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Patient-specific quality assurance (QA) for Volumetric Modulated Arc Therapy (VMAT) plans is rou-
tinely performed in the clinical. However, it is labor-intensive and time-consuming for medical physicists.
QA prediction models can address these shortcomings and improve efficiency. Current approaches mainly
focus on single cancer and single modality data. They are not applicable to clinical practice. To assess
the accuracy of QA results for VMAT plans, this paper presents a new model that learns complementary
features from the multi-modal data to predict the gamma passing rate (GPR). According to the charac-
teristics of VMAT plans, a feature-data fusion approach is designed to fuse the features of imaging and
non-imaging information in the model. In this study, 690 VMAT plans are collected encompassing more
than ten diseases. The model can accurately predict the most VMAT plans at all three gamma criteria:
2%/2 mm, 3%/2 mm and 3%/3 mm. The mean absolute error between the predicted and measured GPR
is 2.17%, 1.16% and 0.71%, respectively. The maximum deviation between the predicted and measured
GPR is 3.46%, 4.6%, 8.56%, respectively. The proposed model is effective, and the features of the two
modalities significantly influence QA results.

Keywords: Radiation therapy; VMAT plan; multimodal model; GPR prediction; quality assurance.

1. Introduction

Volumetric Modulated Arc Therapy (VMAT) is
the system about intensity-modulated radiotherapy
treatment delivery by dynamic arcs with continuous
variation of multileaf collimator (MLC) shapes, dose

rates, and gantry rotations.1,2 Radiotherapy systems
record the information (such as MLC and monitor
unit (MU)) during VMAT treatment. VMAT can
shorten treatment time and generate highly con-
formal dose distributions delivered with superior
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dosimetric accuracy.3 In recent years, it has become
a critical radiotherapy technique due to these advan-
tages. However, discrepancies exist between the
delivered and planned dose distributions because
VMAT plans cannot be perfectly implemented dur-
ing the actual plan delivery.4 Hence, it is necessary
to verify the delivered dose distributions (i.e. patient-
specific quality assurance (QA)). In the clinical, QA
for VMAT plans is routinely performed before treat-
ment. The gamma passing rate (GPR) is a metric to
evaluate the goodness of a treatment plan.

In radiotherapy, patient-specific QA is highly
time-consuming and labor-intensive. Patients’ radio-
therapy treatment plans tend to be complicated,
which may result in patient-specific QA failure.5

Hence, researchers display considerable interest in
prediction models of patient-specific QA results.
Machine learning has been studied in many years,
and there are many effective machine learning meth-
ods are constantly emerging.6–9 Besides, they have
been applied to all aspects of radiotherapy, encom-
passing target volume delineation, dose prediction,
treatment planning optimization, MLC positioning
error, and linear accelerator performance.10,11 In
addition, machine learning can be applied in the QA
to improve the quality and efficiency of treatment
plans and implementation. It can make radiother-
apy decision-making more simplified, individualized
and accurate, improve the automation of radiother-
apy plan design and QA, and promote individualized
precision treatment. The strength of taking machine
learning models into the QA prediction is that it
can inform the radiologists about which treatment
plans might fail before QA measurements. These
models identify the correlation between the radio-
therapy plan and GPR. They can evaluate treat-
ment plans in detail and predict individualized QA
passing rates. Utilizing GPR prediction models could
help to improve the efficiency of VMAT QA, increase
patient satisfaction, reduce the risks, and save time
and resources.

Hand-crafted features and two-dimensional (2D)
images are two common data using machine learn-
ing models to predict GPR. In previous related
research, many works utilize hand-craft features as
input. Hand-craft features extracted from the treat-
ment plan by the professional physician are repre-
sented as a vector. Abstracting hand-crafted features
also requires strong domain knowledge. Besides, a

few works with 2D convolutional neural networks
(CNN) have been explored in QA in clinical radio-
therapy, which takes images gained from plans as
input. All the existing studies are based on individ-
ual imaging or non-imaging modalities. However, a
single modality may be short of information that is
vital for predicting GPR. Without adequate informa-
tion, the effect of the model will be affected. So, this
paper presents an alternative perspective to solve
these problems.

