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Abstract

The optimization dynamics of gradient descent for
overparameterized problems can be viewed as low-
dimensional dual dynamics induced by a mirror
map, providing a mirror descent perspective on
the implicit regularization phenomenon. However,
the dynamics of adaptive gradient descent meth-
ods that are widely used in practice remain less
understood. Meanwhile, empirical evidence of per-
formance gaps suggests fundamental differences in
their underlying dynamics. In this work, we intro-
duce the dual dynamics of smoothed sign descent
with stability constant ε for regression problems,
formulated using the mirror descent framework.
Unlike prior methods, our approach applies to al-
gorithms where update directions deviate from true
gradients such as ADAM. We propose a mirror
map that reveals the equivalent dual dynamics un-
der some assumptions. By studying dual dynamics,
we characterize the convergent solution as approx-
imately minimizing a Bregman divergence style
function closely related to the l3/2 norm. Further-
more, we demonstrate the role of the stability con-
stant ε in shaping the convergent solution. Our
analyses offer new insights into the distinct prop-
erties of the smoothed sign descent algorithm, and
show the potential of applying the mirror descent
framework to study complex dynamics beyond gra-
dient descent.

1 INTRODUCTION

Mirror descent (MD) is an optimization method that extends
gradient descent (GD) beyond Euclidean geometries [Ne-
mirovskij and Yudin, 1983]. Central to the MD framework
is a mirror map that facilitates transformation between a
primal space where iterates exist and a dual space where

updates are performed. By defining an appropriate mirror
map, MD can adapt to the geometry of the problem for effi-
cient optimization. Since its introduction, MD has attracted
considerable research interest in its regularization properties
and has motivated development of efficient optimization
algorithms [Beck and Teboulle, 2003, Radhakrishnan et al.,
2020, Azizan et al., 2021, Gunasekar et al., 2021, Sun et al.,
2022, 2023].

Recent studies reveal the power of adopting an MD per-
spective to interpret the optimization dynamics of GD for
overparameterized problems [Woodworth et al., 2020, Li
et al., 2022]. In an overparameterized setting, the number
of parameters exceeds the number of examples, resulting in
an underdetermined system and infinitely many solutions.
This becomes an important setting for analyzing the be-
havior of optimization algorithms and characterizing the
particular solutions they converge to among all solutions
[Allen-Zhu et al., 2019, Oymak and Soltanolkotabi, 2019].
Given a parameterization of a problem, Woodworth et al.
[2020], Li et al. [2022] formulate mirror maps that establish
equivalence between GD dynamics and low-dimensional
MD dynamics. The simplified dual dynamics lead to a char-
acterization of the convergent solution among all solutions
in terms of the Bregman divergence. Specifically, the conver-
gent GD solution minimizes the Bregman divergence from
the starting point. This method is further used to analyze
the effects of the initialization shape [Azulay et al., 2021]
and stochasticity [Pesme et al., 2021] on the convergent
solution.

Such results have been shown on data where optimal so-
lutions are easy to find, yet the underlying optimization
dynamics are nontrivial. While the underlying dynamics
for gradient descent have been examined, the dual dynam-
ics for other popular gradient based methods remain less
understood. The MD framework provides a powerful and
elegant tool for analyzing high-dimensional optimization
dynamics, however, the existence of such mirror maps is
highly dependent on both the problem parameterization and
the optimization algorithm. Existing analyses do not apply
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to algorithms beyond (stochastic) GD. The challenges arise
from both the formulation of a mirror map and the analysis
of dual dynamics. For example, for adaptive gradient meth-
ods with coordinate-wise adaptive learning rates, the update
directions deviate from the true gradients. The adaptivity al-
ters the underlying dynamics, breaking the low-dimensional
structure seen in GD and rendering existing approaches inap-
plicable. Our work addresses this limitation and proposes a
method to apply the MD framework when update directions
do not follow true gradients.

Among adaptive gradient descent methods, we examine a
prototypical algorithm, smoothed sign descent, which can
be viewed as a smoothed version of sign descent with a
stability constant ε. Recent work shows a deep connec-
tion between smoothed sign descent and popular optimizers
such as ADAM and RMSProp [Kunstner et al., 2023, Ma
et al., 2022, Balles and Hennig, 2018, Bernstein et al., 2018].
While sign descent has been studied as a proxy to understand
the dynamics of more complex adaptive gradient methods
[Ma et al., 2023, Balles et al., 2020], studies [Wang et al.,
2021, 2022] show that the stability constant plays a key
role in determining the convergence direction for classifica-
tion problems. This highlights the importance of studying
smoothed sign descent and investigating the effect of the
stability constant ε, which has been underexplored in lit-
erature. We study the dynamics of smoothed sign descent
for a quadratically parameterized regression problem. Our
results reveal dual dynamics that are distinct from those for
GD, and explicitly characterize the relationship between the
stability constant ε and the convergent solution.

In this work, we present an analysis of MD to interpret the
optimization dynamics of smoothed sign descent. We iden-
tify an initial stage unique to smoothed sign descent, which
allows us to formulate a mirror map for the main stage of
the dynamics. Using the mirror map, we project the complex
primal dynamics onto the dual space with a simplified struc-
ture. We further decompose the dual dynamics into a sign
descent stage and a convergence stage. The dual dynamics
interpretation enables us to connect the convergent solution
to the approximate minimizer of a Bregman divergence style
function closely related to the l3/2-norm. Further analysis
reveals the effect of the stability constant ε on reducing the
deviation from the exact minimizer, corroborating the em-
pirical findings on the sensitivity of the training and testing
performance to the stability constant [De et al., 2018, Liu
et al., 2020, Choi et al., 2019].

Our analysis introduces a three-stage decomposition of the
complex dynamics, where each phase exhibits distinct char-
acteristics. By carefully studying the behavior within each
phase, we establish unique regularization properties of the
convergent solution. However, to make the analysis of the
underlying coupled nonlinear ODE system tractable, we
adopt simplifying assumptions that may limit the direct
applicability of our results to real-world settings.

Our contributions are as follows.

• We introduce the dual dynamics of smoothed sign de-
scent for a quadratically parameterized regression prob-
lem using the MD framework.

• We show that after an initial stage, the dual dynamics
begin a sign descent stage characterized by approx-
imately linear growth with similar rates in all coor-
dinates, and then transition into a convergence stage
characterized by diminishing magnitude of gradients.

• We prove that the convergent solution approximately
satisfies the KKT conditions for minimizing a Breg-
man divergence style function, in contrast to the already
known exact Bregman divergence minimization prop-
erty of GD dynamics. The convergent solution found
by smoothed sign descent is the one that approximately
minimizes the Bregman divergence style function from
the starting point.

• We theoretically analyze the effect of the stability con-
stant ε on bounding the deviation from the exact mini-
mizer, emphasizing the benefit of tuning the stability
constant.

In Section 2, we review previous research on the proper-
ties of MD and smoothed sign descent. In Section 3, we
present our main results, including the formulation of dual
dynamics and the characterization of convergent solutions.
We conclude the paper in Section 4.

2 RELATED WORK

Recent works apply the MD framework to interpret dy-
namics of neural network training. The study [Woodworth
et al., 2020] discovers the equivalent low-dimensional MD
dynamics for the optimization dynamics of GD for overpa-
rameterized models, focusing on the effect of initialization
scale. However, extending their methodology to more gen-
eral cases remains a challenge. Li et al. [2022] identify
a commutative property of neural network parameteriza-
tion that enables the formulation of equivalent MD dynam-
ics. Pesme et al. [2021] use a time-varying mirror map for
stochastic GD and show the benefit of stochasticity for in-
ducing sparsity of the convergent solution. Azulay et al.
[2021] propose a warping technique to study the effect of
the initialization shape on the equivalent MD dynamics of
GD. We contribute to this line of research dealing with strict
gradients by extending the framework beyond GD to a case
where the adaptive learning rate breaks the gradient structure
and showing distinct properties of the dual dynamics.

Research on regularization properties of MD algorithms
dates back to the work [Beck and Teboulle, 2003], which
reveals a local regularization effect in terms of Bregman
divergence at each iteration. Recent study [Gunasekar et al.,
2018] shows that MD converges to the solution that mini-



mizes the associated Bregman divergence from the starting
point among all solutions. Subsequent works [Azizan and
Hassibi, 2019, Azizan et al., 2021] extend this analysis to
stochastic MD for nonlinear models and prove the Bregman
divergence minimization property. Research so far primar-
ily focuses on standard MD settings, where the dynamics
follow the gradient directions in the dual space. In con-
trast, we study the case where the dual dynamics deviate
from the gradients. We show that the convergent solution of
smoothed sign descent satisfies the approximate KKT con-
dition of minimizing a Bregman divergence style function
by bounding the cumulative deviation.

The stability constant ε, designed to ensure numerical stabil-
ity for algorithms such as ADAM and RMSProp, is typically
set to a negligible value by default. Its impact on optimiza-
tion dynamics is underexplored. De et al. [2018] experiment
with different values of ε for ADAM and RMSProp and
observe that training and testing performance is sensitive to
ε. Studies [Nado et al., 2020, Liu et al., 2020, Choi et al.,
2019] also provide empirical evidence supporting the bene-
fit of tuning the stability constant ε. Yuan and Gao [2020]
study the effect of modifying the location of ε in ADAM and
propose an alternative optimizer to improve performance.
We provide a theoretical justification for tuning the stability
constant ε by explicitly showing its role in reducing the
KKT error of the convergent solution. Carmon and Hinder
[2022] introduce an algorithm for stochastic convex opti-
mization, and show the role of ε in the regret bound, while
our work reveals the role of ε in shaping the solution found
by smoothed sign descent.

Our work also contributes an MD perspective to the ongo-
ing discussion on the implicit regularization phenomenon in
neural network training [Neyshabur et al., 2014, Zhang et al.,
2021]. While many studies [Soudry et al., 2018, Arora et al.,
2019, Lyu and Li, 2020] focus on GD, fewer have investi-
gated adaptive gradient methods despite the performance
gap observed in the paper [Wilson et al., 2017]. Notably,
studies [Wang et al., 2021, 2022] find that ADAM achieves
the same convergent direction as GD in classification prob-
lems, while we prove a distinct regularization property for
smoothed sign descent compared to GD in regression prob-
lems. Recent study [Xie and Li, 2024] characterizes the
convergent solution of AdamW as training time approaches
infinity. In contrast, we characterize the entire dynamics of
smoothed sign descent by formulating the equivalent dual
dynamics which reveal an intrinsically simplified structure.
We propose a three-stage decomposition of the dual dynam-
ics that enables an in-depth analysis of the optimization
dynamics. A related but different two-stage transition is ob-
served empirically by [Ma et al., 2022] when optimizing a
squared loss with Adam for fully connected neural networks,
which exhibits an initial phase of fast convergence followed
by oscillations, spikes, or a diverging pattern. While the ini-
tial phase is similar to our sign descent stage with sufficient

update across all coordinates, we reveal a different behavior
in the latter stages of convergence.

3 DUAL DYNAMICS OF SMOOTHED
SIGN DESCENT

3.1 BACKGROUND

Let us consider the update rule of GD for minimizing a loss
function L(β) with step size η > 0:

βt+1 = βt − η∇L(βt). (1)

We suppose that the iterates βt lie in the Euclidean space
RD. Formally, the gradients ∇L(βt) lie in the dual space
RD. In GD, we obtain the updated point by directly taking
a linear combination of the iterate and the gradient as in
(1). MD, however, formally distinguishes the primal and
the dual spaces using a mirror map to transform between
them. A mirror map ∇Φ : RD → RD is defined as the
gradient of a potential function Φ : RD → R, which is a
differentiable and strictly convex function. The mirror map
∇Φ maps the primal variable β to the dual variable denoted
by ϕ ∈ RD. Each iteration of MD for minimizing L(β)
follows the following steps, where the step size η > 0:

ϕt = ∇Φ(βt) (2)
ϕt+1 = ϕt − η∇L(βt) (3)

βt+1 = (∇Φ)−1(ϕt+1). (4)

By plugging in (2), we can rewrite the MD update (3) in the
dual space as:

∇Φ(βt+1) = ∇Φ(βt)− η∇L(βt). (5)

In the continuous-time limit when η → 0, we get the dual
dynamics of β(t):

d∇Φ(β(t))

dt
= −∇L(β(t)). (6)

A key element of MD is the Bregman divergence that serves
as the notion of measuring the distance between two points
in the primal space.

