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Abstract

Generative AI (genAI) has emerged as a powerful tool for synthesizing diverse and com-
plex image data, offering new possibilities for scientific imaging applications. This review
presents a comprehensive comparative analysis of leading generative architectures, ranging
from Variational Autoencoders (VAEs) to Generative Adversarial Networks (GANs) on
through to Diffusion Models, in the context of scientific image synthesis. We examine
each model’s foundational principles, recent architectural advancements, and practical
trade-offs. Our evaluation, conducted on domain-specific datasets including microCT scans
of rocks and composite fibers, as well as high-resolution images of plant roots, integrates
both quantitative metrics (SSIM, LPIPS, FID, CLIPScore) and expert-driven qualitative
assessments. Results show that GANs, particularly StyleGAN, produce images with high
perceptual quality and structural coherence. Diffusion-based models for inpainting and
image variation, such as DALL-E 2, delivered high realism and semantic alignment but
generally struggled in balancing visual fidelity with scientific accuracy. Importantly, our
findings reveal limitations of standard quantitative metrics in capturing scientific relevance,
underscoring the need for domain-expert validation. We conclude by discussing key chal-
lenges such as model interpretability, computational cost, and verification protocols, and
discuss future directions where generative AI can drive innovation in data augmentation,
simulation, and hypothesis generation in scientific research.

Keywords: image generation; generative AI; Generative Adversarial Networks; diffusion;
synthetic data

1. Introduction
Generative AI (genAI) has rapidly advanced as a powerful tool to synthesize new

digital content, including images, text, and music [1,2]. Although these models have
achieved remarkable success in generating high-quality visuals for artistic and commercial
use, their application to scientific imaging presents significant challenges. In particular,
generating accurate images of scientific phenomena that were not represented in the
training data often results in hallucinations [3] or misrepresentations of fundamental
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physical and biological principles [4]. Such failures can result in visually convincing but
scientifically implausible outputs, potentially propagating misconceptions, contributing
poor images to training sets, and hindering scientific progress [5,6].

This article investigates generative image modeling within two primary subdomains:
text-to-image and image-to-image generation. We begin with a comprehensive overview
of recent key developments, followed by an in-depth discussion of how leading architec-
tures such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs),
and Diffusion Models have revolutionized areas reliant on image analysis. Particular
emphasis is placed on their applications in scientific contexts, where precision, fidelity,
and interpretability are paramount. Thus, we discuss strategies and methodologies for the
verification and validation of synthetic images.

The main contributions of this paper are:

• Detailed analysis of generative methods for text-to-image and image-to-image synthe-
sis, with emphasis on scientific relevance.

• Comparative evaluation of generative architectures, highlighting their capabilities and
limitations across multiple scientific domains and material types.

• Critical discussion of current challenges and future directions, including pathways for
verifying and validating the scientific integrity of synthetic images.

2. Background
Image-generating models have become a prevalent area of research in recent years, fu-

eled by advances in both algorithm design and hardware capabilities. Early efforts focused
on conventional data-augmentation techniques such as rigid-body transformations [7],
but the field has since evolved toward more sophisticated approaches, including the devel-
opment of foundational models [8].

To illustrate the accelerating interest in image generation, Figure 1 presents publication
trends over the past decade, using data from Dimensions [9]. After remaining steady in the
early 2010s, the number of publications began to rise sharply around 2017. This growth
reflects a convergence of factors: breakthroughs in generative algorithms, expanded access
to large-scale datasets, and the proliferation of high-performance computing resources.
Given this pace of innovation, it is key to critically assess the applicability and limitations
of these models, particularly within scientific imaging contexts.

(a) (b)

Figure 1. Publications of image-generation papers over the last 15 years. (a) Publication trends
collected from all public sources. (b) Publication trends excluding those from Arxiv.

During the earlier phase of this acceleration, Generative Adversarial Networks (GANs)
dominated the field, especially in image synthesis tasks. The significant increase in the
number of publications can be attributed to specific breakthroughs that both enabled and
inspired future work in Image Generation. Key breakthroughs in 2017 and 2018 signifi-
cantly advanced GAN performance, yielding state-of-the-art (SOTA) results. For example,
Pix2Pix [10] introduced conditional adversarial networks for image-to-image translation,
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enabling the model to learn mappings from input to output images using paired datasets.
CycleGAN [11] further extended this approach by allowing image translation from un-
paired data, a key feature for real-world applications where aligned datasets are scarce or
unavailable. These innovations laid the foundation for powerful image manipulation tools,
such as style transfer and background replacement.

Introduced in 2018, StyleGAN [12] redefined the field by introducing an alternative
generator architecture that enabled unprecedented control over the latent space, allowing
for fine-grained manipulation of image attributes. This shift brought significant improve-
ments in visual quality and consistency. A year later, transformers [13] entered the genera-
tive space with SAGAN (Self-attention GAN) [14], which introduced self-attention layers
into both the generator and discriminator, allowing the models to account for long-range
dependencies in the image. Building on this, BigGAN scaled up GANs substantially, result-
ing in higher-resolution outputs with greater diversity, albeit with a corresponding increase
in computational demands.

The year 2020 marked the emergence of Diffusion Models as competitive alternatives
to GANs. Initially introduced by Sohl-Dickstein et al. [15], these models iteratively add and
remove noise from images in a learned forward-reverse process, achieving state-of-the-art
results on high-resolution tasks and rivaling the performance of top GANs. In parallel,
transformer-based architectures, originally designed for language modeling [13], began
to influence vision research, particularly with Vision Transformer (ViT), which reframed
image classification by treating image patches as input tokens, similarly to natural language
processing [13]. Building upon this work, Ho et al. create their Denoising Diffusion Prob-
abilistic Models (DDPM) [16], which formulate new strategies for training and sampling
from Diffusion Models. This resulted in SOTA performance compared to other Diffusion
Models, and similar performance to SOTA GANs on higher-resolution images.

Transformers also fueled advances in text-to-image generation. In 2021, OpenAI
introduced DALL-E [17], a transformer-based model that synthesized coherent and often
whimsical images from textual prompts. This marked a turning point in multimodal
generation, further bolstered by the release of CLIP [18], a model trained to align text
and images in a shared embedding space. These tools laid the groundwork for the next
generation of models, including Google’s Imagen, released in 2022, which used a diffusion-
based approach to generate photorealistic images from text [19]. OpenAI followed with
DALL-E 2, incorporating CLIP to improve semantic alignment between text and image [20].
Stability AI’s release of Stable Diffusion further democratized access by making high-
performing text-to-image Diffusion Models open-source.

Progress continued into 2023, with OpenAI’s DALL-E 3, which introduced improved
training methods and data alignment strategies, enhancing the accuracy and consistency of
text-to-image synthesis [21]. At the same time, major tech companies integrated generative
AI into user-facing products. Microsoft embedded DALL-E-based models into its Designer
and Image Creator platforms, making advanced image-generation tools more accessible to
non-experts [22]. Meanwhile, Meta developed the Segment Anything Model (SAM) [23],
a zero-shot image segmentation model that expanded the toolkit for image manipulation
and interactive generation, also enabling new applications in energy sciences [24].

In 2024, text-to-image and image-to-image synthesis models became even more refined.
Google advanced its Imagen family with improvements in photorealism and semantic
parsing. Meta enhanced its Emu architecture, optimizing for speed and quality and experi-
menting with hybrid models that combine diffusion processes and VAEs [25–27]. OpenAI
continued to iterate on the DALL-E line, focusing on higher fidelity and incorporating
LLM-based refinements. Anthropic also entered the field, exploring visual generation in
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conjunction with its Claude model, while Microsoft expanded its ecosystem integrations
for generative design tools.

So far, 2025 has continued the trend of Diffusion Models dominating the landscape of
image generation. Recent advancements have further enhanced the capabilities of Diffusion
Models for both image synthesis [28] and super-resolution [29]. In particular, breakthrough
applications have emerged in scientific imaging, for example, models in [30] demonstrated
a promising generative approach for dehazing satellite images.

Today, Diffusion Models dominate the generative image landscape, often operating
in latent spaces defined by VAEs for greater efficiency. Although GANs remain relevant
in niche tasks such as upscaling and style transfer, Diffusion Models now serve as the
foundation for most text-to-image and image-to-image systems. A defining trend across
recent developments is the integration of large language models (LLMs), which enhance
generative fidelity by better interpreting prompts and guiding image synthesis. As these
technologies continue to mature, understanding their mathematical foundations, compu-
tational requirements, and potential pitfalls is critical, especially when applying them to
scientific image generation, where precision and trustworthiness are mandatory.

This paper describes key generative architectures (Sections 3–5), highlighting their
underlying mathematical foundations, computational demands, and prevalent challenges
in scientific image generation. Section 6 explains the Experimental Setup, including a
comparative analysis on the generative methods and a summary on the selected models and
APIs for image generation. Subsequently, Section 7 details the metrics for the verification
and validation protocols applied to selected models, and discusses the experimental results
using each of the selected models against energy-centric scientific data (Figure 2). Finally,
Section 8 summarizes the results and discusses capabilities and limitations across datasets
and Section 9 draws conclusions about this investigation and future directions.

Input:
Image + Text

Architecture:
VAE, GAN,
Diffusion

Output:
Generated Image

+ Metrics

Figure 2. Image-generation pipeline: The Input stage processes a combination of text/prompt and
scientific images. Next, a single Architecture (VAE, GAN, or Diffusion) is employed based on this
input. Finally, Output assessment can be performed either qualitatively, by visualizing the generated
image, or quantitatively, using metrics such as SSIM, LPIPS, FID, and CLIPScore.

3. Key Generative Architecture: Variational Auto-Encoder (VAE)
First introduced in 2013, the Variational Auto-Encoder (VAE) [31] is a type of genera-

tive neural network capable of learning a probability distribution over a set of data points
without labels. It learns to encode input data into a lower-dimensional latent space and
decode it back to the original image space by sampling latents, while ensuring the latent
representations follow a known probability distribution.

A VAE is a latent-variable model with an intractable posterior distribution, which pre-
vents direct likelihood evaluation. Instead, it approximates the posterior using variational
inference. This means that the VAE must optimize a lower bound on the likelihood because
marginalizing over the latent space is intractable. Intuitively, latent variables (LVs) provide
a more compact representation of the data by capturing its underlying structure. More for-
mally, they are the result of transforming data points into a continuous, lower-dimensional
space that reveals the essential features of the observed data.

Throughout this paper, we denote vectors using boldface (e.g., x, y, z). In the context
of VAEs, let D be the dimensionality of the observed data, then x ∈ RD represents the
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observed data (e.g., images), and z ∈ Rd represents a latent variable, where typically d is
the dimension of each latent variables and d≪ D.

Mathematically, given a data point x drawn from an unknown distribution p(x), and a
latent variable z from a prior p(z), the following relationships hold:

• p(z) is the prior distribution over LVs;
• pθ(x) is the marginal distribution (model goal, intractable to compute directly);
• pθ(x|z) is the likelihood or decoder, parametrized by θ, mapping latents z to

data points x;
• pθ(x, z) = pθ(x|z)p(z) is the joint distribution of data points and latent variables;
• pθ(z|x) is the posterior distribution (approximated during training), which describes

z that can be produced by x.

The generative process in VAEs consists of sampling a latent variable from the prior
distribution z∼p(z), then generating a data sample from the conditional distribution
x∼pθ(x|z). During inference, given a data point x, the posterior pθ(z|x) is needed to
sample a latent variable z that captures the underlying representation of x (see Figure 3).
However, since the true posterior pθ(z|x) is intractable, VAEs instead use a variational
approximation qϕ(z|x), parametrized by ϕ, typically implemented as the encoder network.

Figure 3. Variational inference and generative process in the VAE.

To find the parameters of the marginal distribution pθ(x), we can apply gradient
descent, which translates into computing the following (non-tractable gradient):

∇ log pθ(x) = ∇θ log
∫

pθ(x, z)dz = ∇θ log
∫

pθ(x|z)p(z)dz. (1)

The goal of variational inference is to approximate the intractable posterior distribu-
tion pθ(z|x) with a tractable explicit distribution qϕ(z|x), known as variational posterior
(see Figure 4, encoder block). Here, the parameters θ represent the parameters of the
generative model (decoder), while ϕ corresponds to the parameters of the inference model
(encoder). By using this approximation, Bayesian inference can be reformulated as an
optimization problem [32]. Specifically, training involves minimizing the Kullback–Leibler
(KL) divergence between qϕ(z|x) and the true posterior pθ(z|x), defined as:

KL(qϕ(z|x)∥pθ(z|x)) =
∫

qϕ(z|x) log
qϕ(z|x)
pθ(z|x)

dz = Ez∼qϕ(z|x)[log
qϕ(z|x)
pθ(z|x)

]. (2)

Sampling directly from the variational posterior distribution qϕ(z|x) is non-differentiable,
preventing gradient backpropagation during training. To address this, Kingma and
Welling [31] introduced a reparameterization trick, which transforms the sampling step
into a differentiable operation. Specifically, instead of directly sampling the distribution
parameterized by mean µ and standard deviation σ, the latent variables are obtained
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by adding parameter-independent noise ϵ drawn from a standard normal distribution,
enabling gradient computations:

z = µ + σ · ϵ, (3)

where ϵ∼N (0, 1), which is independent of the network parameters. The new z is now a
deterministic function of µ, σ, and ϵ. Since µ and σ are outputs of the neural network, we
can now backpropagate through them. That way instead of learning z directly, the network
learns µ(x) and σ(x) to shape the latent distribution and sampling occurs outside of the
computational graph (with ϵ), making it possible to compute gradients and optimize the
VAE via gradient descent.

Figure 4. VAE encoder–decoder architecture.

Once the prior distribution is defined, the generative process (decoder) of the VAE
consists of the following steps (see Figure 4, decoder block):

• Sample latent variable z∼N (0, I);
• Compute parameters µx, σx through the decoder network;
• Generate a data point x by sampling from N (µx, σ2

x I).

