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Abstract

Cooperative Logistics studies the setting where logistics companies pool their
resources together to improve their individual performance. Prior literature
suggests carbon savings of approximately 22%. If attained globally, this equates to
480,000,000 tonnes of CO2. Whilst well-studied in operations research – industrial
adoption remains limited due to a lack of trustworthy cooperation. A key remaining
challenge is fair and scalable gain sharing (i.e., how much should each company be
fairly paid?). This paper introduces the novel algorithmic challenges that Coopera-
tive Logistics offers AI, and novel applications of AI towards Cooperative Logistics.
We further present findings from our initial experiments.

1 Introduction

The transportation industry1 emitted 7.1 billion tonnes of CO2 (GtCO2) globally in 2020 [1, p. 64],
or 13% of global greenhouse gas emissions [2]. To limit the global average temperature increase to
1.5◦C, the Intergovernmental Panel of Climate Change (IPCC) states that the transportation industry
must decrease their CO2 emissions to 2.6 GtCO2 by 2050 [3].

Road freight transportation emitted 2.2 GtCO2 globally in 20202. Yet, under currently implemented
and announced policies, the International Transport Forum expects road freight transportation emis-
sions to increase to 2.5 GtCO2 in 2050 – single-handedly exhausting almost all of the transportation
industry’s carbon budget. In addition, road freight transportation is seen as one of the most difficult
industries to decarbonise [5]. This is due to the sheer weights and distances travelled. In 2020, global
road freight activity was at 26.8 trillion tonne-kilometers3. This is expected to double by 2050 due to
an increasing global population and global economic growth [1].

One approach to decarbonise road freight transportation is through cooperation. Cooperative vehicle
routing studies the setting where delivery companies share their delivery information and perform
deliveries on behalf of one another. An illustration can be found in Figure 1. Cooperative vehicle
routing has been studied in operations research for at least two decades, with estimated cost savings
between 4-46% [6, 7, 8, 9, 10]. Cooperative vehicle routing results in reduced distance travelled by
trucks, thus reducing carbon emissions and road congestion. In addition, delivery companies can
increase their revenue, improve customer service, and gain market share [9]. Surprisingly, despite the
abundance of perceived benefits acknowledged by industry, government, and academia – cooperative
vehicle routing has still not seen widespread industrial traction [8].

1Transportation involves the movement of people and goods across air, road, rail and water.
2Due to COVID-19, global freight activity dropped by 4%, but global freight emissions only dropped by 1%

due to increased urban deliveries [4, p. 194].
3A tonne-kilometer is when a tonne of goods is transported one kilometer.
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Figure 1: An example of three companies (denoted by colours) before and after cooperation. Through
cooperation, the companies are able to attain more efficient routes, reducing total cost by 0.88 or 26%.
Squares denote depots. Crosses denote customer locations. Node indices (arbitrary) are denoted in
black, with route costs given along edges.

A key remaining barrier is the lack of scalable and trustworthy algorithms for gain sharing, i.e., if
two or more companies cooperate, how much should everyone be paid? Fairness is important to
facilitate trustworthy cooperation. Cooperative game theory allows us to study fair gain sharing in a
principled manner and has been widely applied to cooperative logistics [6, 11]. The Shapley value is
widely considered as a fair solution concept; however, computing this value for cooperative vehicle
routing involves solving 2n vehicle routing problems, each of which is NP-hard. Consequently, the
prior literature on fair cooperative vehicle routing usually studies settings with at most 6 agents [10].
However, scalability is particularly important as the logistics industry is highly fragmented. In the
UK, there are 60,000 registered carriers in 2022 [12]. In the EU, there are 1 million registered carriers
in 2020 [13]. Moreover, prior literature establishes that the network externalities4 are significant
and a carbon reduction of 22.1% could be achieved in a setting with 1000 cooperating carriers [14].
To achieve this scalability, they pose the problem as a coalition structure generation problem and
propose a correlation-based heuristic to identify fruitful coalitions. Our contribution is that we pose
coalition structure generation as a deep reinforcement learning problem and our initial experiments
show promise at small scales. We further introduce a neural reward model to generate large volumes
of training experience. However, more importantly, there is still a vast array of interesting algorithmic
challenges to focus on within cooperative logistics and we outline avenues for future research which
we hope would be of interest to the Trustworthy Cooperative AI community [15, 16].