Definition 3.1 (Bregman divergence). For β1,β2 ∈ RD,
the Bregman divergence associated with a potential function
Φ from β1 to β2 is defined as

DΦ(β1,β2) = Φ(β1)−Φ(β2)−⟨β1−β2,∇Φ(β2)⟩. (7)

Bregman divergence generalizes squared Euclidean dis-
tance and captures different geometric structure of the space
through the choice of Φ. When Φ(β) = 1

2∥β∥
2
2, the associ-

ated Bregman divergence reduces to the squared Euclidean
distance, the mirror map ∇Φ becomes an identity map, and
MD simplifies to GD.



3.2 PROBLEM SETUP

We suppose that there are N examples with D > N features
{(x(i), y(i))}i=1,...,N , where x(i) ∈ RD, y(i) ∈ R. Let us
denote the data matrix by X ∈ RN×D, where each row is
x(i), and denote the labels of the examples by y ∈ RN . The
Hadamard product is denoted by ⊙. We consider a regres-
sion problem of minimizing the following loss function with

respect to w :=

[
w+

w−

]
∈ R2D, where w+,w− ∈ RD:

L(w) =
1

4

(
X
(
w+ ⊙w+ −w− ⊙w−)− y

)⊤(
X
(
w+ ⊙w+ −w− ⊙w−)− y

)
. (8)

We let β := w+ ⊙w+ −w− ⊙w− ∈ RD denote the re-
gression parameter, and L(β) = 1

4 (Xβ − y)
⊤
(Xβ − y)

is the standard quadratic loss. This parameterization of β
by w can also be viewed as a 2-layer diagonal linear neu-
ral network with weights w ∈ R2D (see Section 4 of the
paper [Woodworth et al., 2020] for a detailed study of the
model). Despite its simplicity, this setup has been used to
prove numerous insightful results for neural networks train-
ing [Woodworth et al., 2020, Pesme et al., 2021, Nacson
et al., 2022, Vivien et al., 2022].

When GD is applied to minimize loss (8) with respect to w,
from the GD update rule with infinitesimal step size η we
get

dw+(t)

dt
= −∇w+L(w(t)), (9)

dw−(t)

dt
= −∇w−L(w(t)). (10)

Using the chain rule, we get the optimization dynamics of
β(t):

dβ(t)

dt
=− 2w+(t)⊙∇w+L(w(t))

+ 2w−(t)⊙∇w−L(w(t)). (11)

Previous work [Woodworth et al., 2020] shows that by defin-
ing a potential function:

Ψα(β) :=
1

4

(
D∑
i=1

βi arcsinh

(
βi

2α2

)
−
√
β2
i + 4α4

)
,

(12)
where α > 0 is the initialization scale, we can project
the dynamics (11) onto the dual space using the mirror
map ∇Ψα. Here the gradient is taken with respect to β. By
derivation in Appendix C, it follows that the dual dynamics
are given by:

d∇Ψα(β(t))

dt
= −∇βL(β(t)). (13)

Since (11) and (13) are equivalent, in the continuous-time
limit, the evolution of β(t) using GD can be interpreted as
following the MD algorithm (2)-(4) with mirror map ∇Ψα.

The dual dynamics (13) reveal an intrinsically low-
dimensional structure of the dynamics of β(t) in the over-
parameterized setting where N < D. Specifically, the gra-
dients ∇βL(β) in the right-hand side of (13) are confined
in a subspace span{x(1), ...,x(N)}, which has dimension
of at most N . Furthermore, by analyzing the dual dynam-
ics, previous work [Woodworth et al., 2020] proves that the
convergent solution β∞ := limt→∞ β(t) satisfies the KKT
conditions of the constrained optimization problem:

β∞ = argmin
β∈RD s.t. Xβ=y

DΨα
(β,β(0)). (14)

In this work, we study the dynamics of smoothed sign de-
scent for minimizing (8). For smoothed sign descent, the
weights are updated according to

wt+1 = wt − η · ∇wL(wt)

|∇wL(wt)|+ ε1
, (15)

where ε > 0 is the stability constant and the operations are
taken element-wise. Smoothed sign descent can be viewed
as an adaptive gradient method with coordinate-wise adap-
tive learning rate ηi,t = η

|[∇wL(wt)]i|+ε for each i. The
magnitude of the gradient can differ vastly across all coor-
dinates, and thus, the update in each coordinate is scaled
differently. As a result, the update direction no longer fol-
lows the opposite of the true gradient, unlike normalized
gradient descent, which preserves the direction by applying
a uniform normalization scale to all coordinates.

We suppose that the weights are initialized by w(0) = α1,
α > 0. In the continuous-time limit, the dynamics of the
weights become

dw(t)

dt
= − ∇wL(w(t))

|∇wL(w(t))|+ ε1
. (16)

This yields the dynamics of the regression parameter β(t)
as follows, with β(0) = 0:

dβ(t)

dt
=− 2w+(t)⊙ ∇w+L(w(t))

|∇w+L(w(t))|+ ε1

+ 2w−(t)⊙ ∇w−L(w(t))

|∇w−L(w(t))|+ ε1
. (17)

With coordinate-wise adaptive learning rate, the update di-
rection deviates from the true gradients and the mirror map
∇Ψα for GD no longer holds. It leads to two interesting
questions:

1. Can we formulate a mirror map to show equivalent
dual dynamics for (17)?

2. Can we use the dual dynamics to characterize the con-
vergent solution among all solutions?



3.3 MAIN RESULTS

In this section, we present our answers to the two ques-
tions. Our results consist of three parts. In Propositions 3.6
and 3.7, we construct a mirror map and formulate the dual
dynamics for smoothed sign descent. In Theorem 3.9 and
Corollary 3.11, we prove a characterization of the conver-
gent solution. In Corollaries 3.10 and 3.12, we further reveal
the role of the stability constant in the convergent solution.

The weight dynamics (16) form a coupled system of nonlin-
ear ODEs, with the stability constant ε adding another layer
of complexity. By the Picard-Lindelof theorem, there exists
a unique solution to (16). Solving this ODE system ana-
lytically is intractable. We make the following assumption
to decouple the nonlinear ODE system into N autonomous
systems. This decomposition allows us to analyze the inter-
actions among an arbitrary number of dimensions within
each system.

Assumption 3.2. We assume that y(n) are non-zero, and
that there exists a permutation of the columns of X such
that X⊤X is block-diagonal with N rank-1 blocks denoted
by B(n) ∈ RDn×Dn for n = 1, . . . , N .

It is easy to see that this condition is equivalent to requir-
ing that each row of X has Dn ≥ 1 non-zero elements
denoted by x

(n)
1 , . . . , x

(n)
Dn

, where
∑N

n=1 Dn = D. While
this assumption yields an easy optimization problem in the
primal space, the dynamics of smoothed sign descent are
very complex and intriguing.

We require the stability constant ε to be small relative
to components of the initial gradient so that it does not
overshadow the essential behavior of the dynamics as a
smoothed version of sign descent. We notice that w = 0
is a stationary point of the weight dynamics (16). Since the
weights are initialized as w(0) = α1 where α > 0, we
assume that α is chosen not so small to avoid being stuck
near a stationary point. Moreover, we also avoid choosing
a large initial value α that would dominate the value of the
weights and overshadow the convergent behavior.

Assumption 3.3. We assume that for each n ∈ {1, . . . , N}
and i ∈ {1, . . . , Dn}, the stability constant ε and the ini-
tialization scale α satisfy:

0 ≤ ε ≤ 1

9

|x(n)
i ||y(n)| 32√

2
∑Dn

k=1 |x
(n)
k |

, (18)

9ε

4
∣∣∣x(n)

i y(n)
∣∣∣ ≤ α ≤ 1

3

√
|y(n)|

2
∑Dn

k=1 |x
(n)
k |

. (19)

3.3.1 Three Stages

We begin by studying the sign and monotonicity of w+(t)
and w−(t) by the following lemma assuming they satisfy

(16). Proofs of the results in this section can be found in
Appendix A.

Proposition 3.4. For each coordinate i ∈ {1, . . . , D},

• w+
i (t) and w−

i (t) are always non-negative,

• if w+
i (0)

′ > 0, then w+
i (t)

′ ≥ 0 and w−
i (t)

′ ≤ 0 for
all t,

• if w+
i (0)

′ ≤ 0, then w+
i (t)

′ ≤ 0 and w−
i (t)

′ ≥ 0 for
all t.

For each i, based on this proposition, either w+
i (t) or w−

i (t)
is monotonically non-decreasing. We denote the dominating
weight that is monotonically non-decreasing by ui, and we
denote the one that is non-increasing by vi, i.e.,

ui(t) :=

{
w+

i (t) if w+
i (0)

′ > 0,

w−
i (t) else,

vi(t) :=

{
w−

i (t) if w+
i (0)

′ > 0,

w+
i (t) else.

A key identity in the derivation of the mirror map for
GD is that w+

i (t)w
−
i (t) = α2 holds throughout the dy-

namics. However, this quantity is not conserved when
coordinate-wise adaptivity is applied. In fact, we can show
that w+

i (t)w
−
i (t) < α2 for t > 0. The adaptive learning

rate ensures similar rate of change across all coordinates,
and enables sufficient updates even when the gradient mag-
nitude is relatively small. In particular, this allows the non-
dominating weight vi(t) to diminish to negligible values
early on. Based on this observation, we identify an initial
stage of the dynamics where vi(t) decreases to and remains
below a value on the order ε across all coordinates. The
following lemma also shows that this initial stage lasts no
longer than t = 2α.

Proposition 3.5. There exists T0 ∈ (0, 2α] such that for all
t ≥ T0, vi(t) ≤ 2ε

|x(n)
i y(n)|

for all i.

The proof hinges on bounding the value of vi(t) from
above when the gradient component [∇vL(w(t))]i reaches
ε at t = ti. Before ti, the absolute value of the deriva-
tive |v′i(t)| is always greater than 1

2 , ensuring rapid de-
creasing of vi(t). Meanwhile, the non-negativity of vi(t)
by Proposition 3.4 guarantees that the rapid decreasing
stage lasts no longer than 2α. Based on the expression
[∇vL(w(t))]i = vi(t)|x(n)

i r(n)(t)|, we continue to bound
the residual |r(n)(t)| from below using the maximal growth
of ui(t) during this short time period. Finally, the lower
bound of |r(n)(ti)| leads to the upper bound of vi(ti) at ti.
We complete the proof by letting T0 be the largest ti across
all coordinate i.

During the initial stage, both u(t) and v(t) follow sign
descent approximately, which allows us to approximate the



primal dynamics of β(t) by sign descent. After T0, the
dynamics of β(t) transition into the main stage, where v(t)
remains small and the magnitude of β(t) is denominated
by u(t). While the primal dynamics become complex, we
formulate a mirror map so that the dual dynamics have
a simplified structure that closely aligns with the sign of
∇uL(w(t)).

Proposition 3.6 (Dual dynamics of smoothed sign de-
scent). For t > 0, we define a potential function Φt(β) =
2
3

∑D
i=1

(
|βi|+ v2i,t

) 3
2 . The induced mirror map ∇Φt :

RD → RD maps β(t) to the dual space. The dynamics
in the dual space follow

d∇Φt(β(t))

dt
= − sgn(β(t))⊙ ∇uL(w(t))

|∇uL(w(t))|+ ε1
. (20)

The potential function is time-varying with a time-dependent
parameter vi,t := vi(t). Pesme et al. [2021] also employ a
time-varying potential function to construct a mirror map
for the dynamics of stochastic GD. Radhakrishnan et al.
[2020] conduct a thorough analysis of the convergence of
MD with time-dependent mirrors. For t ≥ T0, since the
non-dominating weights vi(t) diminish to small values by
Proposition 3.5, the potential function has a close connection
with the l3/2-norm of β(t), in contrast with the potential
function (12) for GD.