The training objective of the VAE is to maximize the Evidence Lower Bound (ELBO),
equivalently formulated as maximize the following loss function:

Lθ,ϕ(x) = Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)∥p(z)). (4)

The first term of this equation, known as the reconstruction error, quantifies how well
the decoder reconstructs the input data x from the latent representation z. The second term
measures the KL divergence between the variational posterior qϕ(z|x) and the prior pθ(z),
encouraging the latent space produced by the encoder to remain regularized, continuous,
and consistent with the prior assumptions.

β-VAE

The β-VAE (Beta-Variational Autoencoder) is a modification of the standard Variational
Autoencoder (VAE) presented in 2017 [33], and that introduces a weighting adjustable
factor β to control the trade-off between reconstruction fidelity and the disentanglement of
the learned latent representations. In contrast with standard VAEs, β-VAE modifies this
objective by scaling the KL term with a hyperparameter β ≥ 1. When β > 1, the model is
encouraged to learn more disentangled and factorized latent representations at the cost of
some reconstruction accuracy. This is particularly useful in unsupervised learning where
interpretability of latent factors is important. The objective function of this model is similar
to Equation (4) with the additional β factor:

Lβ−VAE(x) = Eqϕ(z|x)[log pθ(x|z)]− β KL(qϕ(z|x)∥p(z)). (5)
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Using β-VAE is particularly beneficial when focusing on learning interpretable, disen-
tangled and structured latent representations. Such representations allow better analysis,
manipulation and control of the latent space and independent generative factors (e.g.,
shape, size, orientation).

4. Key Generative Architecture: Generative Adversarial
Networks (GANs)

The Generative Adversarial Network (GAN), introduced in 2014 [34,35], represents a
major advance in generative learning. GANs comprise two competing neural networks: a
generator and a discriminator, where the generator aims to produce synthetic data, and the
discriminator attempts to distinguish between real data and synthetic data (see Figure 5).

Figure 5. Vanilla GAN architecture, illustrating the generator (taking a noise vector as input) and
discriminator (evaluating real and generated images individually).

Formally, GAN training involves solving a min-max adversarial optimization problem,
described as follows:

• The generator G(z) maps random noise z∼p(z) (also called latents and where p(z)
is the prior over the latents) to the data distribution pdata(x) and outputs the syn-
thetic image in the shape of a 1D-vector xg. The stochasticity given by this random
sampling will provide a non-deterministic output, which is how the model creates
diversity in the generation process. The goal here is to fool the discriminator and
minimize log(1− D(G(z))), which amounts to maximizing the discriminator’s error
in classifying the generated images as fake.

• The discriminator D(x) takes as input a real xr and synthetic image xg (generated by
the generator) and outputs the probability that the image x comes from the real data
distribution or not. The goal here is to maximize the loss function or the probability
that it correctly classifies real and fake images.

This adversarial process drives both the generator and the discriminator to improve,
resulting in high-quality synthetic data. In addition, the fact that the generator is only
trained to fool the discriminator makes this Vanilla GAN model unsupervised. The goal of
the GAN is to solve the min-max game or adversarial game between the generator and the
discriminator with the following objective function and optimization problem:

min
G

max
D

V(G, D) = Ex∼pdata(x)[log D(x)] +Ex∼p(z)[log(1− D(G(z)))], (6)

where D(x) is the probability that x is real, G(z) is the generated sample, and thus D(G(z))
is the probability that the generated image given latent z is real.

One of the most common limitations of GANs is the so-called mode collapse problem
where the generator fails to accurately represent the pixel space of all possible outputs. This
issue is common in high-resolution images, where too many fine-scale features must be
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captured. In that case, the generator gets stuck in a parameter setting with a similar level of
noise that can consistently fool the discriminator and only captures a subset of the real data
distribution. It then fails to produce diversity in its outputs and collapses to producing
only a few types of synthetic samples.

4.1. Conditional GAN (CGAN)

As an extension of the Vanilla GAN, the Conditional GAN was introduced in 2014 [36],
and uses conditional information (image or text) to guide the generation process.
The CGAN performs conditioning generation by feeding information to both the gen-
erator and the discriminator (see Figure 6).

The generator G(z, y) takes as input random noise z, and the conditional embedding y
and learns to generate data given this condition, whereas the discriminator D(x, y) learns to
classify real and fake images by checking that condition y is met. The updated conditional
min-max optimization function becomes:

min
G

max
D

V(G, D) = Ex∼pdata(x|y)[log D(x, y)] +Ez∼p(z)[log(1− D(G(z, y), y))]. (7)

Figure 6. Architecture of the Conditional GAN, where the vector in green is associated to the
conditional or label vector. Source: [36].

4.2. Deep Convolutional GAN (DCGAN)

Following the initial development of GANs, various architectures emerged, notably
Deep Convolutional Generative Adversarial Networks (DCGANs) introduced by Rad-
ford et al. in 2015 [37], which extended the foundational GAN framework. While the
Vanilla GAN architecture contains downsampling and upsampling layers with ReLU ac-
tivations and a sigmoid activation for the discriminator, this variant of the GAN is made
of strided convolution layers in both the Discriminator and the Generator (as illustrated
in Figure 7), along with batch normalization layers, and LeakyReLU activation functions.
This architecture is adapted to small-size images such as RGB inputs of shape (3,64,64) and
struggles with high-resolution images.

Figure 7. Architecture of the generator block of the DCGAN model, composed of convolutional
blocks and taking as input a latent vector and outputs a synthetic image. Source: [37].
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4.3. Architectural Innovations Derived from CGAN and DCGAN
4.3.1. Pix2Pix

Pix2Pix is a type of Conditional GAN framework introduced in 2017 by Isola et al. [10],
which learns a mapping from an input image x and random noise vector z to a target image
y, using a U-Net [38]-based generator G and a convolution-based discriminator D (called
PatchGAN). The adversarial loss encourages the generator to produce outputs that are
indistinguishable from real images, conditioned on the input:

LcGAN(G, D) = Ex,y∼pdata(x,y)[log D(x, y)] +Ex∼pdata(x),z∼p(z)[log(1− D(x, G(x, z)))]. (8)

In addition to the adversarial loss, Pix2Pix introduces a reconstruction loss based on
the L1 distance between the generated image and the ground truth, which encourages the
generator to produce images that are structurally close to the target:

Ex,y∼pdata(x,y)[∥y− G(x, z)∥1]. (9)

The total objective for the generator combines both losses:

LPix2Pix(G, D) = LcGAN(G, D) + λEx,y∼pdata(x,y)[∥y− G(x, z)∥1], (10)

where λ is a hyperparameter that controls the relative importance of the L1 loss.

4.3.2. CycleGAN

CycleGAN is a generative model designed in 2017 [11], for unpaired image-to-image
translation. It learns to translate images from one domain X (e.g., horses) to another domain
Y (e.g., zebras) without requiring paired training examples.

The model consists of two generators and two discriminators (see Figure 8) and is
defined by the following structure:

• Generator G : X → Y;
• Generator F : Y → X;
• Discriminator DY : distinguishes real Y images from generated ones G(x);
• Discriminator DX : distinguishes real X images from generated ones F(y).

Each generator is trained with a standard GAN loss.
The full objectivecombines both adversarial and cycle consistency losses:

L(G, F, DX , DY) = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X) + λLcyc(G, F), (11)

where λ is a hyperparameter controlling the importance of the cycle consistency loss.
CycleGAN thus enables high-quality, unpaired image-to-image translation through
adversarial learning and cyclic reconstruction. For more details on the explicit loss
formulation, see Appendix A.

Figure 8. (a) CycleGAN architecture containing two mapping functions F and G and two associated
adversarial discriminators DY and DX . (b) Forward cycle-consistency loss: x→ G(x)→ F(G(x)) ≈ x.
(c) Backward cycle-consistency loss: y→ F(y)→ G(F(y)) ≈ y, where blue dots referring to outputs
of domain X and red dots referring to outputs of domain Y. Source: [11].
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4.3.3. StyleGAN

StyleGAN (Style-Based Generative Adversarial Network) is a type of GAN that was
introduced by NVIDIA in 2018 [12] and was initially applied to image face synthesis. It
relies on style-based architecture with convolutional layers. This new GAN architecture
allows control over different aspects of the image by learning high-level features without
supervision and stochastic variation (random noise) in the synthetic images (fine-scale
attributes such as eyes and hair).

Let z be a latent variable, input of the generator. Then as illustrated on the right
side of Figure 9, z is mapped through multiple fully connected (FC) layers and outputs
a vector w which will be an intermediate representation fed to each convolutional block,
through Adaptive Instance Normalization (AdaIN) that normalizes feature maps separately.
Gaussian noise is then added to the feature maps after each convolutional layer, which
allows conservation of global aspects.

Figure 9. (Left) Traditional generator architecture takes a noise vector z as input, a (right) style-based
generator with an additional mapping network f and an intermediate latent space W that controls
the generator through AdaIN at each convolution layer. w ∈ W is added through a learned affine
transform “A”. Gaussian noise is added after each convolution, before evaluating the nonlinearity
through “B”, which applies learned per-channel scaling factors to the noise input. Source: [12].

The StyleGAN generator architecture enables precise control over image synthesis
through scale-specific style modifications.

By leveraging a mapping network and affine transformations, the model samples
styles from a learned distribution, while the synthesis network constructs an image by
integrating these styles. Crucially, each style’s influence remains localized within the
network and adjusting a subset of styles primarily alters corresponding aspects of the
image. This localization effect arises from the AdaIN mechanism. Before applying style-
based transformations, AdaIN standardizes each channel by enforcing a zero mean and
unit variance. Only afterward does it introduce new scales and biases dictated by the style
parameters. Because this process eliminates dependence on the original feature statistics,
each style exclusively governs a single convolution before the next AdaIN operation takes
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over. This sequential modulation allows for fine-grained and independent control over
different levels of the generated image.

The discriminator in StyleGAN is a standard Convolutional Neural Network (CNN)
designed to distinguish between real and generated images.

4.3.4. GigaGAN

GANs were the traditional choice for text-to-image generation until the release of large
Diffusion Models such as DALL-E, Imagen, and Stable Diffusion. These new Diffusion
Models have parameters on the scale of billions, while the SOTA GAN model had only
75 million parameters. The disparity in image quality was attributed to the massive gap in
parameter counts. GigaGAN was able to create a scalable architecture that far exceeds the
size of previous GAN models and has competitive performance to Diffusion Models while
being orders of magnitude faster [39]. GigaGAN is a private model whose results were
published by Adobe in 2023. While there is a community implementation [40] of the work
presented in [39], there have been no other attempts to make a publicly available version
of this model to test at the time of writing this paper. Although the results of the paper
are promising, training the model from scratch to recreate the capabilities and testing on
scientific images are beyond the scope of this paper.

4.3.5. Other GAN-Based Models

StackGAN [41] and Attention GAN (AttnGAN) [42] are notable Conditional GAN
architectures that have significantly advanced the field of conditional image generation.
StackGAN introduced a hierarchical approach, generating low-resolution images and
iteratively refining them to high-resolution outputs. AttnGAN innovated with attention
mechanisms (see explanation of attention mechanisms in Section 5.2.1), allowing the model
to selectively attend to specific words or phrases in the text description when generating
the corresponding image regions. Progressive GAN [43] and BigGAN [44] are two other
influential models that significantly advanced image generation. Progressive GAN grows
the generator and discriminator networks gradually, from low to high resolution, starting
with tiny images (e.g., 4 × 4) and incrementally adding layers to reach resolutions such as
1024 × 1024. This strategy stabilizes training and allows the model to learn coarse features
before fine details. In contrast, BigGAN focuses on scaling up model size and dataset
complexity. It introduces class-conditional generation with large batch sizes and deep
architectures, enabling the production of high-fidelity, diverse images across 1000 ImageNet
categories. BigGAN employs techniques such as the truncation trick to balance the trade-off
between image quality and diversity. In this method, instead of sampling noise vectors z
from the full standard normal distribution z∼N (0, 1), the samples are clipped or resampled
to lie within a certain range closer to the mean. This limits extreme values, which tends to
improve image fidelity at the cost of reduced variability.

Table 1 summarizes the discussion about GAN models, showcasing their diverse
architectures and applications, from early convolutional models like DCGAN to modern
style-based approaches such as StyleGAN and GigaGAN. While early models focused on
simple image generation and translation, later advancements incorporated techniques like
cycle consistency (CycleGAN), attention mechanisms (AttnGAN), and multi-stage refine-
ment (StackGAN) to improve conditional generation and overcome common limitations
like mode collapse and low resolution.



J. Imaging 2025, 11, 252 12 of 47

Table 1. Comparison of GAN models by type, architecture, advantages, and limitations.

Model Type Pros Cons

DCGAN [37] Convolutional GAN
Simple and stable architecture for small datasets;
good for learning visual representations; useful

baseline for unsupervised generation tasks.

Limited to low-resolution outputs (e.g., 64, 64);
prone to mode collapse and training instability;

lacks semantic control over outputs.

Pix2Pix [10] Conditional GAN
Performs high-quality, detailed image-to-image

translation when paired data is available; easy to
train and fast convergence.

Requires aligned input-output pairs; not
applicable to unpaired settings; limited

output diversity.

CycleGAN [11] Conditional GAN
Enables unpaired image translation using cycle

consistency; works well with domain adaptation
and style transfer without paired data.

Poor at handling large domain gaps; produces
deterministic outputs; sensitive to cycle

loss weighting.

StackGAN [41] Conditional GAN
Generates high-res images from text using

two-stage coarse-to-fine refinement; improves
detail and realism.

Complex training pipeline; intermediate outputs
may be poor; struggles with long or complex

text prompts.

AttnGAN [42] Conditional GAN
Uses attention mechanisms for word-region

alignment; improves text-to-image coherence and
fine detail generation.

Heavy computation and sensitive to noise in
attention; can overfit; complex to tune

and interpret.