2 Problem Formulation and Experimental Setup

We wish to solve the problem with a set N = {1, . . . , n} companies cooperating, where in our
setting we hope to ultimately scale to at least n = 1000 companies. A coalition C is a subset of the
agents (or companies) N , i.e., C ⊆ N . A coalition structure CS over N is a collection of coalitions
CS = {C1, . . . , Ck} such that ∪kj=1C

j = N and Ci ∩ Cj = ∅ for any i, j ∈ {1, . . . , k} : i 6= j

[17]. The characteristic function v : 2N → R≥0 maps each coalition C ⊆ N to a real number v(C)
which is called the value of the coalition C. In Figure 1, v({1, 2, 3}) = 3.35− 2.47 = 0.88. Note,
to compute the value of a single coalition involves solving a multi-depot vehicle routing problem
(NP-hard). The social welfare is the sum of the value of each coalition in the coalition structure, i.e.∑

C∈CS v(C). Coalition structure generation aims to find the coalition structure CS that maximises
social welfare. Note that the number of possible coalition structures is the Bell number [18], Bn,
where B1000 = 2.98× 101927. To manage this complexity, as well as to enable tractable gain sharing,

4Network externalities, or the network effect, is where the value of a good or service increases with an
increasing number of users, such as social media platforms.
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we enforce that each coalition has size |C| = M , in our case, M = 3. After a coalition structure is
obtained, each of the (much smaller) sub-coalitions would perform individual fair gain sharing. To
calculate the Shapley value without coalition structure generation would require solving 2N=1000

NP-hard VRPs. Using coalition structure generation, this can be seen as a hierarchical approach and
now “only” requires bNM c · 2M NP-hard VRPs to be solved where M << N . Alternatively, each
sub-coalition could have multi-agent reinforcement learning agents bargain with each other to agree
on a fair gain share, resulting in significantly reduced run-times [19, 20, 21].

Data and Experimental Setup: We follow the same experimental setup as in [14] and compare
our RL approach to theirs. We collaborate with industry to gather real-world data from the Food &
Beverages industry in the UK. The dataset describes 34,692 shipments with 6 unique warehouses
(origins) and 976 unique customer locations (destinations) which occupy a varying number of pallets
q in a truck. Each truck is assumed to have a capacity Q of 12 pallets. Each shipment also has a
price p which the carrier receives for performing that delivery. A training instance is procedurally
generated by sub-sampling from the dataset. Each truck is randomly assigned m shipments, in our
case m = 4. Note that due to the capacity Q, each truck may not necessarily be able to satisfy all
four shipments and some shipments may need to be dropped. Thus, the state space has m× n rows
(or shipments), with 10 features to describe each shipment. Due to the large state space, flattening the
state and using multi-layer perceptrons is not scalable. In addition, there is permutation invariance in
the state, which we can leverage through the use of transformers [22].

At each timestep t, the RL agent selects M companies to form a coalition. We apply invalid action
masking to mask out previously selected companies. The value of those M selected companies,
v(Ct), is estimated via a neural reward model. An episode continues until all companies are assigned
to a coalition and a feasible coalition structure is obtained. The total (discounted) return the RL agent
receives is thus the social welfare, which it aims to maximise. We use Proximal Policy Optimisation
(PPO) [23] which we implement in TensorFlow [24]. We compare our approach against the previous
state of the art [14] and also compare against an agent that selects coalitions uniformly at random.

Neural Reward Model: To calculate the value of a coalition v(C) requires solving a multi-depot
vehicle routing problem either exactly or approximately, with solvers such as Gurobi or Google OR
Tools. However, to train our RL agent would require a large volume of training examples, especially
when using on-policy policy gradient methods. Furthermore, due to the high variance in RL, larger
batch sizes are preferable. Using traditional solvers would not be able to generate sufficient volumes
of training data. Instead, we train a neural network to predict the value of a coalition v(C). We
sub-sample from our real-world dataset and select coalitions C uniformly at random. We then train a
transformer to predict the value of a coalition v(C). We find that multi-task learning also helps in this
scenario: to calculate v(C) also requires knowing the revenues, costs, profits and distances travelled
for each agent before and after cooperation. Therefore, we predict these auxiliary targets as well and
minimise mean squared error on all heads.

3 Results and Discussion

The primary metric we train the agent to optimise is the (monetary) social welfare. In Table 1, we
present the results of our RL agent trained on instances with 6, 9, 12 and 15 companies as this is
early work in progress. Future work will of course investigate additional opportunities to improve
performance and scale to the real-world size of at least 1,000 companies. For 6 and 9 agents, our
RL method is able to outperform the previous state of the art [14] with statistical significance. For
12 agents, our RL method performs on par with the prior method; however, for 15 agents, our RL
method performs worse than previous state of the art. We further present results for the carbon
reduction in Appendix A due to space limitations. Surprisingly, even in the 6 and 9 agent setting,
in Table 2 we accept the null hypothesis that our RL agent saves as much carbon emissions as prior
state of the art, even though our approach outperforms in terms of social welfare. It is important
that future work is cognizant that solely optimising for social welfare may not directly translate
to carbon emissions. However, this should not be interpreted as a disadvantage of our proposed
method. Cooperation is highly desirable to reduce carbon emissions, yet has seen limited success
to date. With increased social welfare, this presents increased opportunities to further incentivise
cooperation. Future work should investigate the most appropriate method to balance social welfare
with sustainable development goals.
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Table 1: Comparison of methods on 1,000 paired test instances
Social welfare for n agents

Method n = 6 n = 9 n = 12 n = 15

Random Agent 1057.2 1590.3 2123.5 2641.6
Anonymous et al. [14] 1101.9 1659.6 2234.1 2800.1**
RL Agent (Ours) 1142.0*** 1705.0*** 2236.9 2759.0

H0: difference in performance between RL agent and Anonymous et al. [14] is 0.
*** = significant at 0.001 level. ** = significant at 0.01 level.