This paper focuses on two modalities in the
VMAT plans. Hence, the GPR prediction problem
can be characterized as multimodal since it encom-
passes imaging and non-imaging data. Multimodal
machine learning fuses information from different
modalities to perform a prediction. It is conducive to
reduce the loss of data in a single modality. In this
study, a three-dimensional multimodal ResNet (3D-
MResNet) model that integrates different modalities
is proposed. The contributions of this study are sum-
marized as follows: (1) A VMAT QA dataset, includ-
ing 690 cases with more than ten cancers, is con-
structed to build fully automated models of GPR
prediction. To the best of our knowledge, our dataset
is the only VMAT QA plan dataset containing the
imaging and non-imaging modalities. (2) According
to the characteristics of VMAT data, the feature-
data fusion (FDF) approach, which deals with the
relationship between MLC images and MU values,
fuses each image’s result and the corresponding MU
value. It can learn the features of one-to-one cor-
relation between the images with MU values, rather
than just fusing the features of modalities. This work
is the first study that considers the imaging and
non-imaging data to predict the GPR. (3) The 3D-
MResNet model that fuses the two modalities aiming
to process and associate features from each modal-
ity is proposed. There is currently no such method
as joining two modalities in VMAT plans to perform
GPR prediction.

The remaining sections of this paper are orga-
nized as follows. Section 2 displays the related works
for GPR prediction, 3D CNN, and multimodal learn-
ing in medical images analysis. The image process-
ing method and dataset are described in Sec. 3.
The proposed model is discussed in Sec. 4. Sec-
tion 5 demonstrates the results and analysis of
experiments, and Sec. 6 gives a conclusion to this
paper.
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2. Related Work

2.1. CNNs in medical images analysis

CNNs are the primary machine learning method cur-
rently used in visual object recognition and classifi-
cation.12–17 Besides, they are widely applied in the
medical field.18–24 However, 2D CNNs adopt a sin-
gle image as input, and they are inherently unable
to take advantage of the context from adjacent slices
in medical images. They are not applicable for some
3D medical images such as CT, MRI.

For 3D medical data analysis, CNNs with spatio-
temporal 3D convolutional kernels are more effec-
tive than CNNs with 2D. Compared with 2D CNNs,
3D CNNs have the capability of encoding repre-
sentations from volumetric receptive fields. Hence,
they can abstract more discriminative characteris-
tics through more abundant 3D spatial information.
Because of the strong feature extraction capability
of 3D CNNs, they have become the popular med-
ical image analysis approach.25–27 For example, a
3D CNN was used to identify Parkinsons disease in
3D nuclear imaging data.28 Yang et al.29 presented
a 3D model to classify Alzheimers disease by 3D
MRI images. Inspired by these methods, a 3D ResNet
module is used to extract the features of 3D image
data in VMAT plans.

2.2. Multimodal deep learning

Ordinarily, there are various representations of enti-
ties, as a specific object can be expressed by a pic-
ture, paragraph, or symbol.30 Hence, the research
problem is regarded as a multimodal problem
when it encompasses multiple modalities. There are
wide applications in multimodal learning such as
image registration, image reconstruction, and med-
ical images.31–34 An unsupervised model that can
extract the cross-modality correlations was proposed
for cross-modality element-level feature learning.35

Besides, a scalable multimodal CNN was presented
for brain tumor segmentation.36 Le et al.37 applied
multimodal CNN to the automated diagnosis of
prostate cancer. Xu et al.38 used a multimodal deep
learning method to diagnose diseases. Fusion as an
import task in multimodal has been used for many
years. It is commonly executed at two levels for these
models: feature level (early fusion) and decision level
(late fusion).39,40 The feature-level models first com-
bine the features abstracted from input data and

then analyze the fusion features to make decisions.
For the decision-level fusion, the local decisions of
different modalities are provided first, and then the
model makes a final decision result by the fused local
decisions.

Multimodal data can provide complementary
information to improve the effectiveness of mod-
els. Similar approaches have been employed in this
paper to integrate two modalities in VMAT plans.
The FDF method, which contains the early and late
fusion strategies, is presented. Naturally, it belongs
to the hybrid fusion that exploits the advantages of
both strategies. The imaging and non-imaging data
can be obtained from VMAT plans. The contents
of different modalities are not necessarily the same,
and some essential metrics may be lacking in the
single modality. There is a difference in prediction
result as the different form of modality determines
the information interpretation. For making good use
of VMAT plans, the FDF method fuses two modali-
ties of information into a representation that merges
them. A multimodal model is applied to learn imag-
ing and non-imaging features from plans, and the
fusion module amalgamates the nonlinear correla-
tions across all sources of modality information.