The dual dynamics (20) indeed reveal a greatly simplified
structure compared to the primal dynamics (17). The right-
hand side of the original dynamics (17) evolves in a complex
way in the D-dimensional space as the weights are updated,
while the right-hand side of the dual dynamics (20) reduces
to two components, a sign vector and a vector approximat-
ing the sign of the gradient. The simplified structure enables
us to understand the complex dynamics (17) by studying
the evolution of the two sign vectors. However, the formu-
lation of the dual dynamics (20) differs from standard MD
dynamics (6) where the updates in the dual space align with
the gradients exactly. The alignment has allowed previous
work to show that the convergent solution satisfies the KKT
conditions for Bregman divergence minimization as in (14).
Therefore, further analysis of the dual dynamic (20) is re-
quired to understand the deviation from following the true
gradients.

Proposition 3.7. There exists T > T0 such that we can
divide the dynamics into two stages:

• Sign descent stage: for t ∈ [T0, T ), |∇uL(w(t))|i > ε
for all i,

• Convergence stage: for t ∈ [T,∞),
mini |∇uL(w(t))|i ≤ ε.

At the beginning, the dual dynamics resemble sign descent
when gradient components are relatively large compared to

ε. The stability constant comes into effect when |∇uL(w)|i
becomes small. In Proposition 3.7, we prove the transition
between the two stages by studying the evolution of the
magnitude of each gradient component. Importantly, Propo-
sition 3.7 shows that once a gradient value reaches ε, it
remains small for the duration of the dynamics. The dy-
namics then enter a convergence stage with diminishing
magnitude of gradients. Eventually, the dynamics approxi-
mate the direction of ∇uL(w) as all gradient components
approach zero (see Lemma A.3 in Appendix A).

We illustrate the transition of the three stages in Figure 1.
We randomly generate a dataset with N = 2 and D = 5
that satisfies Assumption 3.2 and set α = 0.1. We sim-
ulate the dynamics (16) using the ODE solver in SciPy
and visualize the evolution of primal and dual variables.
In the experiments, T0 is calculated as the value when
maxi |∇vL(w(t))|i first becomes ε, while T is calculated
as the value when mini |∇uL(w(t))|i first becomes ε.
Based on smoothed sign descent (see (20)) and Proposi-
tion 3.7, we expect the change to be linear in [T0, T ], and
incoherent behavior in [T,∞). In the initial stage when
t < T0, we observe that the primal variable has linear
change across all coordinates. During the sign descent stage
when T0 ≤ t < T , the dual variable continues growing
linearly with approximately uniform rate in all coordinates,
while β(t) no longer changes linearly. After T , the dynam-
ics enter the convergence stage, where the primal and dual
variables gradually approach the convergent point. We also
observe that the value of ε plays a key role in shaping the
dynamics. For smaller ε, the dual variable follows the sign
descent more closely and converges to values concentrated
around two distinct points across all coordinates; while for
larger ε, the dual variable shows greater dispersion across all
coordinates. We quantify the relationship between the value
of ε and the convergent solution in the following analysis.

3.3.2 Characterization of Convergent Solution by
Bregman Divergence

The convergent solution of smoothed descent dynamics
deviates from the exact KKT point of Bregman divergence
minimization. However, we show that it satisfies the δ-KKT
conditions for a Bregman divergence style function. In this
section, we build on the results about stage transitions and
conduct an in-depth analysis to quantify and bound the
error δ. To emphasize the role of ε in bounding the error,
we impose an additional assumption on the block-diagonal
structure from Assumption 3.2.

Assumption 3.8. We assume that each block B(n) of the
block-diagonal matrix X⊤X has size Dn = 2.

The 2D block structure enables us to derive an explicit
dependence of the bounds for δ on the stability constant ε,
while keeping the overparameterization setting for smoothed



(a) ε = 0.002 (b) ε = 0.01

Figure 1: Evolution of primal variable β(t) and dual variable ∇Φt(β(t)) in R5 of smoothed sign descent with different
values of stability constant ε. The vertical line t = T0 marks the transition from initial stage to the sign descent stage, and
the line t = T marks the transition to the convergence stage.

sign descent. By the spectral theorem, we can write X⊤X =
QΛQ⊤ for an orthogonal matrix Q and a diagonal matrix
Λ. The matrix Q is block-diagonal, where each block is
expressed as a 2D rotation matrix parameterized by θn. We
have

B(n) =

[
cos θn − sin θn
sin θn cos θn

] [
λn 0
0 0

] [
cos θn sin θn
− sin θn cos θn

]
,

(21)

where λn > 0 and cos θn, sin θn are non-zero by As-
sumption 3.2. Without loss of generality, we assume that
| cos θn| ≥ | sin θn|, which can be achieved by order-
ing the columns of X . We first present the result for
N = 1 to illustrate the key findings and then general-
ize the results to N > 1. To this end, we show in Ap-
pendix A that there exists v∞ = limt→∞ v(t) and we let

Φ∞(β) = 2
3

∑D
i=1

(
|βi|+ (v∞i )2

) 3
2 . By Proposition 3.5,

we have v∞i = O(ε) and Φ∞(β) = 2
3

∑D
i=1 |βi|

3
2 +O(ε2),

i.e., approximately the 3
2 -th power of the l3/2 norm.

We define a Bregman divergence style function E associated
with the potential function Φ for smoothed sign descent by

E(β, β̄) := Φ∞(β)− Φ0(β̄) + ⟨∇Φ0(β̄), β̄ − β⟩. (22)

We let β0 := β(0) = 0 denote the starting point. Let us
consider the constrained optimization problem:

min
β∈RD s.t. Xβ=y

E(β,β0). (23)

For δ ≥ 0, a solution β∗ satisfies the δ-KKT conditions
for (23) if Xβ∗ = y and there exists a scalar ν such that
∥∇βE(β∗)− ν∇β(Xβ∗)∥ ≤ δ.

Theorem 3.9. As t → ∞, the regression parameter
converges to an interpolating solution. We let β∞ :=
limt→∞ β(t), which exists by Lemma A.3 in Appendix A.

We show that β∞ satisfies the δ-KKT conditions for (23)
with the error δ(ε) bounded by max {|M+|, |M−|}, where

M+ = (| cos θ1| − | sin θ1|)λ
− 1

4
1 |y(1)| 12 +O(ε),

M− = (| cos θ1| − | sin θ1|)
(
(2λ1)

− 1
4 |y(1)| 12 − α

)
+O(

√
ε).

We present the main idea of the proof here and provide
the full proof in Appendix B. The exact expressions for
M+, M− can be found in the full proof. First, we observe
the connection between the gradient of E and the integral
of the dual dynamics (20) with respect to t. The dual dy-
namics structure enables us to calculate the deviation δ
from satisfying the stationary condition using the domi-
nating weights u∞. Next, using an orthogonal projection,
we reduce the problem to bounding the absolute value of
∆ := | cos θ1| (u∞

2 − u2(0)) − | sin θ1| (u∞
1 − u1(0)). To

bound ∆, we leverage the ratios between u′
1(t) and u′

2(t) in
different stages of the dual dynamics, and focus on bound-
ing the key quantity u2(T ) at the transition between the
two stages. During the sign descent stage, the leading terms
of u′

1(t) and u′
2(t) are both 1 in the Taylor expansion at

ε = 0, which guarantees a lower bound for u2(T ). Being in
the convergence stage, u1(t) dominates the growth, which
allows us to derive an upper bound for u∞

2 . Finally, a lower
bound for u∞

2 leads to ∆ ≥ M−, while an upper bound
leads to ∆ ≤ M+.

The derivation relies on the key quantity of u2(T ) at the
stage transition when the smallest gradient component
reaches ε. The value of ε is crucial in determining the stage
transition and it eventually affects the convergent solution.
We further reveal the relationship between ε and the upper
bound of δ in the following corollary. We provide the proof
in Appendix B.

Corollary 3.10. We let Iε be the range of ε implied by



Assumption 3.3. There exists a non-degenerate interval I ′ ⊆
Iε such that for all ε ∈ I ′,

δ(ε) ≤ M̄ − (| cos θ1| − | sin θ1|)
√
2ε

4λ
1
2
1 |y(1)|

, (24)

where M̄ := (| cos θ1| − | sin θ1|)λ
− 1

4
1 |y(1)| 12 is a quantity

independent of ε.

The result highlights the role of ε in bounding the KKT error.
Given a fixed dataset, while setting ε = 0 ensures a larger
rate of change when the gradient magnitude becomes very
small, the error is larger than that for smoothed sign descent
with non-zero ε. Moreover, choosing a larger ε within a
certain interval effectively shrinks the upper bound on the
KKT error δ. It suggests that by using a proper value of ε, the
dynamics can converge to a solution closer to the point with
the E minimization property. Therefore, our result provides
a theoretical ground for the benefit of tuning ε versus using
a small default value for adaptive gradient methods.

Approximate KKT points are formally studied in [Andreani
et al., 2011], which shows that when the KKT conditions
are satisfied approximately, the point is close to solving
the optimization problem. This concept is commonly used
in practice such as in numerically solving an optimization
problem. The iterative process is terminated after finding
a solution satisfying approximate KKT conditions under
a given tolerance of error δ, which can be justified by the
approximate optimality of these points. Therefore, by show-
ing a bound for the δ error, we establish the approximate
optimality of the convergent solution.

To visualize the convergent solutions for different values of
ε, we plot the trajectory of β(t) using randomly generated
data with N = 1 and D = 2 in Figure 2. We note that as
ε becomes larger, the convergent solution is closer to the
solution with the minimal value of E to the initial point
among all solutions. We also compute the value of E to the
initial point for convergent solutions using different ε and
plot the trend in Figure 3. The plot confirms that for larger ε,
the convergent solutions have smaller values of E(β∞,β0).

Extension to N > 1. We generalize the results to the case
when N > 1 in the following corollaries. The proofs can
be found in Appendix B. We show that the convergent so-
lution satisfies approximate KKT conditions of minimizing
E(β,β0) among all solutions. Within a certain interval, a
larger value of ε leads to a greater reduction of the KKT
error. The implications for tuning the stability constant ε
still hold.

Corollary 3.11. For N > 1, let us suppose Assumption 3.8
is satisfied. As t → ∞, the regression parameter con-
verges to an interpolating solution β∞ that satisfies the
δ̄-KKT conditions for (23) with the error δ̄(ε) bounded by

Figure 2: Trajectories of β(t) in R2 for different values of
stability constant ε.

Figure 3: Bregman divergence style function value
E(β∞,β0) of convergent solutions with different values of
stability constant ε.

∑N
n=1 max

{∣∣∣M (n)
+

∣∣∣, ∣∣∣M (n)
−

∣∣∣}, where

M
(n)
+ = (| cos θn| − | sin θn|)λ

− 1
4

n |y(n)| 12 +O(ε),

M
(n)
− = (| cos θn| − | sin θn|)

(
(2λn)

− 1
4 |y(n)| 12 − α

)
+O(

√
ε).

Corollary 3.12. There exists a non-degenerate interval
J ⊆ Iε such that for all ε ∈ J ,

δ̄(ε) ≤
N∑

n=1

(| cos θn| − | sin θn|)
(
λ
− 1

4
n |y(n)| 12

)
− (25)(

N∑
n=1

(| cos θn| − | sin θn|)
√
2

4λ
1
2
n |y(n)|

)
ε. (26)

In overparameterized regression problems, the dimension
D is larger than the number of examples N , leading to
infinitely many solutions. Our results establish that the so-
lution found by smoothed sign descent approximately min-
imizes a measure of distance to the initial point related to
the l3/2-norm for quadratic parameterized models, and the
error only scales with N .



Extension to Higher Order Models. Our analysis is gen-
eralizable to parameterizations with higher order H ≥ 2
in weights, given by β = uH − vH . Here sH denotes
applying Hadamard product H times on vector s. This
parameterization can be interpreted as a diagonal linear
neural network of depth H , as explained in [Woodworth
et al., 2020]. The mirror map is induced by a potential
function closely related to l2− 1

H
-norm of β, given by

ΦH
t (β) :=

∑D
i=1

(
|βi|+ vHi,t

)2− 1
H , where vi,t = O(ε).

When the depth H → ∞, the potential function approx-
imates the squared l2-norm.