There is also ample opportunity to improve our method. Firstly, we believe that the nature of this
problem is highly amenable to curriculum learning. We hypothesise that, due to our deliberate neural
network architecture, a transformer-based agent trained on e.g. n = 6 agents should generalise well,
and learn useful representations that positively transfer out of distribution to settings with more (or
less) agents. We see slight evidence for this in similar work to ours [25, 26]. Secondly, whilst we
train our agents tabula rasa, it may be desirable to pre-train the agents on similar tasks. For example,
the learnt representations from our neural reward model may have learnt useful features that could be
transferable to the RL setting. Whilst not as elegant, this is commonplace in supervised learning, and
used in most of the large-scale RL successes [27, 28, 29], drawing recent interest [30]. Furthermore,
search-based methods could help significantly guide exploration. Finally, this problem setting is
interesting due the order invariance of the actions: it does not matter in which order the coalitions are
selected in a coalition structure. How can we leverage this invariance?

4 Conclusion and Future Work

Our initial findings suggest that the use of deep reinforcement learning, transformers, and a neural
reward model for coalition structure generation to be effective in small scale scenarios. We believe
this is due to the transformer’s ability to attend over the entire state space without losing information,
which was required in prior literature. A natural future research direction is to improve our approach
to scale to real-world settings. However, outside of this, we believe there is still a vast array of
interesting algorithmic challenges remaining within cooperative logistics and cooperative supply
chains in general and believe that cross-fertilisation of AI and operations research to be highly fruitful.

What AI can offer Cooperative Logistics: Cooperative game theory is desirable for its principled
approach towards fairly incentivising rational agents. However, this is computationally challenging
due to the central assumption of having access to the characteristic function, which would require
an exponential number of NP-hard vehicle routing problems to be solved. Instead, the use of high
capacity neural networks allows us to remove this assumption for both coalition structure generation
and fair gain allocation. Moreover, the use of deep MARL for negotiation allows us to obtain fair
incentivisation with significantly reduced run-time [19, 14, 21, 31, 32]. In addition, can Explainable
AI help explain to human transportation managers why proposed profit allocations are fair?

What Cooperative Logistics can offer AI: Cooperative game theory is currently not sufficient for
cooperative logistics. Cooperative game theory assumes that cooperation only occurs once. In the real
world, cooperation involves repeated interactions throughout time. If a company tries to take (unfair)
advantage over its competitor, this may affect its reputation. Moreover, not all companies are equal
– some have more market power than others. How do we account for these power dynamics? We
believe that evolutionary game theory and deep MARL could be useful to study this setting. The use
of natural language in autonomous negotiation would also be exciting to understand agent reasoning.

Time is ticking to tackle climate change. Road freight transportation is certainly not on track to meet
international climate objectives [1]. Industry, government and academia already acknowledge the
benefits of cooperative logistics [10]. But trustworthy cooperation between companies is not easy,
both computationally and in practice. Can AI enable trustworthy cooperation at scale?
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A Carbon Emissions Calculations and Results

The UK’s Department for Energy Security and Net Zero, and Department for Business, Energy & Industrial Strategy estimates that the average laden (loaded)
heavy goods vehicle, averaged across all types of heavy goods vehicles emits 107.5 gCO2-eq per tonne kilometer [33]. Since we know the weight of each shipment,
combined with the distances travelled, we can estimate the CO2 emissions before cooperation and after cooperation, resulting in the below table. Of interest, note that
the CO2 reduction in general increases with the number of cooperating companies, thus demonstrating the network externalities present in this system. Thus, it is
desirable to obtain an algorithm that can scale to a large number of companies. In the work of [14], they show that in a system with 1,002 companies, a carbon
reduction of 22.1% could be achieved.

Table 2: Comparison of methods on 1,000 test instances
n = 6 n = 9 n = 12 n = 15

Method CO2 Reduction (%) 95% CI CO2 Reduction (%) 95% CI CO2 Reduction (%) 95% CI CO2 Reduction (%) 95% CI

Random Agent 9.12 [7.52, 10.7] 8.64 [7.36, 9.92] 8.77 [7.70, 9.85] 8.48 [7.48, 9.49]
Anonymous et al. [14] 10.8 [9.23, 12.4] 12.9 [11.6, 14.2] 14.5*** [13.4, 15.6] 14.6*** [13.7, 15.6]
RL Agent (Ours) 11.1 [9.45, 12.7] 12.2 [10.9, 13.5] 11.7 [10.6, 12.8] 11.2 [10.2, 12.1]

H0: difference in performance between RL agent and Anonymous et al. [14] is 0.
*** = significant at 0.001 level. ** = significant at 0.01 level.
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