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ABSTRACT

The abductive natural language inference task (αNLI) is proposed to infer the
most plausible explanation between the cause and the event. In the αNLI task,
two observations are given, and the most plausible hypothesis is asked to pick out
from the candidates. Existing methods model the relation between each candidate
hypothesis separately and penalize the inference network uniformly. In this pa-
per, we argue that it is unnecessary to distinguish the reasoning abilities among
correct hypotheses; and similarly, all wrong hypotheses contribute the same when
explaining the reasons of the observations. Therefore, we propose to group in-
stead of ranking the hypotheses and design a structural loss called “joint softmax
focal loss” in this paper. Based on the observation that the hypotheses are gen-
erally semantically related, we have designed a novel interactive language model
aiming at exploiting the rich interaction among competing hypotheses. We name
this new model for αNLI: Interactive Model with Structural Loss (IMSL). The
experimental results show that our IMSL has achieved the highest performance
on the RoBERTa-large pretrained model, with ACC and AUC results increased by
about 1% and 5% respectively.

1 INTRODUCTION

Abductive natural language inference (αNLI) (Bhagavatula et al. (2020)) is a newly established
branch of natural language inference (NLI) and is an interesting task in the area of natural language
processing (NLP) based commonsense reasoning. Originating from NLI which targets at the seman-
tic relationship between the two sentences, αNLI further estimates the abductive reasoning of each
sentence by explicitly deducing its cause. In the past years, αNLI has attracted increasing attentions
as it makes NLP tools more explainable and comprehensible. As of today, typical applications of
αNLI include knowledge graph Completion (Yu et al. (2020)) (Bauer & Bansal (2021)), question
answering (Ma et al. (2021)), sentence in-filling (Huang et al. (2020)), knowledge integration (Zhou
et al. (2021)) and so on.

To better motivate this work, we have shown a comparison between NLI and αNLI in Table 1.
For NLI, the task is to judge the relationship between the premise statement P and the hypothetical
sentence H based on the given information in P. Options of the answer can be implication, neutrality,
or contradiction. For αNLI, a pair of observations (O1 and O2) and some hypotheses (e.g., two
competing hypotheses H1 and H2 in the example) are given. The task of αNLI is to deduce the
more plausible reason between H1 and H2 that can explain the situational change from O1 to O2.
In addition to constructing the αNLI task, the authors of (Bhagavatula et al. (2020)) has released a
new challenge data set, called ART and reported comprehensive baseline performance for αNLI by
directly employing and retraining a solution for NLI, i.e., ESIM+ELMo(Chen et al. (2017), Peters
et al. (2018)). They also found that the pretrained language model can apparently influence the
performance of an algorithm and demonstrated some test results with the latest language models
like GPT(Radford et al. (2018)) and BERT(Devlin et al. (2019)).

We note that there is still a considerable gap between the human performance and the class of base-
line models in (Bhagavatula et al. (2020)). More recently, (Zhu et al. (2020)) argued that the former
framework cannot measure the rationality of the hypotheses, and reformulated αNLI as a learning-
to-rank task for abductive reasoning. In their approach, RoBERTa(Liu et al. (2019)), BERT(Devlin
et al. (2019)), and ESIM(Chen et al. (2017)) are all tested to work as the pretrained language model.
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Table 1: Comparison of NLI tasks and αNLI tasks, where E, N, and C represent entailment, neutral
and contradiction, respectively

Task Context Answer
P: A man inspects the uniform of a figure in some East Asian country.

H: The man is sleeping. E , N or C

P: An older and younger man smiling.
H: Two men are smiling and laughing at the cats playing on the floor. E , N or C

P: A soccer game with multiple males playing.

NLI

H: Some men are playing a sport. E , N or C

O1: Dotty was being very grumpy.
H1: Dotty ate something bad.
H2: Dotty call some close friends to chat.αNLI

O2: She felt much better afterwards.

H1 or H2

Under this new ranking-based framework, (Paul & Frank (2020)) introduces a novel multi-head
knowledge attention model which learns to focus on multiple pieces of knowledge at the same time,
and is capable of refining the input representation in a recursive manner for αNLI.

