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Abstract—Moving Object Segmentation (MOS) is a fundamental task in computer vision. Due to undesirable variations in the

background scene, MOS becomes very challenging for static and moving camera sequences. Several deep learning methods have

been proposed for MOS with impressive performance. However, these methods show performance degradation in the presence of

unseen videos; and usually, deep learning models require large amounts of data to avoid overfitting. Recently, graph learning has

attracted significant attention in many computer vision applications since they provide tools to exploit the geometrical structure of data.

In this work, concepts of graph signal processing are introduced for MOS. First, we propose a new algorithm that is composed of

segmentation, background initialization, graph construction, unseen sampling, and a semi-supervised learning method inspired by the

theory of recovery of graph signals. Second, theoretical developments are introduced, showing one bound for the sample complexity in

semi-supervised learning, and two bounds for the condition number of the Sobolev norm. Our algorithm has the advantage of requiring

less labeled data than deep learning methods while having competitive results on both static and moving camera videos. Our algorithm

is also adapted for Video Object Segmentation (VOS) tasks and is evaluated on six publicly available datasets outperforming several

state-of-the-art methods in challenging conditions.

Index Terms—Moving object segmentation, graph signal processing, semi-supervised learning, unseen videos, video object segmentation

Ç

1 INTRODUCTION

MOVING object segmentation (MOS) is a relevant topic in
computer vision and video analysis. It is a pre-proc-

essing task in many applications such as intelligent visual
surveillance systems of human activities in public spaces,
intelligent transportation, and robotics system, among
others [1]. The main objective of MOS is to separate the
moving objects called foreground, from the static compo-
nent called background [2], [3], [4], [5]. In the literature,
MOS has been considered as a classification problem where
each pixel is predicted for either background or moving
object in a sequence taken from a static or moving camera,
and therefore this problem is also known as moving object
detection and background subtraction [6]. Many scientific
efforts have been reported in the literature to improve the
classical methods progressively in applications where chal-
lenges are becoming more complex. However, none of the
methods can simultaneously address all the key challenges
that are present in videos during long sequences as in the
real cases [7]. In fact, several studies are focused on design-
ing methods for specific challenges in MOS such as turbu-
lence [8], dynamic backgrounds [9], and camouflaged
moving objects [10]. However, many studies are limited to
deal with shadows and the sequences taken from Pan-
Tilt-Zoom (PTZ) cameras because of their challenging
nature [1], [11], [12], [13].

MOS methods can broadly be categorized into unsuper-
vised and supervised learning schemes. Many unsupervised
learning methods have been proposed in the literature, and
they rely on background models to predict the foreground
objects [5], [11], [27]. However, these methods show perfor-
mance degradation in the presence of dynamic background
scenes. Supervised learning methods are based on end-
to-end Deep Convolutional Neural Networks (DCNNs) [12].
DCNNs-basedMOSmethods have demonstrated better per-
formance than the unsupervised methods, however, the
majority of these models fail to get optimal performance
when employed on unseen videos (poor generalization). As
an example, the FgSegNet method uses 200 images from the
test video for training and the remaining frames from the
same video for evaluation [28]. The performance of FgSeg-
Net dramatically decreases when applied to unseen videos
[19]. Fig. 1 shows some visual results of the State-Of-The-Art
(SOTA) methods for MOS under challenging background
scenarios. Despite significant efforts and competitive perfor-
mance in particular challenges, there are still several open
issues for the MOS task [1], [12]. 1) None of the methods can
effectively handle all MOS challenges in the presence of
static andmoving camera sequences. 2) Some DCNNs-based
MOS methods do not have a good performance on unseen
videos, or their generalizations to other videos are hardly
predictable [19]. 3) Deep learning methods lack theoretical
guarantees and explanations about the sample complexity
required during the end-to-end learning process. The classi-
cal fundamental theorem of statistical learning, involving
the Vapnik–Chervonenkis dimension, bounds the sample
complexity in machine learning [29]. However, this bound
does not guarantee the performance in deep learning regi-
men because of the huge amount of parameters in common
deep neural networks.

In recent years, a growing number of graph-based repre-
sentation methods have been proposed for many computer
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vision andmachine learning applications such as object track-
ing [30], [31],MOS [32], [33], [34], and tissue community detec-
tion [35], [36]. Graphs can model data structure lying on
complex irregular manifolds [37]. These methods capture the
intrinsic geometric structure in data and can model data
points and complex interactions among them. Each node or
vertex on the graph represents one data point to which a label
can be associated, and a graph can be formed by connecting
verticeswith edgeweights that are assigned based on distance
values among the data points in the feature space. Social,
financial, ecological networks, and the human brain are few
examples of such data structure that can be modeled on
graphs [37], [38]. Graph Signal Processing (GSP) enables dif-
ferent types of learning and filtering operations on values
associatedwith graph nodes [39], [40], [41], [42]. For inference,
these graph models are used to classify graph signals. GSP
extends the concepts of classical digital signal processing to
signals supported on graphs [37], [38]. A graph signal is deter-
mined as a function over the vertices of a graph. Sampling and
recovery of graph signals are essential tasks in GSP [39], [40],
[41], [42]. For example, semi-supervised learning can be mod-
eled as the reconstruction of a graph signal from its samples
[40]. When data labels are presented as signals on a graph,
graph signal regularization techniques can be used in the pro-
cess of estimating the unknown labels for graph nodes classifi-
cation [40], [41].

In the current work, we pose the problem of MOS as a
semi-supervised learning problem on graphs. The nodes in
the graph represent the homogeneous regions (known as
superpixels) of the video sequence, and the task is to classify
each homogeneous region to either a background (static
component) or a moving object (foreground component)

node by using the concepts of sampling and reconstruction
of graph signals. Our algorithm thus lies in between the
unsupervised and supervised techniques, leading to a new
branch of MOS algorithms. Our proposed algorithm
explores a somewhat radical departure from prior work in
MOS, inspired by the theory of GSP [37], [38]. We name the
proposed semi-supervised learning algorithm as Graph
Moving Object Segmentation (GraphMOS), where grouped
regions in the videos are modeled as nodes of a graph
embedded in a high dimensional space, and a graph signal is
related to the class static or moving object. Our proposed
GraphMOS algorithm is composed of superpixel segmenta-
tion, background initialization, feature extraction for nodes
representation, construction of a graph, sampling of graph
signals, and finally, a recovery method is applied to recon-
struct the graph signal from its samples. The task of the
reconstruction algorithm is to classify the graph nodes.
Moreover, the bandwidth of the graph signal associated
with the problem shows an upper bound for the sample com-
plexity required in semi-supervised learning [43], assuming
bandlimitedness and no noise in the graph signal. Our pro-
posed algorithm is also adapted to perform the semi-super-
vised Video Object Segmentation (VOS) task. The VOS is a
slightly different problem than MOS, where a complete
mask of one or more instances is given in the first frame, and
the algorithm predicts the object masks in the subsequent
frames using the first frame as the only source of informa-
tion. We perform the VOS task by extending the graph sig-
nals to several categories, including background and
annotated instances. We dub our proposed algorithm as
GraphVOS for the VOS task. Finally, several configurations
of the proposed algorithm are evaluated for the MOS and

Fig. 1. Comparisons of the visual results of the proposed Graph Moving Object Segmentation (GraphMOS) and Graph Video Object Segmentation
(GraphVOS) algorithms with existing SOTA methods on five MOS and two VOS challenging video sequences taken from CDNet2014 [7], UCSD
[14], DAVIS2016 [15], and Youtube-VOS [16] datasets. The compared methods for MOS are: PAWCS [17], IUTIS-5 [18], BSUV-Net [19], ROSL
[20], and DECOLOR [21]; while the compared methods for VOS are: OSVOSS [22], RGMP [23], OnAVOS [24], STM [25], and Siam R-CNN [26].
Our proposed algorithms perform significantly better than the compared methods in these challenging sequences.
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VOS tasks outperforming many SOTA methods on the
Change Detection 2014 (CDNet2014) [7], I2R [44], Scene
Background Initialization (SBI2015) [13], UCSD background
subtraction [14], DAVIS2016 [15], and Youtube-VOS [16]
datasets.

In the current work, we extend and improve our prelimi-
nary study [45] by providing a more detailed theoretical
explanation, as well as an exhaustive experimental evalua-
tion and in-depth analyses of new results. The advantages
of our algorithms are: 1) their good performances even
when the background scene rapidly changes, which is diffi-
cult to handle using existing MOS and VOS methods
(Fig. 1), and 2) their theoretical foundations, unlike other
SOTA methods. The main contributions of the current work
are summarized as follows:

� The MOS problem is posed as a graph learning prob-
lem by using the concepts of GSP. To the best of our
knowledge, this is the first work that exploits the
sampling and reconstruction of graph signals for
MOS and VOS.

