (IT) over184

T using n+ 1 real-valued parameters s = (s1, . . . , sn) and τ such that185

pIT(σ) =

{
1− ϕ(τ) if σ = Id

ϕ(τ)
(
ψ(s, πij)1ψ(s, πij)2 + ψ(s, πji)1ψ(s, πji)2

)
if σ =

(
i j

)
where i ̸= j,

(6)

where ψ(s, π)i = exp
(
sπ(i)

)
/
(∑n

k=i exp
(
sπ(k)

))
and ϕ(·) is the sigmoid function. πij is any186

permutation starting with i and j, i.e., πij(1) = i and πij(2) = j. πji is any permutation starting187

with j and i, i.e., πji(1) = j and πji(2) = i.188

Inverse Insertion. For the random insertion, the inverse operation is to insert some piece to the189

end. Let inverse_inserti denote the permutation that moves the ith component to the end, and190

let T := {inverse_inserti : i ∈ [n]}. We define a categorial distribution of inverse insertion (II)191

over T using parameters s = (s1, . . . , sn) such that,192

pII(σ = inverse_inserti) = exp(si)/
(∑n

j=1 exp(sj)
)
. (7)

Inverse Riffle Shuffle. In the riffle shuffle, the deck of card is first cut into two piles, and the two piles193

are riffled together. So to undo a riffle shuffle, we need to figure out which pile each card belongs to,194

i.e., making a sequence of n binary decisions. We define the Inverse Riffle Shuffle (IRS) distribution195

using parameters s = (s1, . . . , sn) as follows. Starting from the last (the nth) object, each object i196

has probability ϕ(si) of being put on the top of the left pile. Otherwise, it falls on the top of the right197

pile. Finally, put the left pile on top of the right pile, which gives the shuffled result.198

3.2.2 The Plackett-Luce Distribution and Its Generalization199

Other than specific inverse shuffling methods to parameterize the reverse process, we also consider200

general distributions pθ(σ′
t|Xt) whose support are the whole Sn, i.e., T = Sn.201

The PL Distribution. A popular distribution over Sn is the Plackett-Luce (PL) distribution [35, 27],202

which is constructed from n real-valued scores s = (s1, . . . , sn) as follows,203

pPL(σ) =
∏n

i=1
exp

(
sσ(i)

)
/
(∑n

j=i exp
(
sσ(j)

))
, (8)

5

for all σ ∈ Sn. Intuitively, (s1, . . . , sn) represents the preference given to each index in [n]. To204

sample from PLs, we first sample σ(1) from Cat(n, softmax(s)). Then we remove σ(1) from the205

list and sample σ(2) from the categorical distribution corresponding to the rest of the scores (logits).206

We continue in this manner until we have sampled σ(1), . . . , σ(n). By [7], the mode of the PL207

distribution is the permutation that sorts s in descending order.208

The Generalized PL (GPL) Distribution. We also propose a generalization of the PL distribution,209

referred to as Generalized Plackett-Luce (GPL) Distribution. Unlike the PL distribution, which uses210

a set of n scores, the GPL distribution uses n2 scores {s1, · · · , sn}, where each si = {si,1, . . . , si,n}211

consists of n scores. The GPL distribution is constructed as follows,212

pGPL(σ) :=
∏n

i=1
exp

(
si,σ(i)

)
/
(∑n

j=i exp
(
si,σ(j)

))
. (9)

Sampling of the GPL distribution begins with sampling σ(1) using n scores s1. For 2 ≤ i ≤ n, we213

remove i− 1 scores from si that correspond to σ(1), . . . , σ(i− 1) and sample σ(i) from a categorical214

distribution constructed from the remaining n − i + 1 scores in si. It is important to note that the215

family of PL distributions is a strict subset of the GPL family. Since the GPL distribution has more216

parameters than the PL distribution, it is expected to be more expressive. In fact, when considering217

their ability to express the delta distribution, which is the target distribution for many permutation218

learning problems, we have the following result.219

Proposition 1. The PL distribution cannot exactly represent a delta distribution. That is, there does220

not exist an s such that pPL = δσ for any σ ∈ Sn, where δσ(σ) = 1 and δσ(π) = 0 for all π ̸= σ.221

But the GPL distribution can represent a delta distribution exactly.222

3.3 Network Architecture and Training223

We now briefly introduce how to use neural networks to parameterize the above distributions used224

in the reverse process. At any time t, given Xt ∈ Rn×d, we use a neural network with parameters225

θ to construct pθ(σ′
t|Xt). In particular, we treat n rows of Xt as n tokens and use a Transformer226

architecture along with the time embedding of t and the positional encoding to predict the previously227

mentioned scores. For example, for the GPL distribution, to predict n2 scores, we introduce n dummy228

tokens that correspond to the n permuted output positions. We then perform a few layers of masked229

self-attention (2n × 2n) to obtain the token embedding Z1 ∈ Rn×dmodel corresponding to n input230

tokens and Z2 ∈ Rn×dmodel corresponding to n dummy tokens. Finally, the GPL score matrix is231

obtained as Sθ = Z1Z
⊤
2 ∈ Rn×n. Since the aforementioned distributions have different numbers of232

scores, the specific architectures of the Transformer differ. We provide more details in Appendix B.233

To learn the diffusion model, we maximize the following variational lower bound:234

Epdata(X0,X)

[
log pθ(X0|X)

]
≥ Epdata(X0,X)q(X1:T |X0,X)

[
log p(XT |X) +

T∑
t=1

log
pθ(Xt−1|Xt)

q(Xt|Xt−1)

]
. (10)

In practice, one can draw samples to obtain the Monte Carlo estimation of the lower bound. Due to235

the complexity of shuffling transition in the forward process, we can not obtain q(Xt|X0) analytically,236

as is done in common diffusion models [16, 3]. Therefore, we have to run the forward process to237

collect samples. Fortunately, it is efficient as the forward process only involves shuffling integers. We238

include more training details in Appendix E.239

3.4 Denoising Schedule via Merging Reverse Steps240

If one merges some steps in the reverse process, sampling and learning would be faster and more241

memory efficient. The variance of the training loss could also be reduced. Specifically, at time t of the242

reverse process, instead of predicting pθ(Xt−1|Xt), we can predict pθ(Xt′ |Xt) for any 0 ≤ t′ < t.243

Given a sequence of timesteps 0 = t0 < · · · < tk = T , we can now model the reverse process as244

pθ(Xt0 , . . . , Xtk |X) = p(XT |X)
∏k

i=1
pθ(Xti−1 |Xti). (11)

To align with the literature of diffusion models, we call the list [t0, . . . , tk] the denoising schedule.245

After incorporating the denoising schedule in Eq. (10), we obtain the loss function:246

L(θ) = Epdata(X0,X)Eq(X1:T |X0,X)

[
− log p(XT |X)−

k∑
i=1

log
pθ(Xti−1 |Xti)

q(Xti |Xti−1)

]
. (12)

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t

0.0

0.2

0.4

0.6

0.8

1.0

TV
 D

ist
an

ce
 to

 U
ni

fro
m

, n
=1

00

(a)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0.2

0.4

0.6

0.8

1.0

(b)
Figure 2: (a) DTV(q

(t)
RS, u) computed using Eq. (14). We choose T = 15 (red dot) based on the

threshold 0.005. (b) A heatmap for DTV(q
(t)
RS, q

(t′)
RS) for n = 100 and 1 ≤ t < t′ ≤ 15, computed

using Eq. (13). Rows are t and columns are t′. We choose the denoising schedule [0, 8, 10, 15].