StyleGAN [12] Style-Based GAN
Generates photorealistic images with disentangled

control over features like age or pose; smooth
latent space for editing.

Requires large, clean datasets and high compute;
expensive training; earlier versions had

visual artifacts.

GigaGAN [39] Style-Based GAN
Combines GAN speed with diffusion-level quality;

supports text-to-image at high resolution (e.g.,
1024,1024); fast inference.

Requires massive compute and data; complex
architecture; difficult to stabilize and

reproduce training.

5. Key Generative Architecture: Diffusion Models
In thermodynamics, diffusion refers to the spontaneous flow of particles from regions

of high concentration to regions of low concentration, ultimately moving the system toward
a state of equilibrium. In statistics, the concept of diffusion draws a similar analogy: it
describes the process of transforming a complex data distribution pcomplex into a simpler,
predefined distribution pprior over the same domain. Formally, this is achieved via a first
transformation τ such that:

x0 ∼ pcomplex ⇒ τ(x0) ∼ pprior. (12)

Describing this analogy in terms of entropy provides additional insight: both in
thermodynamics and in statistics, diffusion involves an increase in disorder or uncertainty
in the forward direction. That is, a structured, high-information (low-entropy) distribution
is progressively mapped to an unstructured, high-entropy distribution (e.g., isotropic
Gaussian noise).

The second transformation reverses this stochastic process, reducing entropy and
gradually transforming samples from the simple distribution pprior back into samples from
pcomplex. These two mappings constitute the forward process (diffusion) and the reverse
process (denoising generation), which together form the foundation of diffusion-based
generative models.

Diffusion Models, now producing SOTA high-fidelity and diverse images, have
evolved from the initial work of Sohl-Dickstein et al. in 2015 [15], to the significantly impact-
ful Denoising Diffusion Probabilistic Models (DDPM) by Ho et al. in 2020 [16]. Diffusion
Models differ from previous generative models as they decompose the image-generation
process through small denoising steps. They take an input image x0 and gradually add
Gaussian noise (forward process). The second part of the network (reverse process or
sampling process), consists of removing the noise to obtain new data (see Figure 10).

The forward process consists of a Markov chain of T steps, where Gaussian noise
is incrementally added to an input image x0∼q(x0) to produce noisy latent variables
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x1, . . . , xT of the same dimensionality. The variance of added noise is controlled by a
schedule β1, . . . , βT , often linear or cosine.

During training, a neural network approximates the reverse transitions pθ(xt−1|xt)

using Gaussian parameterization. The objective is to minimize the negative log-likelihood,
which is estimated via the Evidence Lower Bound (ELBO):

log p(x) ≥ Eq(x1|x0)
[log pθ(x0|x1)] (13)

− DKL(q(xT |x0)∥p(xT)) (14)

−
T

∑
t=2

Eq(xt |x0)
[DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt))] (15)

log p(x) ≥ L0 − LT −
T

∑
t=2

Lt−1, (16)

where:

• L0 = Eq(x1|x0)
[log pθ(x0|x1)] is the reconstruction term;

• LT = DKL(q(xT |x0)∥p(xT)) quantifies how close the noisy latent xT is to a standard
Gaussian;

• ∑T
t=2 Lt−1 measures the gap between the true reverse process and the learned denois-

ing model.

The reverse model is typically implemented as a U-Net conditioned on timestep
embeddings and trained using a mean squared error loss between the true and predicted
noise. A simplified version of the training loss, used in DDPM training, is derived that
enables the model to predict the noise ϵ added at each timestep t, rather than directly
reconstructing x0.

Lsimple(θ) = Et,x0,ϵ[∥ϵ− ϵθ(
√

ᾱtx0 +
√

1− ᾱtϵ, t)∥2]. (17)

For a complete derivation of the forward and reverse processes, we refer the
reader to Appendix B.

The model is typically implemented using a U-Net with residual blocks, group nor-
malization, and self-attention. The timestep t is embedded (e.g., using a cosine embedding)
and injected into each residual block.

Figure 10. Diffusion model based on DDPMs: (Top) forward process; (Bottom) reverse
process. Source: [45].
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5.1. Score-Based Generative Models

Score-Based Diffusion Models (SBDMs) are a class of Diffusion Models proposed
by [46,47] that combine score functions (gradient of the log probability density function)
and Langevin dynamics (iterative process where we draw samples from a distribution
based only on its score function, as illustrated in Figure 11). The gradient of the log
probability density function, also called the score function, is the mathematical tool that
allows generative models to transform random noise into realistic data by following the
estimated directions where the data probability density grows most.

This approach builds on the principle of score-modeling and score-matching [48],
enabling the training of deep neural networks to approximate the score of complex,
high-dimensional data distributions. Unlike methods such as Variational Autoencoders
(VAEs), which require a tractable normalizing constant, or Generative Adversarial Net-
works (GANs), which rely on adversarial training, score-based modeling bypasses both
constraints. Instead of modeling the probability density function p(x) directly, a neural
network sθ is trained to approximate its score function ∇x log p(x) by minimizing the
following training objective:

Epx [∥∇x log p(x)− sθ(x)∥2
2] =

∫
p(x)∥∇x log p(x)− sθ(x)∥2

2)dx. (18)

Once the score-based model is trained and sθ is obtained, the next step consists in
generating samples using a Langevin Dynamics Markov chain Monte Carlo (MCMC)
procedure by starting from an arbitrary prior distribution and iterating the following
update (for i = 1, . . . , K):

xi+1 ← xi + ϵ∇x log p(xi) +
√

2ϵ zi, (19)

where zk∼N (0, I). When the step size ϵ → 0 and the number of iterations K → ∞,
the distribution of xk obtained from this procedure converges to a sample from p(x) under
some regularity conditions. In practice, the error is negligible when ϵ is sufficiently small
and K is sufficiently large.

Figure 11. Score-based generative modeling with score matching and Langevin
dynamics. Source: [47].

5.1.1. Noise Conditional Score Networks (NCSN)

While Langevin dynamics can sample p(x) using the approximated score function,
directly estimating ∇x log p(x) is difficult and imprecise: the estimated score functions are
usually inaccurate in low-density regions, where few data points are available and as a
result, the quality of the data sampled using Langevin dynamics is poor. To address this, one
solution consists in learning score functions at various noise levels, which can be achieved
by perturbing the data with multiple scales of Gaussian noise [46]. Therefore, given the
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data distribution p(x), we perturb it with Gaussian noise N(0, σ2
i I) where i = 1, 2, . . . , L

and σ1 < σ2 < · · · < σL to obtain a noise-perturbed distribution:

pσi (x) =
∫

p(y)N (x; y, σ2
i I) dy, (20)

which we can draw samples from by sampling x∼p(x) and computing x + σiz, where
z∼N (0, I). Finally we train a network sθ(x, i), known as the Noise Conditional Score-Based
Network (NCSN), to estimate the score function ∇x log pσi (x) . The training objective is a
weighted sum of Fisher divergences for all noise levels:

L

∑
i=1

λ(i)Epσi (x)
[∥∇x log pσi (x)− sθ(x, i)∥2

2]. (21)

Similarly to the previous section, once we obtain sθ(x, i), we can apply the Langevin
Dynamics MCMC procedure to sample new data points.

5.1.2. Score-Based Diffusion Through Stochastic Differential Equations (SDE)

Song et al. [46,47] unify Noise Conditional Score Networks (NCSNs) and Denoising
Diffusion Probabilistic Models (DDPMs) by introducing a continuous-time generative
model based on stochastic differential equations (SDEs). In contrast to perturbing data with
a discrete set of noise levels, they define a continuous-time diffusion process {x(t)}t∈[0,T],
which gradually transforms data into a tractable noise distribution. This forward process,
going from an input image x(0) to random noise x(T) as in Figure 12, is governed by a
fixed reversible SDE with no learnable parameters:

dx = f(x, t) dt + g(t) dw, (22)

where:

• x(t) ∈ Rd is the state at time t;
• f : Rd × [0, T] → Rd is a vector valued function called the drift function, and f(·) is

always of the form f(x, t) = f (t) x;
• g : [0, T]→ R+ is a real-valued function corresponding to the diffusion coefficient;
• dw is a standard Wiener process (Brownian motion with infinitesimal white noise).

To determine the specific forms of f (t) and g(t), two commonly used noise schedules
are presented in [47] (and originally in [16,46]). A full derivation of these formulations can
be found in Appendix C.

Let x denote x(t), i.e., the state of the process at time t, and x(0) = x0. The marginal dis-
tribution pt(x) is then obtained by integrating the perturbation kernels
over x0 (Equation (13) of [49]):

pt(x) =
∫
Rd

p0t(x | x0) pdata(x0) dx0, (23)

where p0t(x(t) | x(0)) is Gaussian and defined in Appendix C.
The next step consists in learning a time-dependent score function sθ(x, t) ≈ ∇x log pt(x).

Since the true score function, ∇x log pt(x) is intractable, it is approximated using the score
neural network sθ(x, t). Then, using the identity:

∇x log pt(x) = Ep0t(x0|x)[∇x log p0t(x | x0)], (24)

we train the score network sθ(x, t) to match ∇x log p0t(x | x0) on average over samples
x∼p0t(x | x0).
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This gives rise to training the model by minimizing the Continuous-Time Weighted
Score-Matching Loss:

L(θ) = Et∼U (0,T) [λ(t) Ex0∼pdata, x∼p0t(x|x0)
[∥∇x log p0t(x | x0)− sθ(x, t)∥2

2], (25)

where:

• sθ(x, t) is the score network approximating ∇x log pt(x);
• pt|0(x | x0) is the transition kernel of the forward SDE;
• λ(t) is a weighting function over time (often noise-dependent);
• U (0, T) is the uniform distribution over the time interval [0, T].

Once the score-based model is trained, it is possible to generate new samples by
computing the well-defined reverse SDE, under appropriate regularity conditions (e.g.,
those from Anderson’s theorem [50]):

dx = [f(x, t)− g2(t)∇x log pt(x)] dt + g(t) dw̄, (26)

where w̄ is a standard Wiener process evolving backward in time, and pt(x) denotes the
marginal density of x. Since ∇x log pt(x) is not analytically available, it is learned via a
time-dependent score network sθ(x, t) ≈ ∇x log pt(x).

Figure 12. Score-based generative modeling through SDE by transforming input data to a noise
distribution through a continuous-time SDE and reversing the process using the score function of the
distribution at each intermediate time step. Source: [47].

The Euler–Maruyama method is the default solver used in early works, such as
Song et al. [47], where it is employed to approximate the reverse-time SDE during the
sampling process. Subsequent improvements led to the adoption of higher-order solvers.
For instance, Karras et al. [49] explore the design space of noise schedules and use Heun’s
method, a second-order stochastic Runge–Kutta scheme, for improved sampling quality.

Song et al. [47] also propose the probability flow ODE which shares the same marginal
distributions pt(x) as the corresponding SDE:

dx = f(x, t)− 1
2

g2(t)∇x log pt(x)dt. (27)

This formulation allows deterministic sampling from the generative model using
numerical ODE solvers. Ultimately, the choice between VP and VE formulations depends
on the modeling objective: VP provides controlled noise injection allowing likelihood
estimation and discrete-time training, while VE supports direct score-based generation
from unbounded priors with flexible noise scales.

Alternatives to score-based modeling, such as flow matching [51], propose training
neural fields to match velocity fields derived from optimal transport, providing another
pathway for continuous-time generative modeling. Compared to autoregressive models,
which generate data sequentially and have shown promise in scalable image synthesis [52],
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score-based and flow-based approaches enable parallel sampling and have opened new
avenues for efficient and high-fidelity generation.

5.1.3. Conditional Image Generation with Guided Diffusion and Classifier Guidance

Similarly to the CGAN, an important extension of the Diffusion Model is the Guided
diffusion model that enables conditional image generation via classifier gradients. It was
introduced by Dhariwal et al. [53] when looking for a way to trade off diversity for im-
age fidelity and were inspired by class-conditional generative models that rely on class
label conditioning. In the paper [53], the model adds conditioning information y at each
diffusion step: Dhariwal et al. train a separate classifier pϕ(y|xt, t) on noisy images at
timestep t denoted by xt, and then use gradients ∇xt pϕ(y|xt, t) to guide the diffusion sam-
pling process towards an arbitrary class label y. As discussed in the previous section, score-
based Diffusion Models generate samples by predicting the score function ∇x log p(x|y)
of the target distribution.

Let us first define ∇x log p(x|y) using Bayes rules and gradient computations:

p(x|y) = p(y|x)p(x)
p(y)

, (28)

⇒ ∇x log p(x|y) = ∇x log p(x) +∇x log p(y|x). (29)

Then, by adding a guidance weight term s to the classifier score term ∇x log p(y|x)
to control the sharpness of the distribution (closeness to label y in the generation process),
they define a new guided conditional score ∇x log p′(x|y) using the previous formulation
at each timestep t:

∇xt log p′θ(xt|y) = ∇xt log pθ(xt) + s∇xt log pϕ(y|xt), (30)

where:

• ∇xt log pθ(xt) is the standard diffusion score;
• ∇xt log pϕ(y|xt) is the classifier guidance term;
• s is a scaling coefficient controlling the strength of guidance.

Based on the original mean µθ(xt|y) and variance Σθ(xt|y), classifier guidance modi-
fies the mean to:

µ̂(xt|y) = µθ(xt|y) + s Σθ(xt|y)∇xt log pΦ(y|xt, t), (31)

At each reverse diffusion step t, sampling is performed using the perturbed mean
µ̂(xt|y) and the covariance Σθ(xt|y):

xt−1 ∼ N (µ̂(xt|y), Σθ(xt|y)). (32)

This formulation explicitly uses both the Diffusion Model’s learned dynamics and
the classifier’s gradient signal to steer the sampling process toward samples that are more
likely to belong to class y (Algorithm 1, source: [53]).

The intuition behind this approach is the following:

• If the classifier assigns a high probability to class y for a given noisy image xt, it means
xt is on the right track.