4 CONCLUSION

In this work, we propose an MD perspective of the dynamics
of smoothed sign descent for overparameterized regression
problems. We extend existing results beyond GD to a case
where update directions deviate from true gradients due to
adaptivity, and formulate the equivalent dual dynamics with
a simplified structure. We also study the role of the stabil-
ity constant ε in bounding the deviation of the convergent
solution from minimizing a Bregman divergence style func-
tion. The finding supports the benefit of tuning the stability
constant ε. Future work may extend our analysis to widely
used methods such as Adam, RMSProp, and AdaGrad. With
additional approximations used for adapting the learning
rates, further investigation is needed to understand the tran-
sition among the three stages and to analyze the impact of
the stability constant on the convergent solution.
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A PROOF OF RESULTS IN SECTION 3.3.1

Notation. Assumption 3.2 guarantees that the non-zero entries in X are non-overlapping across rows. Therefore, we can
partition the index set I = {1, . . . , D} into N disjoint subsets I(1), . . . , I(N) such that

I =

N⋃
n=1

I(n), I(n) :=
{
i ∈ [D] : x

(n)
i ̸= 0

}
. (27)

We define w+(n),w−(n),β(n) ∈ RDn as the subvectors of w+, w− and β corresponding to the indices in I(n), respectively.
Similarly, we define g+(n), g−(n) as subvectors of gradients ∇w+L(w),∇w−L(w) corresponding to the indices in I(n).
We let w(n) :=

[
w+(n), w−(n)

]
∈ R2Dn and g(n) :=

[
g+(n), g−(n)

]
∈ R2Dn . The weight dynamics (16) can be

decomposed into N autonomous ODE systems:

dw(n)(t)

dt
= F (n)

(
w(n)(t)

)
:= − g(n)(t)

g(n)(t) + ε1
, (28)

where w(n)(0) = α1 for each n. The residual for each n is defined by r(n)(t) := y(n) −
∑Dn

i=1 x
(n)
i β

(n)
i (t). In this section,

we prove the results for an arbitrary n. We omit the superscripts (n) when possible to simplify the notation.

A.1 PROOF OF PROPOSITION 3.4

Proof. For all i = 1, . . . , Dn, it is easy to see that g+i (t) = −w+
i (t) · xi · r(t), g−i (t) = w−

i (t) · xi · r(t). The dynamics

follow w+
i (t)

′ = − g+
i (t)

|g+
i (t)|+ε

, w−
i (t)

′ = − g−
i (t)

|g−
i (t)|+ε

.

First, we show that for all i, w+
i (t), w

−
i (t) ≥ 0 always hold. Suppose for contradiction that w+

i (t
′) < 0 for some t′. Since

w+
i (0) = w−

i (0) = α > 0, by continuity of w+
i (t), there exists t0 ∈ (0, t′) such that w+

i (t0) = 0 and w+
i (t0)

′ < 0.
However, w+

i (t0) = 0 implies g+i (t0) = 0 and w+
i (t0)

′ = 0. Therefore, w+
i (t) never changes sign and is always non-

negative. Similarly, we can show that w−
i (t) is always non-negative.

Next, we show that for each i, if w+
i (0)

′ > 0, then w+
i (t)

′ ≥ 0, w−
i (t) ≤ 0. Relation w+

i (0)
′ = αxiy > 0 implies that

xiy > 0. Therefore, xir(0) = xiy > 0. Let us suppose for contradiction that there exists t′ > 0 such that xir(t
′) < 0.

By continuity of xir(t), there exists t0 ∈ (0, t′) such that xir(t0) = 0. Since xi ̸= 0 by assumption, we must have
r(t0) = 0. In turn, xjr(t0) = 0 and g+j (t0) = g−j (t0) = 0 for all j = 1, . . . , Dn. As a result, F (n)

(
w(n)(t0)

)
= 0 and

w(n)(t0) is an equilibrium of the autonomous ODE system (28). It follows that for all t ≥ t0, w+(n)(t) = w+(n)(t0) and
w−(n)(t) = w−(n)(t0). Therefore, we get xir(t) = xir(t0) = 0 for all t ≥ t0. However, this contradicts that xir(t

′) < 0
and t′ > t0. Thus, we must have xir(t) ≥ 0 for all t ≥ 0. Since w+

i (t), w
−
i (t) ≥ 0, it follows that g+i (t) ≤ 0 and g−i (t) ≥ 0

for all t. We conclude w+
i (t)

′ ≥ 0 and w−
i (t)

′ ≤ 0 for all t.
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If w+
i (0)

′ = αxiy ≤ 0, since xi and y are non-zero by assumption, we must have xiy < 0. Using similar arguments, it
follows that w+

i (t)
′ ≤ 0 and w−

i (t)
′ ≥ 0 for all t.

Lemma A.1. Residual r(t) never changes sign and its absolute value is always non-increasing.

Proof. We have r(0) = y ̸= 0 by assumption. When r(0) > 0, suppose for contradiction that there exists t′ > 0 such
that r(t′) < 0. By continuity, we must have r(t0) = 0 for some t0 ∈ (0, t′). It follows that g+i (t0) = g−i (t0) = 0 for all
i = 1, . . . , Dn. In turn, w+

i (t0)
′ = w−

i (t0)
′ = 0 for all i and w(n)(t0) is an equilibrium of the autonomous ODE system

(28). Therefore, w+
i (t) = w+

i (t0) and w−
i (t) = w−

i (t0) for all t ≥ t0. We conclude r(t) = r(t0) = 0 for all t ≥ t0. This
contradicts that r(t′) < 0 for t′ > t0. As a result, r(t) ≥ 0 for all t. Similarly, when r(t) < 0, it follows that r(t) ≤ 0 for all
t.

Next, we compute the derivative of r(t) with respect to t as

r′(t) = −2

Dn∑
i=1

xi

(
w+

i (t) · w
+
i (t)

′ − w−
i (t) · w

−
i (t)

′)
= −2

Dn∑
i=1

xi

(
w+

i (t) ·
w+

i (t)xir(t)

|w+
i (t)xir(t)|+ ε

− w−
i (t) ·

−w−
i (t)xir(t)

|w−
i (t)xir(t)|+ ε

)

= −2

Dn∑
i=1

x2
i

(
(w+

i (t))
2

|w+
i (t)xir(t)|+ ε

+
(w−

i (t))
2

|w−
i (t)xir(t)|+ ε

)
r(t).

Notice that x2
i

(
(w+

i (t))2

|w+
i (t)xir(t)|+ε

+
(w−

i (t))2

|w−
i (t)xir(t)|+ε

)
≥ 0. When r(0) > 0, we have shown that r(t) ≥ 0 for all t. It follows

that r′(t) ≤ 0 for all t. Similarly, when r(0) < 0, we have r(t) ≤ 0 and r′(t) ≥ 0 for all t. Hence, the magnitude of the
residual r(t) is always non-increasing.

Following the notation in Section 3.3.1, we let ui denote the dominating weight, and let vi represent the non-dominating
weight. We repeat the definition here for clarity.

ui(t) :=

{
w+

i (t) if w+
i (0)

′ > 0,

w−
i (t) else

vi(t) :=

{
w−

i (t) if w+
i (0)

′ > 0,

w+
i (t) else

If xiy > 0, then βi = u2
i − v2i ; if xiy < 0, then βi = −u2

i + v2i . Therefore, for all i,

βi(t) = sgn(xiy)
(
u2
i (t)− v2i (t)

)
. (29)

We let fi(t) := [∇uL(w(t))]i, hi(t) := [∇vL(w(t))]i denote the i-th component of the gradient with respect to u and v,
respectively, which varies across all coordinates. By calculating the gradient, we derive the expressions

fi(t) := −ui(t)|xir(t)|, hi(t) := vi(t)|xir(t)|.

In turn, we have

u′
i(t) = − fi(t)

|fi(t)|+ ε
=

ui(t)|xir(t)|
ui(t)|xir(t)|+ ε

,

v′i(t) = − hi(t)

|hi(t)|+ ε
= − vi(t)|xir(t)|

vi(t)|xir(t)|+ ε
.



The residual can be written as

r(t) = y −
Dn∑
k=1

xkβi(t) (30)

= y −
Dn∑
k=1

sgn(y) sgn(xk) · xk

(
u2
k(t)− v2k(t)

)
(31)

= sgn(y)

(
|y| −

Dn∑
k=1

|xk|
(
u2
k(t)− v2k(t)

))
. (32)

By Lemma A.1, r(t) never changes sign. Since r(0) = sgn(y)|y|, then for all t,

|r(t)| = |y| −
Dn∑
k=1

|xk|
(
u2
k(t)− v2k(t)

)
. (33)

A.2 PROOF OF PROPOSITION 3.5

Proof. First, we show the existence of ti > 0 such that hi(ti) = ε for each i. By Assumption 3.3, hi(0) = α|xiy| ≥ 2ε. Let
us suppose for contradiction that hi(t) > ε for all t. Then v′i(t) < − ε

ε+ε = − 1
2 for all t, and for t > 2α, vi(t) < α− 1

2 t < 0.
However, by Proposition 3.4, vi(t) is always non-negative. It yields hi(t

′
i) < ε for some t′i. Since hi(0) ≥ 2ε, by continuity

of hi(t), there exists ti such that hi(ti) = ε. It follows that ti ≤ 2α. Because h2(t) ≥ ε for t ≤ ti, v′2(t) ≤ − 1
2 . If ti > 2α,

then v2(ti) < α− 1
2 ti < 0, which is a contradiction. We conclude ti ∈ (0, 2α].

Next, we show that |r(ti)| is lower bounded. Using (33), we get

|r(t)| = |y| −
Dn∑
i=1

|xi|
(
u2
i (t)− v2i (t)

)
≥ |y| −

Dn∑
i=1

|xi|u2
i (t).

For all i, u′
i(t) ≤ 1 always holds. It follows that ui(t) ≤ α+ t for all t. Since |r(t)| is non-increasing by Lemma A.1, and

using ti ≤ 2α, it follows that

|r(ti)| ≥ |r(2α)| ≥ |y| −
Dn∑
i=1

|xi| (α+ 2α)
2
= |y| − 9α2

Dn∑
i=1

|xi|.

By Assumption 3.3, 9α2 ≤ |y|
2
∑Dn

i=1 |xi|
, and thus

|r(ti)| ≥ |r(2α)| ≥ |y| − |y|
2

=
|y|
2
. (34)

Since hi(ti) = vi(ti)|xir(ti)| = ε, we get vi(ti) ≤ 2ε
|xiy| . Function vi(t) is non-increasing by Proposition 3.4, so for all

t ≥ ti we have vi(t) ≤ 2ε
|xiy| . The argument holds for all i = 1, . . . , Dn and for all n. We complete the proof by letting

T0 := max{ti}.

A.3 PROOF OF PROPOSITION 3.6

Proof. Let us define the potential function by Φt(β(t)) := 2
3

∑D
i=1

(
|βi(t)|+ v2i,t

) 3
2 for all t, where vi.t := vi(t) is a

parameter for the time-varying potential. We get the dual variable using the mirror map

∇Φt(β(t)) = sgn(β(t))⊙
(
|β(t)|+ v2

t

) 1
2 ,



where operations are taken element-wise. The Hessian ∇2Φt(β(t)) is a diagonal matrix with diagonal elements
sgn(βi(t))

2(|βi(t)|+v2
i,t)

1
2

. Using the chain rule, we compute the dual dynamics

d∇Φt(β(t))

dt
=⟨∇2Φt(β(t)),

dβ(t)

dt
⟩+ ⟨∇v∇Φt(β(t)),

dv(t)

dt
⟩

=sgn(β(t))⊙
(
|β(t)|+ v2

t

)− 1
2 ⊙

(
u(t)⊙ du(t)

dt
− v(t)⊙ dv(t)

dt

)
+ sgn(β(t))⊙

(
|β(t)|+ v2

t

)− 1
2 ⊙ v(t)⊙ dv(t)

dt

=sgn(β(t))⊙ du(t)

dt

=− sgn(β(t))⊙ ∇uL(w(t))

|∇uL(w(t))|+ ε1
.

Lemma A.2. For all i, j ∈ {1, . . . , Dn}, |xi| ≥ |xj | implies ui(t) ≥ uj(t) for all t ≥ 0.