2.3. Prediction of QA results based on
machine learning

At present, machine learning models have been intro-
duced into radiation oncology as popular predic-
tion technologies.41 They solve several long-standing
issues and raise working efficiency in QA work-
flows.42–44 In general, radiologists need to assess and
evaluate every patient’s VMAT plan in detail before
radiotherapy. Systems defect or dosimetric errors
may lead to patient injury. Therefore, making use of
the results of prediction models can prevent adverse
outcomes during the treatment.

Models based on machine learning have been
widely applied to predict individualized Inten-
sity Modulated Radiation Therapy (IMRT) and
VMAT QA passing rates. Machine learning meth-
ods are always used for IMRT/VMAT QA prediction
through the complexity metrics abstracting from the
treatment plans.45–47 These approaches use hand-
crafted features extracted from plans. However, they
rely heavily on professional knowledge or experience
and may miss some vital information.
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There is increasing interest in applying CNNs
for GPR prediction in recent years, and models
use images extracted in plans as input instead of
hand-crafted features. VGG-16 used the fluence map
image of IMRT plans as input and mapped it to
the QA passing rate.48 Tomori et al.49 proposed a
CNN model to predict GPR for patient-specific QA
results in prostate treatment. Besides, they devel-
oped a deep learning-based GPR prediction model
for VMAT.50 Nyflota et al.51 adopted CNNs to pre-
dict the mistakes in radiation therapy plans delivery
by patient-specific gamma images.

All the previous approaches exploit single modal-
ity data, and the data abstracted from plans leave
out some necessary information. For example, hand-
crafted features, they lack MLC aperture shapes
that are crucial in radiation treatment because the
shape of the tumor is closely related to MLC aper-
ture. For image data, dose distributions and MU
information in plans cannot be embodied directly
in images. Based on these findings, an innovative
GPR prediction model named 3D-MResNet that
fully exploits the inherent correlations across imag-
ing and non-imaging modalities is presented in this
paper. Besides, information of MLC sequences has
been taken into account in the model. So far as we
know, this study is the first to investigate the use of
3D multimodal information in VMAT GPR predic-
tion.

3. Dataset and Data Processing

This section introduces the data used in this paper.
It first gives the data sources and details of VMAT
plans. Then, the way of obtaining imaging and non-
imaging data is presented. Eventually, a new VMAT
plan dataset is generated after pretreatment of the
raw VMAT plans data.

3.1. Dataset

The data in this study are from the West China
School of Medicine and West China Hospital. In
this study, 690 VMAT plans were collected between
June 2018 and August 2019 at a single institu-
tion. The plans consist of 37 clinical sites. Table 1
presents the kinds of cancers and the number of
patients in our dataset. It shows that VMAT plans
mainly include the Rectum, Nasopharyngeal Carci-
noma (NPC), Cervix, and Prostate four diseases.

Table 1. The disease distribution
in the dataset. “Others” indicates
the total of small quantity diseases.

Disease Number

Rectum 185
NPC 141
Cervix 67
Prostate 60
Uterus 28
Stomach 27
Brain 22
Larynx 19
Pharynx 10
Pancreas 9
Colon 9
Tongue 8
Others 95

To fully utilize VMAT information, two modali-
ties (3D images and MU values) are attained from
VMAT plan data. The proposed dataset consists
of the imaging and non-imaging modalities from
VMAT plans. In the dataset, the labels of VMAT
plans are GPR values that are calculated using three
common gamma criteria 3%/3mm, 3%/2mm, and
2%/2mm. Each plan has three GPR values, respec-
tively. Figure 1 shows the number of patients in dif-
ferent ranges of GPR values. The majority of values
measured for GPR of VMAT plans are distributed
in the range of 85% to 100% at 2%/2mm, 90% to
100% at 3%/2mm, and 3%/3mm gamma criteria,
as presented in Fig. 1.

In this study, VMAT plans include two beams,
and each beam contains 91 control points (CPs).
Therefore, there are 182 CPs in a plan. Each CP has
corresponding parameters (such as MU weights and
MLC shapes) that are obtainable from DICOM RT
Plan files. MLC shape of each control point is stored
in a 2D array of 400 × 400mm2 with a pixel size
of a 1 × 1 mm2.52 Hence, they are considered as the
imaging modality with a resolution of 400× 400 pix-
els. Considering a series of MLC apertures existing
in a plan, a 3D MLC aperture shape is constructed
by a sequence of 2D MLC apertures.

3.2. Data processing

For the MLC shape images, we first extract MLC
apertures’ precise location and compute a bounding
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Fig. 1. Distribution of measured GPR of VMAT plans. (a)–(c) show the distribution at the three criteria, respectively.