• If the classifier assigns a low probability, the guidance term nudges xt in a direction
that increases p(y|xt), pushing the sample towards a more likely image.
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Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (µθ(xt), Σθ(xt)),
classifier pϕ(y|xt), and gradient scale s

1: Input: class label y, gradient scale s
2: xT ← sample from N (0, I)
3: for all t from T to 1 do
4: µ, Σ← µθ(xt), Σθ(xt)
5: xt−1 ← sample from N (µ + sΣ∇xt log pϕ(y|xt), Σ)
6: end for
7: return x0

We can underline that higher guidance weights s enforce more alignment with classifier
predictions but may reduce diversity, whereas a lower guidance weights allows more
diversity but might not enforce class constraints strongly.

Classifier guidance is commonly used in models such as GLIDE [54] and Imagen [55],
making text-to-image generation more controllable.

5.1.4. Conditional Image Generation with Guided Diffusion and Classifier Free-Guidance

Classifier-free guidance, proposed by Ho et al. [56], allows for enhanced control in
Diffusion Models by eliminating the need for separate classifiers. Instead of relying on
a separate classifier, which increases training complexity and introduces potential bias,
classifier-free guidance trains the Diffusion Model to directly learn and combine conditional
and unconditional distributions during inference, streamlining the process. In other words,
the authors train a conditional Diffusion Model pθ(xt|y) and an unconditional model
pθ(xt|y = 0) as a single neural network. Based on Equations (29) and (30), classifier-free
guidance linearly combines the score estimates of conditional and unconditional models,
which leads to the following formula:

∇xt log p̂θ(xt|y) = ∇xt log pθ(xt|0) + s(∇xt log pθ(xt|y)−∇xt log pθ(xt|0)) (33)

This approach is advantageous compared to the previous one as it trains a single
model to guide the diffusion process and can take different types of conditional data such
as text embeddings. We will see that many models rely on classifier free-guidance especially
when training on multimodal data.

5.2. Stable Diffusion
5.2.1. Attention Mechanisms

Attention is based on the idea that we should look at all the different words of a
sequence at the same time and learn to pay attention to the correct ones depending on the task
in which we are interested. Attention mechanisms, introduced by Vaswani et al. in [13], can
be defined as attention of the same sequence, where, instead of looking for an input–ouput
sequence association, we look for probability scores between the elements of the sequence.

The attention mechanism computes a weighted representation of a set of values
V ∈ Rn×dv based on a set of queries Q ∈ Rn×dk and keys K ∈ Rn×dk , where n is the
sequence length, dk is the key and query dimensionality, and dv is the value dimensionality.

Self-Attention. Self-attention is a special case where the queries, keys, and values
come from the same sequence. The scaled dot-product attention is defined as:

Attention(Q, K, V) = softmax

(
QK⊤√

dk

)
V, (34)

where:
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• Q, K, V ∈ Rn×dk are the query, key, and value matrices, respectively;
• dk is the dimensionality of each query and key vector;
• The dot product QK⊤ ∈ Rn×n produces pairwise similarity scores between all tokens

in the sequence.
• The softmax operation normalizes each row to a probability distribution over keys

such that for a vector z = {zi}i∈[1,N], then:

softmax(z)i =
exp(zi)

∑n
j=1 exp(zj)

.

This mechanism allows each token to attend to all other tokens, including itself,
weighted by their learned importance (a token is a vector representation of a discrete input
unit: in NLP, tokens represent words or sub-words whereas in vision models, an image is
split into patches, each flattened and projected into a vector which form a sequence input
to vision transformer models).

Multi-head Attention. Instead of computing attention once, multi-head attention
projects the queries, keys, and values h times using learnable weight matrices and computes
attention in parallel across h different heads. For each head i ∈ {1, . . . , h}:

headi = Attention(QWQ
i , KWK

i , VWV
i ), (35)

where:

• WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv are learnable projection matrices

for the i-th head;
• Typically, dk = dv = dmodel/h, so the concatenation of h heads gives the original

embedding size.

The outputs of all heads are concatenated and projected through another learnable
matrix WO ∈ Rdmodel×dmodel :

MultiHead(Q, K, V) = Concat(head1, . . . , headh)W
O, (36)

where Concat denotes the concatenation of the outputs from the h individual attention
heads along the feature dimension, resulting in a single tensor of shape RT×(h·dk), where T
is the sequence length and dk is the dimensionality of each head’s output. This concatenated
tensor is then linearly projected back to RT×dmodel via WO. This formulation allows the
model to jointly attend to information from different representation subspaces at different
positions, enriching the learned representation of each token. The design choice to keep the
final output dimensionality equal to dmodel ensures compatibility with residual connections
and layer stacking in transformer architectures.

Cross-Attention. Cross-attention extends the self-attention mechanism to allow one
sequence (the query source) to attend to another sequence (the key-value source). It was
introduced in [57] and is particularly important in tasks such as text-to-image generation
and text-guided image editing, where the model must condition the output (e.g., an image)
on an auxiliary input (e.g., a text prompt). In such settings, the image decoder learns
to respond to text embeddings, allowing semantic concepts of the prompt to directly
influence the visual output. Modulating the attention maps—by replacing, augmenting,
or re-weighting them—enables precise control over spatial layout, geometry, and semantic
content of the generated image. Let:

• Qimg ∈ Rn×d be the matrix of query vectors derived from the image decoder (e.g.,
latent image tokens).



J. Imaging 2025, 11, 252 20 of 47

• Ktext, Vtext ∈ Rm×d be the key and value matrices derived from the text encoder (e.g.,
token embeddings), where m is the length of the text sequence and d is the embedding
dimensionality.

The cross-attention operation is defined as:

CrossAttention(Qimg, Ktext, Vtext) = softmax

(
QimgK⊤text√

d

)
Vtext, (37)

where:

• QimgK⊤text ∈ Rn×m contains the pairwise dot-product similarities between image
queries and text keys;

• The softmax normalizes each row to a probability distribution over the m text tokens;
• The result is a matrix of size Rn×d, where each image token is a weighted combination

of the text values.

This mechanism enables each spatial or latent position in the image representation to
condition its generation on the most relevant tokens from the text prompt. As illustrated in
Figure 13, this mechanism enables:

• Semantic alignment: which ensures that visual elements in the output image corre-
spond to the content described in the text;

• Layout preservation: which, by manipulating specific attention maps (e.g., Mt for
a token t), ensures that spatial structure from a reference image can be preserved
during editing;

• Prompt-based control: which allows for targeted edits or enhancements when re-
placing or modifying words in the prompt (which can trigger attention shifts in the
image decoder).

Figure 13. Cross-attention mechanisms. (Top) Visual and textual embeddings are combined through
cross-attention layers that generate spatial attention maps for each text token. (Bottom) The spatial
arrangement and geometry of the generated image are guided by the attention maps from a source
image. This approach allows various editing tasks to be performed solely by modifying the textual
prompt. When replacing a word in the prompt, we insert the source image’s attention maps Mt,
replacing the target image maps M∗t , to maintain the original spatial layout. Conversely, when
adding a new phrase, we only incorporate the attention maps related to the unchanged part of the
prompt. Additionally, the semantic influence of a word can be enhanced or reduced by re-weighting
its corresponding attention map. Source: [57].

Attention mechanisms are a foundational component in language models such as GPT
and BERT, where they helps capture contextual relationships within text, and in vision
models (e.g., Vision Transformer (ViT) and Diffusion Transformers (DiT in Section 5.4)) ,
where they model spatial relationships between image patches. In generative models such
as Stable Diffusion (next Section 5.2.2), self-attention is used within the UNet architecture
to enable global spatial dependencies across the image representation. Multi-head attention
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extends self-attention by enabling the model to project the input into multiple attention
heads, each learning to focus on different aspects or subspaces of the data. This mechanism
is central to transformer architectures and is used in both text and vision transformers,
including generative models such as DALL-E and StyleGAN-T, where diverse and nuanced
relationships need to be captured simultaneously across different parts of the input.

Cross-attention, in contrast, involves interactions between different modalities or
sequences, where one set of tokens (queries) attends to another set (keys and values). This
is crucial in conditional image-generation tasks. For instance, in DALL-E 2 (see Section 5.3)
and DALL-E 3, cross-attention allows image representations to attend to text embeddings,
enabling coherent image synthesis from textual prompts. Similarly, Stable Diffusion incor-
porates cross-attention in its denoising network to condition the image-generation process
on language inputs.

5.2.2. Latent Diffusion Models (LDMs)

Latent Diffusion Models (LDMs) are yet another innovative extension of Diffusion
Models [19]. Instead of applying the diffusion on a high-dimensional input (namely
pixel or image space), we project the input image into a smaller latent space and apply
diffusion with the obtained latents as inputs. The authors of [19] propose to use an encoder
network to encode the input into a latent representation and apply the forward process
to this latent vector. Then the reverse process is the same as a standard diffusion process
with a U-Net to generate new data, which are then reconstructed by a decoder network
(see Figure 14). Therefore, given a pre-trained VAE encoder E , which maps an image x
to a latent representation z = E(x), the diffusion process is applied in the latent space.
The training objective for the Latent Diffusion Model (LDM) is defined as:

LLDM(θ) = Ex,ϵ∼N (0,1), t

[
∥ϵ− ϵθ(zt, t)∥2

2

]
, (38)

where the noisy latent zt is generated via the forward diffusion process:

zt =
√

ᾱtz +
√

1− ᾱtϵ, (39)

and where:

• z = E(x) is the latent code of input image x;
• ϵ∼N (0, I) is standard Gaussian noise;
• t is a timestep sampled uniformly from {1, . . . , T};
• θ is the learnable parameter;
• ϵθ(zt, t) is the model’s prediction of the noise.

Figure 14. Diagram of the Latent Diffusion Model (LDM) architecture where the input image is
encoded into a latent vector z through an encoder E , which will be the input to the forward diffusion
process. The denoising U-Net ϵθ utilizes cross-attention layers to process key, query and value pairs
(Q, K, V). This setup includes conditioning information through elements such as semantic maps, text
and images to guide the transformation back to pixel space using the decoder block D. Source: [45].
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Stable Diffusion can also be conditioned, in particular, using classifier-free guidance
by adding conditional embeddings such as image features or text descriptions using a text
encoder (e.g., CLIP’s text encoder) to steer the generation process.

5.3. Models combining Diffusion Based Architectures and Transformers
5.3.1. InstructPix2Pix

Figure 15 illustrates InstructPix2Pix, yet another relevant CGAN-based generative
model introduced in 2022 [58] based on the Pix2Pix model [10]. InstructPix2Pix utilizes
both LLMs and Diffusion Models by creating a training set consisting of pairs of images
and an edit prompt to bridge one image to another. This generated dataset is then used
to train a model to generate the resulting images from the input image and edit prompt.
Although the dataset is generated, the resulting model is able to generalize and edit input
images with arbitrary edit prompts.

Figure 15. InstructPix2Pix method based on training data generation and Diffusion Model training.
(a) Fine-tuning GPT-3 to produce editing instructions alongside modified captions. (b) These caption
pairs are fed into Stable Diffusion with Prompt-to-Prompt guidance to generate corresponding image
pairs. (c) This process results in a dataset with over 450,000 training samples. (d) The authors train the
InstructPix2Pix Diffusion Model on this dataset to perform image edits based on textual instructions.
During inference, the model can generalize to real-world images and follow human-written editing
commands. Source: [58].

5.3.2. DALL-E and DALL-E 2

The first version of DALL-E, introduced by OpenAI in 2021 [59], is a generative model
that generates visual outputs given a text description. Training is carried out using a
text-image pairs dataset. The architecture of DALL-E is based on a discrete Variational
Autoencoder also called a Vector Quantized Variational Autoencoder (VQ-VAE) [60], which
maps the input images to image tokens (the VAE mentioned in the section above uses a
continuous latent space whereas the (VQ-VAE) uses a discrete latent space). The image and
text tokens are concatenated and fed as a single embedding into the network. DALL-E uses
an autoregressive transformer (generate one token at a time) to model the joint distribution
of text-image pairs (GPT-like Transformer). These generated tokens are converted back into
an image via the VQ-VAE decoder. During inference, the target caption is tokenized and
concatenated to the output of the (VQ-VAE) and fed to the transformer decoder, which will
generate a synthetic image. However, DALL-E showed some limitations due to the discrete
tokenization that led to a loss of fine details and lower resolution (256 × 256 images).

A modified version of DALL-E presented as DALL-E 2 in 2022 [61] overcomes these
challenges and allows for more complex text inputs, better prompt understanding and more
realistic and coherent images. It can also manage high-resolution images, and proposes
in-painting (image editing) and out-painting (extending images beyond original borders).
The network components of DALL-E 2 varies from DALL-E: instead of a discrete VAE
(VQ-VAE), the model uses a Latent Diffusion Model (LDM) as well as a CLIP-based Prior
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(CLIP: Contrastive Language-Image Pre-training model) that converts text prompts into
image embeddings.

CLIP, first introduced by OpenAI in 2021 [62], is a classifier that targets the Natural
Language for Visual Reasoning issue by classifying an image into a label (text description
of the image) based on its context. It learns to associate images and text descriptions
in a shared latent space. In fact, CLIP uses a contrastive learning approach: given text-
image pairs, the model learns to maximize the similarity between matching pairs while
maximizing the similarity between mismatched pairs.

This is done by encoding both images and text into vector embeddings using an
image encoder network with a text encoder network (see Figure 16, left side). The model
is trained on large-scale datasets of text-image pairs, enabling it to generalize well to
zero-shot learning tasks, meaning it can understand and classify images based on natural
language descriptions without task-specific fine-tuning. CLIP’s ability to create meaningful
text-image embeddings makes it useful for image-generation application such as DALL-E 2.
As illustrated in Figure 17, DALL-E 2 first transforms a text prompt into a CLIP image
embedding z using a CLIP prior model p(z|y) where:

• y is the text prompt;
• z is the image embedding in the CLIP latent space;
• p(z|y) is modeled using either a GPT-like Autoregressive Transformer prior or a

Diffusion Prior.