Proof. If |xi| = |xj |, since ui(0) = uj(0) = α, then u′
i(t) = u′

j(t) and ui(t) = uj(t). Suppose |xi| > |xj |. Let
ū(t) := ui(t)− uj(t). Then we have ū(0) = α− α = 0.

First, we show that there exists a small neighborhood B such that ū(t) > 0 for t ∈ B. Because ui(t), uj(t) are differentiable
everywhere, ū(t) is differentiable for all t ≥ 0. Inequality |xi| > |xj | implies u′

i(0) =
α|xiy|

α|xiy|+ε >
α|xjy|

α|xjy|+ε = u′
j(0). As a

result, ū′(0) > 0. Using differentiability of ū(t) at t = 0, we get

lim
τ→0+

ū(τ)− ū(0)

τ − 0
= lim

τ→0+

ū(τ)

τ
= ū′(0). (35)

Let ϵτ := ū′(0)
3 > 0. By definition of limit in (35), there exists δτ > 0 such that for all τ ∈ (0, δτ ),

∣∣∣ ū(τ)τ − ū′(0)
∣∣∣ < ϵτ .

Therefore, ū(τ)
τ − ū′(0) > −ϵτ = − ū′(0)

3 . It follows that ū(τ) > 2τ
3 ū′(0) > 0 for all τ ∈ (0, δτ ).

Next, we show that ū(t) ≥ 0 for all t > 0. Suppose for contradiction that there exists t > 0 such that ū(t) < 0.
Let t0 := inf{t : t > 0, ū(t) < 0}. We have ū(t0) ≤ 0 and ū(t) ≥ 0 for t ∈ (0, t0) by definition. We must have
t0 ≥ δτ > δτ

2 > 0 as we have shown that ū(t) > 0 for t ∈ (0, δτ ). Since ū(t) is differentiable, by the Mean Value Theorem,

there exists t1 ∈ ( δτ2 , t0) such that ū′(t1) =
ū(t0)−ū( δτ

2 )

t0− δτ
2

. Since ū(t0) ≤ 0 and ū( δϵ2 ) > 0, we have ū′(t1) < 0. Therefore,

ū′(t1) = u′
i(t1)− u′

j(t1)

=
ui(t1)|xir(t1)|

ui(t1)|xir(t1)|+ ε
− uj(t1)|xjr(t1)|

uj(t1)|xjr(t1)|+ ε

< 0.

The inequality implies that ui(t1)|xir(t1)| < uj(t1)|xjr(t1)|. By assumption, we have |xi| > |xj |, and thus we must have
ui(t1) < uj(t1), i.e., ū(t1) < 0. However, t1 < t0 and this contradicts that ū(t) ≥ 0 for all t ∈ (0, t0). Thus, ui(t) ≥ uj(t)
always holds.

A.4 PROOF OF PROPOSITION 3.7

Proof. First, we show that for all i, there exists Ti such that |∇uL(w(Ti))|i = fi(Ti) = ε. Suppose for contradiction that
fi(t) > ε for all t. We have u′

i(t) > 1
2 and ui(t) ≥ α + t

2 . Without loss of generality, we assume r(0) = y > 0. For



t > 2
√

|y|
|xi| , the residual is negative due to

r(t) = y − |xi|
(
u2
i (t)− v2i (t)

)
−

Dn∑
k ̸=i

|xk|
(
u2
i (t)− v2i (t)

)
≤ y − |xi|

(
u2
i (t)− v2i (t)

)
≤ y − |xi|

(α+

√
|y|
|xi|

)2

− α2


< y − |xi|

|y|
|xi|

= 0.

However, this contradicts that r(t) never flips sign by Lemma A.1. Hence, there exists T ′
i such that fi(T ′

i ) ≤ ε. By continuity,
there exists t ∈ (0, T ′

i ] such that fi(t) = ε. Let Ti := min {t : 0 ≤ t ≤ T ′
i , fi(t) = ε}. Therefore,

fi(Ti) = ε, and fi(t) > ε for t < Ti. (36)

Next, we show that Ti > 2α ≥ T0. In (34) we have proved that |r(2α)| ≥ |y|
2 . Since ui(t) ≥ α and |r(t)| ≥ |r(2α)| for

t ≤ 2α, then fi(t) = ui(t)|xir(t)| ≥ α |xiy|
2 . By Assumption 3.3, we have α > 2ε

|xiy| . As a result, fi(t) > ε for all t ≤ 2α.
Therefore, we must have T ′

i > 2α ≥ T0.

We need to show that the derivative of fi(t) is always non-positive for t ≥ Ti. Using the expression for |r(t)| in (33), we get

f ′
i(t) = |xi| (u′

i(t)|r(t)|+ ui(t)|r(t)|′)

= |xi|

(
u′
i(t)|r(t)|+ ui(t)

(
−2

Dn∑
k=1

|xk|uk(t)u
′
k(t) + 2

Dn∑
k=1

|xk|vk(t)v′k(t)

))
.

Since v′k(t) ≤ 0 for all k, we get

f ′
i(t) ≤ |xi|

(
u′
i(t)|r(t)| − 2ui(t)

Dn∑
k=1

|xk|uk(t)u
′
k(t)

)
. (37)

Next, we want to find a lower bound for 2ui(Ti)
∑Dn

k=1 |xk|uk(Ti)u
′
k(Ti). We denote the index set by I := {1, . . . , Dn} that

we partition as I = I+
i ∪ I−

i , where I+
i := {k : |xk| ≥ |xi|} and I−

i := {k : |xk| < |xi|}. For k ∈ I−
i , since |xk| < |xi|,

we have uk(t) ≤ ui(t) by Lemma A.2. As a result, uk(t)|xkr(t)| ≤ ui(t)|xir(t)|. In turn, for all k ∈ I−
i and for all t,

ui(t)u
′
k(t) = ui(t)

uk(t)|xkr(t)|
uk(t)|xkr(t)|+ ε

(38)

≥ ui(t)
uk(t)|xkr(t)|

ui(t)|xir(t)|+ ε
(39)

≥ uk(t)|xk|
|xi|

· ui(t)|xir(t)|
ui(t)|xir(t)|+ ε

(40)

=
|xk|
|xi|

uk(t)u
′
i(t). (41)

For k ∈ I+
i , similarly, we have uk(t) ≥ ui(t) for all t. We also have fk(t) = uk(t)|xkr(t)| ≥ ui(t)|xir(t)| = fi(t). In

turn, u′
k(t) ≥ u′

i(t). Therefore, for all k ∈ I+
i and for all t, we have

ui(t)u
′
k(t) ≥ ui(t)u

′
i(t). (42)



Using (41) and (42), we get

2ui(t)

Dn∑
k=1

|xk|uk(t)u
′
k(t) = 2

∑
k∈I+

i

|xk|uk(t)ui(t)u
′
k(t) + 2

∑
k∈I−

i

|xk|uk(t)ui(t)u
′
k(t)

≥ 2
∑
k∈I+

i

|xk|uk(t)ui(t)u
′
i(t) + 2

∑
k∈I−

i

|xk|
|xi|

· |xk|u2
k(t)u

′
i(t)

= 2u′
i(t)

∑
k∈I+

i

|xk|ui(t)uk(t) +
∑
k∈I−

i

|xk|
|xi|

|xk|u2
k(t)

 .

Because ui(t) is non-decreasing for all i, it follows that for t ≥ Ti,

2u′
i(t)

∑
k∈I+

i

|xk|ui(t)uk(t) +
∑
k∈I−

i

|xk|
|xi|

|xk|u2
k(t)

 ≥ 2u′
i(t)

∑
k∈I+

i

|xk|ui(Ti)uk(Ti) +
∑
k∈I−

i

|xk|
|xi|

|xk|u2
k(Ti)

 .

Moreover, for t ∈ [0, Ti], u′
i(t) ≥ 1

2 and u′
k(t) ≤ 1. As a result, u′

i(t) ≥ 1
2u

′
k(t). In turn, we have

ui(Ti) ≥ α+
1

2
(uk(Ti)− α) >

1

2
uk(Ti). (43)

We also know that |xk|
|xi| ≥

minj{|xj |}
|xi| for all k ∈ I−

i , and 1 ≥ minj{|xj |}
|xi| . Using (43), we get

2ui(t)

Dn∑
k=1

|xk|uk(Ti)u
′
k(Ti) ≥ u′

i(t)

∑
k∈I+

i

2|xk|
1

2
uk(Ti)uk(Ti) +

∑
k∈I−

i

2|xk|
|xi|

|xk|u2
k(Ti)

 (44)

= u′
i(t)

∑
k∈I+

i

|xk|u2
k(Ti) +

∑
k∈I−

i

2|xk|
|xi|

|xk|u2
k(Ti)

 (45)

≥ u′
i(t)

∑
k∈I+

i

minj{|xj |}
|xi|

|xk|u2
k(Ti) +

∑
k∈I−

i

minj{|xj |}
|xi|

|xk|u2
k(Ti)

 (46)

= u′
i(t)

minj{|xj |}
|xi|

Dn∑
k=1

|xk|u2
k(Ti). (47)

Next, we consider (37) by using (47). Since |r(t)| is non-increasing, for all t ≥ Ti, we have

f ′
i(t) ≤ |xi|

(
u′
i(t)|r(t)| − u′

i(t)
minj{|xj |}

|xi|

Dn∑
k=1

|xk|u2
k(Ti)

)
(48)

≤ |xi|

(
u′
i(t)|r(Ti)| − u′

i(t)
minj{|xj |}

|xi|

Dn∑
k=1

|xk|u2
k(Ti)

)
(49)

≤ |xi|u′
i(t)

(
|r(Ti)| −

minj{|xj |}
|xi|

Dn∑
k=1

|xk|u2
k(Ti)

)
. (50)

At t = Ti, we know that ui(Ti) ≥ α and fi(Ti) = ui(Ti)|xir(Ti)| = ε. By Assumption 3.3, we have α > 2ε
|xjy| for all j.

We must have

|r(Ti)| =
fi(t)

ui(t)|xi|
≤ ε

α|xi|
<

ε

|xi|
· minj{|xj |}|y|

2ε
=

1

2

minj{|xj |}
|xi|

|y|, (51)

which implies

|y| −
Dn∑
k=1

|xk|
(
u2
k(Ti)− v2k(Ti)

)
<

1

2

minj{|xj |}
|xi|

|y|.



Thus,
Dn∑
k=1

|xk|u2
k(Ti) ≥

Dn∑
k=1

|xk|
(
u2
k(Ti)− v2k(Ti)

)
>

(
1− 1

2

minj{|xj |}
|xi|

)
|y| ≥ 1

2
|y|. (52)

By using (51) and (52) in (50), we get

f ′
i(t) ≤ |xi|u′

i(t)

(
1

2

minj{|xj |}
|xi|

|y| − minj{|xj |}
|xi|

Dn∑
k=1

|xk|u2
k(Ti)

)

≤ |xi|u′
i(t)

(
1

2

minj{|xj |}
|xi|

|y| − minj{|xj |}
|xi|

1

2
|y|
)

≤ 0.

Hence, for all t ≥ Ti, f ′
i(t) is non-increasing. We conclude that for each i, there exists Ti > T0 such that f ′

i(t) > ε for
t < Ti, and f ′

i(t) ≤ ε for t ≥ Ti.

Lemma A.3 (Convergence). As t → ∞, for every n we have

lim
t→∞

r(n)(t) = 0,

lim
t→∞

∇wL(w(t)) = 0,

u∞ := lim
t→∞

(u(t)) with u∞
i < ∞ ∀i,

v∞ := lim
t→∞

(v(t)) with v∞i < ∞ ∀i.

Proof. Without loss of generality, we assume r(0) = y > 0. By Lemma 33, r(t) is bounded below by 0 and monotonically
non-increasing in t. Therefore, r(t) converges as t → ∞ by calculus. Let R0 := limt→∞ r(t) ≥ 0. We want to show that
R0 = 0. Suppose for contradiction that R0 > 0. We have r(t) ≥ R0 > 0 for all t ≥ 0.

We first show that u′
k(t) is bounded below by a positive number for all k. Since uk(t) ≥ α and r(t) ≥ R0 for all t, we have

fk(t) = uk(t)|xk|r(t) ≥ α|xk|R0 > 0. Therefore, for all t ≥ 0,

u′
k(t) =

fk(t)

fk(t) + ε
≥ α|xk|R0

α|xk|R0 + ε
> 0.