� Two theoretical developments are introduced, show-
ing the upper-bound for the sample complexity
required in semi-supervised learning under some
prior assumptions in Corollary 2, as well as two
bounds for the condition number of a perturbed
matrix in Theorem 3.

� Extensive evaluations are performed on six publicly
available MOS and VOS benchmark datasets, and
we compared our algorithms with 36 existing SOTA
methods with rigorous analysis. Unlike previous
methods in the literature, our proposed algorithms,
GraphMOS and GraphVOS, can be applied to MOS
with static and moving camera sequences, as well as
to the VOS task.

The rest of the paper is organized as follows. Section 2
presents related works in GSP and MOS. Section 3 explains
the basic concepts and the proposed algorithms of the cur-
rent work. Section 4 introduces the experimental frame-
work. Finally, Sections 5 and 6 present the results and
conclusions, respectively.

2 RELATED WORKS

This section presents brief reviews for 1) GSP and its appli-
cation to computer vision, and 2) unsupervised and super-
vised MOS algorithms.

2.1 Graph Signal Processing

Even though the study of graphs is an ancient field, Sandry-
haila and Moura were the first authors to introduce the
term of discrete signal processing on graphs and later
coined with the name of GSP [46]. Graph signal processing
emerged with the idea of developing tools to analyze data
living in irregular and complex structures [37]. From one
point of view, the first developments of GSP come from
the studies of low-dimensional representations for high-
dimensional data through spectral graph theory, and the
graph Laplacian [47]. From another perspective, several
authors developed compression schemes, wavelet decom-
position, filter banks on graphs, regression algorithms, and

denoising using the graph Laplacian motivated by the data
collected from sensor networks [48], [49], [50], [51], [52].

GSP has also been widely used in image processing and
computer graphics. For example, Shi and Malik represented
images as graphs to treat segmentation as a graph partition-
ing problem [53]. In the same way, image filtering techni-
ques can be interpreted from a graph point of view [54].
Similarly in computer graphics, models like meshes can be
naturally modeled with graphs to apply graph-based filter-
ing and multi-resolution operations [55], [56].

In video processing, GSP is useful to model the spatio-
temporal relationships among frames. For instance, the
graph Cartesian product could be useful to process videos
taking into account the spatiotemporal relationships of the
pixels [57]. Interested readers can explore more details
about GSP and its machine learning applications in a recent
survey [37]. In our proposed algorithm, graphs are used to
model the relationship among the nodes on videos where
the graph signal represents the class foreground or back-
ground of the set of nodes in a dataset. Finally, the recon-
struction of graph signals is applied to classify if a certain
node is a moving or static object for MOS.

2.2 Moving Object Segmentation

There are many unsupervised methods in the literature to
address the problem of MOS. These methods can be
grouped as statistical [58], fuzzy [59], subspace learning
[60], robust principal component analysis [61], [62], neural
networks [63], and filtering-based [64] models. Interested
readers may explore a complete review of unsupervised
methods in survey papers [5], [11], and [27]. With the
success of deep CNNs on a wide variety of computer
vision applications [65], several studies have also been
proposed for MOS [12], [66], [67], and VOS [22], [25],
[68] applications.

The MOS supervised methods can be classified as basic
CNN [66], multiscale CNN [69], [70], fully CNN [71], 3D
CNN [67], and Generative Adversarial Networks (GANs)
[72]. Some studies are also contributed to improving the
loss functions during the training and analysis of the CNNs
for the problem of MOS [73]. A complete review of deep
learning-based MOS and VOS methods can be explored in
recent survey studies [12], [15], and [16].

Although the results of many fully supervised deep learn-
ing-based methods show impressive performance for MOS
task, the performance of the best FgSegNetmethod proposed
by Lim et al. [28] shows that DCNNs methods are not effi-
cient for unseen videos because of the lack of generalization
capabilities as proved by Tezcan et al. [19]. This lack could be
due to the limited amount of data available to train these
deep learning methods for MOS, the lack of theoretical
developments about the sample complexity required in deep
learning, and the high model complexities of common deep
neural networks. In the current work, we fill this lack by pro-
posing a semi-supervised graph learning algorithm for MOS
in unseen videos. The question of sample complexity is also
solved by using the fundamental concepts of GSP under the
assumption of bandlimitedness of the underlying graph sig-
nals in MOS. It is also evident that a single method, either
supervised or unsupervised, cannot effectively handle all
the MOS challenges of unseen videos [19]. Our proposed
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algorithm also addresses these challenges for sequences
taken from both static andmoving cameras.

3 MOVING OBJECT SEGMENTATION AND GRAPH

SIGNAL PROCESSING

This section presents the basic concepts of GSP and our pro-
posed algorithms. Fig. 2 shows an overview of GraphMOS.
Our proposed algorithms consist of several components
including (a) superpixel segmentation, (b) background
model initialization, (c) features extraction, (d) graph con-
struction, (e) graph signal representation, (f) sampling of
graph signals with an unseen scheme, and (g) a semi-super-
vised algorithm inspired from the theory of GSP. The novices
inGSP are referred to the reviewpapers [37], [38]. GraphMOS
andGraphVOS can be viewed as three-step algorithms as fol-
lows: 1) a superpixel segmentation method [74], [76] is used
to segment homogeneous regions on each frame; 2) deep and
handcrafted features representation from each superpixel,
including optical flow and background initialization, are
used to represent the spatiotemporal information of each
superpixel node; and 3) a graph reasoning algorithm, includ-
ing graph construction and semi-supervised learning, is used
to classify between the static andmoving objects (or multiple
classes in the case of GraphVOS)with few labeled samples.

3.1 Preliminaries on Graph Signals

Let G ¼ ðV; EÞ be an undirected and weighted graph. V ¼
f1; . . .; Ng is the set of N nodes and E ¼ fði; jÞg is the set of
edges, where ði; jÞ is an edge between the vertices i and j.
W 2 RN�N is the adjacency matrix of G such that Wði; jÞ ¼
wij 2 Rþ is the weight connecting vertices i and j. As a con-
sequence, W is symmetric for undirected graphs. A graph
signal is a function y : V ! R defined on the nodes of G,
and it can be represented as y 2 RN where yðiÞ is the function

evaluated on the ith node. Moreover,D 2 RN�N is the diago-
nal degree matrix ofG such thatDði; iÞ ¼

PN
j¼1 Wði; jÞ 8 i ¼

1; 2; . . .; N . Similarly, L ¼ D�W is the positive semi-definite
combinatorial Laplacian operator with eigenvalues 0 ¼ �1 �
�2 � . . .��N and corresponding eigenvectors fu1;u2; . . .;uNg.

The graph Fourier basis of G is defined by the spectral
decomposition of L ¼ ULUT [37], where U ¼ ½u1;u2; . . .;uN �
and L ¼ diagð�1; �2; . . .; �NÞ, where �i is the frequency asso-
ciated to the ith eigenvalue [37]. Therefore, the Graph Four-
ier Transform (GFT) ŷ of the signal y is defined as ŷ ¼ UTy,
and the inverse GFT is given by y ¼ Uŷ [37].

Definition 1. A graph signal y is called bandlimited if 9 r 2
f1; 2; . . .; N � 1g such that its GFT satisfies ŷðiÞ ¼ 0 8 i > r.

The smallest r that holds Definition 1 is called the band-
width of y. Using these notions of frequency, Pesenson [77]
defined the space of all v-bandlimited signals as PWvðGÞ ¼
spanðUr : �r � vÞ, where Ur represents the first r eigenvec-
tors of L, and PWvðGÞ is known as the Paley-Wiener space
of G. As a consequence, a graph signal y has cutoff fre-
quency v, and bandwidth r if y 2 PWvðGÞ.

3.2 Graph Nodes Representation

In our proposed algorithm, there is a need for some mecha-
nism to represent the graph nodes. The pixels of the video
frames can represent the nodes of the graph. However,
computational complexity issues arise within the proposed
algorithms when using pixel-level nodes. Therefore, we use
a group of pixels to define each node in a graph. To that
end, one common way is to decompose the input sequence
into a regular block structure or superpixels. However,
other object detection and segmentation methods can also
be employed for node representation.