Once the CLIP embedding z is obtained, it is passed to a latent Diffusion Model to
generate a synthetic image in a lower-dimensional latent space using a pre-trained VAE.

Figure 16. CLIP architecture: CLIP model simultaneously trains an image encoder and a text encoder
to correctly match pairs of (image, text) examples within a batch during training. During testing,
the trained text encoder produces a zero-shot linear classifier by embedding the names or descriptions
of the classes in the target dataset. Source: [62].

Figure 17. Overview of the DALL-E 2 (or unCLIP) architecture: Above the dotted line is illustrated the
CLIP training process, which develops a joint representation space for both text and images. Below the
dotted line is the text-to-image-generation pipeline: a CLIP text embedding is first given as input to an
autoregressive or diffusion prior to generate an image embedding, which is then used to condition a
diffusion decoder that creates the final image. The CLIP model remains frozen during the training of
the prior and the decoder. Source: [61].
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5.3.3. ControlNET

ControlNET was introduced in 2023 [63] and presents an auxiliary network that
mirrors U-Net in Stable Diffusion but is conditioned on additional structural guidance (e.g.,
depth maps, edge maps, or poses). It works by injecting guidance at multiple stages of the
U-Net via a set of trainable convolutional layers. These layers receive the conditioning input
(e.g., Canny edges) and propagate structured features into the diffusion process, ensuring
that the generated image adheres to the input structure while maintaining generative
creativity. The guidance information is processed through a zero-convolution module
(a 1 × 1 convolution initialized to zero) to ensure smooth integration with the Diffusion
Model without destabilizing its pretrained weights.

ControlNET enhances Stable Diffusion by incorporating additional conditioning in-
puts to guide the image generation process.

5.3.4. Stable unCLIP

Stable unCLIP [64] is a variant of latent Diffusion Models that conditions on CLIP im-
age embeddings in addition to text prompts, enabling effective text-guided image variation
and editing tasks. It builds upon the Latent Diffusion Models framework introduced by
Rombach et al. [65], extending it to support image-conditioned generation through the use
of CLIP embeddings.

Instead of using a text encoder (like OpenAI DALL-E 2’s CLIP or T5) to encode
prompts, it takes a CLIP ViT-L/14 image embedding and injects it into the diffusion process
as a form of semantic prior. The architecture remains similar to Stable Diffusion, where the
U-Net operates in the latent space, guided by the CLIP embedding through cross-attention
layers. Additionally, Stable unCLIP employs a learned projection network that maps
CLIP image embeddings to Stable Diffusion’s latent space, allowing image variations to
be generated without requiring explicit textual guidance. Unlike text-to-image models,
which primarily rely on cross-attention with text tokens, Stable unCLIP leverages direct
latent conditioning, allowing for greater abstraction in the generated images and for the
production of image and text-guided variations at (768 × 768) resolution.

5.3.5. DiffEdit

First introduced in the paper [66], DiffEdit enhances Stable Diffusion by introducing a
mask prediction network that determines which areas of an image should be edited before
running the diffusion process. As illustrated in Figure 18, the key innovation here is the
dual forward pass through the U-Net:

• First pass: the input image is diffused (noised through forward process) and then
denoised using the target text prompt. This provides a preliminary reconstruction of
what the model thinks the target image should look like.

• Mask prediction: the difference between the original image and the first-pass recon-
struction is computed using a learned discrepancy function, identifying which areas
should be modified.

• Second pass (final editing): the identified areas are selectively resampled in the la-
tent space while keeping the unmasked regions frozen, ensuring that only relevant
changes are applied.

The core architecture remains that of Stable Diffusion’s latent U-Net, but it incorpo-
rates a dynamically computed mask that modifies how noise is applied across different
spatial regions. The mask-guided approach prevents unnecessary edits, making it ideal for
controlled inpainting and localized modifications.

This approach also ensures that only targeted areas are modified, preserving the rest
of the image.
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Figure 18. DiffEdit model diagram: first step consists in adding noise to the input image and then
denoising it twice—once conditioned on the query text and once conditioned on a reference text (or
unconditionally). The differences in the denoising results are used to generate a mask. In the second
step, the input image is encoded using DDIM to estimate its latent representation. Finally, in the third
step, DDIM decoding is performed conditioned on the text query, with the inferred mask guiding
the replacement of the background pixels with values obtained from the encoding process at the
corresponding timestep. Source: [66].

5.3.6. LEDITS++

Introduced in the paper [67], the model LEDITS++ builds upon Stable Diffusion’s latent
U-Net while integrating two key additional components: edge-preserving conditioning and
CLIP-based semantic guidance. During inference, a source image is first processed to extract
its edge representation (typically using a Canny edge detector). These edges are then used
as a constraint in the U-Net’s latent space via feature injection layers, which act similarly
to ControlNET but with a focus on structural similarity rather than strict adherence to
the input. Simultaneously, a CLIP-guided latent optimization step ensures that generated
outputs match a target text description while still respecting the original image’s edge
structure. The U-Net’s cross-attention mechanism is modified to incorporate both CLIP
text embeddings and edge constraints, allowing the Diffusion Model to transform images
while preserving spatial features.

5.4. Diffusion Transformers (DiT)

One of the most recent diffusion-based models is the Diffusion Transformer (DiT)
proposed in [68], which is an architecture that combines the principles of Diffusion Models
and transformer models and that generates high-quality synthetic images. It leverages
the iterative denoising process inherent in Diffusion Models while utilizing the power-
ful representation learning capabilities of transformers for improved sample generation.
The authors in [68] replace the U-Net backbone, in the LDM model, by a neural network
called a Transformer [13]. Transformers are a class of models based on self-attention mecha-
nisms, and they have been proven to excel in tasks involving sequential data (like language
processing). They work by attending to all input tokens at once and using multi-head
self-attention to process the input efficiently.

In the context of a Diffusion Transformer (see Figure 19), the input to the transformer is
typically a set of tokens or features (e.g., image patches, sequence tokens), and self-attention
helps the model attend to dependencies across all tokens to capture long-range relationships.
In the reverse process of the Diffusion Model, the transformer network is responsible for
predicting the noise at each step, conditioned on the noisy data. For example, given the
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noisy image at time step t, the transformer can model long-range spatial dependencies
across the image patches (or sequence tokens) and generate a clean image at the next step:

xt−1 = Transformer(µθ(xt, t), context), (40)

where:

• µθ(xt, t) is the predicted noise (as described in the reverse diffusion Equation (31));
• context could be a conditioning input, such as a text prompt (in the case of

text-to-image generation).

Figure 19. Diffusion Transformer (DiT) architecture: on the left, conditional latent DiT models are
trained, where the input latent is divided into patches and processed through multiple DiT blocks.
On the right, the DiT blocks include various configurations of standard transformer components
that integrate conditioning through methods such as adaptive layer normalization, cross-attention,
and additional input tokens. Among these, adaptive layer normalization proves to be the most
effective. Source: [68].

DALL-E 3

DALL-E 3 [21] represents the latest advancement in OpenAI’s series of text-to-image
generative models, significantly improving the visual fidelity and prompt adherence com-
pared to its predecessor. This model integrates a large-scale language model (GPT-4) with a
diffusion-based image-generation pipeline, allowing it to better understand complex tex-
tual descriptions and generate images that align closely with the given prompts. DALL-E 3
incorporates an end-to-end approach where the language and image-generation compo-
nents are deeply coupled, which enhances the model’s ability to faithfully render nuanced
details from the text prompt, resulting in higher semantic alignment and image quality.

Although DALL-E 3 uses diffusion-based generation techniques and transformer
architectures, it is not explicitly based on the DiT (Diffusion Transformer) architecture.
DiTs replace the conventional U-Net backbone in Diffusion Models with pure transformer
architectures and achieve strong results in class-conditional image-generation benchmarks
such as ImageNet. The key distinction lies in the design objectives: DiT focuses primarily
on architectural efficiency and improved Diffusion Model backbones, whereas DALL-E 3
emphasizes the integration of advanced language understanding (via GPT-4) with diffusion
to enhance prompt fidelity and user control in image synthesis. Based on that, DALL-E 3
overcomes DALL-E 2’s limitations in handling highly complex prompts by tightly coupling
language and image generation through GPT-4 guidance, resulting in more faithful and
contextually rich image outputs.

Table 2 summarizes and compares the previously discussed Diffusion and Transformer-
based models, highlighting the strengths and limitations of each architecture. While
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the computational complexity of Diffusion Models can vary depending on architectural
choices and implementation details, it is possible to provide a general characterization.
The theoretical time complexity can be expressed as:
Training: O(S · Nα), and Sampling: O(T · Nα), where:

• S is the number of training samples (or batch size);
• T is the number of sampling steps required to generate an output;
• N is the number of pixels in the input image;
• α is an architecture-dependent exponent, typically α = 1 for convolutional networks

such as U-Nets, and α = 2 for Transformer-based models.

This formulation highlights the key computational scaling properties of Diffusion
Models, showing that their cost increases linearly with the number of training examples or
sampling iterations, and either linearly or quadratically with image resolution, depending
on the model architecture used.

Table 2. Comparison of Diffusion Models categorized by methodology, including conditional and
latent-guided variants.

Model Type Transformer Pros Cons

Basic Diffusion Models
(DM) [15,16]

Denoising Diffusion
Probabilistic Models (DDPM) No Simple and stable training;

high-quality, diverse outputs.
Slow sampling due to many

denoising steps.

Score-Based Generative
Models [46] Score Matching (e.g., SMLD) No

Theoretically grounded; aligns
with likelihood-based

training.

High compute; limited control
and flexibility.

NCSN [46] Noise-Conditional Score
Networks No

Trains score functions at
multiple noise scales; enables
image synthesis from noise.

Requires careful training;
lacks intuitive conditioning.

Score-Based Diffusion
(SDE) [47]

SDE-based (continuous-time)
diffusion No

Flexible noise schedules;
supports fast sampling via

ODE solvers.

Complex math; needs
denoising score models.

Guided Diffusion [53,69] Classifier or Classifier-Free
Guidance No

Enables conditional
generation with control (class,

text, layout, etc.).

Can bias or degrade image
quality at high

guidance scales.

InstructPix2Pix [58] Conditional + Guided
Diffusion No

Instruction-guided image
editing; strong alignment with

user intent.

Requires prompt quality;
editing is often limited to
style/content described.

ControlNet [63] Conditional + Guided
Diffusion No

Adds structural control
(edges, pose, depth, etc.) to

diffusion; high precision.

Heavy model; requires control
input (Canny, pose, etc.).

DiffEdit [66] Masked Conditional Diffusion No
Local editing with mask

guidance; leaves background
untouched.

Sensitive to mask boundaries;
limited generalization.

LEDITS++ [67] Localized Conditional
Diffusion No

High-fidelity edits from
prompts + structure;

state-of-the-art for controllable
editing.

Still under research; complex
training and model merging.

Stable Diffusion (v1) [65] Latent Diffusion +
Classifier-Free Guidance No

Efficient and scalable;
text-to-image from latent

space; open-source.

Harder to train than
pixel-space models;
prompt sensitivity.

Stable UnCLIP [64] Latent Diffusion + Image
Embedding Conditioned No

Leverages image embeddings;
better reconstruction from

reference image.

Reduced diversity; limited to
CLIP-space control.

DALL-E 1 [59] Transformer-based + Discrete
Diffusion Decoder

Yes; Autoregressive token
generation

Combines VQ-VAE and
transformer priors; end-to-end

text-to-image.

Coarse outputs; training
is complex.

DALL-E 2 [61] Diffusion Decoder + CLIP
Guidance

Yes; Maps text embeddings to
image embeddings

High-fidelity images from text;
CLIP-based guidance
improves alignment.

Prone to prompt leakage or
repetition; less open.

DALL-E 3 [21] Transformer-based Diffusion
Model

Yes; Semantic alignment,
layout planning and concept

binding

Best alignment with complex
text; enhanced prompt

following.

Closed source; requires
Azure/OpenAI backend.
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6. Experimental Setup
6.1. Methods for Comparative Analysis

We define a set of metrics to evaluate the general performance of a model family
in image generation. Image quality refers to the level of detail in the generated image.
A model with high image quality strictly adheres to the imposed restrictions placed on
it while maintaining a high level of detail, and absence of artifacts. A model with low
image quality consistently generates images with large amounts of noise and/or artifacts
and incoherent features [70]. A model’s diversity refers to its range of potential outputs.
A model with high diversity can produce a wide spectrum of images while maintaining a
constant image quality. A model with low diversity can only generate images in a narrow
range with constant image quality [71]. Leaving this narrow range can lead to significant
and rapid decreases in image quality. Controllability refers to the ease with which one can
guide the image-generation process with some additional input. For example, if one wanted
to generate variations of an image, they could condition the model with an input image
to help shape the generated output. A highly controllable model can take into account
additional user input, understand the underlying features, and apply those features to the
generated image. Training stability refers to the model’s ability to reliably and smoothly
converge over the training process.

Within the scope of generative models for image synthesis, Diffusion Models stand
out for their ability to produce the highest quality images, often surpassing GANs, which
also generate sharp visuals but may not achieve the same level of detail as diffusion-based
approaches. VAEs, on the other hand, tend to yield blurrier images, indicating a trade-off
in image fidelity. When it comes to diversity, both GANs and Diffusion Models excel at
generating a wide variety of outputs, while VAEs can struggle with high variability, limiting
their performance in certain applications. In terms of controllability, Diffusion Models
offer the most significant level of control over the generation process, allowing for precise
adjustments, whereas GANs provide moderate to high control that can vary based on
specific architectural choices. However, VAEs exhibit limited tractability, making them less
suitable for applications requiring fine-tuned image generation. Lastly, in terms of training
stability, VAEs and Diffusion Models are generally more stable during the training process,
reducing the likelihood of issues, while GANs often face challenges related to instability and
mode collapse, which can hinder their performance and diversity [72]. Table 3 summarizes
aspects about image quality, diversity, controllability and training stability.