Despite the performance improvement achieved by the ranking framework, there are still some
weaknesses calling for further investigation. For instance, a practical training sample (e.g., two
observations and four hypotheses) from ART is shown in Figure 1. It is easy to conclude that
both H1 and H2 are correct answers; while the other two (H3,H4) are false. However, in previous
ranking-based αNLI method such as L2R2 (Learning to Rank for Reasoning) (Zhu et al., 2020, four
hypotheses will be trained simultaneously by treating one of the two correct answers as a more cor-
rect one. Similarly, the wrong answers are also treated as a wrong one and a worse one. Meanwhile,
the ranked hypotheses are trained separately, but the sum of their probabilities is set as a fixed value -
e.g., the probability of correct hypothesis H2 decreases when the probability of answer H1 increases.

O1 :  Josh bought a parrot as a pet. 

O2 :  Josh was so excited that he taught his parrot how to say it’s name!

H
1
 : Josh realized that the parrot could talk! 

H
2
 : The parrot repeated Josh's morning greeting.         

H
3
 : Josh started teaching the parrot things.    

H
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 : He is scared of birds.  
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Figure 1: Comparison of L2R2 method and IMSL method. Among them, O1, O2 represent obser-
vations, H1, H2 are correct answers, H3, H4 are wrong answers, S(Hi) represents the score of the
i-th hypothesis correctness.

In this paper, we advocate a new approach for αNLI as shown in Figure 1. Our principle of abductive
reasoning is constructed based on following two arguments: 1) a hypothesis is correct because its
meaning explains the change of the observations. In practice, the causes of situational changes
are often diverse, and therefore the answers are seldom unique. It follows that we do not need
to intentionally distinguish or rank the correct answers. 2) a hypothesis is wrong because it can
not explain the cause of some event. Therefore, all wrong answers contribute the same - i.e., it is
plausible to treat all wrong hypotheses equally in the process of constructing our reasoning network.
We argue that the proposed abductive reasoning principle is closer to commonsense reasoning by
humans than previous ranking-based approaches.

Based on the above reasoning, we propose a new abductive reasoning model called Interactive Model
with Structural Loss (IMSL) for αNLI as shown in Figure 2. The IMSL model mainly consists of
two components: interactive model and structural loss. On the one hand, note that in the process
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Figure 2: Comparison of the interaction between the traditional model and the IMSL model, where
S (Hi) represents the input sequence containing the i-th hypothesis

of extracting the language features of an arbitrary hypothesis, its relationship to other hypotheses
should also be considered because the hypotheses are often semantically related Pearl (1986). To
this end, we can design an information interaction layer to capture the relationship between different
hypotheses and produce more discriminative language feature vectors. On the other hand, we have
constructed a new loss function called “joint softmax focal loss” inspired by a recent work (Lin et al.
(2017)). It is essentially a structural softmax based Focal loss formed by sequentially constructing
a loss for each score group that composed by a correct hypothesis and all wrong hypotheses. When
compared with conventional models, we argue that IMSL is more powerful for the task of αNLI by
jointly exploiting the rich relation among competing hypotheses. The main technical contributions
of this work can be summarized as follows.

1) For αNLI task, we claim that, the correct hypotheses of a given observation pair are often diverse,
and there is no need to tell them apart. The wrong hypotheses contribute the same to the task. We
regroup instead of ranking all hypotheses, as shown in Figure 1.

2) Aiming at the problem of incorrect probability distribution between correct hypotheses in the
training process, a joint softmax focal loss is proposed. For the hypotheses groups formed in the
rearrange process, we design a softmax-based focal loss for each group and combine them into a
joint loss.

3) In view of the problem that traditional models cannot capture the language relationship between
different hypotheses, we have added an information interaction layer between different hypothesis
models. The information interaction layer increases the area under the receiver’s operating charac-
teristic curve (AUC) by about 5%.

4) Impressive abductive reasoning performance is achieved by IMSL when tested using RoBERTa
as the pretrained language model. The best language model DeBERTa (He et al. (2021)) is not
tested due to the constraint by our limited GPU resources (4-piece RXT 2080Ti). In our experiment,
compared with all recent algorithms whose codes have been made publicly available, the IMSL
method has achieved state-of-the-art results in ACC and AUC on both the validation set and test
set. Besides, on the public leaderboard1, IMSL is the best non-DeBERTa based algorithm and ranks
4/56 in all (including both DeBERTa based and non-DeBERTa based) competing methods.