Note that although we may not have the analytical form of q(Xti |Xti−1
), we can draw samples247

from it. Merging is feasible if the support of pθ(Xti−1
|Xti) is equal or larger than the support248

of q(Xti |Xti−1
); otherwise, the inverse of some forward permutations would be almost surely249

unrecoverable. Therefore, we can implement a non-trivial denoising schedule (i.e., k < T), when250

pθ(σ
′
t|Xt) follows the PL or GPL distribution, as they have whole Sn as their support. However,251

merging is not possible for inverse shuffling methods, as their support is smaller than that of the252

corresponding multi-step forward shuffling. To design a successful denoising schedule, we first253

describe the intuitive principles and then provide some theoretical insights. 1) The length of forward254

diffusion T should be minimal so long as the forward process approaches the uniform distribution. 2)255

If distributions of Xt and Xt+1 are similar, we should merge these two steps. Otherwise, we should256

not merge them, as it would make the learning problem harder.257

To quantify the similarity between distributions shown in 1) and 2), the TV distance is commonly258

used in the literature. In particular, we can measure DTV(q
(t), q(t

′)) for t ̸= t′ and DTV(q
(t), u),259

where q(t) is the distribution at time t in the forward process and u is the uniform distribution. For260

riffle shuffles, the total variation distance can be computed exactly. Specifically, we first introduce261

the Eulerian Numbers An,r [32], i.e., the number of permutations in Sn that have exactly r rising262

sequences where 1 ≤ r ≤ n. An,r can be computed using the following recursive formula An,r =263

rAn−1,r + (n− r + 1)An−1,r−1 where A1,1 = 1. We then have the following result.264

Proposition 2. Let t ̸= t′ be positive integers. Then265

DTV

(
q
(t)
RS, q

(t′)
RS

)
=

1

2

n∑
r=1

An,r

∣∣∣∣∣ 1

2tn

(
n+ 2t − r

n

)
− 1

2t′n

(
n+ 2t

′ − r
n

)∣∣∣∣∣ , (13)

and266

DTV

(
q
(t)
RS, u

)
=

1

2

n∑
r=1

An,r

∣∣∣∣ 1

2tn

(
n+ 2t − r

n

)
− 1

n!

∣∣∣∣ . (14)

267 Note that Eq. (14) was originally given in [19]. We restate it here for completeness. Once the268

Eulerian numbers are precomputed, the TV distances can be computed in O(n) time instead of O(n!).269

Through extensive experiments, we have the following empirical observation. For the principle 1),270

choosing T so that DTV(q
(T)
RS , u) ≈ 0.005 yields good results. For the principle 2), a denoising271

schedule [t0, . . . , tk] with DTV(q
(ti)
RS , q

(ti+1)
RS) ≈ 0.3 for most i works well. We show an example on272

sorting n = 100 four-digit MNIST images in Fig. 2.273

3.5 Reverse Process Decoding274

We now discuss how to decode predictions from the reverse process at test time. In practice, one is275

often interested in the most probable state or a few states with high probabilities under pθ(X0|X).276

However, since we can only draw samples from pθ(X0|X) via running the reverse process, exact277

decoding is intractable. The simplest approximated method is greedy search, i.e., successively finding278

the mode or an approximated mode of pθ(Xti−1
|Xti). Another approach is beam search, which279

7

Method Metrics Noisy MNIST CIFAR-10
2× 2 3× 3 4× 4 5× 5 6× 6 2× 2 3× 3 4× 4

Gumbel-
Sinkhorn
Network [29]

Kendall-Tau ↑ 0.9984 0.6908 0.3578 0.2430 0.1755 0.8378 0.5044 0.4016
Accuracy (%) 99.81 44.65 00.86 0.00 0.00 76.54 6.07 0.21
Correct (%) 99.91 80.20 49.51 26.94 14.91 86.10 43.59 25.31
RMSE ↓ 0.0022 0.1704 0.4572 0.8915 1.0570 0.3749 0.9590 1.0960
MAE ↓ 0.0003 0.0233 0.1005 0.3239 0.4515 0.1368 0.5320 0.6873

DiffSort [34]

Kendall-Tau ↑ 0.9931 0.3054 0.0374 0.0176 0.0095 0.6463 0.1460 0.0490
Accuracy (%) 99.02 5.56 0.00 0.00 0.00 59.18 0.96 0.00
Correct (%) 99.50 42.25 10.77 6.39 3.77 75.48 27.87 12.27
RMSE ↓ 0.0689 1.0746 1.3290 1.4883 1.5478 0.7389 1.2691 1.3876
MAE ↓ 0.0030 0.4283 0.6531 0.8204 0.8899 0.2800 0.8123 0.9737

Error-free
DiffSort [20]

Kendall-Tau ↑ 0.9899 0.2014 0.0100 0.0034 -0.0021 0.6604 0.1362 0.0318
Accuracy (%) 98.62 0.82 0.00 0.00 0.00 60.96 0.68 0.00
Correct (%) 99.28 32.65 7.40 4.39 2.50 75.99 26.75 10.33
RMSE ↓ 0.0814 1.1764 1.3579 1.5084 1.5606 0.7295 1.2820 1.4095
MAE ↓ 0.0041 0.5124 0.6818 0.8424 0.9041 0.2731 0.8260 0.9990

Symmetric
Diffusers
(Ours)

Kendall-Tau ↑ 0.9992 0.8126 0.4859 0.2853 0.1208 0.9023 0.8363 0.2518
Accuracy (%) 99.88 57.38 1.38 0.00 0.00 90.15 70.94 0.64
Correct (%) 99.94 86.16 58.51 37.91 18.54 92.99 86.84 34.69
RMSE ↓ 0.0026 0.0241 0.1002 0.2926 0.4350 0.3248 0.3892 0.8953
MAE ↓ 0.0001 0.0022 0.0130 0.0749 0.1587 0.0651 0.0977 0.5044

Table 1: Results (averaged over 5 runs) on solving the jigsaw puzzle on Noisy MNIST and CIFAR10.

Method Metrics Sequence Length
3 5 7 9 15 32 52 100

DiffSort [34]
Kendall-Tau ↑ 0.930 0.898 0.864 0.801 0.638 0.535 0.341 0.166
Accuracy (%) 93.8 83.9 71.5 52.2 10.3 0.2 0.0 0.0
Correct (%) 95.8 92.9 90.1 85.2 82.3 61.8 42.8 23.2

Error-free
DiffSort [20]

Kendall-Tau ↑ 0.974 0.967 0.962 0.952 0.938 0.879 0.170 0.140
Accuracy (%) 97.7 95.3 92.9 89.6 83.1 57.1 0.0 0.0
Correct (%) 98.4 97.7 97.2 96.3 95.1 90.1 24.2 20.1

Symmetric
Diffusers
(Ours)

Kendall-Tau ↑ 0.976 0.967 0.959 0.950 0.932 0.858 0.786 0.641
Accuracy (%) 98.0 95.5 92.9 90.0 82.6 55.1 27.4 4.5
Correct (%) 98.5 97.6 96.8 96.1 94.5 88.3 82.1 69.3

Table 2: Results (averaged over 5 runs) on the four-digit MNIST sorting benchmark.

maintains a dynamic buffer of k candidates with highest probabilities. Nevertheless, for one-step280

reverse transitions like the GPL distribution, even finding the mode is intractable. To address this, we281

employ a hierarchical beam search that performs an inner beam search within n2 scores at each step282

of the outer beam search. Further details are provided in Appendix C.283

4 Experiments284

We now demonstrate the general applicability and effectiveness of our model through a variety of285

experiments, including sorting 4-digit MNIST numbers, solving jigsaw puzzles, and addressing286

traveling salesman problems. Additional details are provided in the appendix due to space constraints.287

4.1 Sorting 4-digit MNIST Images288

We first evaluate our SymmetricDiffusers on the four-digit MNIST sorting benchmark, a well-289

established testbed for differentiable sorting [5, 8, 13, 20, 33, 34]. Each four-digit image in this290

benchmark is obtained by concatenating 4 individual images from MNIST. For evaluation, we291

employ several metrics to compare methods, including Kendall-Tau coefficient (measuring the292

correlation between rankings), accuracy (percentage of images perfectly reassembled), and correctness293

(percentage of pieces that are correctly placed).294

Ablation Study. We conduct an ablation study to verify our design choices for reverse transition and295

decoding strategies. As shown in Table 3, combining PL with either beam search (BS) or greedy296

search yields good results in terms of Kendall-Tau and correctness metrics. In contrast, the IRS297

(inverse riffle shuffle) method, along with greedy search, performs poorly across all metrics, showing298

the limitations of IRS in handling complicated sorting tasks. Finally, combining GPL and BS achieves299

the best accuracy in correctly sorting the entire sequence of images. Given that accuracy is the most300

8

GPL + BS GPL + Greedy PL + Greedy PL + BS IRS + Greedy

Kendall-Tau ↑ 0.786 0.799 0.799 0.797 0.390
Accuracy (%) 27.4 24.4 26.4 26.4 0.6
Correct (%) 82.1 81.6 83.3 83.1 44.6

Table 3: Ablation study on transitions of reverse diffusion and decoding strategies. Results are
averaged over three runs on sorting 52 four-digit MNIST images.