Table 3. Comparison of VAEs, GANs, and Diffusion Models for text-to-image generation

Model Type Image Quality Diversity Controllability Training Stability

Variational Autoencoders
(VAEs)

Moderate to High: Generally
produces images with good

quality but can be blurry due
to the loss function used.

Moderate: Capable of
generating diverse images but

may struggle with high
variability in complex

datasets.

Moderate: Can condition on
text embeddings but lacks
fine-grained control over

image features.

High: More stable during
training compared to GANs,

but can suffer from issues
such as posterior collapse.

Generative Adversarial
Networks (GANs)

High: Known for generating
sharp and detailed images.

High: Capable of producing a
wide variety of images,
especially with diverse

training data.

Moderate to High: Can
implement various

conditioning methods (e.g.,
text-to-image) but may require

complex architectures for
precise control.

Moderate: Training can be
unstable and sensitive to
hyperparameters; mode

collapse can occur, leading to
reduced diversity.

Diffusion Models

Very High: Achieves
state-of-the-art image quality,
often surpassing GANs and
VAEs in realism and detail.

High: Generates diverse
images effectively, with the

potential for high variability.

High: Allows for more explicit
control over the generation
process through iterative

denoising steps and
conditioning.

Moderate: High time and
space complexity but

generally more stable than
GANs during training,

with well-defined training
objectives that reduce issues

such as mode collapse.
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Scientific images can present details at different scales and in high-resolution as they
are often acquired using advanced instruments, e.g., microscopes. In order to generate
valuable synthetic images to augment scientific datasets, image quality is expected to be
higher than in other domains, such as art. For example, MRI (Magnetic Resonance Imaging)
scans of human brains [73] must be both detailed and expressly go through the HIPAA
(Health Insurance Portability and Accountability Act) guidelines. The ability to generate
brain scans with synthetic MRI represents an invaluable opportunity to create more diverse
datasets from a few “approved” images, which could be used by researchers to train
models [74–76]. The challenge with scientific image generation lies in the Controllability
or controlling their generation since pre-existent models are typically trained on data
dissimilar to specialized imagery such as microscopy data. If one were to just condition on
a single cross-section on a standard GAN or Diffusion Model, then the results would likely
be suboptimal. Alternatively, training a model from scratch would require a large dataset,
which is actually the motivation for using image generation in the first place. Gathering
sufficient amounts of data from experimental settings is often difficult, and sometimes
impossible, but without the sufficient quantity to minimize bias and reach convergence
during training, the models can be useless. Considering the aforementioned strengths,
Diffusion Models are expected to exhibit optimal performance in the synthesis of scientific
imagery, as they address each of these criteria.

6.2. Selected Models and APIs for Image Generation

To systematically evaluate contemporary generative approaches, we categorize our
selected models into three functional domains: (1) image generation from noise or tex-
tual input, (2) image translation and semantic variation, and (3) image inpainting with
masked guidance. This structure allows us to compare and contrast models not only by
task type, but also by underlying architecture—spanning GANs, diffusion-based models,
and transformer-based architectures. Our selection aims to provide a representative and
balanced overview of the current generative modeling landscape.

(1) Image Generation from Noise or Textual Prompts. This category includes models
that generate images from random noise or from scratch using language-based prompts. We
study DCGAN and StyleGAN, and DALL-E 2 and DALL-E 3 as state-of-the-art transformer-
based text-to-image models. DCGAN serves as a classical baseline, illustrating stable GAN
training and low-resolution synthesis. In contrast, StyleGAN showcases advanced GAN
capabilities, producing high-resolution, photorealistic images with fine-grained latent
space control, which is key for disentangled representation learning. On the transformer
side, DALL-E 2 and DALL-E 3 represent autoregressive and diffusion-based text-to-image
architectures that operate on powerful image-text joint embeddings. We will refer to these
models as DALL-E 2 (generation) and DALL-E 3 (generation), respectively. This category
collectively enables us to examine unconditional and prompt-based generation, as well as
architectural differences in sampling and representation.

(2) Image Translation and Semantic Variation. Here, we examine models that take
an existing image as input and produce a semantically modified version, often guided
by language or structural conditioning. This includes diffusion-based models like Stable
unCLIP, LEDITS++, and InstructPix2Pix, as well as the transformer-conditioned diffusion
framework ControlNet. Stable unCLIP and LEDITS++ translate an input image based on a
target prompt, enabling semantic transformations while preserving content. InstructPix2Pix
focuses on instruction-driven edits (e.g., "make circles larger"), demonstrating strong
alignment with natural language commands. ControlNet adds an extra layer of structure
by introducing a secondary conditioning input such as edge maps or segmentation masks
(in our use case, the model uses the Canny edges, i.e., the structural cues, to guide full image
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generation). Its hybrid design enables spatial control combined with textual semantics.
We also evaluate DALL-E 2 (variation mode) which creates semantic variations by taking
an input image without prompt guidance and to which we will refer to as DALL-E 2
(variation). This category allows us to probe the boundaries of controllability, latent
consistency, and editing capacity in diffusion and transformer-enhanced pipelines.

(3) Image Inpainting with Masked Edits. In this final group, the models specialize
in localized image editing, where masked regions of an image are filled in, based on
surrounding context and semantic prompts. We consider DiffEdit, a diffusion-based mask-
aware model, and the DALL-E 2 (edit mode), which supports guided inpainting and to
which we will refer to as DALL-E 2 (edit). DiffEdit automatically detects editable regions by
contrasting source and target prompts and generating semantic masks, which are refined
using a diffusion-based denoising process. DALL-E 2 (edit) allows manual masks and
natural language prompts to guide the regeneration of masked areas, ensuring contextual
coherence and semantic alignment. These models illustrate the utility of combining image
structure and language semantics for fine-grained editing tasks, and they offer insight into
localized sampling capabilities within generative frameworks.

Table 4 summarizes models from all three major generative families: GANs (DC-
GAN, StyleGAN), Diffusion Models (Stable unCLIP, DiffEdit, InstructPix2Pix, ControlNet,
LEDITS++), and transformer-based models (DALL-E 2 and 3). By spanning the full range
of synthesis tasks, our study provides a comprehensive assessment of how different ar-
chitectures approach image generation, transformation, and inpainting. This comparative
framework enables a deeper understanding of trade-offs in fidelity, controllability, and se-
mantic alignment across model classes.

Regarding computational complexity, Diffusion Models have slower sampling speeds
than GANs, but recent advances such as Denoising Diffusion Implicit Models (DDIM) and
progressive distillation are helping mitigate runtime while preserving output quality [77].

Table 4. Summary of selected generative models grouped by functional domain, architecture,
and key features.

Domain Model Architecture Description / Key Features

Image Generation
from Noise or Text

DCGAN GAN Classical baseline; stable training; low-res synthesis.
StyleGAN GAN High-res, photorealistic images with fine-grained latent space control.
DALL-E 2 (gen) Transformer + Diffusion Autoregressive text-to-image using joint image-text embeddings.
DALL-E 3 (gen) Transformer + Diffusion Improved alignment and semantic comprehension over DALL-E 2.

Image Translation
and Semantic Variation

Stable unCLIP Diffusion Prompt-based translation; preserves image structure.
LEDITS++ Diffusion Guided semantic editing with strong content retention.
InstructPix2Pix Diffusion Text instruction-based edits; fine-grained control.
ControlNet Diffusion + Transformer Adds structure (e.g., edges) for spatial control in generation.
DALL-E 2 (var) Transformer + Diffusion Prompt-free semantic variations from input image.

Image Inpainting
with Masked Edits

DiffEdit Diffusion Mask-aware editing via prompt contrast and semantic masks.
DALL-E 2 (edit) Transformer + Diffusion Manual masking with prompt-driven inpainting.

7. Experiments with genAI for Scientific Images
Our experiments consist of using experimental images acquired at LBNL facilities and

running a variety of genAI algorithms that aim to mimic key properties present in each
of those sets. Datasets range from objects with thin regular structures (fibers) to irregular
filaments (roots), to bulk materials (rocks), enabling access to the performance of generative
tasks across the spectrum of intensities, textures, sizes, and shapes.

Both the rocks and fibers datasets are microCT images acquired at the LBNL synchrotron
beamline with energies between 10 and 45 keV, with a 1% bandpass, CCD camera Cooke
PCO 4000, Kodak chip with 4008 × 2672 pixels, 14 bit, 9 micron square pixels. The image
slices come from reconstructions of the parallel beam projection data [78].
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• Fibers: These images come from high-resolution imaging, achieved using synchrotron
X-ray radiation to probe the fiber structure and integrity, enabling characterization at
the micrometer scale. The reconstructed samples from the parallel-beam projection
data are image stacks. These samples are composed of Ceramic Matrix Composites
(CMCs), a class of materials engineered to enhance toughness and high-temperature
performance compared to monolithic ceramics. This enhancement is achieved by
incorporating reinforcement fibers within the ceramic matrix. The interplay between
these fibers and the matrix, along with the behavior of the interfaces between them,
dictates the overall mechanical properties and the material’s degradation pathways
under load [79]. We will refer to this dataset as the CMC dataset, which contains
937 high-resolution images of shape (2560,2560). Figure 20 summarizes the experi-
mental results using the selected methods in Table 4.

• Roots: This dataset consists of slices scanned by an automated robotic system called
EcoBOT that enables high-throughput scanning of plants in hydroponic systems
known as EcoFABs. EcoBOT scans roots using a professional-grade EPSON Per-
fection V850 Pro scanner for image acquisition. This scanner provides exceptional
precision and quality for various media, including paper sheets. Key features in-
clude a dual high-resolution lens system (up to 6400 dpi for photos, documents,
and 35 mm film/slides) [80]. We will refer to this dataset as the EcoFAB dataset,
which counts 375 high-resolution images of shape (2039,3000). Figure 21 shows the
experimental results.

• Rocks: This dataset comprises microCT scans from samples containing large sediment
grains from the Hanford DOE contaminated nuclear site. These sediment grains are
contained within a tube, and individual image slices exhibit a visually distinct contrast
between the solid grains and the pore space. This dataset has been used for benchmark-
ing segmentation algorithms that separate the pore space from the grains [81]. This is
complicated by the presence of reconstruction artifacts, specifically ring artifacts result-
ing from the back-projection algorithm. Although the inherent contrast between solid
and pore space is good, these artifacts introduce streaks that make segmentation diffi-
cult. We will refer to this dataset as the Rocks dataset, which counts 502 high-resolution
images of shape (1813,1830). Figure 22 presents the experimental results.

In these experiments, GAN-based models were trained from scratch for each dataset,
whereas diffusion-based models were used purely for inference in their pre-trained state
without any task-specific fine-tuning. While high-fidelity outputs were not expected under
these conditions, the objective was to assess the baseline performance of state-of-the-
art image-generation models when applied to scientific imagery. These inference-only
evaluations targeted models that accept either a text prompt (commonly utilized for image
editing tasks), an input image, or both. For inference models, between 1 to 3 output
images were generated per input, resulting in approximately 1000 to 2000 total images per
model. In contrast, for GAN-based models trained from scratch, the number of outputs was
directly controlled to generate a similar volume of approximately 2000 images. The dataset
comprised a diverse set of scientific images, each accompanied by descriptive metadata.
For models constrained to fixed input resolutions, cropped regions of the original images
were used to maintain visual fidelity.
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Figure 20. Comparison of image-generation models for the fiber dataset. DCGAN was trained on
root images resized to (64,64). DALL-E 2 and DALL-E 3 perform zero-shot image generation from
text prompts such as x-ray image of a composite material with deformed circles as cross-sections.

In terms of HPC resources, Table 5 provides a comparative summary of computational
resources, runtime efficiency, and dataset characteristics for all selected generative models
applied to all three image types (CMC, EcoFAB and Rocks). Each table details the model
category, GPU configuration, average compiling or inference time, and the number and
resolution of images processed. In particular, DCGAN and StyleGAN were trained on each
dataset type downsampled or cropped to the appropriate resolutions, whereas API-based
models, including DALL-E-based models, were used to perform inference for each high-
resolution images. All computations were performed using NVIDIA A100 GPUs. Together,
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those tables offer insight into the scalability, efficiency, and deployment context of different
generative approaches across diverse scientific imaging domains.

(a) Raw (b) DCGAN (c) StyleGAN

(d) DALL-E 2 (text-to-image) (e) DALL-E 3 (text-to-image) (f) ControlNet

(g) Stable unCLIP (h) InstructPix2Pix (i) LEDITS++

(j) DALL-E 2 (variation) (k) DiffEdit (l) DALL-E 2 (edit)

Figure 21. Comparison of image-generation models for the root dataset. DCGAN was trained on
root images resized to (64,64). DALL-E 2 and DALL-E 3 perform zero-shot image generation from
text prompts such as microscopy image of entangled plant root in hydroponic system.
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(a) Raw (b) DCGAN (c) StyleGAN

(d) DALL-E 2 (text-to-image) (e) DALL-E 3 (text-to-image) (f) ControlNet

(g) Stable unCLIP (h) InstructPix2Pix (i) LEDITS++

(j) DALL-E 2 (variation) (k) DiffEdit (l) DALL-E 2 (edit)

Figure 22. Comparison of image-generation models for the root dataset. DCGAN was trained on
rock images resized to (64,64). DALL-E 2 and DALL-E 3 perform zero-shot image generation from
text prompts such as microCT scan of rock sample containing large grains.
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Table 5. Overview of computational resources, compilation times, and dataset sizes used for training
or inference across all generative models.