In the current work, we employ several segmentation
methods including, superpixel segmentation [74], semantic

Fig. 2. The pipeline of the MOS algorithm with the reconstruction of graph signals. The algorithm uses background initialization and superpixel seg-
mentation [74], [75]. Each superpixel represents a node in a graph, and the representation of each node is obtained with motion, intensity, texture,
and deep features. The ground-truth is used to decide if a node is a moving (green nodes) or a static object (blue nodes). Black nodes correspond to
the non-labeled images in the dataset. Finally, some nodes are sampled and the semi-supervised algorithm reconstructs all the labels in the graph.
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segmentation [78], instance segmentation [79], block-based
decomposition, and background subtraction [80] to repre-
sent the nodes in a graph, as well as to compare the perfor-
mance of each of themethods. However, the aforementioned
segmentation methods present a fundamental limitation in
the proposed algorithm. For instance, if the segmentation
methods [78], [79], and [80] do not segment moving objects,
the proposed algorithm will not be able to classify back-
ground or foreground objects effectively. On the other hand,
superpixel segmentation and block-based decomposition
methods can process all the regions in the frames, however,
these approaches may contain more graph nodes than the
segmentation methods. In the later subsections, we summa-
rize each of thesemethods inmore detail.

3.2.1 Superpixel Segmentation

In our proposed algorithm, we use a Simple Linear Iterative
Clustering (SLIC) method for superpixel segmentation [74].
SLIC adapts a k-means approach to generate a set of super-
pixels. The desired number of approximately equally-sized
superpixels per image z is an important parameter in SLIC
for GraphMOS and GraphVOS, because large values of z

allow our algorithms to process more detailed regions, but
may induce computational burdens on GraphMOS and
GraphVOS. Several ablation studies are performed in
Section 5.3 to show the performance of the proposed algo-
rithms by varying the number of superpixels.

3.2.2 Instance Segmentation

We also test several configurations of instance segmentation
methods in GraphMOS. We employ Mask Region Convolu-
tional Neural Network (Mask R-CNN) [79], CascadeMask R-
CNN [81], Residual Networks (ResNet) [82], and ResNeSt
[83] for instance segmentation. Mask R-CNN builds upon
Faster R-CNN by adding a branch for predicting an object
mask in parallel with the already existing Faster R-CNN net-
work for bounding box recognition [84]. Cascade Mask R-
CNN builds upon Mask R-CNN by adding a sequence of
detectors [81].Mask R-CNNcontains: 1) a CNN for image fea-
ture extraction, 2) a region proposal layer, 3) Region of Interest
(ROI) alignment and 4) fully connected layers in parallel with
convolutional layers to perform bounding box recognition
andmask prediction, respectively. The readers are referred to
Appendix A in the supplementary material for further details
about the instance segmentation methods, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2020.3042093.

3.2.3 Semantic Segmentation

We use the DeepLab method [78] for semantic segmentation
to represent the nodes in the graph. However, our algo-
rithms explicitly need to know the exact location of each
segmented instance in a frame to represent each node in a
graph. Fig. 3 shows the segmentation results of the Deep-
Lab, Mask R-CNN, and SLIC methods on a video frame
selected from the dynamic backgrounds category of the
CDNet2014 dataset. GraphMOS and GraphVOS rely mainly
on superpixel and instance segmentation because semantic
segmentation methods do not give information about the

location of each specific instance (for example, cars as
shown in Fig. 3). As a consequence, GraphMOS and Graph-
VOS are unable to differentiate between the parked cars in
the background just behind the moving cars in the fore-
ground when relying on semantic segmentation.

3.2.4 Other Segmentation Methods

We also decompose each video frame into non-overlapping
blocks in our proposed algorithms. We use small blocks of
size 8� 8 to represent each node. We have also employed
the background subtraction method SUBSENSE [80] to
extract graph nodes. Several ablation studies are presented
in Section 5.3 for comparing different segmentationmethods.

3.3 Background Initialization and Feature
Extraction

The MOS on unseen videos in static camera sequences can
use the background of the scene as additional information.
For the sake of simplicity, the temporal median filter is used
as background initialization. The videos are processed in
gray-scales in the current work.

The representation of the nodes is achieved with optical
flow, intensity, texture, and deep features. The feature
extraction module processes the ROI of the segmented
regions1 in the current frame for the current, previous, and
background frames, as well as the absolute value of the dif-
ference between the current and background frames. Let Itv
and It�1

v be the gray-scale crops corresponding to the node
v 2 V in the current (t) and previous frames (t� 1), respec-
tively. Let Bv be the crop of the background image corre-
sponding to the node v. Let Pv be the set of indices
corresponding to the vth segmented region. Finally, let
vtxðPvÞ and vtyðPvÞ be the optical flow vectors of the current
frame with support in the set of indices Pv for the horizontal
and vertical direction, respectively. We compute the optical
flow by employing the Lucas-Kanade method [85]. Fig. 4
shows the procedure to extract the features of each

Fig. 3. Results of the semantic, instance, and superpixel segmentation
using DeepLab [78], Mask R-CNN [79], and SLIC [74] methods on the
sequence fall taken from the CDNet2014 dataset. The green-colored
cars in (b), instances in different colors in (c), and homogeneous regions
in (d) represent the nodes of the graph.

1. The segmented regions are: each superpixel for SLIC, each block
of pixels for block-based method, each mask for instance segmentation,
distinct regions of one category for semantic segmentation, and distinct
foreground regions for SuBSENSE.
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segmented region when the segmentation algorithm is a
Mask R-CNN. The texture representation is obtained by esti-
mating the local binary patterns [86] in Itv, I

t�1
v , Bv and jItv �

Bvj. The intensity histograms are computed in ItvðPvÞ,
It�1
v ðPvÞ,BvðPvÞ and jItvðPvÞ � BvðPvÞj. The vectors of orienta-
tions and magnitudes obtained from the optical flow vectors
vtxðPvÞ and vtyðPvÞ are used to compute histograms and some
descriptive statistics (the minimum, maximum, mean, stan-
dard deviation,mean absolute deviation, and range). Finally,
the deep features of each segmented region are extracted.
Inspired by the visual object tracking community [87], [88],
we use a pre-trained VGG-m model [89] to extract the fea-
tures from the 5th convolutional layer (Conv-5) and then a
principal component analysis is applied to compress a high-
dimensional feature vector into a low-dimensional vector.
The representation of node v is obtained concatenating all
the previous features, i.e., optical flow, intensity, texture,
and deep features. Each instance is represented by a
M-dimensional vector xv. The readers are referred to Appen-
dix B in the supplementary material to see a detailed expla-
nation of how the vector xv is obtained, available online.

3.4 Graph Construction

The construction of the graph aims to get geometrical infor-
mation from the datasets, leading to a reduction in the num-
ber of labels required in the learning process. In the current
work, the construction of the graph is achieved with a k
Nearest Neighborhood (k-NN) with a Gaussian kernel. Let
X 2 RN�M be the matrix of N nodes, in which each node is
an M-dimensional vector and X ¼ ½x1; x2; . . .; xN �T. First, the
k-NN algorithm is used to connect the nodes in the graph.
Afterward, vertices are connected to get an undirected and
weighted graph. The weight between two connected verti-
ces i; j is given such that wij ¼ exp� dði;jÞ2

s2
, where dði; jÞ ¼

kxi � xjk2, and s2 is the standard deviation of the Gaussian
function given as

s ¼ 1

jEj þN

X
ði;jÞ2E

dði; jÞ: (1)

As a result, the adjacency matrix Wði; jÞ ¼ wij 8 ði; jÞ 2 E is
obtained from this process.

A reasonable thought is to use a complete graph to avoid
the optimization of parameter k. However, a complete graph
requires a prohibitive amount of memory to store matrices
W and L when dealing with huge graphs. For example, a
complete graph with N ¼ 200000 would require 320 giga-
bytes of memory to store W, where each edge in W is repre-
sented with a variable of type double of 8 bytes. Other
strategies for the representation of the graph can be used in
our algorithm. For example, Gangapure et al. [90] proposed a
superpixel based causal multisensor video fusion method,
where the key idea is to leverage temporal information for
video and then construct spatiotemporal graphmodels.

3.5 Graph Signal

The graph signal is a matrix Y 2 RN�Q, where Q is the num-
ber of classes of the problem. yq ¼ Y:;q is the graph signal
associated with the qth class, where Y:;q is the qth column
vector of matrix Y. Each row of Y represents if certain seg-
mented region belongs to the qth class. In the current work,
the graph signal is given by the membership function Yc of
each class c, which takes a value of 1 on a node which
belongs to the class and is 0 otherwise. For example, in
MOS Q is equal to 2 that corresponds to the classes static
object [1, 0] and moving object [0, 1]. The decision of whether
a node is a static or moving object is based on a comparison
between the ground-truth and the segmented regions of the
videos. This work uses the metrics intersection over union
and intersection over node to determine the foreground and
background nodes.