Method OR Solvers Learning-Based Models
Gurobi [14] Concorde [1] LKH-3 [15] 2-Opt [25] GCN* [18] DIFUSCO* [43] Ours

Tour Length ↓ 3.842 3.843 3.842 4.020 3.850 3.883 3.849
Optimality Gap (%) ↓ 0.00 0.00 0.00 4.64 0.21 1.07 0.18

Table 4: Results on TSP-20. * means we remove the post-processing heuristics for a fair comparison.

challenging metric to improve, we selecte GPL and BS for all remaining experiments. More ablation301

study (e.g., denoising schedule) is provided in Appendix E.2.302

Full Results. From Table 2, we can see that Error-free DiffSort achieves the best performance in303

sorting sequences with lengths up to 32. However, its performances drop significantly with long304

sequences (e.g., length of 52 or 100). Meanwhile, DiffSort performs the worse due to the error305

accumulation of its soft differentiable swap function [20, 33]. In contrast, our method is on par with306

Error-free DiffSort in sorting short sequences and significantly outperforms others on long sequences.307

4.2 Jigsaw Puzzle308

We then explore image reassembly from segmented "jigsaw" puzzles [29, 31, 39]. We evaluate the309

performance using the MNIST and the CIFAR10 datasets, which comprises puzzles of up to 6×6 and310

4×4 pieces respectively. We add slight noise to pieces from the MNIST dataset to ensure background311

pieces are distinctive. To evaluate our models, we use Kendall-Tau coefficient, accuracy, correctness,312

RMSE (root mean square error of reassembled images), and MAE (mean absolute error) as metrics.313

Table 1 presents results comparing our method with the Gumbel-Sinkhorn Network[29], Diffsort314

[34], and Error-free Diffsort [20]. DiffSort and Error-free DiffSort are primarily designed for sorting315

high-dimensional ordinal data which have clearly different patterns. Since jigsaw puzzles on MNIST316

and CIFAR10 contain pieces that are visually similar, these methods do not perform well. The317

Gumbel-Sinkhorn performs better for tasks involving fewer than 4× 4 pieces. In more challenging318

scenarios (e.g., 5× 5 and 6× 6), our method significantly outperforms all competitors.319

4.3 The Travelling Salesman Problem320

At last, we explore the travelling salesman problem (TSP) to demonstrate the general applicability of321

our model. TSPs are classical NP-complete combinatorial optimization problems which are solved322

using integer programming or heuristic solvers [2, 12]. There exists a vast literature on learning-based323

models to solve TSPs [22, 23, 18, 17, 6, 24, 10, 36, 21, 43, 30]. They often focus on the Euclidean324

TSPs, which are formulated as follows. Let V = {v1, . . . , vn} be points in R2. We need to find some325

σ ∈ Sn such that
∑n

i=1 ∥vσ(i) − vσ(i+1)∥2 is minimized, where we let σ(n+ 1) := σ(1). Further326

experimental details are provided in Appendix B.327

We compare with operations research (OR) solvers and other learning based approaches on TSP328

instances with 20 nodes. The metrics are the total tour length and the optimality gap. Given the ground329

truth (GT) length produced by the best OR solver, the optimality gap is given by
(
predicted length−330

(GT length)
)
/(GT length). As shown in Table 4, SymmetricDiffusers achieves comparable results331

with both OR solvers and the state-of-the-art learning-based methods.332

5 Conclusion333

In this paper, we introduce a novel discrete diffusion model over finite symmetric groups. We identify334

the riffle shuffle as an effective forward transition and provide empirical rules for selecting the335

diffusion length. Additionally, we propose a generalized PL distribution for the reverse transition,336

which is provably more expressive than the PL distribution. We further introduce a theoretically337

grounded "denoising schedule" to improve sampling and learning efficiency. Extensive experiments338

verify the effectiveness of our proposed model. In the future, we are interested in generalizing our339

model to general finite groups and exploring diffusion models on Lie groups.340

9

References341

[1] David Applegate, Robert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver, 2006.342

[2] Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman and343

other geometric problems. J. ACM, 45(5):753–782, Sep 1998.344

[3] Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.345

Structured denoising diffusion models in discrete state-spaces, 2023.346

[4] Dave Bayer and Persi Diaconis. Trailing the dovetail shuffle to its lair. The Annals of Applied347

Probability, 2(2):294 – 313, 1992.348

[5] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable349

sorting and ranking. In International Conference on Machine Learning, pages 950–959. PMLR,350

2020.351

[6] Xavier Bresson and Thomas Laurent. The transformer network for the traveling salesman352

problem, 2021.353

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise354

approach to listwise approach. In Proceedings of the 24th International Conference on Machine355

Learning, ICML ’07, pages 129–136, New York, NY, USA, 2007. Association for Computing356

Machinery.357

[8] Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranking and sorting using358

optimal transport. Advances in neural information processing systems, 32, 2019.359

[9] Persi Diaconis. Group representations in probability and statistics. Lecture notes-monograph360

series, 11:i–192, 1988.361

[10] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to362

arbitrarily large tsp instances, 2021.363

[11] E. N. Gilbert. Theory of shuffling. Bell Telephone Laboratories Memorandum, 1955.364

[12] Teofilo F. Gonzalez. Handbook of Approximation Algorithms and Metaheuristics (Chapman &365

Hall/Crc Computer & Information Science Series). Chapman & Hall/CRC, 2007.366

[13] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting367

networks via continuous relaxations. In International Conference on Learning Representations,368

2018.369

[14] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.370

[15] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling371

salesman and vehicle routing problems, Dec 2017.372

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.373

[17] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning374

tsp requires rethinking generalization. In International Conference on Principles and Practice375

of Constraint Programming, 2021.376

[18] Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional377

network technique for the travelling salesman problem, 2019.378

[19] Shihan Kanungo. Mixing time estimates for the riffle shuffle. Euler Circle, 2020.379

[20] Jungtaek Kim, Jeongbeen Yoon, and Minsu Cho. Generalized neural sorting networks with error-380

free differentiable swap functions. In International Conference on Learning Representations381

(ICLR), 2024.382

[21] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural383

combinatorial optimization, 2023.384

10

[22] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional385

networks, 2017.386

[23] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!,387

2019.388

[24] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai389

Min. Pomo: Policy optimization with multiple optima for reinforcement learning, 2021.390

[25] Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the travelling-salesman391

problem. Operations research, 21(2):498–516, 1973.392

[26] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.393

[27] R. D. Luce. Individual Choice Behavior. John Wiley, 1959.394

[28] Colin L Mallows. Non-null ranking models. i. Biometrika, 44(1/2):114–130, 1957.395

[29] Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permuta-396

tions with gumbel-sinkhorn networks. In International Conference on Learning Representations,397

2018.398

[30] Yimeng Min, Yiwei Bai, and Carla P. Gomes. Unsupervised learning for solving the travelling399

salesman problem, 2024.400

[31] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving401

jigsaw puzzles. In European conference on computer vision, pages 69–84. Springer, 2016.402

[32] OEIS Foundation Inc. The eulerian numbers, entry a008292 in the On-Line Encyclopedia of403

Integer Sequences, 2024. Published electronically at http://oeis.org/A008292.404

[33] Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Differentiable sorting405

networks for scalable sorting and ranking supervision. In International conference on machine406

learning, pages 8546–8555. PMLR, 2021.407

[34] Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Monotonic differentiable408

sorting networks. In International Conference on Learning Representations (ICLR), 2022.409

[35] R. L. Plackett. The analysis of permutations. Applied Statistics, 24(2):193 – 202, 1975.410

[36] Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for411

combinatorial optimization problems, 2022.412

[37] J. Reeds. Theory of shuffling. Unpublished Manuscript, 1981.413

[38] Laurent Saloff-Coste. Random Walks on Finite Groups, pages 263–346. Springer Berlin414

Heidelberg, Berlin, Heidelberg, 2004.415

[39] Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, and Stephen Gould. Deeppermnet:416

Visual permutation learning. In Proceedings of the IEEE Conference on Computer Vision and417

Pattern Recognition, pages 3949–3957, 2017.418

[40] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-419

pervised learning using nonequilibrium thermodynamics. In Francis Bach and David Blei,420

editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of421

Proceedings of Machine Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015.422

PMLR.423

[41] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data424

distribution, 2020.425

[42] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and426

Ben Poole. Score-based generative modeling through stochastic differential equations, 2021.427

[43] Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial428

optimization, 2023.429

11

http://oeis.org/A008292

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,430

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.431

[45] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal432

Frossard. Digress: Discrete denoising diffusion for graph generation, 2023.433

[46] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-434

ment learning. Machine Learning, 8(3-4):229–256, 1992.435

12

A Additional Details of the GSR Riffle Shuffle Model436

There are many equivalent definitions of the GSR riffle shuffle. Here we also introduce the Geometric437