2 RELATED WORK

αNLI task solves an abductive reasoning problem based on natural language inference (NLI). In the
past years, there has been an explosion of NLI benchmarks, since the Recognizing Textual Entail-

1https://leaderboard.allenai.org/anli/submissions/public
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ment (RTE) Challenges was introduced by (Dagan et al. (2005)) in the early 2000s. Then, in order
to find the most reasonable explanation of the incomplete observations, (Bhagavatula et al. (2020))
studied the feasibility of language-based abductive reasoning and proposed the task of αNLI. It pays
more attention to the information provided in the premise than the RTE task. For traditional RTE, the
main task is to judge the relationship between the premise sentence and the hypothetical sentence,
but the main objective of αNLI is to select the most plausible hypothesis among the hypotheses
given two observations.

αNLI is the first language-based abductive reasoning study. This shift from logic-based to language-
based reasoning draws inspirations from a significant body of works on language-based entailment
(Bowman et al. (2015); Williams et al. (2018)), language-based logic (Lakoff (1970); MacCartney &
Manning (2007)), and language-based commonsense reasoning (Mostafazadeh et al. (2016); Zellers
et al. (2018)). In addition to establish αNLI, (Dagan et al. (2005)) have also released a new challenge
dataset, i.e., ART, which can be visited through the first footnote in this paper. The authors have
also formulate the task as a multiple-choice task to support easy and reliable automatic evaluation.
Specifically, from a given context, the task is to choose the more reliable explanation from a given
pair of hypotheses choices.

However, discriminating correct from wrong does not measure the plausibility of a hypothesis in
αNLI (Zhu et al. (2020)). So, to fully model the plausibility of the hypotheses, Zhu et al. turn to
the perspective of ranking and propose a novel learning to rank for reasoning (L2R2) approach for
the task. The authors rank the hypotheses based on the number of times they appear in the dataset,
and use some pairwise rankings as well as a listwise ranking as loss. Pairwise rankings contains
Ranking SVM (Herbrich et al. (2000)), RankNet(Burges et al. (2005)), LambdaRank(Burges et al.
(2006)), and Listwise Ranking contains ListNet(Cao et al. (2007)), ListMLE (Li et al. (2020)) and
ApproxNDCG(Qin et al. (2010)). The experiments on the ART dataset show that reformulating the
αNLI task as ranking task really brings obvious improvements. After that, (Paul & Frank (2020))
proposes a novel multi-head knowledge attention model that encodes semi-structured commonsense
inference rules and learns to incorporate them in a transformer based reasoning cell. The authors
still prove that a model using counterfactual reasoning is useful for predicting abductive reasoning
tasks. Accordingly, they have established a new task called Counterfactual Invariance Prediction
(CIP) and provide a new dataset for this.

In addition to the abductive reasoning models, the pre-trained language model still plays an impor-
tant role in αNLI task. Early ways for language inference are constructed directly by some simple
statistical measures like bag-of-words and word matching. Later, various kinds of neural network
architectures are used to discover useful features in the languages, like word2vec(Mikolov et al.
(2013)) and GloVe(Pennington et al. (2014)). Recent works have developed contextual word rep-
resentation models, e.g.,Embeddings from Language Models (ELMO) by Peters et al. (2018) and
Bidirectional Encoder Representations from Transformers(BERT) by Devlin et al. (2019). The orig-
inal implementation and architecture of BERT has been outperformed by several variants and other
transformer-based models, such as RoBERTa, DeBERTa and UNIMO. RoBERTa(Liu et al. (2019))
replaces training method of BERT and uses larger batches and more data for training. DeBERTa(He
et al. (2021)) uses the disentangled attention mechanism and an enhanced mask decoder to improves
the BERT and RoBERTa models. In order to effectively adapt to unimodal and multimodal under-
standing task, Li et al. (2021) proposes the UNIMO model. In this paper, however, restricted by our
computing resources, RoBERTa is selected as our language model.