Let F t ¼ f1; . . . ; gg be the set of distinct regions of the
foreground in the ground-truth of the current frame (t). Let
GT t and Pv be the set of indices of the ground-truth, and the
set of indices of each output of the segmentation algorithm
with v 2 V associated with the current frame (t), respec-
tively. The subset of nodes in V associated with the current
image (t) is given by the segmented regions that exist in
such a frame. The intersection over node is defined as �v ¼
jI t

vj=jPvj, where I t
v ¼ GT t \ Pv, i.e., each node v 2 V has an

associated �v. In the same way, let GT t
f be the set of indices

of each isolated region of the ground-truth with f 2 F t, i.e.,
GT t

f � GT t, and GT t ¼ GT t
1 [ . . . [ GT t

g . The intersection
over union is defined as uvðfÞ ¼ jIf j=jUf j 8 f 2 F t, where
Uf ¼ GT t

f [ Pv, and I f ¼ GT t
f \ Pv, i.e., each node v 2 V has

g associated intersection over union numbers represented
by the vector uv. Finally, mv ¼ maxfðuðfÞÞ is the metric asso-
ciated with intersection over union of the node v. Fig. 5
shows an example of the elements GT t, I t

v, GT
t
f , I f , and Pv

described before for the node v when the segmentation
algorithm is a Mask R-CNN. In Fig. 5, for example,
uvð1Þ ¼ 0{I 1 ¼ ; ! mv ¼ uvð2Þ.

Trivially, one can say that either if F 2 ;, or m ¼ 0, or � ¼
0, their corresponding nodes belong to the class static object,
i.e., Yv;: ¼ ½1; 0�. The other cases are decided based on the
segmentation method. The nodes corresponding to moving
objects are determined when mv > 0:25, or when �v > 0:45
and mv > 0:05, or when �v > 0:9 and mv > 0:02 for the
background subtraction, instance, and semantic segmenta-
tion methods. On the other hand, the moving objects are
determined when mv > 0:25, or when �v > 0:45 and mv >

Fig. 4. Procedure to represent the nodes of the graph with a Mask R-
CNN as backbone. Each mask of the segmented image represents a
node in the graph, and the representation of the node is achieved with
intensity, optical flow, texture, and deep features.
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0:05, or when �v > 0:4 for superpixel and block-based seg-
mentation. If some node does not hold any of the conditions
before, is classified as a static object. The parameters for this
procedure were found empirically. Those parameters can
be learned by some regression method by looking at each
instance and its intersection with the ground-truth. How-
ever, the fine-tuning of those parameters is outside the
scope of the current work.

3.6 Sampling of Graph Signals and Sample
Complexity for Semi-Supervised Learning

Given the graph signals related to the problem of MOS and
the notions of bandlimitedness in terms of PWvðGÞ from
Section 3.1, the next logical step is to find a bound for the
minimum number of samples required to reach perfect
recovery of y 2 PWvðGÞ. Put differently, what is the mini-
mum amount of labeled nodes required to have a perfect
classification in semi-supervised learning, given the prior
assumption that the labels of the nodes are in the Paley-
Wiener space of the graph? The answer is that one needs at
least r (bandwidth) labeled nodes to achieve perfect classifi-
cation. This also holds for regression of graph signals, i.e.,
given y 2 PWvðGÞ, the number of sampled nodes required
to get perfect reconstruction is r. Intuitively, a graph signal
y is smooth in Gwhen y 2 PWvðGÞ. For example, suppose a
sensor network of temperatures in a specific region. One
would expect that the temperature of two or more nearby
localities should be similar, i.e., the value of the graph signal
evaluated in two or more strongly connected nodes should
not be very different. As a consequence, probably one just
needs the temperature of some of these nodes to reconstruct
the whole graph signal in the other vertices.

To add mathematical precision to the notion of perfect
reconstruction, the sampling of a graph signal is defined in
terms of a subset of nodes S � V with S ¼ fs1; s2; . . .; smg,
where m ¼ jSj � N is the number of sampled nodes. The
sampled graph signal is defined as yðSÞ ¼ My, where M is
a binary decimation matrix whose entries are given by M ¼
½dds1 ; . . .; ddsm �

T and ddv is the N�dimensional Kronecker col-
umn-vector centered at v. The recovery of a graph signal
from its samples yðSÞ can be represented as ~y ¼ FMy,
where F 2 RN�m is an interpolation matrix. Perfect recov-
ery is achievable if FM ¼ I, i.e., ~y ¼ Iy ¼ y. Since
rankðFMÞ � m � N , perfect reconstruction is not possible
in general. However, perfect reconstruction from a sampled

graph signal yðSÞ is possible when the sampling size
jSj 	 r [39].

Theorem 1 (Chen’s theorem [39]). Let M satisfy
rankðMUrÞ ¼ r. For all y 2 PWvðGÞ, perfect recovery, i.e.,
y ¼ FMy, is achieved by choosing

F ¼ UrV; (2)

with VMUr a r� r identity matrix.

Proof. see [39]. tu

Theorem 1 states that perfect reconstruction of graph sig-
nal from its samples is possible when y lies in PWvðGÞ, and
the number of samples is at least r. Then, perfect reconstruc-
tion is achieved by choosing the interpolation operator as in
Eqn. (2). A common approach to obtain a reconstructed ver-
sion of y is given by

argmin
z2spanðUrÞ

jjMz� yðSÞjj22 ¼ UrðMUrÞyyðSÞ; (3)

where Ur ¼ ½u1;u2; . . .;ur� is the matrix formed of the first r
graph’s eigenvectors, and ðMUrÞy is the pseudo-inverse of
ðMUrÞ. In other words, the interpolation operator is such
that F ¼ UrðMUrÞy. The computation of the Laplacian
eigenvectors in Eqns. (2) and (3) is computationally prohibi-
tive for large graphs (as the ones treated in this work). In
this work, the computation of U is avoided, for further
details please see Sections 3.7, 3.8, and 3.9.

One can relate Theorem 1 to the sample complexity in
semi-supervised learning as follows:

Corollary 2. Let Y 2 RN�Q be a graph signal associated with a
semi-supervised learning problem, where Q is the number of
classes; and let Ns be the sample complexity of the semi-super-
vised learning problem. Yi;: ¼ ddTq , where ddq is a Q-dimensional
Kronecker column vector centered at q, and Yi;: is the ith row of
Y. Y has a set of cutoff frequencies fv1; . . .;vqg, with corre-
sponding bandwidths fr1; . . .; rqg for each graph signal
Y:;q 8 1 � q � Q. Then, Ns is bounded such that

Ns � maxfr1; . . .; rqg: (4)

Proof. From Theorem 1, one can get a perfect reconstruction
of each graph signal Y:;i 2 PWviðGÞ 8 1 � i � q using Eqn.
(3) with at least ri samples. As a consequence, the worst-
case scenario in the sample complexity Ns for perfect
reconstruction ofY ismaxfr1; . . .; rqg. tu

3.7 Smooth Graph Signals

The prior assumption of this work relies on the bandlimit-
edness of the graph signals associated with the problem of
MOS. This notion is also related to the smoothness of y.
Bandlimitedness was formalized in terms of the Paley-
Wiener space of graph signals in Sections 3.1 and 3.6. When
y 2 PWvðGÞ, the variation of y is smooth in the vertex
domain. From Definition 1, one knows that the GFT is
required to check if y 2 PWvðGÞ. However, the computation
of the GFT requires the calculation of the eigenbasis, which
is computationally prohibitive for large graphs. In the cur-
rent work, the computation of U is avoided by leveraging
notions of global smoothness in G.

Fig. 5. Example of the sets involved in the construction of the graph signal
when the segmentation algorithm is a Mask R-CNN. Yellow pixels are
GT t \ Pv, red pixels arePv � GT t, and the green pixels are GT t � Pv.
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Formally, notions of smoothness in y were introduced
through concepts of local variation and the discrete p-Dirich-
let form [38]. The local variation of y at vertex i is defined as

kriyk2 ,
X
j2N i

Wði; jÞ½yðjÞ � yðiÞ�2
2
4

3
5

1
2

; (5)

where N i is the set of vertices connected to the node i by
one edge. Thus, the discrete p-Dirichlet form is defined as
SpðyÞ , 1

p

P
i2V kriykp2, then

SpðyÞ ¼
1

p

X
i2V

X
j2N i

Wði; jÞ½yðjÞ � yðiÞ�2
2
4

3
5

p
2

: (6)

For example, when p ¼ 2

S2ðyÞ ¼
X
ði;jÞ2E

Wði; jÞ½yðjÞ � yðiÞ�2 ¼ yTLy: (7)

S2ðyÞ is known as the graph Laplacian quadratic form [38].
Notice that S2ðyÞ ¼ 0,y ¼ t11, where t is a constant; and
more generally, S2ðyÞ is small when the graph signal y has
similar values at neighboring nodes connected by an edge,
i.e., when the signal is smooth.