Fig. 2. The process of MLC shape images. The images in the first row are the original MLC shape images with the size
of 400 × 400 pixels. We compute a bounding box that contains the MLC aperture in images. Then, the original images
are cropped according to the bounding box, and the second row presents the cropped images.

box that contains all MLC apertures at every CP.
Then, the bounding box is used to crop the MLC
shape images because we focus on the image infor-
mation inside the bounding box and ignore informa-
tion outside. Figure 2 demonstrates the images pro-
cessing, where the cpi presents the ith control point
in the plan, and imgi is the MLC aperture image
at cpi. To attain the aperture shapes in images, a
bounding box (box = [x, y, w, h]) is selected to crop
all MLC shape images, removing the useless back-
ground information. For the box, x is the minimum
value of the left edge of the aperture shape, and y is

the minimum value of the bottom edge of the aper-
ture shape. They can be presented as follows:

x = min{xi
1}, y = min{yi

1}, 0 ≤ i < n, (1)

where n indicates the total number of control points,
xi

1 and yi
1 denote the left and bottom edge of the

aperture shape in cpi, respectively. The width w of
the box is the maximum difference between right and
left edge, formulated as follows:

w = max{xj
2} − min{xi

1}, 0 ≤ i, j < n, (2)
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where xj
2 denotes the right edge of aperture shape in

cpj. The height h of the box is the maximum differ-
ence between the bottom and up edge, formulated as
follows:

h = max{yj
2} − min{yi

1}, 0 ≤ i, j < n, (3)

where yj
2 denotes the up edge of the aperture shape

in cpj. The region in the box contains shape infor-
mation of all MLC sequences.

MU values of CPs can be calculated by the MU
weights and total MU values. MU weights (W =
[w0, w1, . . . , wn], w0 = 0, wn = 1) and total MU
values (tmu) are parameters obtained from DICOM
RT Plan files. The wi, which is a cumulative value,
denotes the MU weight at cpi. It is equivalent to
denote the total weight between cp0 and cpi. The
value (wi+1 − wi) is the weight in the interval
[cpi, cpi+1], and the value vi is the total MU of the
interval [cpi, cpi+1], expressed as follows:

vi = (wi+1 − wi) · tmu. (4)

The value mi denotes the MU value at control point
cpi, and half of vi−1 plus half of vi equals mi. The
MU values (M = [m0, m1, . . . , mn]) of control points

can be computed as follows:

mi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(wi+1 − wi−1)
2

· tmu, 0 < i < n,

(wi+1 − wi)
2

· tmu, i = 0,

(wi − wi−1)
2

· tmu, i = n.

(5)

4. Methods

This section introduces the proposed method, and
Fig. 3 illustrates the whole network structure. The
network takes two modalities in the VMAT plan as
input. The 3D-MResNet consists of two main com-
ponents: 3D ResNet and feature fusion module. In
the model, the 3D ResNet is employed to convert
the image data into feature vectors, and the fusion
module integrates them with MU information. The
model learns the correlations between imaging and
non-imaging modalities in a deep neural network.

4.1. 3D ResNet

The MLC aperture shapes can be regarded as images
in a timed sequence. Therefore, 3D images attained
from the VMAT plan are the temporal sequence of
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Fig. 3. The structure of 3D-MResNet. The model’s inputs are the 3D MLC aperture images and the vector of MU values
obtained from VMAT plans. The 3D ResNet extracts the image feature information of image sequences, and the feature
fusion module concentrates on the fusion of imaging and non-imaging modalities characteristics. The dimensions of MU
values are 182, and the image features are mapped to a vector with a length of 182. The fusion module concatenates these
two vectors and makes a prediction. The number of neurons is 182 in the fully connected layer.
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the MLC aperture. Consequently, this paper pro-
poses a 3D model for analyzing images in plans. The
3D convolutions are applied in convolutional layers
so that discriminative characteristics of the temporal
and spatial dimensions are caught.

In our network, the 3D ResNet53 captures tem-
poral feature information of MLC aperture images
well, which is more accurate in description with var-
ious aspects of image content. It takes a sequence
of images as inputs, as shown in Fig. 3. The basic
block in the model is shown in Fig. 4. Each resid-
ual block contains two 3D convolutional layers fol-
lowed by the batch normalization and rectified linear
unit layers. The kernel size for convolutional layers is
3×3×3, and the stride is 1. Extracted feature maps
combine information from all images through the
CNN structure, and 3D average pooling is applied
on the feature maps to cast image features into a
feature vector. A fully connected layer with size 182
is then appended to the features extraction module
for mapping the features to a one-dimensional vec-
tor with a fixed length of 182. For our image data,
the input size of the image is (182, 112, 112), and
the feature maps of size (512, 12, 4, 4) are obtained
from 3D ResNet. Then, the 3D average pooling is
performed on the feature maps to produce a feature
vector of size (512, 1, 1). Finally, the fully connected
layer maps the flattened feature vector to a new vec-
tor with a length of 182.