Model Category HPC Resource Average Compilation Time Per
Iteration

Dataset size Trained or
Inferred On

DCGAN-Training 1 NVIDIA A100 GPU 40 min Train on 502 (64,64) images
StyleGAN-Training 4 NVIDIA A100 GPUs 4 h 30 min Train on 502 (512,512) images

Diffusion Model APIs-Inference 1 NVIDIA A100 GPU 4 to 8 min per iteration Infer a (512,512) image
DALL-E APIs-Inference 1 NVIDIA A100 GPU between 10 to 15 s Infer a (512,512) image

7.1. Quantitative and Qualitative Results

Verification and validation (V&V) are critical to ensuring the reliability of generative
AI models, especially in scientific domains where hallucinations, dataset biases, and lack of
ground truth can lead to misleading outputs. Verification focuses on whether the model
meets formal specifications, including unit testing and performance benchmarking. Valida-
tion assesses whether generated content aligns with real-world phenomena, often relying
on both expert judgment and quantitative metrics. SSIM (Structural Similarity Index)
evaluates image similarity based on luminance and structural consistency, offering inter-
pretable scores for low-level fidelity. LPIPS (Learned Perceptual Image Patch Similarity)
uses deep neural network embeddings to assess perceptual realism, capturing textural and
semantic similarity. FID (Fréchet Inception Distance) compares the distribution of real and
generated image features, quantifying global realism and diversity. CLIPScore measures
semantic alignment between images and text prompts in a joint embedding space, which
makes it particularly relevant for prompt-based generation. SSIM and LPIPS operate on
image pairs, offering localized evaluations, while FID and CLIPScore evaluate entire image
sets. Together, these metrics capture complementary aspects of quality, enabling robust
assessment of generative performance. When combined with domain-specific priors and
expert validation, they provide a rigorous foundation for the responsible use of GenAI in
science. Further information about these metrics are available in Appendix D.

Across the three datasets, we observed that pairwise metrics such as SSIM and LPIPS
are not fully representative for unconditional generative models like DCGAN, StyleGAN,
and text-to-image models such as DALL-E 2 and DALL-E 3. In fact, these models generate
images without direct input-output pairs, making structural and perceptual similarity
comparisons, with unrelated reference images, less meaningful. Consequently, for these
unconditional models, we primarily rely on FID, which assesses the overall distributional
similarity and image realism more robustly. In contrast, for pairwise inference mod-
els—ControlNet, LEDITS++, DiffEdit, InstructPix2Pix, Stable unCLIP, DALL-E 2 (edit) and
DALL-E 2 (variation)—that produce outputs directly conditioned a specific input image, we
evaluate performance using the full set of metrics (SSIM, LPIPS, FID, and CLIPScore) to cap-
ture both structural fidelity and perceptual quality. This combined evaluation framework
ensures a fair and informative comparison tailored to each model’s generation paradigm.

7.2. Results on CMC Dataset

The quantitative evaluation of generative models on the CMC dataset (Figure 20), pre-
sented in Table 6, reveals clear differences in performance across architectures. Among all
models, DiffEdit, DALL-E 2 (edit), and LEDITS++ deliver the best visual results (results
in bold in Table 6), consistent with their strong SSIM, low LPIPS, and low FID scores.
DiffEdit notably preserves structural elements, such as the circular fiber boundary, while
making targeted edits, reflecting high fidelity and realism. LEDITS++ also maintains
structure but introduces a stylized, drawn aesthetic that, while perceptually consistent,
sacrifices photorealism.
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Table 6. Quantitative evaluation of generative models on the CMC dataset across multiple tasks,
including: (i) image generation from noise or text input, (ii) image-to-image translation and semantic
variation, and (iii) masked image editing. Reported metrics include SSIM, LPIPS, and CLIPScore
(when applicable), presented as mean ± standard deviation. FID is reported as a single score computed
over the distribution of real and generated images. For text-conditoned models, CLIPScore is included
to assess semantic alignment with the input prompt. All input and output images correspond to the
examples shown in Figure 20 and use consistent image sizes per task, except for DCGAN (trained
on resized inputs of (64,64)), and DALL-E 3 (which internally upsamples inputs from (512,512) to
(1024,1024) during generation).

Model SSIM LPIPS FID CLIPScore

DCGAN 0.067 ± 0.008 0.466 ± 0.032 269.848 N/A
StyleGAN 0.039 ± 0.014 0.417 ± 0.083 77.374 N/A
DALL-E 2, Custom Prompt 0.043 ± 0.024 0.723 ± 0.085 393.291 0.312 ± 0.027
DALL-E 3, Custom Prompt 0.027 ± 0.013 0.694 ± 0.088 331.425 0.322 ± 0.025

ControlNET 0.037 ± 0.020 0.594 ± 0.103 257.830 0.287 ± 0.033
InstructPix2Pix 0.343 ± 0.091 0.409 ± 0.126 189.967 0.212 ± 0.026
Stable unCLIP 0.031 ± 0.018 0.655 ± 0.111 265.238 0.269 ± 0.025
LEDITS++ 0.567 ± 0.078 0.092 ± 0.070 46.332 0.279 ± 0.016
DALL-E 2 (variation), No Prompt 0.049 ± 0.009 0.373 ± 0.103 240.152 N/A

DiffEdit 0.664 ± 0.076 0.053 ± 0.044 39.945 0.227 ± 0.022
DALL-E 2 (edit), Custom Prompt 0.523 ± 0.006 0.118 ± 0.035 41.305 0.328 ± 0.016

In contrast, text-to-image DALL-E 2 and 3 (custom prompts), ControlNet, Stable
unCLIP, and InstructPix2Pix produce the least realistic outputs. These models often distort
key features or generate incoherent and unrealistic edits, which aligns with their poorer
LPIPS and FID scores. Interestingly, InstructPix2Pix reports high SSIM but performs poorly
visually, indicating it may preserve low-level structure while failing semantically.

CLIPScores are low across all multimodal models—even those generating good im-
ages—likely due to CLIP’s poor alignment with scientific image domains like microCT
imaging. This underscores the need for domain-adapted embedding models or additional
task-specific evaluation metrics. Overall, the combined metrics and visual assessments
highlight the strengths of targeted editing models like DiffEdit and the limitations of
general-purpose text-to-image systems in scientific contexts.

7.3. Results on EcoFAB Dataset

Table 7 presents each evaluation metric and gives insight on each model’s generative
performance for the EcoFAB dataset (Figure 21). These quantitative results reveal a complex
relationship between metric performance and visual quality for this particular set of images.
Although DiffEdit reports the best overall scores—highest SSIM, lowest LPIPS, and lowest
FID—its outputs are visually flawed, introducing unnatural black or RGB artifacts on
the root structure. This highlights a limitation of conventional metrics, which reward
structural similarity even when semantic fidelity is compromised. In contrast, StyleGAN
produced the most realistic textures and plausible images, despite lower SSIM and higher
LPIPS, though its color palette appeared slightly muted. DALL-E 2 (edit) yielded visually
convincing edits, closely aligned with the prompts, though it occasionally exaggerated root
branching beyond what is biologically plausible.

Text-to-image models like DALL-E 2 and 3 (custom prompts) underperformed both
numerically and visually, often generating images unrelated to the target domain, explain-
ing their poor FID and misaligned CLIPScores. Similarly, models such as ControlNet,
Stable unCLIP, and InstructPix2Pix failed to preserve the spatial structure or semantics
of the original images, despite moderate scores in some metrics. This mismatch between
metrics and actual utility further underscores the limitations of general-purpose evaluation
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tools like CLIPScore, particularly in scientific domains like EcoFAB, where domain-specific
structure and realism are critical.

Table 7. Quantitative evaluation of generative models across different tasks for the EcoFAB dataset,
including: (i) image generation from noise or text input, (ii) image-to-image translation and semantic
variation, and (iii) masked image editing. Reported metrics include SSIM, LPIPS, and CLIPScore
(when applicable), presented as mean ± standard deviation. FID is reported as a single score computed
over the distribution of real and generated images. For text-conditoned models, CLIPScore is included
to assess semantic alignment with the input prompt. All input and output images correspond to the
examples shown in Figure 21 and models follow similar specifications as described in Table 6.

Model SSIM LPIPS FID CLIPScore

DCGAN 0.067 ± 0.008 0.466 ± 0.032 305.426 N/A
StyleGAN 0.233 ± 0.020 0.607 ± 0.028 90.520 N/A
DALL-E 2, Custom Prompt 0.282 ± 0.048 0.695 ± 0.036 405.784 0.345 ± 0.021
DALL-E 3, Custom Prompt 0.131 ± 0.027 0.664 ± 0.034 302.775 0.301 ± 0.031

ControlNET 0.085 ± 0.037 0.820 ± 0.041 380.363 0.276 ± 0.056
Stable unCLIP 0.391 ± 0.034 0.654 ± 0.035 218.497 0.251 ± 0.040
InstructPix2Pix 0.520 ± 0.062 0.428 ± 0.075 143.595 0.261 ± 0.043
LEDITS++ 0.673 ± 0.056 0.343 ± 0.041 206.072 0.316 ± 0.028
DALL-E 2 (variation), No Prompt 0.566 ± 0.069 0.578 ± 0.035 178.433 N/A

DiffEdit 0.843 ± 0.046 0.147 ± 0.030 64.686 0.183 ± 0.036
DALL-E 2 (edit), Custom Prompt 0.751 ± 0.028 0.293 ± 0.019 189.235 0.306 ± 0.031

7.4. Results on Rocks Dataset

The quantitative evaluation on the Rocks dataset (Figure 22), presented in Table 8,
reveals diverse model performances with clear strengths and weaknesses. DALL-E 2 (edit)
achieves the best overall balance, exhibiting high SSIM, low LPIPS, and low FID, indicating
strong structural preservation, perceptual similarity, and semantic alignment. Visually, it
produces realistic edits that maintain the original image’s content well. DiffEdit scores well
on metrics but visually shows minimal structural changes, preserving the input almost
identically while introducing some minor unrealistic artifacts, highlighting a disconnection
between metric scores and meaningful edits. LEDITS++ offers strong perceptual quality
and realism with low FID and LPIPS, though it exhibits slight stylization, suggesting some
deviation from strict realism. StyleGAN generates realistic textures, as reflected in its
favorable FID.

Conversely, InstructPix2Pix performs poorly visually, introducing many unrealistic
colored artifacts, despite moderate quantitative metrics. DALL-E 2 (variation) generates
visually realistic images but fails to maintain the original input structure, which reduces its
applicability for structure-sensitive tasks. Similarly, Stable unCLIP exhibits weak structural
and perceptual consistency with inputs, resulting in poor visual fidelity and moderate
metric performance. Models like ControlNet and DALL-E 3 (custom prompt) also struggle
to preserve input semantics and produce plausible outputs.

Overall, the results highlight that while editing-focused models like DALL-E 2 (edit)
provide the best combination of realism and semantic alignment, many generative mod-
els still face challenges preserving fine structural details, especially in domain-specific
scientific images.
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Table 8. Quantitative evaluation of generative models across different tasks for the Rocks dataset,
including: (i) image generation from noise or text input, (ii) image-to-image translation and semantic
variation, and (iii) masked image editing. Reported metrics include SSIM, LPIPS, and CLIPScore
(when applicable), presented as mean ± standard deviation. FID is reported as a single score computed
over the distribution of real and generated images. For text-conditoned models, CLIPScore is included
to assess semantic alignment with the input prompt. All input and output images correspond to the
examples shown in Figure 22 and models follow similar specifications as described in Table 6.

Model SSIM LPIPS FID CLIPScore

DCGAN 0.067 ± 0.008 0.466 ± 0.032 269.848 N/A
StyleGAN 0.233 ± 0.017 0.693 ± 0.018 69.51 N/A
DALL-E 2, Custom Prompt 0.155 ± 0.032 0.532 ± 0.028 292.503 0.311 ± 0.018
DALL-E 3, Custom Prompt 0.069 ± 0.019 0.586 ± 0.027 329.988 0.293 ± 0.019

ControlNET 0.240 ± 0.044 0.636 ± 0.061 368.932 0.295 ± 0.026
StableunCLIP 0.216 ± 0.023 0.515 ± 0.027 313.798 0.297 ± 0.022
InstructPix2Pix 0.443 ± 0.046 0.370 ± 0.081 169.820 0.274 ± 0.031
LEDITS++ 0.440 ± 0.015 0.161 ± 0.019 65.451 0.294 ± 0.011
DALL-E 2 (variation), No Prompt 0.191 ± 0.046 0.488 ± 0.035 283.140 N/A

DiffEdit 0.556 ± 0.011 0.135 ± 0.029 124.199 0.276 ± 0.011
DALL-E 2 (edit), Custom Prompt 0.635 ± 0.012 0.216 ± 0.015 75.104 0.314 ± 0.009

8. Summary and Discussion
The quantitative and qualitative evaluation of GAN-based and diffusion-based gener-

ative models across three scientific datasets—CMC, EcoFAB, and Rocks—reveals consistent
trends in model performance and challenges specific to scientific image generation. Editing-
focused Diffusion Models such as DiffEdit, DALL-E 2 (edit), and LEDITS++, in terms or
quantitative results, consistently achieve the best balance of structural fidelity, perceptual
quality, and semantic alignment, as reflected in strong SSIM, low LPIPS, and favorable FID
scores. However, visual inspection highlights limitations even in top performers: DiffEdit
often preserves input structures almost identically but introduces minor unrealistic artifacts,
while LEDITS++ shows stylized but less photorealistic outputs.

GAN-based models like StyleGAN generate realistic textures and plausible images,
yet their metrics (SSIM, LPIPS) may not fully capture their performance due to the lack of
direct input-output pairing, highlighting the limitations of pairwise similarity metrics in
unconditional generation scenarios. Notably, models that emphasize realism over diversity,
such as StyleGAN or editing models like DALL-E 2 (edit), seem particularly well-suited
for applications like slice interpolation or volumetric reconstruction, where generating
structurally consistent intermediate slices is essential.

Text-to-image models, including DALL-E 2 and DALL-E 3 with custom prompts, gen-
erally underperform both numerically and visually, frequently producing outputs that stray
from the target domain or fail to preserve input structure and follow prompt instruction or
description. Similarly, models such as ControlNet, Stable unCLIP, and InstructPix2Pix strug-
gle to maintain semantic and spatial consistency, resulting in incoherent or artifact-laden
outputs despite sometimes moderate metric scores. In fact, high SSIM or CLIPScores do not
always correlate with visual realism or meaningful edits in scientific contexts, indicating a
need for domain-adapted evaluation metrics.