3 INTERACTIVE MODEL WITH STRUCTURAL LOSS (IMSL) METHOD

IMSL model consists of two components: context coding layer and information interaction layer
(the backbone network) as well as a joint softmax focal loss (objective function). The design of the
model architecture and loss function are described in detail below.

3.1 INFORMATION INTERACTION MODEL

Model input: Under the framework of IMSL, a training sample X includes two given observa-
tions (i.e., O1 and O2) and a group of candidate hypotheses denoted by H =

{
Hj
}N
j=1

(N is the

number of candidate hypotheses). Then, binary labels y = {yj}Nj=1 are assigned to each hypoth-
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Figure 3: The proposed IMSL model consists of a context coding layer (using a pre-trained model)
and an information interaction layer (characterizing the relationship among different hypotheses).

esis by yj = 1 when Hj is the correct, and yj = 0 when Hj is the wrong. The task of abductive
reasoning can be characterized by a mapping from X to y. For explicitly estimating the relation
between each hypothesis and the two observations, we can construct a triad for each hypothesis as
xj =

[
O1; H

j; O2

] (
Hj ∈ H

)
. This way, each sample in the training set X can be represented by

[x1, x2, · · · , xN ]→ [y1, y2, · · · , yN ].

Context coding layer: We use a pre-trained language model (RoBERTa-large is used in our exper-
iment) to calculate the contextual representation of the text. For each word in a single input xj , an
embedding vector with context information is generated. For each sentence in a single input xj , a
sentence-level embedding matrix vj = encode (xj) is first obtained, where encode(·) denotes the
pre-trained model for encoding. Then we can sum the word embedding dimensions in the feature
matrix to generate the feature vector zj .

Information interaction layer: Traditional models only consider one single input xj during scoring
as shown in Fig. 2, which makes it difficult to capture the relationship between different inputs (e.g.,
xj and xj+1). To exploit the dependency between two different inputs, we propose to construct a
novel information interaction layer as follows. First, a pair of feature vectors zj and zj+1 can be
generated after xj and xj+1 are passed through the context encoding layer. Second, we plug zj
and zj+1 into the information interaction layer and use BiLSTM to acquire the distributed feature
representation fj and fj+1. Finally, a fully connected module outputs the corresponding scores sj
and sj+1. A flowchart of the context coding and information interaction layers is shown in Figure 3.

To efficiently use contextual information, we use zj as the input of BiLSTM, which aim at exploiting
the dependency relationship between the feature vectors. BiLSTM uses a forward LSTM and a
backward LSTM for each sequence to obtain two separate hidden states:

−→
hj ,
←−
h j . The key idea of

BiLSTM is to generate the final output at time t by concatenating these two hidden states:

hj =
[−→
hj ,
←−
h j

]
. (1)

After passing the BiLSTM layer, we can get a bidirectional hidden state vector hj , then use the
fully connected layer to generate the final score sj . For computational efficiency, a linear regression
formula is adopted here for prediction score:

sj =Wj · hj + bj , (2)

where Wj ∈ R2d×d, bj ∈ Rd.
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3.2 JOINT SOFTMAX FOCAL LOSS FUNCTION

Based on the output score layer of the IMSL model, we propose to design a new structural loss
function based on the principle of abductive reasoning. Instead of ranking-based approach, the
proposed loss function for each sample is formulated as a linear combination of softmax focal losses
for several rearranged groups, which is called joint softmax focal loss. The detailed procedure
of generating multiple rearranged groups is shown in Figure 4. We note that it is unnecessary to
compare the group of correct hypotheses; while the exploration of the relationship between correct
hypothesis and wrong hypotheses is sufficient for the task of score prediction. Therefore, we can
rearrange the set of N prediction scores into several groups, each of which only contains a single
correct hypothesis. A toy example is given in Figure 4 where the two hypotheses are correct, and
all other hypotheses are wrong. In this example, the total N scores can be divided into two groups
associated with two correct hypotheses, respectively.

. . .

Softmax+Focal loss

joint Softmax-Focal loss

correct hypothesis

wrong hypothesis

Score

Softmax+Focal loss

+

S1 S2 S3 SN-2 SN-1 SN

S1

S2 S3 SN-2 SN-1 SN

SNSN-1S3 S4

Figure 4: An example of rearrange groups for joint softmax focal loss.