4.2. Feature-data fusion module

Imaging and non-imaging modalities obtained from
VMAT plans are used to predict GPR. There-
fore, the QA prediction model is characterized as a
multimodal model. Data fusion methods are essen-
tial means of multimodal analysis and mining. At
present, feature-level and decision-level fusion are
major fusion strategies. The existing fusion tech-
niques combine the features of modalities, and they
are difficult to have a one-to-one correlation between
the modalities. Hence, they are not suitable for the
two modalities of data in VMAT plans.

For VMAT data, the imaging data and non-
imaging data have strong relevance, and one MLC
image corresponds to a MU value. Besides, the 3D
image data contains redundant information and high
dimensions. However, there is no redundancy in MU
values with lower dimensions, and all of them are

Conv3D

BN3D

ReLU

Conv3D

BN3D

ReLU

Fig. 4. The basic block of 3D ResNet in this paper.
Here, + denotes the add operation.

vital to GPR prediction. Characteristics of two-
modal data make it difficult to fuse data effectively.
Enlightened by these, this paper presents an FDF
approach that is regarded as a hybrid fusion method
according to the VMAT data characteristics.

The FDF approach differs from the feature-level
and decision-level fusion. It combines both input
data and decision level strategies, and the illustration
is presented in Fig. 5. In the early-fusion method,
the abstracted features of different modalities are
integrated as a combined eigenvector first, and then
a neural network model predicts the result through
the combined eigenvector, as shown in Fig. 5(a). In
the late fusion method, the neural network models is
applied on each modality and give the local results
of all modalities. The local results are combined to
make a final result, as shown in Fig. 5(b). In the
FDF method presented in Fig. 5(c), a neural network
model extracts features from one modality data and
analyzes the features to attain the local decisions of
data. However, the local decisions are not the results
of the modality, and they are the results of all images
in 3D images, namely, each image in the modality
has a result. Furthermore, the other modality data
and the local decisions are fused as feature vectors.
Finally, a neural network model handles the feature
vectors to obtain a final decision.

There are significant contributions to GPR pre-
diction for two modalities. It is crucial to make full
use of the data during the fusion. The FDF module
makes the fusion on equal terms to prevent the pre-
dominance of imaging data over non-imaging data.
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Modality1 Modality2 Modality1 Modality2

 MU values

Modality1 Modality2

Images

(a) early-fusion (b) late-fusion (c) feature-data fusion (FDF)

Fig. 5. The fusion methods. (a) and (b) are the common fusion methods to merge two different modalities and (c) is the
proposed method that combines the images and non-imaging features of a plan.

Hence, we should reduce the dimensions of image
data and retain meaningful features. Image features
and MU values have the same length when integrat-
ing features. For imaging data in VMAT, local deci-
sion vectors of 182 dimensions are generated from
images by 3D ResNet before fusion. It is equiva-
lent to make a decision on each image. Because each
MU value is essential, the MU feature vector of 182
dimensions is eventually retained in the model. In the
FDF method, a concatenation layer with 364 units is
applied to fuse image features and MU feature vec-
tors. There is a one-to-one relation between the MLC
shape image and MU value for each control point in
VMAT plans. Therefore, one MU value corresponds
to one image features’ decision, and they are asso-
ciated with each other. The image features and MU
values are projected to a shared vector, which con-
tains the complementarity between multiple modal
data and builds the relationship between multimodal
features, and then the GPR prediction is performed
based on the vector directly.

4.3. 3D-MResNet

In the 3D-MResNet model, there are three main
modules, including the data process module, fea-
ture extractor module, and fusion module. The MLC
shape images and MU values are generated from raw
VMAT plans by the data process method as Eqs. (1)–
(5). The feature extractor uses 3D ResNet that
abstracts the MLC shape image features. It removes

the redundant features effectively and retains the sig-
nificant features of 3D images. The fusion module
employs the FDF approach that integrates the 3D
image features with original MU values data. In this
study, the image features and MU vectors extracted
from VMAT plans are required in the fusion module,
which is applied to fuse multiple features. It needs to
process and relate information from these two modal-
ities. The MU values are expressed as a feature vector
with length 182. Here, the feature vector of images
and MU values is concatenated as new eigenvectors
with more content.