Description [4], which is easy to implement (and is how we implement riffle shuffles in our experi-438

ments). We first sample n points in the unit interval [0, 1] uniformly and independently, and suppose439

the points are labeled in order as x1 < x2 < · · · < xn. Then, the permutation that sorts the points440

{2x1}, . . . , {2xn} follows the GSR distribution, where {x} := x− ⌊x⌋ is the fractional part of x.441

B Details of Our Network Architecture442

We now discuss how to use neural networks to produce the parameters of the distributions discussed443

in Section 3.2.1 and 3.2.2. Fix time t, and suppose Xt =
(
x
(t)
1 , . . . ,x

(t)
n

)⊤ ∈ Rn×d. Let encoderθ444

be an object-specific encoder such that encoderθ(Xt) ∈ Rn×dmodel . For example, encoderθ can be445

a CNN if Xt is an image. Let446

Yt := encoderθ(Xt) + time_embd(t) =
(
y
(t)
1 , . . . ,y(t)

n

)⊤ ∈ Rn×dmodel , (15)

where time_embd is the sinusoidal time embedding. Then, we would like to feed the embeddings into447

a Transformer encoder [44]. Let transformer_encoderθ be the encoder part of the Transformer448

architecture. However, each of the distributions we discussed previously has different number of449

parameters, so we will have to discuss them separately.450

Inverse Transposition. For Inverse Transposition, we have n + 1 parameters. To obtain n + 1451

tokens from transformer_encoderθ, we append a dummy token of 0’s to Yt. Then we input452 (
y
(t)
1 , . . . ,y

(t)
n , 0

)⊤
into transformer_encoderθ to obtain Z ∈ R(n+1)×dmodel . Finally, we apply453

an MLP to obtain (s1, . . . , sn, k) ∈ Rn+1.454

Inverse Insertion, Inverse Riffle Shuffle, PL Distribution. These three distributions all require455

exactly n parameters, so we can directly feed Yt into transformer_encoderθ. Let the output456

of transformer_encoderθ be Z ∈ Rn×dmodel , where we then apply an MLP to obtain the scores457

sθ ∈ Rn.458

The GPL Distribution. The GPL distribution requires n2 parameters. We first append n dummy459

tokens of 0’s to Yt, with the intent that the jth dummy token would learn information about the460

jth column of the GPL parameter matrix, which represents where the jth component should be461

placed. We then pass
(
y
(t)
1 , . . . ,y

(t)
n , 0, . . . , 0

)⊤ ∈ R2n×dmodel to transformer_encoderθ. When462

computing attention, we further apply a 2n× 2n attention mask463

M :=

[
0 A
0 B

]
, where A is an n× n matrix of−∞, B =

−∞ −∞ · · · −∞
0 −∞ · · · −∞
...

...
. . .

...
0 0 · · · −∞

 is n× n.

The reason for having B as an upper triangular matrix of −∞ is that information about the jth464

component should only require information from the previous components. Let465

transformer_encoderθ(Yt,M) =

[
Z1

Z2

]
,

where Z1, Z2 ∈ Rn×dmodel . Finally, we obtain the GPL parameter matrix as Sθ = Z1Z
⊤
2 ∈ Rn×n.466

For hyperparameters, we refer the readers to Appendix E.4.467

C Additional Details of Decoding468

Greedy Search. At each timestep ti in the denoising schedule, we can greedily obtain or approx-469

imate the mode of pθ(Xti−1 |Xti). We can then use the (approximated) mode Xti−1 for the next470

timestep pθ(Xti−2
|Xti−1

). Note that the final X0 obtained using such a greedy heuristic may not471

necessarily be the mode of pθ(X0|X).472

13

Beam Search. We can use beam search to improve the greedy approach. The basic idea is that,473

at each timestep ti in the denoising schedule, we compute or approximate the top-k-most-probable474

results from pθ(Xti−1 |Xti). For each of the top-k results, we sample top-k from pθ(Xti−2 |Xti−1).475

Now we have k2 candidates for Xti−2 , and we only keep the top k of the k2 candidates.476

However, it is not easy to obtain the top-k-most-probable results for some of the distributions. Here477

we provide an algorithm to approximate top-k of the PL and the GPL distribution. Since the PL478

distribution is a strict subset of the GPL distribution, it suffices to only consider the GPL distribution479

with parameter matrix S. The algorithm for approximating top-k of the GPL distribution is another480

beam search. We first pick the k largest elements from the first row of S. For each of the k largest481

elements, we pick k largest elements from the second row of S, excluding the corresponding element482

picked in the first row. We now have k2 candidates for the first two elements of a permutation, and483

we only keep the top-k-most-probable candidates. We then continue in this manner.484

D Proofs485

Proposition 1. The PL distribution cannot exactly represent a delta distribution. That is, there does486

not exist an s such that pPL = δσ for any σ ∈ Sn, where δσ(σ) = 1 and δσ(π) = 0 for all π ̸= σ.487

But the GPL distribution can represent a delta distribution exactly.488

Proof. Assume for a contradiction that there exists some σ ∈ Sn and s such that PLs = δσ. Then489

we have490
n∏

i=1

exp
(
sσ(i)

)∑n
j=i exp

(
sσ(j)

) = 1.

Since each of the term in the product is less than or equal to 1, we must have491

exp
(
sσ(i)

)∑n
j=i exp

(
sσ(j)

) = 1 (16)

for all i ∈ [n]. In particular, we have492

exp
(
sσ(1)

)∑n
j=1 exp

(
sσ(j)

) = 1,

which happens if and only if sσ(j) = −∞ for all j ≥ 2. But this contradicts (16).493

We then show that the GPL distribution can represent a delta distribution exactly. To see this, we fix494

σ ∈ Sn. For all i ∈ [n], we let si,σ(i) = 0 and si,j = −∞ for all j ̸= σ(i). Then GPL(sij) = δσ .495

Proposition 2. Let t ̸= t′ be positive integers. Then496

DTV

(
q
(t)
RS, q

(t′)
RS

)
=

1

2

n∑
r=1

An,r

∣∣∣∣∣ 1

2tn

(
n+ 2t − r

n

)
− 1

2t′n

(
n+ 2t

′ − r
n

)∣∣∣∣∣ , (13)

and497

DTV

(
q
(t)
RS, u

)
=

1

2

n∑
r=1

An,r

∣∣∣∣ 1

2tn

(
n+ 2t − r

n

)
− 1

n!

∣∣∣∣ . (14)

498
Proof. Let σ ∈ Sn. It was shown in [4] that499

q
(t)
RS(σ) =

1

2tn
·
(
n+ 2t − r

n

)
,

where r is the number of rising sequences of σ. Note that if two permutations have the same number500

of rising sequences, then they have equal probability. Hence, we have501

DTV

(
q
(t)
RS − q

(t′)
RS

)
=

1

2

∑
σ∈Sn

∣∣∣q(t)RS(σ)− q
(t′)
RS (σ)

∣∣∣ = 1

2

n∑
r=1

An,r

∣∣∣q(t)RS(σ)− q
(t′)
RS (σ)

∣∣∣
=

1

2

n∑
r=1

An,r

∣∣∣∣∣ 1

2tn

(
n+ 2t − r

n

)
− 1

2t′n

(
n+ 2t

′ − r
n

)∣∣∣∣∣ ,
as claimed. For (14), replace q(t

′)
RS (σ) with u(σ) = 1

n! in the above derivations.502

14

E Additional Details on Experiments503

E.1 Datasets504

Jigsaw Puzzle. We created the Noisy MNIST dataset by adding i.i.d. Gaussian noise with a mean505

of 0 and a standard deviation of 0.01 to each pixel of the MNIST images. No noise was added to the506

CIFAR-10 images. The noisy images are then saved as the Noisy MNIST dataset. During training,507

each image is divided into n × n patches. A permutation is then sampled uniformly at random508

to shuffle these patches. The training set for Noisy MNIST comprises 60,000 images, while the509

CIFAR-10 training set contains 10,000 images. The Noisy MNIST test set, which is pre-shuffled, also510

includes 10,000 images. The CIFAR-10 test set, which shuffles images on the fly, contains 10,000511

images as well.512

Sort 4-Digit MNIST Numbers. For each training epoch, we generate 60,000 sequences of 4-digit513