With the above construction, we can first apply the softmax operation to each rearranged group and
then combine them into a joint loss function. In the first step, each prediction score is given by:
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∑

i e
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(
e
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) , if yn = 0.
(3)

where yn is the correct/wrong label, and ŷn represents a predicted value. The normalization factor
K =

∑
j yj represents the number of correct hypotheses. Note that s0i represents the scores of the

wrong hypotheses, where i is the position of the false label. Similarly, s1i indicates the score of the
correct hypotheses.

In addition to the softmax loss, we have borrowed the idea of focal loss from (Lin et al. (2017)) and
introduce a balancing factor a ∈ (0, 1) to control the shared weight of the correct hypothesis and the
wrong ones. Here, a is used for the correct hypotheses, and 1− a is used for the wrong hypotheses,
i.e.,

βn = yn · a+ (1− yn) (1− a). (4)
Putting things together, we can rewrite the joint softmax focal loss as

L = Fl(y, ŷ) = −
∑
n

βn · (1− pn)γ · log (pn) . (5)

where
pn = yn · ŷn + (1− yn) (1− ŷn) + ε. (6)

Here, the parameter γ is included for regulating the model’s attention to hard hypotheses during the
training of IMSL model. As suggested in (Lin et al. (2017)), γ ∈ [0.5, 5]. Then, a small positive real
number ε of 1e-8 is used to avoid the numerical instability problem. In practice, both a and γ are
used as hyper-parameters which can be tuned by cross-validation. For the example shown in Figure
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4, by assuming that the softmax focal losses for the two groups are Lgroup1 and Lgroup2, we can
obtain the overall loss by Lsample = Lgroup1 + Lgroup2. Furthermore, the total loss for all training
samples can be estimated by the sum of the losses over individual samples.

4 EXPERIMENT

In this section, the experimental results on public data sets are presented to evaluate the method
proposed in this paper.

In recent years, more and more Pre-Training models have been proposed, such as DeBERTa (He
et al. (2021)), UNIMO (Li et al. (2021)), etc. They use more data for training and have more
parameters. Due to limited computational resources, we did not conduct comparative experiments
with these high-performing yet computationally demanding pretrained models.

Evaluation indicators: AUC and ACC are the most common evaluation indicators. Since the
original ACC cannot evaluate the model that is far away from the test data, AUC is added as an
additional evaluation index to handle skewed sample distribution. AUC is a measurement method
that is statistically consistent and more discriminative than ACC.

4.1 EXPERIMENTAL SETUP

Tasks and settings: The αNLI task uses the ART dataset, which is the first large-scale benchmark
dataset used for abductive reasoning in narrative texts. It consists of about 20,000 observations and
about 200,000 pairs of hypotheses. The observations come from a collection of manually curated
stories, and the hypotheses are collected through crowdsourcing. In addition, the candidate hypothe-
ses for each narrative context in the test set are selected through the adversarial filtering algorithm
with BERT-L (Large) as the opponent. The input and output formats are shown in Table 2.

Table 2: The format of data input and output in αNLI task

Task Input Format Output Format
αNLI [CLS] O1 [SEP] Hi [SEP] O2 [SEP] H1 or H2

Hyperparameter details: Due to the difference in the amount of data, the focusing parameter and
the amount of training data will vary. For different training data, select the hyperparameter that
produces the best performance on the test set. Specifically, the learning rate is fixed at 1e-6, the
batch size is fixed at 1, and the training batch will vary with the amount of training data. Training
uses Cross Softmax+Focal Loss. For the validation set, ACC and AUC are used for evaluation. Use
the results of five different seeds to evaluate the performance of the test set.

Baseline: We have used the following four baseline models for comparison: A) BERT (Devlin et al.,
2019) is a language model that uses a masked language model and predicts the next sentence as the
target training. For example, it masks certain words in the input, and then trains it and predicts
the words that are blocked. B) RoBERTa (Liu et al., 2019) has the same structure as BERT, but
there is no prediction (NSP) for the next sentence. RoBERTa-B (ase) and RoBERTa-L (arge) use
more data and larger batches for training. C) Learning to Rank for Reasoning (L2R2) Zhu et al.
(2020) reprogrammed the αNLI task as a ranking problem, using a learning ranking framework that
includes a score function and a loss function. D) Multi-Head Knowledge Attention (MHKA) (Paul
& Frank, 2020) proposed a new multihead knowledge attention model, and used a novel knowledge
integration technology.