For gaining much richer information of plan, the
3D-MResNet is introduced in the prediction tech-
nique of GPR. It has access to obtain complementary
information about different modalities. Thus, it can
avoid the problem that some effective information
is missing in individual modalities. The advantage
is that multimodal data offers sufficient information.
The model can learn adequate features at one time
and combine features into a joint representation to
make a more accurate prediction.

For the VMAT plan dataset (D = {(X img,

Xmu), Y }), each plan contains the 3D images and
MU values two modalities, and it has a label (the
value of GPR). For the ith plan Di = (X img

i , Xmu
i )

in the dataset, the GPR prediction problem can be
formally denoted as

G : Di → Pi, (6)
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where Pi is the prediction value of ith plan. For the
3D images X img

i in plan Di, the feature maps Mi

of images X img
i are extracted by a 3D ResNet. This

process can be expressed as follows:

Mi = 3D ResNet(X img
i ). (7)

Then, decisions on each image are executed on the
feature maps Mi, and one-dimensional vectors Fi are
obtained, formally denoted as

Gmap : Mi → Fi. (8)

The fusion layer concatenates the image features Fi

and MU vector Xmu
i to compose a new feature vector

with the length of 182×2, and then a neural network
predicts a GPR value of the plan Di. This process is
expressed as follows:

Pi = Gfdf (Fi, X
mu
i ), (9)

where Gfdf denotes the FDF method. The predicted
value of GPR is the output of the 3D-MResNet
model. Mean square error (MSE) measures the devi-
ation between the predicted value and the true value.
The formula of the loss function is expressed as
follows:

Loss = − 1
N

N∑
i=1

(Pi − Yi)2, (10)

where Yi is the label, and N is the total number
of plans. This process of model is demonstrated in
Algorithm 1.

Algorithm 1. 3D multimodal ResNet model
Input: The VMAT plan dataset D

Output: The prediction P of GPR value
1: for ith VMAT plan in dataset D do
2: extract MLC shape images and MU informa-

tion
3: calculate box = [x, y, w, h] by Eqs. (1)–(3)
4: crop images: X img

i = crop(box, X img
i )

5: calculate MU values Xmu
i by Eq. (5)

6: the input of model: Di = {X img
i , Xmu

i }
7: use 3D ResNet to abstract the feature maps

of X img
i : Mi = 3D ResNet(X img

i )
8: map image features Mi to a vector Fi

9: fuse image features Fi and Xmu
i and predict

GPR : Pi = Gfdf (Fi, X
mu
i )

10: update gradients with back propagation algo-
rithm

11: end for

5. Experiments and Results

In this section, we first introduce the details and
implementation of the networks. Then, the experi-
ment results and analysis are given. Besides, the per-
formances of the model are discussed.

5.1. Details of implementation

The following experiments have been conducted
using the multimodal data abstracted from the
VMAT plans, described in more detail in Sec. 3. The
dataset consists of 690 VMAT plans, and the statis-
tics of the data used in the experiments are sum-
marized in Table 1. The dataset has been randomly
divided into the training set and testing set, with 530
and 160 VMAT plans separately.

In this study, the 3D-MResNet maps features of
3D images and MU values of plans to predict GPR.
The model is implemented with the Pytorch library.
We train the proposed model with weights initial-
ized with kaiming normal.54 The network uses MLC
aperture images with a specific size (182×112×112)
and MU values with size (1 × 182). In the experi-
ments, the learning rate is initialized as 0.01, and
the number of epochs is 200, and the mini-batch size
is 1. The Adam optimizer55 is used to optimize the
weight of the model. All training is performed using
the GPU of NVIDIA Tesla P100.

5.2. Results and analysis

The experiments are executed to verify the validity
of the proposed method. For the prediction model,
the outputs are the predicted GPR of VMAT plans.
The predicted GPRs are evaluated under three cri-
teria (3%/3mm, 3%/2mm, 2%/2mm). The predic-
tion error between the predicted and measured GPR
is assessed by mean absolute error (MAE). Standard
deviation (SD) can better reflect the discrete degree
of difference between predicted and target GPR val-
ues for each case. Max error (ME) means the maxi-
mum deviation between the predicted and measured
GPR. MAE, SD, ME are professional assessment
indicators, and they are used as model performance
indicators in this study.