The Laplacian quadratic form in Eqn. (7) has been used
as regularizer in reconstruction of graph signals, and semi-
supervised learning problems [91], where this regularizer
looks for smooth graph signals. Intuitively, there is a rela-
tionship between the smoothness of a graph signal and its
bandwidth. For example, the variational problem [92] leads
to the same solution of Eqn. (3) when y holds Definition 1
[43] (for further details see Section 3.8). Therefore, the mini-
mization of the p-Dirichlet form is aligned with the prior

assumption of bandlimitedness, without the explicit compu-
tation of the eigenbasisU and the bandwidth r of y. Formally,
since L is positive semi-definite for undirected graphs, all the
eigenvalues are non-negative and real, and a full set of
orthogonal eigenvectors can be obtained as explained in Sec-
tion 3.1. The matrix of eigenvectors U is known as the GFT
matrix of the graph. The eigenvalue-eigenvector pairs can be
viewed as successive optimizers of the Rayleigh quotient,
where the ith pair �i;ui solves

ui ¼ argmin
yTui0 ¼0;i0¼0;...;i�1

yTLy

yTy
; (8)

with �i ¼ uT
i Lui if u

T
i ui ¼ 1. The term yTLy is precisely the

Laplacian quadratic form of the graph signal y [38], i.e., the
GFT provides an orthogonal basis with increased variation
[37]. Fig. 6 shows an example of the eigenvectors of a
weighted undirected sensor network with 500 nodes. One
can notice that the eigenvector ui has more variations as the
value of �i increases, where the Laplacian quadratic form of
u1, given as uT

1Lu1 ¼ �1 ¼ 0, corresponds to a constant-
valued eigenvector. Since the GFT of a graph signal is given
such that ŷ ¼ UTy, one can precisely represent a bandlim-
ited graph signal in the Fourier domain as ŷ ¼ ½u1; . . .;
ur; 00; . . .; 00�Ty according to Definition 1, i.e., a mapping of
the first r eigenvectors. As a consequence, a bandlimited
graph signal is smooth on undirected graphs.

In semi-supervised learning, the number of samples
required to get perfect classification increases when the
bandwidth r increases as expected from Corollary 2. In
practice, graph signals are only approximately bandlimited
[40]. As a consequence, the classification error is bounded
by a value f [43].

Fig. 6. Example of elementary frequencies obtained from the Laplacian matrix on a sensor network of N ¼ 500. Each graph shows a frequency �i

with its corresponding eigenvector. The lowest frequency is �1 ¼ 0, corresponding to a constant graph signal, i.e., the Laplacian quadratic form of
eigenvector u1 is given such that uT

1Lu1 ¼ �1 ¼ 0.
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3.8 Minimization of the Sobolev Norm

One of the semi-supervised learning methods in this work is
based on the variational splines of Pesenson [92].

Definition 2. Let g
ðvÞ be the complex conjugate of gðvÞ. The
space L2ðGÞ is the Hilbert space of all complex-valued func-
tions f : V ! C in the graph G with the inner product hf; gi ¼P

v2V fðvÞg
ðvÞDðv; vÞ, and kfk¼kfk0¼ð
P

v2V jfðvÞj
2Dðv; vÞÞ1=2.

Definition 3. For a fixed � 	 0 the Sobolev norm is introduced
by the following formula:

kfka;� ¼ kðLþ �IÞa=2fk22;a 2 R: (9)

Given a graph signal of sampled labels yqðSÞ ¼ Myq, a pos-
itive a > 0, and a non-negative � 	 0, the variational problem
for semi-supervised learning is stated as follows: find a vector
zq from the space L2ðGÞ with the following properties:
zqðSÞ ¼ Mzq ¼ yqðSÞ, and zq minimizes functional zq !
kðLþ �IÞa=2zqk2. In other words, the variational problem is
trying to solve the following optimization problem:

argmin
zq

kzqka;� s.t. Mzq ¼ yqðSÞ !

argmin
zq

zTq ðLþ �IÞazq s.t. Mzq � yqðSÞ ¼ 0:
(10)

Equation (10) is a convex optimization problem since the
term zTq ðLþ �IÞazq is a quadratic convex function in zq; and
the term Mzq � yqðSÞ is affine in zq. The semi-supervised
learning problem is solved by determining the solution of
Eqn. (10) for q ¼ 1; . . .; Q.

The minimization of the Sobolev norm in Eqn. (10) is
closely related to the Laplacian quadratic form. The Lapla-
cian quadratic form of y is given by yTLy as shown in Eqn.
(7). In the sameway, yTLay is known as the empirical iterated
Laplacian regularizer or higher-order regularization [93] and
has been used for regression and classification tasks in semi-
supervised learning [91]. On the other hand, the Sobolev
norm is such that yTðLþ �IÞay. The Sobolev norm of y is the
higher-order regularizationwith an addition of the semi-def-
inite perturbation matrix �I. For � > 0, ðLþ �IÞ is always
invertible even though detðLÞ ¼ 0 for undirected and con-
nected graphs. Intuitively, the value � is related to the stabil-
ity of the inverse of ðLþ �IÞ.

Theorem 3. Given an undirected, connected graph G with com-
binatorial Laplacian matrix L such that rankðLÞ ¼ N � 1, and
let C 2 RN�N a perturbation matrix. The summation LþC
has a lower and upper bound in the condition number in the
‘2-norm such that

smaxðLþCÞ
smaxðCÞ � kðLþCÞ � smaxðLÞ þ smaxðCÞ

sminðLþCÞ ; (11)

where kðLþCÞ is the condition number of LþC, and
smaxð�Þ, sminð�Þ represent the maximum and minimum singu-
lar values, respectively.

Proof. see Appendix C in the supplementary material,
available online. tu

Theorem 3 provides a lower and upper bound in the con-
dition number2 of LþC. The lower bound can be achieved
by computing the GFT of L. The addition of a perturbation
matrix to the Laplacian matrix is implicitly changing the
eigenvalues of L, however, Theorem 3 does not state how
the eigenvalues of L change. In matrix theory, Weyl’s
inequality [94] is a theorem about how the eigenvalues of a
perturbed matrix change.

Theorem 4 (Weyl’s Theorem [94]). Let L and C be Hermi-
tian matrices with set of eigenvalues f�1; �2; . . .; �Ng and
fc1;c2; . . .;cNg, respectively. The matrix Lper ¼ LþC has a
set of eigenvalues fn1; n2; . . .; nNg where the inequalities �i þ
c1 � ni � �i þ cN hold for i ¼ 1; 2; . . .; N .

Proof: see [94].

In Theorem 4, ifC � 00, i.e., ci > 0 8 1 � i � N , then this
implies that ni > �i 8 i ¼ 1; 2; . . .; N . Weyl’s Theorem indi-
cates how the eigenvalues of L change after adding a pertur-
bation matrix, and it gives insights about the structure of C.
It is desirable to have detðLperÞ 6¼ 0, then C should be posi-
tive definite. Assuming C ¼ �I, where � 2 Rþ we have
smaxðCÞ ¼ �. Furthermore, the minimum eigenvalue smin of
LþC is strictly greater than zero according to Theorem 4,
i.e., n1 > �1, since sminðLþCÞ > 0 the upper bound in
Eqn. (11) is

kðLþCÞ � smaxðLÞ þ �

sminðLþCÞ < 1: (12)

The term ðLþ �IÞ is precisely the first term in the Sobolev
norm in Eqn. (9), and the invertible term in the variational
problem in Eqn. (10). � is fundamentally related to how well
conditioned is the variational problem.

Since ðLþ �IÞa is always invertible for a > 0 and � > 0,
one can show that the semi-supervised learning problem in
Eqn. (10) has a closed-form solution given by

ððLþ �IÞ�1ÞaMTðMððLþ �IÞ�1ÞaMTÞ�1YðSÞ; (13)

where YðSÞ is the sub-matrix of Y with rows indexed by S.
The proof is shown in Appendix D in the supplementary
material, available online. For small values of N , the mini-
mization of the Sobolev norm can be solved with the closed-
form solution in Eqn. (13). For larger values of N , this mini-
mization can be achieved with iterative methods such as the
interior-point method from quadratic programming.