MNIST images, each of length n, constructed dynamically on the fly. These 4-digit MNIST numbers514

are created by concatenating four MNIST images, each selected uniformly at random from the entire515

MNIST dataset, which consists of 60,000 images. For testing purposes, we similarly generate 10,000516

sequences of n 4-digit MNIST numbers on the fly.517

TSP. We take the TSP-20 dataset from [17] 1. The train set consists of 1,512,000 graphs with 20518

nodes, where each node is an i.i.d. sample from the unit square [0, 1]2. The labels are optimal TSP519

tours provided by the Concorde solver [1]. The test set consists of 1,280 graphs with 20 nodes, with520

ground truth tour generated by the Concorde solver as well.521

E.2 Ablation Studies522

Choices for Reverse Transition and Decoding Strategies. As demonstrated in Table 5, we have523

explored various combinations of forward and inverse shuffling methods across tasks involving524

different sequence lengths. Both GPL and PL consistently excel in all experimental scenarios,525

highlighting their robustness and effectiveness. It is important to note that strategies such as random526

transposition and random insertion paired with their respective inverse operations, are less suitable527

for tasks with longer sequences. This limitation is attributed to the prolonged mixing times required528

by these two shuffling methods, a challenge that is thoroughly discussed in Section 3.1.2.529

Denoising Schedule. We also conduct an ablation study on how we should merge reverse steps. As530

shown in Table 6, the choice of the denoising schedule can significantly affect the final performance.531

In particular, for n = 100 on the Sort 4-Digit MNIST Numbers task, the fact that [0, 15] has 0532

accuracy justifies our motivation to use diffusion to break down learning into smaller steps. The533

result we get also matches with our proposed heuristic in Section 3.4.534

E.3 Latent Loss in Jigsaw Puzzle535

In the original setup of the Jigsaw Puzzle experiment using the Gumbel-Sinkhorn network [29],536

the permutations are latent. That is, the loss function in Gumbel-Sinkhorn is a pixel-level MSE537

loss and does not use the ground truth permutation label. However, our loss function (12) actually538

(implicitly) uses the ground truth permutation that maps the shuffled image patches to their original539

order. Therefore, for fair comparison with the Gumbel-Sinkhorn network in the Jigsaw Puzzle540

experiment, we modify our loss function so that it does not use the ground truth permutation. Recall541

from Section 3.2 that we defined542

pθ(Xt−1|Xt) =
∑
σ′
t∈T

p(Xt−1|Xt, σ
′
t)pθ(σ

′
t|Xt). (17)

In our original setup, we defined p(Xt−1|Xt, σ
′
t) as a delta distribution δ(Xt−1 = Qσ′

t
Xt), but this543

would require that we know the permutation that turns Xt−1 to Xt, which is part of the ground truth.544

So instead, we parameterize p(Xt−1|Xt, σ
′
t) as a Gaussian distribution N

(
Xt−1|Qσt

Xt, I
)
. At the545

same time, we note that to find the gradient of (12), it suffices to find the gradient of the log of (17).546

1https://github.com/chaitjo/learning-tsp?tab=readme-ov-file

15

https://github.com/chaitjo/learning-tsp?tab=readme-ov-file

Sequence Length

9 32 52

RS (forward) + GPL (reverse) + greedy

Denoising Schedule [0, 3, 5, 9] [0, 5, 7, 12] [0, 5, 6, 7, 10, 13]
Kendall-Tau ↑ 0.948 0.857 0.779
Accuracy (%) 89.4 54.8 24.4
Correct (%) 95.9 88.1 81.6

RS (forward) + PL (reverse) + greedy

Denoising Schedule [0, 3, 5, 9] [0, 5, 7, 12] [0, 5, 6, 7, 10, 13]
Kendall-Tau 0.953 0.867 0.799
Accuracy (%) 90.9 56.4 26.4
Correct (%) 96.4 89.0 83.3

RS (forward) + PL (reverse) + beam search

Denoising Schedule [0, 3, 5, 9] [0, 5, 7, 12] [0, 5, 6, 7, 10, 13]
Kendall-Tau ↑ 0.955 0.869 0.797
Accuracy (%) 91.1 57.2 26.4
Correct (%) 96.5 89.2 83.1

RS (forward) + IRS (reverse) + greedy

T 9 12 13
Kendall-Tau ↑ 0.947 0.794 0.390
Accuracy (%) 88.6 24.4 0.6
Correct (%) 95.9 82.5 44.6

RT (forward) + IT (reverse) + greedy

T (using approx. n
2 log n) 15 55 105

Kendall-Tau ↑ 0.490
Out of MemoryAccuracy (%) 18.0

Correct (%) 59.5

RI (forward) + II (reverse) + greedy

T (using approx. n log n) 25 110 205
Kendall-Tau ↑ 0.954

Out of MemoryAccuracy (%) 91.1
Correct (%) 96.4

Table 5: More results on sorting the 4-digit MNIST dataset using different combinations of forward
process methods and reverse process methods. Results averaged over 3 runs with different seeds. RS:
riffle shuffle; GPL: generalized Plackett-Luce; IRS: inverse riffle shuffle; RT: random transposition;
IT: inverse transposition; RI: random insertion; II: inverse insertion.

Denoising Schedule [0, 15] [0, 8, 9, 15] [0, 7, 8, 9, 15] [0, 7, 8, 10, 15] [0, 8, 10, 15]

Kendall-Tau ↑ 0.000 0.316 0.000 0.000 0.646
Accuracy (%) 0.0 0.0 0.0 0.0 4.5
Correct (%) 1.0 39.6 1.0 1.0 69.8

Table 6: Results of sorting 100 4-digit MNIST images using various denoising schedules with the
combination of RS, GPL and beam search consistently applied.

We use the REINFORCE trick [46] to find the gradient of log pθ(Xt−1|Xt), which gives us547

∇θ log pθ(Xt−1|Xt)

=
1∑

σ′
t∈T

p(Xt−1|Xt, σ′
t)pθ(σ

′
t|Xt)

·
∑
σ′
t∈T

p(Xt−1|Xt, σ
′
t)∇θpθ(σ

′
t|Xt)

=
1∑

σ′
t∈T

p(Xt−1|Xt, σ′
t)pθ(σ

′
t|Xt)

·
∑
σ′
t∈T

p(Xt−1|Xt, σ
′
t)pθ(σ

′
t|Xt)

(
∇θ log pθ(σt|Xt)

)

=
Epθ(σt|Xt)

[
p(Xt−1|Xt, σ

′
t)∇θ log pθ(σt|Xt)

]
Epθ(σt|Xt)

[
p(Xt−1|Xt, σ′

t)
]

≈
N∑

n=1

p
(
Xt−1|Xt, σ

(n)
t

)
∑N

m=1 p
(
Xt−1|Xt, σ

(m)
t

) · ∇θ log pθ

(
σ
(n)
t |Xt

)
,

16

where we have used Monte-Carlo estimation in the last step, and σ(1)
t , . . . , σ

(N)
t ∼ pθ(σt|Xt). We548

further add an entropy regularization term−λ·Epθ(σt|Xt) [log pθ(σt|Xt)] to each of log pθ(Xt−1|Xt).549

Using the same REINFORCE and Monte-Carlo trick, we obtain550

∇θ

(
−λ · Epθ(σt|Xt)

[
log pθ(σt|Xt)

])
≈

N∑
n=1

−λ log pθ
(
σ
(n)
t |Xt

)
∇θ log pθ

(
σ
(n)
t |Xt

)
,

where σ(1)
t , . . . , σ

(N)
t ∼ pθ(σt|Xt). Therefore, we have551

∇θ

(
log pθ(Xt−1|Xt)− λ · Epθ(σt|Xt)

[
log pθ(σt|Xt)

])

≈
N∑

n=1

p
(
Xt−1|Xt, σ

(n)
t

)
∑N

m=1 p
(
Xt−1|Xt, σ

(m)
t

) − λ log pθ (σ(n)
t |Xt

)
︸ ︷︷ ︸

weight

 · ∇θ log pθ

(
σ
(n)
t |Xt

)
, (18)

where σ(1)
t , . . . , σ

(N)
t ∼ pθ(σt|Xt). We then substitute in552

p
(
Xt−1|Xt, σ

(n)
t

)
= N

(
Xt−1|Qσ

(n)
t
Xt, I

)
for all n ∈ [N]. Finally, we also subtract the exponential moving average weight as a control variate553

for variance reduction, where the exponential moving average is given by ema← ema_rate · ema+554