As a result, uk(t) ≥ α+ t · α|xk|R0

α|xk|R0+ε . Recall that

r(t) = y −
Dn∑
k=1

|xk|
(
u2
k(t)− v2k(t)

)
≤ y −

Dn∑
k=1

|xk|
(
u2
k(t)− α2

)
.

As t → ∞, u2
k(t) → ∞, and the summation

∑Dn

k=1 |xk|u2
k(t) is unbounded. We conclude that r(t) < 0 for sufficiently large

t. This contradicts that r(t) ≥ 0 for all t by Lemma A.1. Thus, we must have R0 = limt→∞ r(t) = 0.

The argument holds for all n, so limt→∞ r(n)(t) = 0 for all n = 1, . . . , N . As a result, we have limt→∞[∇uL(w(t))]i = 0
and limt→∞[∇vL(w(t))]i = 0 for all i. It follows that limt→∞ ∇wL(w(t)) = 0.

Next, we show that the weights converge as t → ∞. Without loss of generality, we suppose r(0) = y > 0. Because r(t)

never changes sign by Lemma A.1, we have 0 ≤ r(t) ≤ y −
∑Dn

k=1 |xk|
(
u2
k(t)− α2

)
. As a result, uk(t) is upper bounded.

Since uk(t) is non-decreasing, we have u∞
k := limt→∞ uk(t) < ∞ by calculus. Using a similar argument for vk(t) which

is non-increasing, v∞k := limt→∞ vk(t) < ∞. The proof holds for all k and all n. Therefore, u∞ := limt→∞ u(t) exists
with u∞

i < ∞ for all i, and v∞ := limt→∞ v(t) exists with v∞i < ∞ for all i.



B PROOF OF RESULTS IN SECTION 3.3.2

Using Assumption 3.8, we parameterize the dynamics using θ1 and λ1 with | cos θ1| ≥ | sin θ1| > 0 and λ1 > 0. We let
y := y(1), θ := θ1, λ := λ1 and ỹ := y(1)

√
λ1

to simplify the notation in the proofs. We have

|r(t)| = |ỹ| − | cos θ|
(
u2
1(t)− v21(t)

)
− | sin θ|

(
u2
2(t)− v22(t)

)
,

f1(t) = λu1(t)| cos θr(t)|,
f2(t) = λu2(t)| sin θr(t)|,

u′
1(t) =

f1(t)

f1(t) + ε
, u′

2(t) :=
f2(t)

f2(t) + ε
.

Lemma B.1. We have u′
1(t) ≥ u′

2(t) for t ∈ [0, T ), and u′
1(t) ≥

2| cot θ|
1+| cot θ|u

′
2(t) for t ∈ [T,∞). Quantity T is the stage

transition time as in Proposition 3.7.

Proof. First, we show that for all t ≥ 0,

u′
1(t) ≥

| cot θ| (f2(t) + ε)

| cot θ|f2(t) + ε
u′
2(t). (53)

Since | cos θ| ≥ | sin θ| > 0 by Assumption 3.8, we have u1(t) ≥ u2(t) by Lemma A.2. As a result,

f1(t) = λu1(t)| cos θr(t)|
= | cot θ|λu1(t)| sin θr(t)|
≥ | cot θ|λu2(t)| sin θr(t)|
= | cot θ|f2(t).

Therefore,

u′
1(t) =

f1(t)

f1(t) + ε
= 1− ε

f1(t) + ε
≥ 1− ε

| cot θ|f2(t) + ε
=

| cot θ|f2(t)
| cot θ|f2(t) + ε

. (54)

When u′
2(t) = 0, (53) holds since u′

1(t) is always non-negative. When u′
2(t) ̸= 0, using (54), we have that (53) holds:

u′
1(t)

u′
2(t)

=
f1(t)

f1(t) + ε
· f2(t) + ε

f2(t)

≥ | cot θ|f2(t)
| cot θ|f2(t) + ε

· f2(t) + ε

f2(t)

=
| cot θ|(f2(t) + ε)

| cot θ|f2(t) + ε
.

By Proposition 3.7, there exist stage transition times T1, T2 for f1(t) and f2(t), respectively. We know that f1(t) ≤ ε for
t ≥ T1. Since | cos θ| ≥ | sin θ|, f1(t) ≥ f2(t) > ε for t ∈ [0, T2). As a result, we must have T1 ≥ T2. By definition,
T := min{T1, T2} = T2. For all t, | cos θ| ≥ | sin θ| implies u1(t) ≥ u2(t) and f1(t) ≥ f2(t). Therefore, we conclude
u′
1(t) ≥ u′

2(t) for t ∈ [0, T ).

For t ∈ [T,∞), we establish f2(t) ≤ ε. Notice that | cot θ|(f2+ε)
| cot θ|f2+ε = 1+ (| cot θ|−1)ε

| cot θ|f2+ε . Since | cot θ| ≥ 1, the ratio | cot θ|(f2+ε)
| cot θ|f2+ε

is non-increasing in f2 ≥ 0. Using f2(t) ≤ ε, we get

| cot θ|(f2(t) + ε)

| cot θ|f2(t) + ε
≥ | cot θ|(ε+ ε)

| cot θ|ε+ ε
=

2| cot θ|
1 + | cot θ|

.

Using (53), we conclude that for t ∈ [T,∞),

u′
1(t) ≥

| cot θ| (f2(t) + ε)

| cot θ|f2(t) + ε
u′
2(t) ≥

2| cot θ|
1 + | cot θ|

u′
2(t).



Let us consider the cubic equation x
(
A−Bx2

)
= ϵ, where A > 0, B > 0, x > 0. We assume that ϵ ≥ 0 is small. The

largest solution x∗ is approximately

x∗ =

√
A

B
− 1

2A
ϵ− 3

8
B

1
2A− 5

2 ϵ2 +O
(
ϵ3
)
.

This can be established by using elementary perturbation theory.

Lemma B.2. We have
∆ := | cos θ| (u∞

2 − u2(0))− | sin θ| (u∞
1 − u1(0)) ≤ M+,

where M+ := (| cos θ| − | sin θ|)
(
λ− 1

4 |y| 12 −
√
2ε

4λ
1
2 |y|

)
.

Proof. We complete the proof in three steps.

Step 1. We show an upper bound for u2(T ).

Let us define p(U) := λ| sin θ|U
(
|ỹ|+ (| cos θ|+ | sin θ|)α2 − (| cos θ|+ | sin θ|)U2

)
, which is a cubic function of

U ∈ R. Let Û be the largest solution to p(U) = ε. Let us define f+(t) := (p ◦ u2) (t). We want to show that f+(t) ≥ f2(t)
for t ∈ [0, T ]. Indeed, since u1(t) ≥ u2(t), v1(t), v2(t) ≤ α always hold, we have

f+(t) = λ| sin θ|u2(t)
(
|ỹ|+ (| cos θ|+ | sin θ|)α2 − (| cos θ|+ | sin θ|)u2

2(t)
)

≥ λ| sin θ|u2(t)
(
|ỹ|+ | cos θ|v21(t) + | sin θ|v22(t)− | cos θ|u2

1(t)− | sin θ|u2
2(t)

)
= f2(t).

We know that f2(T ) = ε, so f+(t) = p(u2(T )) ≥ ε. Meanwhile, p(Û) = ε. We want to show that u2(T ) ≤ Û . Suppose
for contradiction that u2(T ) > Û . By studying the behavior of the cubic function p(U), we observe that p(U) < 0
for sufficiently large U . Since p(u2(T )) ≥ ε, by continuity, there exists U ′ ≥ u2(T ) such that p(U ′) = ε. However,
U ′ ≥ u2(T ) > Û , which contradicts that Û is the largest solution to p(U) = ε. Thus, u2(T ) ≤ Û . By using the expansion

of the cubic root Û in ε, it is easy to show that Û < ũ2 :=
√

|ỹ|
| cos θ|+| sin θ| + α2 − ε

2λ| sin θỹ| under Assumption 3.3. As a
result,

u2(T ) ≤ Û < ũ2 :=

√
|ỹ|

| cos θ|+ | sin θ|
+ α2 − ε

2λ| sin θỹ|
. (55)

Step 2. We show that u1(T )− u1(0) ≥ u2(T )− u2(0) and u∞
1 − u1(T ) ≥ 2| cot θ|

1+| cot θ| (u
∞
2 − u2(T )).

For all t, we know that u′
1(t) ≥ u′

2(t). By integrating both sides with respect to t from 0 to T , we get

u1(T )− u1(0) ≥ u2(T )− u2(0). (56)

For t ≥ T , by Lemma B.1 we have u′
1(t) ≥

2| cot θ|
1+| cot θ|u

′
2(t). Again by integrating both sides, we get

u∞
1 − u1(T ) ≥

2| cot θ|
1 + | cot θ|

(u∞
2 − u2(T )) . (57)

Step 3. We derive an upper bound for ∆.

We can write ∆ = ∆1 +∆2, where

∆1 := | cos θ|(u2(T )− u2(0))− | sin θ|(u1(T )− u1(0)),

∆2 := | cos θ|(u∞
2 − u2(T ))− | sin θ|(u∞

1 − u1(T )).

Using (56) and (57) from Step 2, we get

∆1 ≤ (| cos θ| − | sin θ|)(u2(T )− u2(0)), (58)

∆2 ≤
(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
(u∞

2 − u2(T )) . (59)



Adding (59) and (58), we get

∆ ≤
(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
(u∞

2 − u2(T )) + (| cos θ| − | sin θ|) (u2(T )− u2(0))

=

(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
(u∞

2 − ũ2)

+

(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
(ũ2 − u2(T )) + (| cos θ| − | sin θ|)(u2(T )− ũ2)

+ (| cos θ| − | sin θ|)(ũ2 − u2(0)).

We have shown that ũ2 ≥ u2(T ) in (55), and | cos θ| ≥ | sin θ| implies | cos θ| − | sin θ| ≥ | cos θ| − | sin θ| 2| cot θ|
1+| cot θ| ≥ 0.

As a result, (
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
(ũ2 − u2(T )) ≤ (| cos θ| − | sin θ|) (ũ2 − u2(T ))(

| cos θ| − | sin θ| 2| cot θ|
1 + | cot θ|

)
(ũ2 − u2(T )) + (| cos θ| − | sin θ|)(u2(T )− ũ2) ≤ 0.

Therefore,

∆ ≤
(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
(u∞

2 − ũ2) + (| cos θ| − | sin θ|)(ũ2 − u2(0)). (60)

Moreover, by Lemma A.3, we know that the residual converges to zero. It follows that limt→∞ r(t) = 0, and

|ỹ| = | cos θ|
(
(u∞

1 )2 − (v∞1 )2
)
+ | sin θ|

(
(u∞

2 )2 − (v∞2 )2
)
.

Because u1(t) ≥ u2(t) and v1(t), v2(t) ≤ α always hold, it follows that u∞
2 ≤

√
|ỹ|

| cos θ|+| sin θ| + α2. Using ũ2 from (55),
we get u∞

2 − ũ2 ≤ ε
2λ| sin θỹ| . Continuing with (60) and using u2(0) = α, we get

∆ ≤
(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
ε

2λ| sin θỹ|

+(| cos θ| − | sin θ|)

(√
|ỹ|

| cos θ|+ | sin θ|
+ α2 − ε

2λ| sin θỹ|
− u2(0)

)

=(| cos θ| − | sin θ|)

(√
|ỹ|

| cos θ|+ | sin θ|
+ α2 − u2(0)

)

+

(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|
− | cos θ|+ | sin θ|

)
ε

2λ| sin θỹ|

=(| cos θ| − | sin θ|)

(√
|ỹ|

| cos θ|+ | sin θ|
+ α2 − α

)
−
(
| cos θ| − | sin θ|
| cos θ|+ | sin θ|

)
ε

2λ|ỹ|

≤ (| cos θ| − | sin θ|)

√
|ỹ|

| cos θ|+ | sin θ|
−
(
| cos θ| − | sin θ|
| cos θ|+ | sin θ|

)
ε

2λ|ỹ|

≤ (| cos θ| − | sin θ|)
√
|ỹ| − (| cos θ| − | sin θ|)

√
2ε

4λ|ỹ|

=(| cos θ| − | sin θ|)

(
|y| 12λ− 1

4 −
√
2ε

4λ
1
2 |y|

)
=M+.