To assess the predicted GPR, classification accu-
racy (ACC) of predicted GPR is given. In this study,
we classify the predicted GPR values into two cate-
gories: correct and incorrect results. If the difference
between the target and predicted GPR is less than
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3%, the predicted GPR is considered equivalent to
the target, so the predicted GPR is defined as a cor-
rect classification result. Otherwise, the classification
result is incorrect. The sensitivity and stability of
Linacs may be different, and consequently the GPR
values of VMAT plans are influenced due to the dif-
ferences. Studies indicate that the mean deviation
of the GPR for the Linacs is <1%, and the max-
imum deviation is 2.6%.45 Hence, we adopt 3% as
the threshold to measure the prediction accuracy of
GPR. What is more, the 3% threshold is clinically
relevant.

Different 3D CNN networks are applied to deter-
mine the most appropriate model to predict GPR in
this study. We compare the results on 3D AlexNet,56

3D VGG,57 3D Inception,58 3D ResNet,53 respec-
tively. Table 2 demonstrates the experimental results
(MAE ± SD). The 3D ResNet model is the most
suitable network which achieves the best outcomes
at the three gamma criteria. Therefore, it is utilized
to extract the features from images.

The detailed results of the proposed model are
shown in Table 3, and it illustrates MAE ± SD,
ACC and ME on three criteria. The MAE between
target and predicted GPR values in the test set
is 0.71% at 3%/3mm, 1.16% at 3%/2mm, and
2.17% at 2%/2mm, respectively. The evaluation cri-
terion is that the lower MAE values the better

Table 2. Comparison of the results obtained using dif-
ferent 3D neural networks.

3D models 3%/3 mm 3%/2 mm 2%/2 mm
MAE± SD (%)

AlexNet 0.71 ± 0.66 1.18 ± 1.04 2.37 ± 1.87
VGG 0.75 ± 0.73 1.30 ± 1.28 2.34 ± 1.89
Inception 0.78 ± 0.71 1.34 ± 1.00 2.13 ± 1.58
ResNet 0.71 ± 0.68 1.16 ± 0.93 2.17 ± 1.72

Table 3. The results of 3D-MResNet under different
gamma criteria.

Gamma MAE ± SD (%) ACC (%) ME (%)
criteria

3%/3 mm 0.71 ± 0.68 98.13 3.46
3%/2 mm 1.16 ± 0.93 93.75 4.60
2%/2 mm 2.17 ± 1.72 78.75 8.56

performance, because the predicted values are closer
to true values when MAE is smaller. For 3%/3mm,
157 (98.13%) plans have absolute prediction error
lower than 3%. 150 (93.75%) plans have absolute
prediction error lower than 3% at 3%/2mm. 126
(78.75%) plans have absolute prediction error lower
than 3% at 2%/2mm. Moreover, the max absolute
prediction error is 3.46%, 4.60% and 8.56% at the
three criteria separately. All metrics perform best
at 3%/3mm. There is a similar effect on 3%/2mm.
For the strictest criterion 2%/2mm, the results are
slightly inferior to the other two. However, the 3D-
MResNet model has a MAE value of 2.17% with a
standard error of 1.72%, which satisfies the doctor’s
expectation.

This study also carried experiments on a sin-
gle modality, and Table 4 presents the experiment
results. As observed through the qualitative indica-
tor MAE, the 3D-MResNet model combining two
modalities can obtain experimental results that are
clearly better than those obtained using a single-
modality as input. In addition, results also show that
the model with imaging data achieves better effects
than non-imaging data at 3%/2mm and 2%/2mm.
Furthermore, the best results on ME are gained when
images are the inputs of networks at 3%/2mm and
2%/2mm. In all, results on the imaging data are bet-
ter than non-imaging data.

To illustrate our results in a more intuitive way,
we visualize the predicted values in the training and
testing set. According to the scatter plots as shown
in Fig. 6, the 3D-MResNet model has preferable pre-
diction performance on VMAT plans, and it per-
forms slightly bad in only a few cases. In general,
the difference in predicted and measured GPR less
than 5% is within the acceptable level. As presented
in the results, the great majority of VMAT plan’s
predicted errors are within 5% at the three gamma
criteria in the test set, and the maximum absolute
error between target and predicted GPR is within
5% at 3%/2mm and 3%/3mm. Moreover, almost
all plans can be accurately predicted at 3%/2mm
and 3%/3mm within 3% error, and only a few cases’
absolute errors are more than 3%. In short, the pro-
posed model achieves the desired performance, and
it is considered to be feasible for predicting GPR. For
a stricter gamma index 2%/2mm, although the pre-
diction results of plans are inferior to 3%/2mm and
3%/3mm, the results meet the clinical requirement.
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Table 4. Comparison of the results obtained using the proposed model versus a
single-modality model.