3.9 Minimization of the Total Variation

Another reconstruction algorithm for semi-supervised
learning in this work is based on the Total Variation (TV) of
graph signals. TV of graph signals is defined as [95]

kykTV ¼
X
i2V

X
j2N i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wði; jÞ

p
kyðjÞ � yðiÞk1: (14)

The minimization of the TV of y is related to the cluster
assumption [96], and end ups in piecewise constant signals.
The semi-supervised algorithm solves the following optimi-
zation problem:

2. The condition number kðAÞ associated with the square matrixA is
a measure of how well or ill conditioned is the inversion of A.
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argmin
zq

kzqkTV s.t. Mzq ¼ yqðSÞ; (15)

for q ¼ 1; . . .; Q. Basically, Eqn. (15) is minimizing the TV of
the reconstructed graph signal such that Mzq ¼ yqðSÞ. The
minimization of the TV in Eqn. (15) involves a non-differen-
tiable objective function, which discards any gradient
descent method. In the current work, the minimization of
the TV is solved with a primal dual approach [97]. Let P 2
RjEj�N be the incidence matrix of G defined as

Pðe; iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
WðeÞ

p
if i ¼ minfi; jg

�
ffiffiffiffiffiffiffiffiffiffiffi
WðeÞ

p
if i ¼ maxfi; jg

0 otherwise;

8<
: (16)

where i 2 V and e 2 E (in this case the edges are represented
by the numbers f1; . . .; jEjg). The matrix P allows to repre-
sent the TV of the graph signal as kykTV ¼ kPyk1 [96]. As a
consequence, Eqn. (15) can be formulated as the primal
equivalent unconstrained convex optimization problem

argmin
zq

gðPzqÞ þ hðzqÞ; (17)

gðxÞ , kxk1; and hðzqÞ ,
1 if zq =2 Q
0 if zq 2 Q;

�
(18)

where hðzqÞ is the indicator function and Q ¼ fzq 2 RN :
Mzq ¼ yqðSÞg.

Definition 4. Let f : Rn ! R. The function f 0 : Rn ! R is the
convex conjugate such that f 0ðxÞ , sup�xx

T�x� fð�xÞ [98].

The dual problem associated with the minimization of
the TV is given by argmaxx � h0ð�PTxÞ � g0ðxÞ, where h0 is
the convex conjugate of the function h. The minimization
of the TV is solved with the primal-dual approach of first
order [97] using the Unlocbox toolbox [99]. For further
details, the readers are referred to the references [96],
[99], [100].

3.10 GraphMOS and GraphVOS in a Nutshell

GraphMOS and GraphVOS are transductive algorithms
because they require that all nodes in the graph are present
to solve the semi-supervised learning problem. Our algo-
rithms are introduced with a batch method for superpixel
segmentation with parameters batch size h, and ground-
truth size x, where h is the number of frames that will be
processed on each iteration, and x is the number of frames
with ground-truth that will be randomly selected from other
sequences (unseen scheme) to solve the semi-supervised
learning problem. Algorithm 1 shows the pseudo-code for
GraphMOS with batch processing. GraphMOS can also be
solved using the whole dataset to construct the graph, but in
this case, our algorithm will select a subset of nodes S 2 V
with an unseen scheme to construct the graph signal Y.
Notice that in the case of processing the whole dataset the
parameter h is not required, but one has to use instance or
semantic segmentation methods to reduce the number of
nodes. Also, notice that the parameters � and a are not
required when solving the semi-supervised learning prob-
lemwith TVminimization.

Algorithm 1. Graph Moving Object Segmentation

Input: Video sequences in the dataset.
Initialization: Parameters z, k, �, a, h, x.
1: Select zth video to be segmented
2: while there are still frames to process in video z do
3: Select h frames, in order, from z for batch processing
4: Randomly select x frames from other videos
5: Compute z superpixels for the hþ x frames
6: Compute X from the hþ x frames
7: Compute Y from the x ground-truth frames
8: Find the set of k-NN of xi 8 i 2 N
9: Compute s using Eqn. (1)
10: for ði; jÞ in the set of k-NN do
11: Wði; jÞ ¼ expð�kxi � xjk22=s2Þ
12: end for
13: D ¼ diagðW1Þ, L ¼ D�W
14: Solve either Eqn. (10) or (15) for q ¼ 1; . . .; Q
15: Get Z as the solution of the semi-supervised problem
16: Use Z to compute the moving objects of the h frames
17: end while

3.10.1 Extension to Semi-Supervised Video Object

Segmentation

Algorithm 1 works when our algorithm requires to segment
moving or static objects (as in the case of the MOS datasets).
However, the extension to VOS with multiple objects is
straightforward using the two following steps: 1) the optical
flow estimation of each video is computed backward (from
the last to the first frame) since VOS datasets usually give
the objects to be segmented in the first frame, if the optical
flow is computed as usual, GraphVOS will not have motion
information of the first frame; and 2) the matrix of graph
signals Y should be extended with Q equal to the number of
objects to be segmented for each video.

In the current work, GraphVOS is evaluated in the semi-
supervised VOS task. However, this should not be confused
with our semi-supervised learning approach. The VOS com-
munity decided to name semi-supervised VOS to the prob-
lem where some intermediate annotated information is
given to the algorithm.

4 EXPERIMENTAL FRAMEWORK

This section introduces the datasets used in the current
work, the evaluation metrics, the experiments, and the
implementation details of GraphMOS and GraphVOS.

4.1 Datasets

Our proposed algorithms are evaluated on a variety of
datasets for both MOS and VOS tasks. More specifically,
we evaluated the performance of the proposed Graph-
MOS algorithm for the sequences taken from static and
moving cameras on several background modeling chal-
lenges. The main goal in GraphMOS is to segment mov-
ing objects, also known as background subtraction. While
GraphVOS algorithm is evaluated on a semi-supervised
VOS task where the object mask is given in the first
frame, and the task is to segment the same object in the
consecutive frames.
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4.1.1 MOS From Static Camera

For sequences taken from static camera, the GraphMOS is
evaluated on three datasets including Change Detection
(CDNet2014) [7], I2R [44], and Scene Background Initializa-
tion (SBI2015) [13]. CDNet2014 is the reference dataset in
the MOS community. This dataset is categorized into 11
main challenges including, bad weather, low frame rate,
night videos, turbulence, baseline, dynamic backgrounds,
PTZ, camera jitter, intermittent object motion, shadow, and
thermal. PTZ category presents sequences taken from PTZ
cameras, while the camera jitter category contains sequen-
ces of jittering effects. Each challenge contains from four up
to six videos. Every video contains a certain amount of
ground-truth frames, in which the ground truth shows the
foreground and background. The average resolution of the
sequences is 320� 240.

I2R dataset contains nine challenging sequences with an
average resolution of 240� 192. Each sequence contains only
20 images of ground-truth. SBI2015 dataset contains 14
sequenceswith an average resolution of 328� 246. The dataset
presents the challenges of cluttered moving objects and slow
objectmotion. This dataset was originally designed to evaluate
background initialization methods. However, Wang et al. pro-
vided the ground-truth forMOS for SBI2015 [70].

4.1.2 MOS for Moving Camera

GraphMOS is also evaluated on the UCSD dataset [14] con-
taining 18 challenging moving camera sequences. This data-
set also presents severe dynamic background variations.
Each video of UCSD is partially or fully annotated with
pixel-level ground-truth images of foreground and back-
ground. The average resolution of the dataset is 230� 320.

4.1.3 Semi-Supervised VOS

Our proposed GraphVOS algorithm is evaluated on
DAVIS2016 [15] and Youtube-VOS [16] datasets. DAVIS2016
is one of the most popular benchmarks for single VOS in
each sequence. It contains 50 fully annotated sequences with
high-quality masks. The dataset is officially split into 20 vali-
dation videos and 30 training videos. The videos in this data-
set contain a variety of challenges, such as background
clutter, deformation, occlusion, scale variation, and shape
complexity, to name a few [16].

Youtube-VOS is the largest dataset in the VOS commu-
nity for multiple object segmentation. This dataset contains
4,453 videos, which are split into 3,471 videos for training,
474 for validation, and 508 for testing. The validation set
includes 91 object categories, where 65 categories are pres-
ent in the training set (seen objects), and 26 categories are
unseen. The training and validation videos have pixel-level
ground truth annotations for every 5th frame (6 fps).

4.2 Evaluation Metrics

The F-measure metric is used for the MOS task to compare
the performance of our GraphMOS algorithm with SOTA
methods [7]. The F-measure metric is defined as follows:

F-measure ¼ 2
Precision�Recall

PrecisionþRecall
; where (19)

Recall ¼ TP

TPþ FN
; Precision ¼ TP

TPþ FP
; (20)

where TP, FP, and FN are the number of true positives, false
positives, and false negatives pixels, respectively.

For the VOS task, we evaluate the segmentation results
using the region similarity and the contour accuracy metrics
described in [15]. For region similarity, the Jaccard index J
is used to compare the SOTA methods. The J is defined as
the intersection over union of the predicted segmentation
mask and ground-truth mask. For contour accuracy F , the
same F-measure metric is used as defined in Eqn. (19). For
Youtube-VOS, the results of GraphVOS have been uploaded
to the online evaluation server [16], while in the case of
DAVIS2016, the official toolkit is used [15].