We conclude ∆ ≤ M+.



Lemma B.3. We have

∆ := | cos θ| (u∞
2 − u2(0))− | sin θ| (u∞

1 − u1(0)) ≥ M−,

where M− := (| cos θ| − | sin θ|)
(
(2λ)

− 1
4 |y| 12 − α

)
− 2
√

2ε

λ
3
4 | sin θ||y|

1
2
− 3

√
2ε

λ
1
2 | sin θy|

ln

(
λ

1
4 | sin θ||y|

3
2√

2ε

)
.

Proof. We begin by exhibiting a lower bounding function for f2(t) for t ∈ [0, T ]. Let v̄ := | cos θ| (v∞1 )
2
+ | sin θ| (v∞2 )

2.
Since v1(t), v2(t) are non-increasing and non-negative, we have

0 ≤ v̄ ≤ | cos θ|v21(t) + | sin θ|v22(t) ≤ (| cos θ|+ | sin θ|)α2. (61)

Let us define

f−(t) :=
1

2
λ| sin θ| (α+ t)

(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ t)

2
)
.

For t ≤ T , since f2(t) ≥ ε and u′
2(t) ≥ 1

2 , we have u2(t) ≥ α + 1
2 t > 1

2 (α+ t). Moreover, u1(t) ≤ α + t and
u2(t) ≤ α+ t always hold. Therefore, for t ∈ [0, T ], we establish that

f−(t) =
1

2
λ| sin θ| (α+ t)

(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ t)

2
)

< λ| sin θ|u2(t)
(
|ỹ|+ v̄ − | cos θ|u2

1(t)− | sin θ|u2
2(t)

)
≤ λ| sin θ|u2(t)

(
|ỹ| − | cos θ|

(
u2
1(t)− v22(t)

)
− | sin θ|

(
u2
2(t)− v22(t)

))
= f2(t).

As a result, we get

f−(T ) < f2(T ) = ε. (62)

Assumption 3.3 guarantees
√

|ỹ|+v̄
3(| cos θ|+| sin θ|) − α > 0. The derivative of the cubic function f−(t) shows that f−(t)

is increasing on
[
0,
√

|ỹ|+v̄
3(| cos θ|+| sin θ|) − α

)
and decreasing for t >

√
|ỹ|+v̄

3(| cos θ|+| sin θ|) − α. Because f−(0) > ε by

Assumption 3.3 and f−(T ) < ε by (62), it follows that there exists a unique T ′ ∈
(√

|ỹ|+v̄
3(| cos θ|+| sin θ|) − α, T

)
such that

f−(T
′) = ε, and f−(t) < ε for t > T ′.

Next, we show a lower bound for α+ T ′. Since we already have α+ T ′ >
√

|ỹ|+v̄
3(| cos θ|+| sin θ|) , then

ε = f−(T
′) =

1

2
λ| sin θ| (α+ T ′)

(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ T ′)

2
)

≥ 1

2
λ| sin θ|

√
|ỹ|+ v̄

3 (| cos θ|+ | sin θ|)

(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ T ′)

2
)
.



Therefore, we have

2ε

λ| sin θ|

√
3(| cos θ|+ | sin θ|)

|ỹ|+ v̄
≥ |ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ T ′)

2 (63)

(| cos θ|+ | sin θ|) (α+ T ′)
2 ≥ |ỹ|+ v̄ − 2ε

λ| sin θ|

√
3(| cos θ|+ | sin θ|)

|ỹ|+ v̄
(64)

(α+ T ′)2 ≥ |ỹ|+ v̄

| cos θ|+ | sin θ|
− 2ε

λ| sin θ|

√
3

(|ỹ|+ v̄)(| cos θ|+ | sin θ|)
(65)

(α+ T ′)2 ≥ |ỹ|+ v̄

| cos θ|+ | sin θ|
− 2

√
3ε

λ| sin θ|(|ỹ|+ v̄)
1
2

(66)

(α+ T ′)2 ≥ |ỹ|+ v̄

| cos θ|+ | sin θ|
− 4ε

λ| sin θ|(|ỹ|+ v̄)
1
2

(67)

α+ T ′ ≥
(

|ỹ|+ v̄

| cos θ|+ | sin θ|
− 4ε

λ| sin θ|(|ỹ|+ v̄)
1
2

) 1
2

(68)

α+ T ′ ≥

√
|ỹ|+ v̄

| cos θ|+ | sin θ|
− 2

√
ε

λ| sin θ|(|ỹ|+ v̄)
1
2

. (69)

Next, we want to find a lower bound for u2(T ). Because u2(t) is non-decreasing, T > T ′ implies u2(T ) ≥ u2(T
′). For all

t ∈ [0, T ′], f−(t) ≤ f2(t) holds, and therefore

u′
2(t) =

f2(t)

f2(t) + ε

≥ f−(t)

f−(t) + ε

= 1− 2ε

λ| sin θ| (α+ t)
(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ t)

2
) .

This lower bounding function is explicit in t, which makes it possible to obtain a lower bound for u2(T
′) by integrating it

with respect to t from 0 to T ′, which yields

u2(T
′)− u2(0) ≥

∫ T ′

0

1− 2ε

λ| sin θ| (α+ t)
(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ t)

2
) dt (70)

u2(T
′) ≥ α+ T ′ − 2ε

λ| sin θ|

∫ T ′

0

1

(α+ t)
(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ t)

2
) dt. (71)

Let τ := α+ t. We compute the integral

J :=

∫ α+T ′

α

1

τ(|ỹ|+ v̄ − (| cos θ|+ | sin θ|)τ2)
dτ =

1

2(|ỹ|+ v̄)
ln

τ2

|ỹ|+ v̄ − (| cos θ|+ | sin θ|)τ2

∣∣∣∣α+T ′

α

=
1

2(|ỹ|+ v̄)
ln

(α+ T ′)2(|ỹ|+ v̄ − (| cos θ|+ | sin θ|)α2)

α2(|ỹ|+ v̄ − (| cos θ|+ | sin θ|)(α+ T ′)2)
.

Since f−(T
′) = ε, we get

|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ T ′)
2
=

2ε

λ| sin θ|(α+ T ′)
.



Moreover, (α+ T ′)
2 ≤ |ỹ|+ v̄. Using v̄ ≤ (| cos θ|+ | sin θ|)α2 from (61) and Assumption 3.3, we get

J ≤ 1

2|(ỹ|+ v̄)
ln

(α+ T ′)
3

2ε/(λ| sin θ|)
|ỹ|
α2

≤ 1

2(|ỹ|+ v̄)
ln

(|ỹ|+ v̄)
3
2

2ε/(λ| sin θ|)
|ỹ|

(2ε/(λ| sin θỹ|))2

=
1

2(|ỹ|+ v̄)
ln

(
(|ỹ|+ v̄)

3
2

(
λ| sin θỹ|

2ε

)3
)

=
3

2(|ỹ|+ v̄)
ln

(
(|ỹ|+ v̄)

1
2

(
λ| sin θỹ|

2ε

))
.

Using Assumption 3.3, we obtain that

|ỹ|+ v̄ ≤ |ỹ|+ (| cos θ|+ | sin θ|)α2 ≤ |ỹ|+ 1

18
|ỹ| = 19

18
|ỹ|.

In turn we have

J ≤ 3

2(|ỹ|+ v̄)
ln

(
(|ỹ|+ v̄)

1
2

(
λ| sin θỹ|

2ε

))
≤ 3

2(|ỹ|+ v̄)
ln

((
19

18
|ỹ|
) 1

2
(
λ| sin θỹ|

2ε

))

≤ 3

2(|ỹ|+ v̄)
ln

(√
2|ỹ| 12

(
λ| sin θỹ|

2ε

))
=

3

2(|ỹ|+ v̄)
ln

(
λ| sin θ||ỹ| 32√

2ε

)
.

Assumption 3.3 implies that ε ≤ λ| sin θ||ỹ|
3
2

9
√

2(| cos θ|+| sin θ|)
. Therefore, ln

(
λ| sin θ||ỹ|

3
2√

2ε

)
is guaranteed to be positive, and we get

J ≤ 3

2|ỹ|
ln

(
λ| sin θ||ỹ| 32√

2ε

)
. (72)

Combining (69), (71) and (72), we get

u2(T
′) ≥

√
|ỹ|+ v̄

| cos θ|+ | sin θ|
− 2

√
ε

λ| sin θ|(|ỹ|+ v̄)
1
2

− 3ε

λ| sin θỹ|
ln

(
λ| sin θ||ỹ| 32√

2ε

)

≥

√
|ỹ|+ v̄

| cos θ|+ | sin θ|
− 2

√
ε

λ| sin θ||ỹ| 12
− 3ε

λ| sin θỹ|
ln

(
λ| sin θ||ỹ| 32√

2ε

)
.

Let P :=
√

|ỹ|+v̄
| cos θ|+| sin θ| , Q := 2

√
ε

λ| sin θ||ỹ|
1
2
+ 3ε

λ| sin θỹ| ln

(
λ| sin θ||ỹ|

3
2√

2ε

)
, and P,Q > 0. Therefore, we have u2(T

′) ≥

P −Q. Using Lemma A.3, we obtain that

| cos θ| (P +Q)
2
+ | sin θ| (P −Q)

2
= (| cos θ|+ | sin θ|)P 2 + 2PQ(| cos θ| − | sin θ|) + (| cos θ|+ | sin θ|)Q2

≥ (| cos θ|+ | sin θ|)P 2

= |ỹ|+ v̄

= |ỹ|+ | cos θ| (v∞1 )
2
+ | sin θ| (v∞2 )

2

= | cos θ| (u∞
1 )

2
+ | sin θ| (u∞

2 )
2
.



Since u2(t) is non-decreasing, we get u∞
2 ≥ u2(T

′) ≥ P −Q. As a result, we must have u∞
1 ≤ P +Q. We derive

| cos θ|u∞
2 − | sin θ|u∞

1 ≥ (| cos θ| − | sin θ|)P − (| cos θ|+ | sin θ|)Q (73)

= (| cos θ| − | sin θ|)

√
|ỹ|+ v̄

| cos θ|+ | sin θ|
− (| cos θ|+ | sin θ|)Q (74)

≥ (| cos θ| − | sin θ|)

√
|ỹ|

| cos θ|+ | sin θ|
−
√
2Q (75)

≥ (| cos θ| − | sin θ|)

√
|ỹ|√
2
−

√
2Q. (76)

Additionally, we have u1(0) = u2(0) = α, which implies

−| cos θ|u2(0) + | sin θ|u1(0) = −α(| cos θ| − | sin θ|). (77)

Adding (76) and (77), and substituting in Q, we get

∆ = | cos θ|(u∞
2 − u2(0))− | sin θ|(u∞

1 − u1(0))

= | cos θ|u∞
2 − | sin θ|u∞

1 − α(| cos θ| − | sin θ|)

≥ (| cos θ| − | sin θ|)

(√
|ỹ|√
2
− α

)
− 2

√
2ε

λ| sin θ||ỹ| 12
− 3

√
2ε

λ| sin θỹ|
ln

(
λ| sin θ||ỹ| 32√

2ε

)
.

Finally, using ỹ = λ− 1
2 y, we get

∆ ≥ (| cos θ| − | sin θ|)
(
(2λ)

− 1
4 |y| 12 − α

)
− 2

√
2ε

λ
3
4 | sin θ||y| 12

− 3
√
2ε

λ
1
2 | sin θy|

ln

(
λ

1
4 | sin θ||y| 32√

2ε

)
= M−.

Therefore, ∆ ≥ M−.

Lemma B.4. Let us consider M−(ε) as a function of ε with M−(0) := limε→0+ M−(ε). We have M−(0) > 0 and M−(ε)

is strictly decreasing for 0 ≤ ε ≤ 1
9

λ| sin θ||ỹ|
3
2√

2(| cos θ|+| sin θ|)
.