(1− ema_rate) · weight for each gradient descent step.555

E.4 Training Details and Architecture Hyperparameters556

Hardware. The Jigsaw Puzzle and Sort 4-Digit MNIST Numbers experiments are trained and557

evaluated on the NVIDIA A40 GPU. The TSP experiments are trained and evaluated on the NVIDIA558

A40 and A100 GPU.559

Jigsaw Puzzle. For the Jigsaw Puzzle experiments, we use the AdamW optimizer [26] with weight560

decay 1e-2, ε = 1e-9, and β = (0.9, 0.98). We use the Noam learning rate scheduler given in [44]561

with 51,600 warmup steps for Noisy MNIST and 46,000 steps for CIFAR-10. We train for 120562

epochs with a batch size of 64. When computing the loss (12), we use Monte-Carlo estimation for the563

expectation and sample 3 trajectories. For REINFORCE, we sampled 10 times for the Monte-Carlo564

estimation in (18), and we used an entropy regularization rate λ = 0.05 and an ema_rate of 0.995.565

The neural network architecture and related hyperparameters are given in Table 7. The denoising566

schedules, with riffle shuffles as the forward process and GPL as the reverse process, are give in Table567

8. For beam search, we use a beam size of 200 when decoding from GPL, and we use a beam size of568

20 when decoding along the diffusion denoising schedule.569

Layer Details

Convolution Output channels 32, kernel size 3,
padding 1, stride 1

Batch Normalization −
ReLU −

Max-pooling Pooling 2
Fully-connected Output dimension (dim_after_conv+ 128)/2

ReLU −
Fully-connected Output dimension 128

Transformer encoder 7 layers, 8 heads, model dimension (dmodel) 128,
feed-forward dimension 512, dropout 0.1

Table 7: Jigsaw puzzle neural network architecture and hyperparameters.

17

Number of patches per side Denoising schedule
2× 2 [0, 2, 7]
3× 3 [0, 3, 5, 9]
4× 4 [0, 4, 6, 10]
5× 5 [0, 5, 7, 11]
6× 6 [0, 6, 8, 12]

Table 8: Denoising schedules for the Jigsaw Puzzle task, where we use riffle shuffle in the forward
process and GPL in the revserse process.

Sort 4-Digit MNIST Numbers. For the task of sorting 4-digit MNIST numbers, we use the exact570

training and beam search setup as the Jigsaw Puzzle, except that we do not need to use REINFORCE.571

The neural network architecture is given in Table 9. The denoising schedules, with riffle shuffles as572

the forward process and GPL as the reverse process, are give in Table 10.573

Layer Details

Convolution Output channels 32, kernel size 5,
padding 2, stride 1

Batch Normalization −
ReLU −

Max-pooling Pooling 2

Convolution Output channels 64, kernel size 5,
padding 2, stride 1

Batch Normalization −
ReLU −

Max-pooling Pooling 2
Fully-connected Output dimension (dim_after_conv+ 128)/2

ReLU −
Fully-connected Output dimension 128

Transformer encoder 7 layers, 8 heads, model dimension (dmodel) 128,
feed-forward dimension 512, dropout 0.1

Table 9: Sort 4-digit MNIST numbers neural network architecture and hyperparameters.

Sequence Length n Denoising schedule
3 [0, 2, 7]
5 [0, 2, 8]
7 [0, 3, 8]
9 [0, 3, 5, 9]
15 [0, 4, 7, 10]
32 [0, 5, 7, 12]
52 [0, 5, 6, 7, 10, 13]

100 [0, 8, 10, 15]

Table 10: Denoising schedules for the Sort 4-Digit MNIST Numbers task, where we use riffle shuffle
in the forward process and GPL in the revserse process.

TSP. For solving the TSP, we perform supervised learning to train our SymmetricDiffusers to solve574

the TSP. Let σ∗ be an optimal permutation, and let X0 be the list of nodes ordered by σ∗. We note575

that any cyclic shift of X0 is also optimal. Thus, for simplicity and without loss of generality, we576

always assume σ∗(1) = 1. In the forward process of SymmetricDiffusers, we only shuffle the second577

to the nth node (or component). In the reverse process, we mask certain parameters of the reverse578

distribution so that we will always sample a permutation with σt(1) = 1.579

18

The architecture details are slightly different for TSP, since we need to input both node and edge580

features into our network. Denote by Xt the ordered list of nodes at time t. We obtain Yt ∈ Rn×dmodel581

as in Eq. (15), where encoderθ is now a sinusoidal embedding of the 2D coordinates. LetDt ∈ Rn×n582

be the matrix representing the pairwise distances of points in Xt, respecting the order in Xt. Let583

Et ∈ R(
n
2) be the flattened vector of the upper triangular part of Dt. We also apply sinusoidal584

embedding to Et and add time_embd(t) to it. We call the result Ft ∈ R(
n
2)×dmodel .585

Now, instead of applying the usual transformer encoder with self-attentions, we alternate between586

cross-attentions and self-attentions. For cross-attention layers, we use the node representations from587

the previous layer as the query, and we always use K = V = Ft. We also apply an attention mask588

to the cross-attention, so that each node will only attend to edges that it is incident with. For self-589

attention layers, we always use the node representations from the previous layer as input. We always590

use an even number of layers, with the first layer being a cross-attention layer, and the last layer591

being a self-attention layer structured to produce the required parameters for the reverse distribution592

as illustrated in Appendix B. For hyperparameters, we use 16 alternating layers, 8 attention heads,593

dmodel = 256, feed-forward hidden dimension 1024, and dropout rate 0.1.594

For training details on the TSP-20 task, we use the AdamW optimizer [26] with weight decay 1e-4,595

ε = 1e-8, and β = (0.9, 0.999). We use the cosine annealing learning rate scheduler starting from596

2e-4 and ending at 0. We train for 50 epochs with a batch size of 512. When computing the loss597

(12), we use Monte-Carlo estimation for the expectation and sample 1 trajectory. We use a denoising598

schedule of [0, 4, 5, 7], with riffle shuffles as the forward process and GPL as the reverse process.599

Finally, we use beam search for decoding, and we use a beam size of 256 both when decoding from600

GPL and decoding along the denoising schedule.601

E.5 Baselines Implementation Details602

Gumbel-Sinkhorn Network. We have re-implemented the Gumbel-Sinkhorn Network [29] for603

application on jigsaw puzzles, following the implementations provided in the official repository2. To604

ensure a fair comparison, we conducted a thorough grid search of the model’s hyper-parameters. The605

parameters included in our search space are as follows,606

Hyperparameter Values

Learning Rate (lr) {10−3, 10−4, 10−5}
Batch Size {50}
Hidden Channels {64, 128}
Kernel Size {3, 5}
τ {0.2, 0.5, 1, 2, 5}
Number of Sinkhorn Iterations (n_sink_iter) {20}
Number of Samples {10}

Table 11: Hyperparameter Search Space for the Gumbel-Sinkhorn Network

Diffsort & Error-free Diffsort We have implemented two differentiable sorting networks from607

the official repository3 specific to error-free diffsort. For sorting 4-digit MNIST images, error-free608

diffsort employs TransformerL as its backbone, with detailed hyperparameters listed in Table 12.609

Conversely, Diffsort uses a CNN as its backbone, with a learning rate set to 10−3.5; the relevant610

hyperparameters are outlined in Table 13.611

For jigsaw puzzle tasks, error-free diffsort continues to utilize a transformer, whereas Diffsort employs612

a CNN. For other configurations, we align the settings with those of tasks having similar sequence613

lengths in the 4-digit MNIST sorting task. For instance, for 3 × 3 puzzles, we apply the same614

configuration as used for sorting tasks with a sequence length of 9.615

TSP. For the baselines for TSP, we first have 4 traditional operations research solvers. Gurobi [14]616

and Concorde [1] are known as exact solvers, while LKH-3 [15] is a strong heuristic and 2-Opt [25]617

2https://github.com/google/gumbel_sinkhorn
3https://github.com/jungtaekkim/error-free-differentiable-swap-functions

19

https://github.com/google/gumbel_sinkhorn
https://github.com/jungtaekkim/error-free-differentiable-swap-functions

Sequence Length Steepness Sorting Network Loss Weight Learning Rate

3 10 odd even 1.00 10−4

5 26 odd even 1.00 10−4

7 31 odd even 1.00 10−4

9 34 odd even 1.00 10−4

15 25 odd even 0.10 10−4

32 124 odd even 0.10 10−4

52 130 bitonic 0.10 10−3.5

100 140 bitonic 0.10 10−3.5

Table 12: Hyperparameters for Error-Free Diffsort on Sorting 4-Digit MNIST Numbers