4.3 Experiments

A thorough comparison with SOTA methods, along with a
set of comprehensive ablation studies of GraphMOS and
GraphVOS are performed. The ablation studies analyze
some specific elements of the pipeline in Fig. 2, like the seg-
mentation method, the number of superpixels in the case of
SLIC, and the feature extraction procedure. The instance
segmentation methods are performed with Mask R-CNN
using ResNet-50 as the backbone, while Cascade Mask R-
CNN is performed using ResNeSt-200. Further ablations are
given in Appendix E in the supplementary material for the
construction of the graph and the semi-supervised learning
algorithm, available online.

Finally, the last experiment is devoted to testing Corol-
lary 2. Since the calculation of U is computationally pro-
hibitive for the configurations involved in the ablation
studies, in this case, a graph with N ¼ 7443 nodes is con-
structed with the sequences backdoor, bungalows, and bus-
Station of the challenge shadow of CDNet2014, using a
k-NN with k ¼ 30, and a Mask R-CNN. In practice, graph
signals are only approximately bandlimited [40], i.e., the
GFT of y has an exponentially decaying shape. The band-
width in this experiment is computed as the r where 90
percent of the spectral energy of y is. The spectral energy
is defined as

P
i2V ŷ

2ðiÞ. As a consequence of this approxi-
mation, the classification error can be bounded by some
value f [43]. The last experiment computes the classifica-
tion error in the non-sampled nodes for the sample sizes
in the set m ¼ f10; 20; 30; . . .; 400g, using random sampling
and the Sobolev minimization with � ¼ 0:2 and a ¼ 1. This
experiment is performed with a Monte Carlo cross-valida-
tion with 200 repetitions.

4.4 Parameters Settings

Our algorithms contain several parameters such as the num-
ber of superpixels z, the number of k neighbors for k-NN in
the graph construction, the parameters � and a for the Sobo-
lev norm, the batch size h, and the number of selected
ground-truth frames x. Table 1 shows a summary of the best
parameters for GraphMOS and GraphVOSwithin each data-
set in the current work. Several ablation studies have been
performed for these parameters. See Tables 1 and 2 in the
supplementary material for k and �, and Table 12 for z, avail-
able online.
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4.5 Implementation Details

The instance and semantic segmentation algorithms were
implemented using Pytorch and Detectron2 [101]. The
algorithm for the reconstruction of graph signals was
implemented using the graph signal processing toolbox
[102] and the Matlab convex optimization toolbox [99].
The code has been made available.3 For the comparison
with our algorithm, most of the MOS methods were imple-
mented with the BGSLibrary [103] and the LRSLibrary
[104] with default parameters by reference. The experi-
ments are executed on a laptop with a processor Intel Core
i7 with 16 gigabytes of memory RAM. Using handcrafted
features, GraphMOS algorithm with Mask R-CNN takes
3.73 FPS, with Cascaded Mask R-CNN it takes 1.76 FPS,
with Deeplab method it takes 13.14 FPS, and with SuB-
SENSE method GraphMOS takes 15.11 FPS to segment the
moving objects. In case of using deep features with block
and superpixel-based segmentation methods, the experi-
ments of GraphMOS and GraphVOS are conducted on a
powerful Nvidia DGX-2 server machine. GraphMOS takes
1.42 and 2.31 FPS for MOS using superpixel and block-
based graph construction.

5 RESULTS AND DISCUSSION

Our proposed algorithms are compared with 36 SOTA
methods. GraphMOS is compared with 20 SOTA methods
including SWCD [105], FTSG [106], SuBSENSE [80],
WeSamBE [107], PAWCS [17], WisenetMD [108], IUTIS-5
[18], SemanticBGS [109], BSUV-net [19], MoG [58],
DECOLOR [21], ViBe [110], 3WD [8], GRASTA [111], FgSeg-
Net v2 [28], ROSL [20], ADMM [112], noncvxRPCA [113],
and OR1MP [114] for the MOS task. Mask R-CNN can
directly solve the MOS problem. However, Mask R-CNN
does not include temporal information, leading to an ill-
conditioned problem. In our experiments, we have also
trained Mask R-CNN directly on CDNet2014 sequences
with an unseen scheme. Each Mask R-CNN is trained with
1000 epochs using learning rate of 0.00025 and a batch
size of 2.

In addition, GraphVOS is compared with 16 SOTA meth-
ods including OSMN [68], MSK [115], RGMP [23], OnAVOS
[24], ROVS [116], OSVOS [117], S2S [16], A-GAME [118],
PReMVOS [119], MaskRNN [120], FEELVOS [121], FAVOS
[122], OSVOSS [22], DyeNet [123], Siam R-CNN [26], and
STM [25] for the VOS task.

5.1 Qualitative Evaluations

Table 2 shows some of the visual results of the proposed
algorithms compared with several SOTA methods on
CDNet2014, UCSD, DAVIS2016, and Youtube-VOS data-
sets. The CDNet2014 sequences WetSnow, Fall, Intermittent-
Pan, and FluidHighway present bad weather conditions,
dynamic background variations, panning of the scene, and
nighttime lighting variations challenges. GraphMOS shows
the best visual results, while BSUV-Net and SuBSENSE
show competitive performance for these sequences. Birds
and Cyclists sequences of UCSD present highly dynamic
background variations challenges, including rippling water
surface and swaying of bushes. The compared methods do
not handle these sequences accurately, while only Graph-
MOS can handle these sequences successfully.

The Blackswan, Breakdance, and Scooter Black sequences of
DAVIS2016 present the background clutter, shape deforma-
tion, and occlusion challenges. It is shown that all of the
compared methods, including our proposed GraphVOS
algorithm, show competitive performance in these sequen-
ces. Thus, these sequences do not put a great burden on the
compared methods. In the case of YouTube-VOS sequences,
some key frames of important moments (e.g., before and
after occlusion and background clutter) are shown for three
validation videos. GraphVOS also shows competitive per-
formance on these sequences. The excellent performance of
the proposed algorithms is because of the semi-supervised
learning method for accurate classification of background
or foreground graph nodes.

5.2 Quantitative Results

Tables 3, 4, 5, and 6 show the comparisons of the qualitative
results of the GraphMOS algorithm on CDNet2014, I2R,
SBI2015, and UCSD datasets for MOS while Tables 7 and 8
demonstrate the comparison of our proposed GraphVOS
algorithm on DAVIS2016 and Youtube-VOS datasets for
VOS with several SOTA methods. Online Learning (OL) in
Table 7 means that the authors of those methods fine-tune
the backbone networks using scribbles given by the users.
However, OL is computationally too expensive to be used
within an interactive tool, limiting its practical use. Within
these tables, the best and second best performing methods
are shown in red and blue, respectively. Our proposed
algorithms show competitive performance as compared to
SOTA methods on all datasets.

For the CDNet2014 dataset (Table 3), our proposed algo-
rithm GraphMOS obtained the best performance in terms of
average F-measure score of 85.92 percent, which is 7.0 percent
better than the second-best performing method Seman-
ticBGS. Moreover, GraphMOS achieved the best results in
seven out of eleven challenges including Bad Weather (94.11
percent), Baseline (97.10 percent), Camera Jitter (92.33 percent),
Night Videos (82.11 percent), PTZ (85.11 percent), Shadow
(99.01 percent), and Thermal (90.10 percent) while it obtained
favorable performance for the remaining attributes including
Dynamic Background, Turbulence, Low Framerate, and Intermit-
tent Object Motion. In all these challenges, the sequences in
NightVideos and PTZ are very challenging since the majority
of the compared methods are not able to achieve more than
70.0 percent F-measure score, while GraphMOS achieved sig-
nificantly high performance for these challenges.

TABLE 1
Summary of the Parameters Used in Our

Experiments for Each Dataset

Dataset z k � a h x

CDNet2014 200 30 0.2 1 100 350
I2R 200 30 0.2 1 100 150
SBI2015 300 30 0.2 1 100 60
UCSD 200 30 0.2 1 100 40
DAVIS2016 300 30 0.2 1 100 25
Youtube-VOS 200 30 0.2 1 100 10

3. https://github.com/jhonygiraldo/GraphMOS
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In the I2R dataset (Table 4), GraphMOS has obtained
the best performance of 91.96 percent overall, which is
almost 10.0 percent better than the second-best performing
BSUV-Net method. BSUV-Net+, SuBSENSE, and DECOLOR
methods have obtained favorable performance, while the

remaining compared methods are not able to achieve more
than 60.0 percent F-measure score, which further shows the
challenging nature of the sequences present in this dataset.