The experimental outcomes are primarily shaped by the inherent strengths and limi-
tations of each generative model architecture when applied to scientific image synthesis.
Diffusion Models excel in image quality, controllability, and training stability, which allows
them to produce highly detailed and structurally faithful images across diverse scientific
datasets. Meanwhile, GAN-based models generate sharp and realistic visuals with no-
table diversity, but often struggle in stability and sometimes lack structural consistency
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in scientific contexts due to limited controllability and the absence of explicit condition-
ing mechanisms. Text-to-image models face challenges in scientific applications as their
language and vision encoders are typically trained on general content, leading to issues
such as semantic drift and poor retention of domain-specific details, which in turn affect
output fidelity despite occasionally favorable quantitative metrics. Collectively, these out-
comes reflect the broader theoretical understanding that model architecture, controllability,
and training objectives directly translate to performance trade-offs in scientific image gen-
eration, especially regarding detail preservation, diversity, and alignment with user intent
or specialized scientific features.

Despite some success, these generative models sometimes fail to capture domain-
specific scientific fidelity due to fundamental limitations in their multi-modal architecture.
In text to image and instruction-based models (which in this case includes models such as
DALL-E 2, Stable unCLIP, ControlNet and InstructPix2Pix), the CLIP-based text-encoders
or similar text encoders are originally trained on web images and lack tuning to scientific
language and scientific visual details. In that sense, such misalignment lead to poor
semantic guidance, where prompts referencing domain-specific features (e.g., “microCT
slice” “plant roots,” or “composite material”) are either misinterpreted or ignored during
generation, resulting in outputs that deviate from scientifically accurate representations.
This is called semantic drift, where generated images follow the form of the prompt without
maintaining scientific accuracy and fidelity.

Similarly, in image-to-image models, the visual encoders are typically pretrained on
natural image datasets (e.g., ImageNet) and not adapted to scientific domains like microCT
or high-resolution images of biological components. As a result, they fail to capture or
prioritize fine-grained, structurally meaningful details that are essential in scientific imaging
tasks—such as cellular boundaries, mineral textures, or biological symmetries. This lack of
domain-specific training undermines the model’s ability to generate or edit content with
the necessary precision, even when quantitative scores appear adequate.

These challenges can be potentially mitigated through targeted fine-tuning strategies
or by leveraging reinforcement learning techniques such as Reinforcement Learning with
Human Feedback (RLHF) to better align generative models with domain-specific structural
and semantic requirements. Additionally, integrating domain-specific prompt alignment
methods, for example, leveraging contrastive learning between scientific image features and
tailored textual descriptors, can improve semantic guidance during generation. Methods
like Prompt Tuning with Domain-Adaptive Embeddings—where embeddings are adapted
or learned specifically on scientific datasets—could enable models to better interpret and
generate relevant content from specialized prompts.

Overall, while diffusion-based editing models currently set the benchmark for gener-
ating scientifically meaningful images, advancing fine-tuning strategies and developing
domain-specific alignment mechanisms will be necessary to overcome existing limita-
tions and enhance multi-modal generative AI performance for scientific image synthesis,
in particular in application areas such as materials science imaging.

Building upon the success of generative Diffusion Models in biomedical imaging,
ranging from AdaDiff’s ability to overcome domain shifts in MRI reconstruction [82] to
unsupervised domain adaptation frameworks for multi-organ segmentation [83], our work
takes a complementary approach. Instead of using yet another biomedical dataset, we
explore the untapped potential of these methods in energy-centric science. This allows us
to investigate their performance and adaptability in a new domain characterized by unique
challenges like modality heterogeneity, fine-scale structures, and data scarcity, particularly
given the limited to no representation of this data over the web.
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9. Conclusions and Future Directions
The future of text-to-image and image-to-image technologies promises significant

advancements, with profound implications across diverse fields, notably scientific data
analysis. We can anticipate continuous refinements in Diffusion Models, leading to hyper-
realistic image generation coupled with increasingly granular control over specific attributes
and detail. The expectation is that AI models will enable deeper understanding of contex-
tual relationships, and the production of more nuanced and precise visual representations.
Additionally, ongoing optimization of algorithms and hardware will yield faster gener-
ation times and reduced computational costs, while cloud-based platforms and mobile
applications could democratize access to these technologies. A significant trend is the
rapid progression of light-weight multimodal models [84,85], with potential improvements
in quality and coherence, particularly taking advantage of high-performance computer
systems. Finally, AI will increasingly personalize image generation, learning individual
user preferences to produce highly tailored visual outputs.

The impact of these technologies on scientific data analysis, particularly with scarce
image sets from specialized instruments, will be transformative. AI-driven data augmenta-
tion promises to enable the generation of synthetic data to supplement limited datasets,
enhancing the training of machine learning models for critical tasks like image segmenta-
tion and object detection. In addition, AI will translate abstract scientific data into intuitive
visual representations, facilitating the identification of patterns and trends in fields such as
genomics and materials science. By generating visual representations of potential scenarios,
AI will assist scientists in formulating hypotheses and designing experiments, such as
simulating molecular interactions or astronomical phenomena. AI can also be used to
identify and rectify errors in scientific images, improving the accuracy and reliability of
data analysis. Furthermore, AI will encourage increased collaboration by creating easily
understandable visual representations of data for various scientific audiences.

Despite the immense potential, challenges remain. AI models can inherit biases from
training data, leading to inaccurate results, which requires careful attention to dataset
representativeness. The “black box” nature of some AI models poses challenges to inter-
pretability, requiring efforts to develop more transparent models for scientific applications.
Crucially, validation of AI-generated results against experimental data and established
scientific principles is essential, especially when dealing with scarce datasets, to ensure the
responsible and successful application of these powerful tools.
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Appendix A. Mathematical Details on CycleGAN Loss
We follow the formulation introduced in the paper [11], which uses adversarial losses

and a cycle consistency loss to enable unpaired image-to-image translation.
For generator G and discriminator DY, the adversarial loss is:

LGAN(G, DY, X, Y) = Ey∼pdata(y)[log DY(y)] +Ex∼pdata(x)[log(1− DY(G(x)))]. (A1)

Similarly, for generator F and discriminator DX :

LGAN(F, DX , Y, X) = Ex∼pdata(x)[log DX(x)] +Ey∼pdata(y)[log(1− DX(F(y)))]. (A2)

To ensure that the learned mappings are meaningful and reversible, CycleGAN intro-
duces a cycle consistency loss:

Lcyc(G, F) = Ex∼pdata(x)[∥F(G(x))− x∥1] +Ey∼pdata(y)[∥G(F(y))− y∥1]. (A3)

Appendix B. Background on Denoising Diffusion Probabilistic
Models (DDPMs)

The forward process in the diffusion network consists of a Markov chain of T steps.
Given an input image x0∼q(x0), Gaussian noise is added at each step t < T according to a
variance schedule β1, . . . , βT :

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (A4)

=
√

1− βtxt−1 +
√

βtϵ, (A5)

with ϵ∼N (0, I).
Using the reparametrization trick and defining αt = 1 − βt, ᾱt = ∏t

s=1 αs, the
authors [16] derive:

q(xt|x0) = N (xt;
√

ᾱtx0, (1− ᾱt)I) (A6)

=
√

ᾱtx0 +
√

1− ᾱtϵ. (A7)

The joint posterior of the forward process is:

q(x1:T |x0) =
T

∏
t=1

q(xt|xt−1). (A8)

The reverse process is also modeled as a Markov chain:

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)) (A9)

pθ(x0:T) = pθ(xT)
T

∏
t=1

pθ(xt−1|xt), (A10)

with p(xT) = N (0, I).

https://github.com/lbl-camera/genAI
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Appendix C. Mathematical Details of Score-Based SDEs
Let the formulations for the Variance Preserving and the Variance Exploding be:

• In the Variance Preserving (VP) formulation, the coefficients are set as f(t) = − 1
2 β(t)

and g(t) =
√

β(t), where β(t) is a time-dependent variance schedule.
• Alternatively, the Variance Exploding (VE) formulation employs f (t) = 0 and a mono-

tonically increasing diffusion term g(t) = σ(t), often chosen to grow exponentially.

These choices of SDE formulations and corresponding noise schedules constitute a key
part of the model-design space and have been further studied for sample quality, likelihood
estimation, and computational efficiency [49]. The conditional distribution of the noisy vari-
able x(t) given the clean input x(0) is Gaussian (defined in Equations (11) and (12) of [49]).

p0t(x(t) | x(0)) = N (x(t); s(t)x(0), σ2(t)I), (A11)

where the scale and variance functions are defined using f and g by the following:

s(t) = exp(
∫ t

0
f (ξ) dξ), σ2(t) = s2(t)

∫ t

0

g2(ξ)

s2(ξ)
dξ. (A12)

Appendix D. Verification and Validation
Hallucinations and unexpected outcomes are some of the issues associated with

GenAI. Other problems include inherent biases within training datasets that can skew
the generated images, reinforcing existing misconceptions [5] or overlooking important,
yet underrepresented, scientific phenomena. Validation becomes exceptionally difficult
when dealing with completely novel scenarios, as there may be no existing experimental or
observational data for comparison. This lack of ground truth poses the risk of generating
misleading visualizations that could inadvertently guide research down unproductive
paths; therefore only rigorous scrutiny and expert validation could potentially mitigate
these risks [6].

Verification and Validation (V&V) are essential for establishing the reliability and ac-
curacy of AI generative models, and several efforts have focused on creating standardized
benchmarks [84]; however, curated datasets using scientific imaging are either extremely
narrow [86–88] or sparse [89,90]. Verification assesses a model’s adherence to specified
requirements and its performance under defined conditions. This includes unit testing for
component correctness and performance evaluation against benchmark datasets. Cross-
validation further examines the predictive performance across data subsets, indicating
robustness. Validation determines whether the model accurately reflects real-world phe-
nomena. In scientific imaging, validation involves qualitative expert (domain scientist)
evaluations of generated image realism and quantitative metrics.

To evaluate the quality of generated images, a combination of complementary quanti-
tative metrics is used. SSIM (Structural Similarity Index Measure) captures structural
and textural similarities between the generated and reference images, aligning well with
human visual perception. LPIPS (Learned Perceptual Image Patch Similarity) further
evaluates perceptual similarity by comparing deep features extracted from neural networks,
providing a learned measure of visual realism. Beyond pairwise comparisons, FID (Fréchet
Inception Distance) quantifies the distance between distributions of real and generated
image features, offering a global assessment of fidelity and diversity. Lastly, CLIPScore
measures semantic alignment between generated images and textual prompts using mul-
timodal embeddings, making it particularly relevant for prompt-conditioned generative
tasks. Together, these metrics offer a comprehensive evaluation across perceptual similarity,
statistical fidelity, diversity, and semantic alignment.
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SSIM and LPIPS are pairwise image similarity metrics, computed between correspond-
ing real and generated images (that will be denoted as x and x̂ respectively and with
heights H and width W), providing localized assessments of structural and perceptual
fidelity. In contrast, FID and CLIPScore are set-level metrics that operate over sets of images
to quantify distributional divergence (FID), realism and diversity (FID) and alignment
between image content and textual prompts (CLIPScore). We place particular emphasis on
these metrics as they are widely accepted for evaluating generative models, providing a
mix of objective accuracy and perceptual quality measures.

• Structural Similarity Index (SSIM) SSIM compares local patterns of pixel intensities
(luminance, contrast, structure):

SSIM(x, x̂) =
(2µxµx̂ + C1)(2σxx̂ + C2)

(µ2
x + µ2

x̂ + C1)(σ2
x + σ2

x̂ + C2)
, (A13)

where µ, σ2, and σxx̂ denote respectively the mean, variance and covariance of the
images, and C1, C2 are constants for numerical stability. Values range between –1 and
1 in theory and between 0 and 1 in practice, with values closer to 0 showing high level
of dissimilarity and values closer to 1 showing excellent reconstruction and perfect
similarity in terms of perceived structure.

• Learned Perceptual Image Patch Similarity (LPIPS) LPIPS uses a neural network to
assess perceptual similarity:

LPIPS(x, x̂) = ∑
l

1
HlWl

∑
h,w
∥ŷl

hw − yl
hw∥

2
2 (A14)

where yl and ŷl are the normalized feature maps at layer l of a pre-trained network and
Hl and Wl are their spatial dimensions. These deep features captures differences in
texture, semantics and spatial structure and values range from 0 to 1 and a lower value
highlighting very close perceptual features and values closer to 1 showing important
perceptual differences.

• Fréchet Inception Distance (FID) FID quantifies the distance between the distributions
of real and generated image features extracted by the Inception network. It assumes
both feature distributions are multivariate Gaussians.

FID = ∥µr − µg∥2
2 + Tr

(
Σr + Σg − 2

(
ΣrΣg

)1/2
)

, (A15)

where (µr, Σr) and (µg, Σg) denote the mean and covariance of real and generated
image features, respectively. Lower FID indicates that the generated images are closer
in distribution to real images.

• CLIPScore CLIPScore measures the semantic alignment between an image and a text
prompt using the CLIP model’s joint image-text embedding space.

CLIPScore(x, t) = cos(θ) =
f I(x)⊤ fT(t)

∥ f I(x)∥ · ∥ fT(t)∥
, (A16)

where f I(x) is the normalized image embedding and fT(t) be the normalized text
embedding for image x and text t. The score reflects cosine similarity between image
and text embeddings and thus higher values indicate better semantic alignment.

Incorporating domain-specific knowledge strengthens reliability. For example, in bio-
logical or material sciences imaging, comparisons against existing scientific models and
datasets ensure that generated outputs are both visually and scientifically sound. Through
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rigorous V&V, researchers can avoid major pitfalls of generative AI models and potentially
model utilization in critical scientific applications.
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