Sequence Length Steepness Sorting Network
3 6 odd even
5 20 odd even
7 29 odd even
9 32 odd even

15 25 odd even
32 25 bitonic
52 25 bitonic

100 25 bitonic

Table 13: Hyperparameters for Diffsort on Sorting 4-Digit MNIST Numbers

is a weak heuristic. For LKH-3, we used 500 trials, and for 2-Opt, we used 5 random initial guesses618

with seed 42.619

For the GCN model[18], we utilized the official repository4 and adhered closely to its default620

configuration for the TSP-20 dataset. For DIFUSCO[43], we sourced it from its official repository5621

and followed the recommended configuration of TSP-50 dataset, with a minor adjustment in the batch622

size. We increased the batch size to 512 to accelerate the training process. For fair comparison, we623

also remove the post-processing heuristics in both models during the evaluation.624

F Limitations625

Despite the success of this method on various tasks, the model presented in this paper still requires a626

time-space complexity of O(n2) due to its reliance on the parametric representation of GPL and the627

backbone of transformer attention layers. This complexity poses a significant challenge in scaling up628

to applications involving larger symmetric groups or Lie groups.629

4https://github.com/chaitjo/graph-convnet-tsp
5https://github.com/Edward-Sun/DIFUSCO

20

https://github.com/chaitjo/graph-convnet-tsp
https://github.com/Edward-Sun/DIFUSCO

NeurIPS Paper Checklist630

1. Claims631

Question: Do the main claims made in the abstract and introduction accurately reflect the632

paper’s contributions and scope?633

Answer: [Yes]634

Justification: Our abstract and Section 1 accurately summarize the paper’s contributions and635

scope.636

Guidelines:637

• The answer NA means that the abstract and introduction do not include the claims638

made in the paper.639

• The abstract and/or introduction should clearly state the claims made, including the640

contributions made in the paper and important assumptions and limitations. A No or641

NA answer to this question will not be perceived well by the reviewers.642

• The claims made should match theoretical and experimental results, and reflect how643

much the results can be expected to generalize to other settings.644

• It is fine to include aspirational goals as motivation as long as it is clear that these goals645

are not attained by the paper.646

2. Limitations647

Question: Does the paper discuss the limitations of the work performed by the authors?648

Answer: [Yes]649

Justification: We discuss the limitations of the work in Appendix F.650

Guidelines:651

• The answer NA means that the paper has no limitation while the answer No means that652

the paper has limitations, but those are not discussed in the paper.653

• The authors are encouraged to create a separate "Limitations" section in their paper.654

• The paper should point out any strong assumptions and how robust the results are to655

violations of these assumptions (e.g., independence assumptions, noiseless settings,656

model well-specification, asymptotic approximations only holding locally). The authors657

should reflect on how these assumptions might be violated in practice and what the658

implications would be.659

• The authors should reflect on the scope of the claims made, e.g., if the approach was660

only tested on a few datasets or with a few runs. In general, empirical results often661

depend on implicit assumptions, which should be articulated.662

• The authors should reflect on the factors that influence the performance of the approach.663

For example, a facial recognition algorithm may perform poorly when image resolution664

is low or images are taken in low lighting. Or a speech-to-text system might not be665

used reliably to provide closed captions for online lectures because it fails to handle666

technical jargon.667

• The authors should discuss the computational efficiency of the proposed algorithms668

and how they scale with dataset size.669

• If applicable, the authors should discuss possible limitations of their approach to670

address problems of privacy and fairness.671

• While the authors might fear that complete honesty about limitations might be used by672

reviewers as grounds for rejection, a worse outcome might be that reviewers discover673

limitations that aren’t acknowledged in the paper. The authors should use their best674

judgment and recognize that individual actions in favor of transparency play an impor-675

tant role in developing norms that preserve the integrity of the community. Reviewers676

will be specifically instructed to not penalize honesty concerning limitations.677

3. Theory Assumptions and Proofs678

Question: For each theoretical result, does the paper provide the full set of assumptions and679

a complete (and correct) proof?680

Answer: [Yes]681

21

Justification: We provide complete proof for Proposition 1 and Proposition 2 in Appendix682

D.683

Guidelines:684

• The answer NA means that the paper does not include theoretical results.685

• All the theorems, formulas, and proofs in the paper should be numbered and cross-686

referenced.687

• All assumptions should be clearly stated or referenced in the statement of any theorems.688

• The proofs can either appear in the main paper or the supplemental material, but if689

they appear in the supplemental material, the authors are encouraged to provide a short690

proof sketch to provide intuition.691

• Inversely, any informal proof provided in the core of the paper should be complemented692

by formal proofs provided in appendix or supplemental material.693

• Theorems and Lemmas that the proof relies upon should be properly referenced.694

4. Experimental Result Reproducibility695

Question: Does the paper fully disclose all the information needed to reproduce the main ex-696

perimental results of the paper to the extent that it affects the main claims and/or conclusions697

of the paper (regardless of whether the code and data are provided or not)?698

Answer: [Yes]699

Justification: In Appendix E, we fully disclose all information to reproduce our experimental700

results, including dataset preparation, training details, and choices of hyperparameters as701

well as baselines’ implementation details.702

Guidelines:703

• The answer NA means that the paper does not include experiments.704

• If the paper includes experiments, a No answer to this question will not be perceived705

well by the reviewers: Making the paper reproducible is important, regardless of706

whether the code and data are provided or not.707

• If the contribution is a dataset and/or model, the authors should describe the steps taken708

to make their results reproducible or verifiable.709

• Depending on the contribution, reproducibility can be accomplished in various ways.710

For example, if the contribution is a novel architecture, describing the architecture fully711

might suffice, or if the contribution is a specific model and empirical evaluation, it may712

be necessary to either make it possible for others to replicate the model with the same713

dataset, or provide access to the model. In general. releasing code and data is often714

one good way to accomplish this, but reproducibility can also be provided via detailed715

instructions for how to replicate the results, access to a hosted model (e.g., in the case716

of a large language model), releasing of a model checkpoint, or other means that are717

appropriate to the research performed.718

• While NeurIPS does not require releasing code, the conference does require all submis-719

sions to provide some reasonable avenue for reproducibility, which may depend on the720

nature of the contribution. For example721

(a) If the contribution is primarily a new algorithm, the paper should make it clear how722

to reproduce that algorithm.723

(b) If the contribution is primarily a new model architecture, the paper should describe724

the architecture clearly and fully.725

(c) If the contribution is a new model (e.g., a large language model), then there should726

either be a way to access this model for reproducing the results or a way to reproduce727

the model (e.g., with an open-source dataset or instructions for how to construct728

the dataset).729

(d) We recognize that reproducibility may be tricky in some cases, in which case730

authors are welcome to describe the particular way they provide for reproducibility.731

In the case of closed-source models, it may be that access to the model is limited in732

some way (e.g., to registered users), but it should be possible for other researchers733

to have some path to reproducing or verifying the results.734

5. Open access to data and code735

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-736

tions to faithfully reproduce the main experimental results, as described in supplemental737

material?738

Answer: [Yes]739

Justification: We’ve included codes to reproduce the main results in the supplemental740

material. We also attach a detailed README file that provides sufficient instructions.741

Guidelines:742

• The answer NA means that paper does not include experiments requiring code.743

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/744

public/guides/CodeSubmissionPolicy) for more details.745

• While we encourage the release of code and data, we understand that this might not be746

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not747

including code, unless this is central to the contribution (e.g., for a new open-source748

benchmark).749

• The instructions should contain the exact command and environment needed to run to750

reproduce the results. See the NeurIPS code and data submission guidelines (https:751

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.752

• The authors should provide instructions on data access and preparation, including how753

to access the raw data, preprocessed data, intermediate data, and generated data, etc.754

• The authors should provide scripts to reproduce all experimental results for the new755

proposed method and baselines. If only a subset of experiments are reproducible, they756

should state which ones are omitted from the script and why.757

• At submission time, to preserve anonymity, the authors should release anonymized758

versions (if applicable).759

• Providing as much information as possible in supplemental material (appended to the760

paper) is recommended, but including URLs to data and code is permitted.761

6. Experimental Setting/Details762

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-763

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the764

results?765

Answer: [Yes]766

Justification: All experimental settings and details are specified in Appendix E.4.767