In the SBI2015 dataset (Table 5), the GraphMOS has also
achieved the best performance in 11 out of 14 videos. Overall,

TABLE 2
Comparison of the Qualitative Results of GraphMOS and GraphVOS Algorithms on CDNet2014, UCSD,

DAVIS2016, and Youtube-VOS Datasets With Existing SOTA Methods

Our algorithms perform better than the SOTA methods in these challenging scenarios.

TABLE 3
Comparisons of Average F-Measure on CDNet2014 Dataset
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the proposed algorithm obtained a 93.28 percent F-measure
score, which is approximately 12.50 percent larger than
BSUV-Net+ (80.79 percent) and 13.96 percent larger than
BSUV-Net (79.32 percent) methods. The sequences in this
dataset show clutter background scenes and slowly moving
foreground objects. Therefore, the majority of the compared
methods are not able to handle the overwhelming outliers of
the moving objects in these sequences efficiently as compared
toGraphMOS.

Similarly, in the case of the UCSD dataset (Table 6), Graph-
MOS also shows the best performance of 75.95 percent. The
sequences in this dataset are taken from a moving camera.
Therefore, it can be noticed in the performance comparison
that none of the compared methods can perform favorably
better since SOTA methods such as MoG, DECOLOR, ViBe,
GRASTA, SuBSENSE, andADMMare designed to handle the

static camera sequences. Our proposed GraphMOS algorithm
shows better performance because of its generalization capa-
bilities to tackle unseen videos on both static and moving
cameras.

For the VOS task, our proposed algorithm GraphVOS
also performs better than the SOTA methods. In the
DAVIS2016 dataset (Table 7), GraphVOS achieves the
best accuracy in terms of J and F measures. Overall,
our proposed algorithm obtained 0.50 and 1.30 percent
improvements compared to the second-best performing
method STM (+YV). On the YouTube-VOS dataset
(Table 8), GraphVOS outperforms all the SOTA methods
in every measure for seen and unseen object categories.
The proposed algorithm shows a 6.50 percent improve-
ment compared to the second-best performing method
PrEMVOS.

TABLE 5
Comparison of F-Measure Results Over the Sequences of SBI2015 Dataset

TABLE 6
Comparison of F-Measure Results Over the Videos of UCSD Background Subtraction Dataset

TABLE 4
Comparison of F-Measure Results Over the Sequences of I2R Dataset

2498 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 5, MAY 2022

Authorized licensed use limited to: Khalifa University. Downloaded on November 03,2022 at 08:46:21 UTC from IEEE Xplore.  Restrictions apply. 



5.3 Ablation Studies

Several ablation studies are performed to analyze the per-
formances of our proposed algorithms. These ablations
include the analysis of different segmentation methods
used in graph construction, feature extraction, and the num-
ber of superpixels used in the SLIC method. More ablation
studies are included for the CDNet2014 dataset in Appen-
dix E in the supplementary material, available online.

Segmentation Methods for Graph Nodes. Table 9 shows the
performance comparison of GraphMOS for I2R, CDNet2014,
SBI2015, and UCSD datasets and GraphVOS for the DAVIS
2016 dataset using different segmentation methods for node
representation during graph construction. Overall, the super-
pixel segmentation-based node representation for graph con-
struction achieves the best performance as compared to other

heavyweight semantic and instance segmentation methods.
This is because the superpixel method segments all the homo-
geneous regions in the video frames, and then the graph is
constructed for the semi-supervised learning task. In contrast,
the instances of the videos such as moving objects, static
objects, or other undesirable objects may or may not be seg-
mented accurately by the heavyweight deep learning Deep-
Lab and Mask R-CNN methods. Besides, the degradation in
the performance of DeepLab with respect to the instance seg-
mentationmethods also suggests the unsuitability of semantic
segmentation to solve theMOSproblem.

Table 10 shows the performance comparisons of super-
pixel and block-based node representation in graph con-
struction. The average F-measure is reported by using
handcrafted plus deep features representation of the node.
Superpixel-based method clearly outperforms the block-
based node representation method in all datasets.

Features Analysis. To analyze the effectiveness of the pro-
posed algorithms, we also compare the MOS and VOS results
with different features extracted fromgraph nodes on five dif-
ferent datasets. Table 11 shows the performance comparisons
of the proposed algorithms using different features represen-
tation. The deep features are extracted from the 4th and 5th
convolutional layers of the VGG-m model [89]. Overall, the
deep features show competitive performance as compared to
handcrafted features, while the incorporation of both deep
features (Conv-5) and handcrafted features further improves
the average F-measure score in all datasets.

Number of Superpixels. Table 12 shows the performance
comparison of the proposed algorithms with varying

TABLE 8
Comparison ofJ andF Metrics on the Youtube-VOS

Validation Set

TABLE 9
Performance Comparisons in Terms of Average F-Measure

Score for Different Segmentation Methods Used
for Graph Construction

Only handcrafted features are used to report the performance. These ablations
studies involves: graph construction using DeepLab with ResNet 101 (Deep-
Lab), Mask R-CNN with ResNet 50 (Mask R-50), Cascade Mask R-CNN
with ResNeSt 200 (Cascade RS-200), SuBSENSE, and Superpixel.

TABLE 7
Comparison ofJ andF Metrics on the DAVIS2016Validation Set

OL indicates online learning, and (+YV) indicates the use of YouTube-VOS
for training.

TABLE 10
Performance Comparison in Terms of Average F-Measure

Score of Superpixel and Block-Based Segmentation for Graph
Construction Methods

The performance is reported by using both handcrafted and deep features repre-
sentation of graph nodes.

TABLE 11
Performance Comparisons in Terms of Average F-Measure

Score on Five Datasets Using Distinct Node Features
Representations

Handcrafted, deep features, and the concatenation of handcrafted and deep fea-
tures (Hand + Deep (Conv-5)) are used to represent graph nodes.

TABLE 12
Performance Comparisons in Terms of Average F-Measure
Score for the Number of Superpixels in the SLIC Method
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number of superpixels. The best performance for each data-
set is given by 200 or 300 superpixels per image.

5.4 Sample Complexity

Fig. 7 shows the results of the experiment related to the
sample complexity. The first plot in Fig. 7 shows the power
spectrum of the graph signal associated with the moving
objects, where the power spectrum is defined as the GFT
square ŷ2i . The second plot shows the classification error
versus the sample size, and the bound of the sample com-
plexity in the problem computed as in Eqn. (4). The sample
complexity computed in this experiment is Ns � 59 with
corresponding cutoff frequency v ¼ 0:0089. The average
errors are 0.0576 and 0.0393 for the sampling sizes m ¼ 60
and m ¼ 400, respectively, i.e., the change in the classifica-
tion error is bounded by f ¼ 0:0576 after the sample com-
plexity. One can notice from Fig. 7 that the classification
error just has a small change after a sample size ofNs.

6 CONCLUSION

In this study, we proposed new branch of algorithms for the
tasks of MOS and VOS based on graph signal processing
concepts. The pipeline of the algorithm involves segmenta-
tion, background initialization, features extraction for the
representation of the nodes in a graph, construction of the
graph, and finally semi-supervised learning algorithms
inspired by the theory of the graph signals reconstruction.
In the same way, several theoretical insights about the sam-
ple complexity and the graph signals reconstruction are
explored in this work. More specifically, Corollary 2 and
Theorem 3 are introduced, showing a bound for the sample
complexity given a smoothness prior assumption, and two
bounds for the condition number of a matrix plus a pertur-
bation, respectively. The proposed algorithms are evaluated
on six publicly available MOS and semi-supervised VOS
datasets. Through an extensive series of experiments, the
proposed algorithms have consistently outperformed exist-
ing state-of-the-art methods by a significant margin.

This work opens several future research directions in
computer vision and machine learning. The first important
direction is to further explore a generalized theory of graph
signal processing in the field of MOS. The graph signals can
be extended to fuzzy concepts leading to a richer represen-
tation of moving and static objects. The second direction is
to explore the graph signal processing concepts applied in
bounding boxes for applications such as multi-object track-
ing. Another important direction is to study an inductive
learning framework, which aims to address the problems of
real-time processing [124] for MOS and VOS. Further ques-
tions in these directions are: how can one use the structure
of certain datasets to improve the generalization of SOTA

deep learning methods? How can one design an algorithm
to train a neural network capable of learning from the labels
and the structure of a dataset? What is the relationship
between the sampling of graph signals and the problems in
video analysis? Perhaps, the concepts of graph signal proc-
essing, such as active semi-supervised learning and graph
convolutional neural networks, could lead to new develop-
ments in the field of computer vision and end-to-end archi-
tectures for video analysis with semi-supervised learning.
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