Models gamma criteria 3%/3 mm 3%/2 mm 2%/2 mm

3D-MResNet
MAE± SD (%) 0.71± 0.68 1.16± 0.93 2.17± 1.72

ME (%) 3.46 4.60 8.56

Imaging data
MAE± SD (%) 0.95± 0.61 1.33± 0.94 2.22± 1.97

ME (%) 3.73 4.32 8.21

Non-imaging data
MAE± SD (%) 0.89± 0.83 1.48± 1.15 2.30± 1.69

ME (%) 4.92 5.93 8.79

Fig. 6. Scatter plot of predicted GPR values for three gamma criteria in training and testing set.

5.3. Ablation experiments

To further validate the significance of the 3D-
MResNet model, experiments on different networks
have been carried out. We designed contrast exper-
iments to verify the importance of imaging and
non-imaging modalities in VMAT plans. Compari-
son experiments on 3D-MResNet and 2D-MResNet
were done to confirm the 3D feature extractor’s effec-
tiveness in the VMAT plan’s prediction. Meanwhile,
we compared the effects of total MU values of beams
and MU values of every control point in the predic-
tion model.

The results are shown in Table 5. Experiments
demonstrate that the 3D structure performs better
than 2D on the VMAT plan dataset. 3D-MResNet

can better deal with the GPR prediction of VMAT
plans. In fact, 3D feature extractors can better
capture the temporal and spatial features of MLC
sequence images, but 2D feature extractors cannot
extract the image sequence information. The exper-
imental results have proved that the 3D module has
a significant impact on the prediction model. The
total MU values of the two beams are used to replace
the MU of every control point in the model to vali-
date that the MU information is useful for predict-
ing QA results. The research shows that the predic-
tion model’s performance depends on the MU values
of every control point, which are necessary features
for GPR prediction. Similarly, the predictive results
of 3D-MResNet are superior to the model based on
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Table 5. Comparison of the results obtained with the models based on 3D-MResNet,
2D-MResNet and 3D-MResNet with total MU values, respectively.

Models gamma criteria 3%/3 mm 3%/2 mm 2%/2 mm

3D-MResNet
(MU values of CP)

MAE ± SD (%) 0.71 ± 0.68 1.16 ± 0.93 2.17 ± 1.72
ME (%) 3.46 4.60 8.56

2D-MResNet
MAE ± SD (%) 0.91 ± 0.85 1.73 ± 1.38 2.35 ± 1.90

ME (%) 4.68 6.18 9.99

3D-MResNet
(total MU values)

MAE ± SD (%) 1.09 ± 0.59 1.82 ± 1.07 2.18 ± 1.71
ME (%) 4.07 7.61 9.03

total MU values at the three gamma criteria. Conse-
quently, it can prove that information of the control
point is essential.

The results show that it is effective to pre-
dict VMAT GPR by the 3D-MResNet, without any
expert knowledge to design features. Comparative
experiments show that 3D-MResNet has a much bet-
ter performance than 2D-MResNet. The model can
better meet the doctor’s requirements and provides
a new method to process VMAT plans and predict
GPR.

6. Conclusions

According to the VMAT data characteristics, an
automatic prediction model was proposed for the QA
results of VMAT plans. It is quite different from
the current QA prediction models because it uti-
lizes multimodal data to predict results. Besides,
a new fusion approach was presented to fuse the
decision results of all images and the correspond-
ing MU values. It deals with multimodal informa-
tion of VMAT plans and obtains complementary
characteristics in different modalities. Experiments
demonstrate that the proposed model is an effective
model to predict QA results. Meanwhile, the abla-
tion experiments confirm the effectiveness of each
module in the model. In addition, this study proves
that the features of two modalities have a signifi-
cant influence on QA results. In summary, the pro-
posed model can accurately predict patient-specific
QA results for most VMAT plans at 3%/3mm and
3%/2mm, and 2%/2mm gamma criteria. This model
helps radiologists to verify the delivered dose dis-
tributions and improve the quality and efficiency of
treatment plans. In future works, we will attempt
to study some powerful machine learning algorithms
for GPR prediction, such as enhanced probabilistic

neural networks, dynamic ensemble learning algo-
rithms, neural dynamic classification algorithm, and
finite element machine, because the advantages of
these methods can improve the GPR prediction
model.
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