4.2 EXPERIMENTAL RESULTS

Our experimental results in the αNLI task are shown in Table 3. The baseline comparison models
are: Majority, GPT, BERT-L, RoBERTa-L, L2R2 and MHKA related results. It can be observed that
the IMSL method improves about 3.5% in ACC and about 7.5% in AUC compared with RoBERTa-
L. The results show that the improvement of ACC is mainly attributed to the new IMSL loss function,
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Table 3: Results on the αNLI task: The results are quoted from (Bhagavatula et al., 2020), L=Large

Model Dev(ACC%) Dev(AUC%) Test(ACC%)
Human Perf - - 91.40
Majority 50.80 - -
GPT 62.70 - 62.30
BERT-L 69.10 69.03 68.90
RoBERTa-L 85.76 85.02 84.48
L2R2 88.44 87.53 86.81
MHKA 87.85 - 87.34
Ours
RoBERTa-L+IMSL 89.20 92.50 87.83

and the improvement of AUC is mainly attributed to the exploitation of the relationship between the
hypotheses by the proposed information interaction layer.

Low-resource setting: Testing the robustness of the model to sparse data on αNLI tasks refers to
the low-resource scenario where the MHKA model uses {1,2,5,10,100}% training data respectively.
Figure 5 shows how the model improves on MHKA, RoBERTa-Large, and L2R2. The experimental
results show that the model in this paper can achieve better results in the case of low resource setting.
When using 1% training data only, the improvement brought by IMSL is the most significant, which
is about 4% higher than that of L2R2 and MHKA. Experimental results show that our method
performs consistently better than other competing methods on low-resource data sets.
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Figure 5: The accuracy of αNLI under low resource settings

5 DETAILED ANALYSIS VIA ABLATION STUDY

To more clearly show the contribution of each module, we have done corresponding comparative
experiments on both information interaction layer and hyperparameter tuning.

5.1 ABLATION STUDY OF THE INFORMATION INTERACTION LAYER

First, we have conducted ablation study experiments on the related BiLSTM to investigate the role
played by the information interaction layer. The hyperparameters of Focal Loss will be fixed to
reduce the impact on BiLSTM. Through the experimental results, it can be found that the addition
of BiLSTM greatly improves the AUC, but does not have a significant impact on ACC. The following
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Figure 6 shows the visualization results on the validation set. In the plot, the abscissa is the score
of hypothesis 1 and the ordinate is the score of hypothesis 2. The red points in the upper left corner
correspond to the subset of correct hypotheses, so do the blue points in the lower right corner. It can
be seen that the introduction of the information interaction layer pushes all points further away from
each other and toward the four corners. It follows that the margin between the positive and negative
samples is larger, implying improved discriminative power.
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Figure 6: Score distribution using and without using the information interaction layer

5.2 PARAMETER COMPARISON

When we select the parameters of Focal Loss, several experiments were carried out on the two
hyperparameters of the balancing factor and the focusing parameter. The focusing parameter γ in
Eq. equation 5 can automatically down-weight the contribution of easy examples during training and
rapidly focus the model on hard examples; while the balancing factor 0 < a < 1 in Eq. equation 4
controls the tradeoff between correct and incorrect hypotheses. Figure 7 below shows the ACC
performance of IMSL model with different focusing parameters and balance factors. In this study,
{1, 2, 3} is used as the option of focusing parameter, and {0.45, 0.5, 0.55} is used as the set of
balancing factor. It can be observed that as the most effective parameter couple is given by γ = 2,
a = 0.55.
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Figure 7: The ACC results of adjusting the balance factor γ and focusing parameter a.

6 SUMMARY

In this paper, an IMSL method is proposed for commonsense abductive reasoning. It includes an
information interaction layer that captures the relationship between different hypotheses, and a joint
loss for our proposed way of grouping the correct/wrong hypotheses. Experimental results show that
on αNLI tasks, IMSL has better performance on ACC and AUC, especially in low-resource settings,
IMSL can significantly improve the accuracy.
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