Guidelines:768

• The answer NA means that the paper does not include experiments.769

• The experimental setting should be presented in the core of the paper to a level of detail770

that is necessary to appreciate the results and make sense of them.771

• The full details can be provided either with the code, in appendix, or as supplemental772

material.773

7. Experiment Statistical Significance774

Question: Does the paper report error bars suitably and correctly defined or other appropriate775

information about the statistical significance of the experiments?776

Answer: [Yes]777

Justification: All reported experimental results are averaged over at least three runs with778

different random seeds.779

Guidelines:780

• The answer NA means that the paper does not include experiments.781

• The authors should answer "Yes" if the results are accompanied by error bars, confi-782

dence intervals, or statistical significance tests, at least for the experiments that support783

the main claims of the paper.784

• The factors of variability that the error bars are capturing should be clearly stated (for785

example, train/test split, initialization, random drawing of some parameter, or overall786

run with given experimental conditions).787

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,788

call to a library function, bootstrap, etc.)789

• The assumptions made should be given (e.g., Normally distributed errors).790

• It should be clear whether the error bar is the standard deviation or the standard error791

of the mean.792

• It is OK to report 1-sigma error bars, but one should state it. The authors should793

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis794

of Normality of errors is not verified.795

• For asymmetric distributions, the authors should be careful not to show in tables or796

figures symmetric error bars that would yield results that are out of range (e.g. negative797

error rates).798

• If error bars are reported in tables or plots, The authors should explain in the text how799

they were calculated and reference the corresponding figures or tables in the text.800

8. Experiments Compute Resources801

Question: For each experiment, does the paper provide sufficient information on the com-802

puter resources (type of compute workers, memory, time of execution) needed to reproduce803

the experiments?804

Answer: [Yes]805

Justification: We provide information on the computation resources used for our experiments806

in Appendix E.4.807

Guidelines:808

• The answer NA means that the paper does not include experiments.809

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,810

or cloud provider, including relevant memory and storage.811

• The paper should provide the amount of compute required for each of the individual812

experimental runs as well as estimate the total compute.813

• The paper should disclose whether the full research project required more compute814

than the experiments reported in the paper (e.g., preliminary or failed experiments that815

didn’t make it into the paper).816

9. Code Of Ethics817

Question: Does the research conducted in the paper conform, in every respect, with the818

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?819

Answer: [Yes]820

Justification: We preserve anonymity with the NeurIPS Codes of Ethics.821

Guidelines:822

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.823

• If the authors answer No, they should explain the special circumstances that require a824

deviation from the Code of Ethics.825

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-826

eration due to laws or regulations in their jurisdiction).827

10. Broader Impacts828

Question: Does the paper discuss both potential positive societal impacts and negative829

societal impacts of the work performed?830

Answer: [NA]831

Justification: There is no societal impact of the work performed.832

Guidelines:833

• The answer NA means that there is no societal impact of the work performed.834

• If the authors answer NA or No, they should explain why their work has no societal835

impact or why the paper does not address societal impact.836

24

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses837

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations838

(e.g., deployment of technologies that could make decisions that unfairly impact specific839

groups), privacy considerations, and security considerations.840

• The conference expects that many papers will be foundational research and not tied841

to particular applications, let alone deployments. However, if there is a direct path to842

any negative applications, the authors should point it out. For example, it is legitimate843

to point out that an improvement in the quality of generative models could be used to844

generate deepfakes for disinformation. On the other hand, it is not needed to point out845

that a generic algorithm for optimizing neural networks could enable people to train846

models that generate Deepfakes faster.847

• The authors should consider possible harms that could arise when the technology is848

being used as intended and functioning correctly, harms that could arise when the849

technology is being used as intended but gives incorrect results, and harms following850

from (intentional or unintentional) misuse of the technology.851

• If there are negative societal impacts, the authors could also discuss possible mitigation852

strategies (e.g., gated release of models, providing defenses in addition to attacks,853

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from854

feedback over time, improving the efficiency and accessibility of ML).855

11. Safeguards856

Question: Does the paper describe safeguards that have been put in place for responsible857

release of data or models that have a high risk for misuse (e.g., pretrained language models,858

image generators, or scraped datasets)?859

Answer: [NA]860

Justification: The paper poses no such risks.861

Guidelines:862

• The answer NA means that the paper poses no such risks.863

• Released models that have a high risk for misuse or dual-use should be released with864

necessary safeguards to allow for controlled use of the model, for example by requiring865

that users adhere to usage guidelines or restrictions to access the model or implementing866

safety filters.867

• Datasets that have been scraped from the Internet could pose safety risks. The authors868

should describe how they avoided releasing unsafe images.869

• We recognize that providing effective safeguards is challenging, and many papers do870

not require this, but we encourage authors to take this into account and make a best871

faith effort.872

12. Licenses for existing assets873

Question: Are the creators or original owners of assets (e.g., code, data, models), used in874

the paper, properly credited and are the license and terms of use explicitly mentioned and875

properly respected?876

Answer: [Yes]877

Justification: We have cited the original paper of our reference code and datasets.878

Guidelines:879

• The answer NA means that the paper does not use existing assets.880

• The authors should cite the original paper that produced the code package or dataset.881

• The authors should state which version of the asset is used and, if possible, include a882

URL.883

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.884

• For scraped data from a particular source (e.g., website), the copyright and terms of885

service of that source should be provided.886

• If assets are released, the license, copyright information, and terms of use in the887

package should be provided. For popular datasets, paperswithcode.com/datasets888

has curated licenses for some datasets. Their licensing guide can help determine the889

license of a dataset.890

25

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of891

the derived asset (if it has changed) should be provided.892

• If this information is not available online, the authors are encouraged to reach out to893

the asset’s creators.894

13. New Assets895

Question: Are new assets introduced in the paper well documented and is the documentation896

provided alongside the assets?897

Answer: [NA]898

Justification: The paper does not release new assets.899

Guidelines:900

• The answer NA means that the paper does not release new assets.901

• Researchers should communicate the details of the dataset/code/model as part of their902

submissions via structured templates. This includes details about training, license,903

limitations, etc.904

• The paper should discuss whether and how consent was obtained from people whose905

asset is used.906

• At submission time, remember to anonymize your assets (if applicable). You can either907

create an anonymized URL or include an anonymized zip file.908

14. Crowdsourcing and Research with Human Subjects909

Question: For crowdsourcing experiments and research with human subjects, does the paper910

include the full text of instructions given to participants and screenshots, if applicable, as911

well as details about compensation (if any)?912

Answer: [NA]913

Justification: The paper does not involve crowdsourcing nor research with human subjects.914

Guidelines:915

• The answer NA means that the paper does not involve crowdsourcing nor research with916

human subjects.917

• Including this information in the supplemental material is fine, but if the main contribu-918

tion of the paper involves human subjects, then as much detail as possible should be919

included in the main paper.920

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,921

or other labor should be paid at least the minimum wage in the country of the data922

collector.923

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human924

Subjects925

Question: Does the paper describe potential risks incurred by study participants, whether926

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)927

approvals (or an equivalent approval/review based on the requirements of your country or928

institution) were obtained?929

Answer: [NA]930

Justification: The paper does not involve crowdsourcing nor research with human subjects.931

Guidelines:932

• The answer NA means that the paper does not involve crowdsourcing nor research with933

human subjects.934

• Depending on the country in which research is conducted, IRB approval (or equivalent)935

may be required for any human subjects research. If you obtained IRB approval, you936

should clearly state this in the paper.937

• We recognize that the procedures for this may vary significantly between institutions938

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the939

guidelines for their institution.940

• For initial submissions, do not include any information that would break anonymity (if941

applicable), such as the institution conducting the review.942

26

	Introduction
	Related Works
	Learning Diffusion Models on Finite Symmetric Groups
	Forward Diffusion Process: Card Shuffling
	Card Shuffling Methods
	Mixing Times and Cut-off Phenomenon

	The Reverse Diffusion Process
	Inverse Card Shuffling
	The Plackett-Luce Distribution and Its Generalization

	Network Architecture and Training
	Denoising Schedule via Merging Reverse Steps
	Reverse Process Decoding

	Experiments
	Sorting 4-digit MNIST Images
	Jigsaw Puzzle
	The Travelling Salesman Problem

	Conclusion
	Additional Details of the GSR Riffle Shuffle Model
	Details of Our Network Architecture
	Additional Details of Decoding
	Proofs
	Additional Details on Experiments
	Datasets
	Ablation Studies
	Latent Loss in Jigsaw Puzzle
	Training Details and Architecture Hyperparameters
	Baselines Implementation Details

	Limitations