Proof. We write M−(ε) = N0 +N1(ε) +N2(ε), where

N0 = (| cos θ| − | sin θ|)
(
2−

1
4

√
|ỹ| − α

)
,

N1(ε) = −2

√
2ε

λ| sin θ||ỹ| 12
,

N2(ε) = − 3
√
2ε

λ| sin θỹ|
ln

(
|ỹ| 12 λ| sin θỹ|√

2ε

)
.

Notice that N0 does not depend on ε, and N1(ε) is decreasing in ε for all ε ≥ 0. If ε′ :=
√
2ε

λ| sin θỹ| , then

N2(ε
′) = −3ε′ ln

(
|ỹ| 12
ε′

)
,

dN2(ε
′)

dε′
= −3

(
ln

(
|ỹ| 12
ε′

)
− 1

)
.



Since 0 ≤ ε ≤ 1
9

λ| sin θ||ỹ|
3
2√

2(| cos θ|+| sin θ|)
, we have 0 ≤ ε′ ≤ 1

9
|ỹ|

1
2√

| cos θ|+| sin θ|
. As a result,

|ỹ| 12
ε′

≥ 9
√

| cos θ|+ | sin θ| ≥ 9 > e.

Therefore, ln
(

|ỹ|
1
2

ε′

)
> 1 and dN2(ε

′)
dε′ < 0. It follows that N2(ε) is decreasing in ε on the given interval. Combining

N0, N1 and N2, we conclude that M−(ε) is decreasing in ε on the given interval. We obtain limε′→0+ ε′ ln( |ỹ|
1
2

ε′ ) = 0 using
L’Hopital’s rule, so limε→0+ N2(ε) = 0. Applying Assumption 3.3 yields

M−(0) = (| cos θ| − | sin θ|)
(
2−

1
4

√
|ỹ| − α

)
> 0.

B.1 PROOF OF THEOREM 3.9

Proof. By Lemma A.3, we know that the weights converge and the residual r(t) converges to zero. It follows that
β∞ := limt→∞ β(t) exists and is finite. Using (30), we get

0 = lim
t→∞

r(t) = y −
(√

λ cos θβ∞
1 +

√
λ sin θβ∞

2

)
= y −Xβ∞.

Therefore, the convergent solution β∞ is an interpolating solution.

Next, we derive the stationary condition for the optimization problem (23) as

∇β (Xβ∞) =

[√
λ cos θ√
λ sin θ

]
, (78)

∇βE (β∞) = ∇Φ∞ (β∞)−∇Φ0 (β(0)) . (79)

The gradient in the left-hand side of (79) is equal to the difference between the convergent point and the starting point of
the dual variable. We use the result of the dual dynamics in Proposition 3.6 to calculate the gradient. Recall that the dual
dynamics follow

d∇Φt(β(t))

dt
= − sgn(β(t))⊙ ∇uL(w(t))

|∇uL(w(t))|+ ε
.

From (29) we note that sgn(βi(t)) = sgn(xiy). Therefore, sgn(β(t)) remains the same for all t. Integrating both sides with
respect to t from 0 to infinity, it follows that

∇Φ∞(β∞)−∇Φ0(β(0)) =

[
sgn(cos θỹ)
sgn(sin θỹ)

]
⊙ (u∞ − u(0)) .

Next, we want to compute the extent of the deviation from the exact KKT point. To this end, we have

δ := min
ν∈R

∥∇βE (β)− ν · ∇β(Xβ)∥ = min
ν∈R

∥∥∥∥[sgn(cos θỹ)sgn(sin θỹ)

]
⊙ (u∞ − u(0))− ν ·

[√
λ cos θ√
λ sin θ

]∥∥∥∥ .
Let V :=

[
sgn(cos θỹ) (u∞

1 − u1(0))
sgn(sin θỹ) (u∞

2 − u2(0))

]
. Using orthogonal projection, we derive that

min
ν∈R

∥∥∥∥V − ν ·
[√

λ cos θ√
λ sin θ

]∥∥∥∥ =

∣∣∣∣〈V, [− sin θ
cos θ

]〉∣∣∣∣
=
∣∣∣− sgn(cos θỹ) sin θ (u∞

1 − u1(0)) + sgn(sin θỹ) cos θ (u∞
2 − u2(0))

∣∣∣
=
∣∣∣ sgn(sin θ cos θỹ) · (−| sin θ| (u∞

1 − u1(0)) + | cos θ| (u∞
2 − u2(0)))

∣∣∣
=
∣∣∣| cos θ| (u∞

2 − u2(0))− | sin θ| (u∞
1 − u1(0))

∣∣∣.



Therefore, δ = |∆|, where ∆ := | cos θ| (u∞
2 − u2(0))− | sin θ| (u∞

1 − u1(0)). Using Lemma B.2 and Lemma B.3, we get

M− ≤ ∆ ≤ M+,

where

M− := (| cos θ| − | sin θ|)
(
(2λ)

− 1
4 |y| 12 − α

)
− 2

√
2ε

λ
3
4 | sin θ||y| 12

− 3
√
2ε

λ
1
2 | sin θy|

ln

(
λ

1
4 | sin θ||y| 32√

2ε

)
,

M+ := (| cos θ| − | sin θ|)

(
λ− 1

4 |y| 12 −
√
2ε

4λ
1
2 |y|

)
.

We can further simplify the expressions to

M− = (| cos θ1| − | sin θ1|)
(
(2λ1)

− 1
4 |y(1)| 12 − α

)
+O(

√
ε),

M+ = (| cos θ1| − | sin θ1|)λ
− 1

4
1 |y(1)| 12 +O(ε).

We conclude that δ = |∆| ≤ max{|M−|, |M+|}.

B.2 PROOF OF COROLLARY 3.10

Proof. Let us consider δ(ε),∆(ε),M−(ε),M+(ε) as functions of ε on the domain Iε = [0, ε̄] implied by Assumption 3.3.
We define M−(0) := limε→0+ M−(ε) so that M−(ε) is continuous on the domain. Theorem 3.9 shows that M+(ε) is
linearly decreasing in ε. By Lemma B.4, M−(ε) is strictly decreasing in ε on the domain Iε. Lemma B.4 also shows that
M−(0) > 0. If M−(ε̄) ≥ 0, then ∆(ε) ≥ M−(ε) ≥ M−(ε̄) ≥ 0 for all ε ∈ Iε. It implies that only M+(ε) applies to the
bound, i.e., δ(ε) ≤ M+(ε). Let ε∗ = ε̄. It follows that for ε ∈ [0, ε∗], we have

δ(ε) ≤ M̄ − (| cos θ| − | sin θ|)
√
2ε

4λ
1
2 |y|

. (80)

If M−(ε̄) < 0, since M−(0) > 0, the monotonicity of M−(ε) ensures a unique ε̂ ∈ (0, ε̄) such that M−(ε̂) = 0 and
∆(ε) ≥ M−(ε) ≥ 0 for ε ∈ [0, ε̂]. Let ε∗ = ε̂. Notice that ε̂ is positive, so [0, ε∗] is non-degenerate. By a similar argument,
we establish (80). We complete the proof by setting I ′ := [0, ε∗] ⊆ Iε.

B.3 PROOF OF COROLLARY 3.11

Proof. By Lemma A.3, limt→∞ r(n)(t) = 0 for all n ∈ {1, . . . , N} and the weights converge. We let β̄(n) :=
limt→∞ β(n)(t), ū(n) := limt→∞ u(n)(t) and v̄(n) := limt→∞ v(n)(t) for each n. We also let β∞ := limt→∞ β(t) =[
β̄(1) . . . β̄(n)

]⊤
. Using (30), we derive that for all n

0 = lim
t→∞

r(n)(t) = y(n) − x
(n)
1 β̄

(n)
1 − x

(n)
2 β̄

(n)
2 .

Therefore, Xβ∞ = y, i.e., β∞ is an interpolating solution.

Each block of X⊤X is parameterized by θn and λn as

B(n) =

[
cos θn − sin θn
sin θn cos θn

] [
λn 0
0 0

] [
cos θn sin θn
− sin θn cos θn

]
,

where | cos θn| ≥ | sin θn| > 0. Matrix B(n) is positive semi-definite and has rank 1, so λn > 0. We let ỹ(n) := y(n)

√
λn

. The
constraint Xβ∞ = y consists of N equality conditions〈

x(1), β∞
〉
= y(1),

. . .〈
x(N), β∞

〉
= y(N).



By integrating both sides of (20), we get

∇βE (β∞) = ∇Φ∞ (β∞)−∇Φ0 (β(0))

=



sgn(cos θ1ỹ
(1))

(
ū
(1)
1 − u

(1)
1 (0)

)
sgn(sin θ1ỹ

(1))
(
ū
(1)
2 − u

(1)
2 (0)

)
. . .

sgn(cos θN ỹ(N))
(
ū
(N)
1 − u

(N)
1 (0)

)
sgn(sin θN ỹ(N))

(
ū
(N)
2 − u

(N)
2 (0)

)


.

We let µ :=
[
µ1 . . . µN

]
, and then we have

δ̄ := min
µ∈RN

∥∥∥∥∥∇βE (β∞)−
N∑

n=1

µnx
(n)

∥∥∥∥∥
= min

µ∈RN

∥∥∥∥∥∥∥∥∥∥
∇βE (β∞)−


µ1

√
λ1 cos θ1

µ1

√
λ1 sin θ1
. . .

µN

√
λN cos θN

µN

√
λN sin θN


∥∥∥∥∥∥∥∥∥∥

= min
µ∈RN

 N∑
n=1

∥∥∥∥∥∥
sgn(cos θnỹ(n))(ū(n)

1 − u
(n)
1 (0)

)
sgn(sin θnỹ

(n))
(
ū
(n)
2 − u

(n)
2 (0)

)− µn ·
[√

λn cos θn√
λn sin θn

]∥∥∥∥∥∥
2


1
2

≤
N∑

n=1

min
µn∈R

∥∥∥∥∥∥
sgn(cos θnỹ(n))(ū(n)

1 − u
(n)
1 (0)

)
sgn(sin θnỹ

(n))
(
ū
(n)
2 − u

(n)
2 (0)

)− µn ·
[√

λn cos θn√
λn sin θn

]∥∥∥∥∥∥ .
By Theorem 3.9, it follows that for each n,

δn := min
µn∈R

∥∥∥∥∥∥
sgn(cos θnỹ(n))(ū(n)

1 − u
(n)
1 (0)

)
sgn(sin θnỹ

(n))
(
ū
(n)
2 − u

(n)
2 (0)

)− µn ·
[√

λn cos θn√
λn sin θn

]∥∥∥∥∥∥
≤ max

{∣∣∣M (n)
+

∣∣∣, ∣∣∣M (n)
−

∣∣∣} .

Therefore, δ̄ ≤
∑N

n=1 δn ≤
∑N

n=1 max
{∣∣∣M (n)

+

∣∣∣, ∣∣∣M (n)
−

∣∣∣}.

B.4 PROOF OF COROLLARY 3.12

Proof. For each n ∈ {1, . . . , N}, we apply Corollary 3.10 and show that there exists a non-degenerate interval I ′
n = [0, ε∗n]

such that for all ε ∈ I ′
n, we have

δn(ε) ≤ (| cos θn| − | sin θn|)
(
λ
− 1

4
n |y(n)| 12

)
− (| cos θn| − | sin θn|)

√
2ε

4λ
1
2
n |y(n)|

. (81)

We let ε̃ := minn{ε∗n} and let J :=
⋂N

n=1 I ′
n = [0, ε̃]. Since each I ′

n is non-degenerate, we have ε∗n > 0 for all n and
ε̃ > 0. Therefore, the interval J is non-degenerate. In turn, for all ε ∈ J , the relation (81) holds. By Corollary 3.11, we have

δ̄(ε) ≤
N∑

n=1

δn(ε) ≤
N∑

n=1

(| cos θn| − | sin θn|)
(
λ
− 1

4
n |y(n)| 12

)
−

(
N∑

n=1

(| cos θn| − | sin θn|)
√
2

4λ
1
2
n |y(n)|

)
ε.



C DERIVATION OF DUAL DYNAMICS FOR GRADIENT DESCENT

When applying GD to minimize loss (7) with respect to weights, in the continuous-time limit we have

dw+(t)

dt
= −w+(t)⊙X⊤(Xβ(t)− y) (82)

dw−(t)

dt
= w−(t)⊙X⊤(Xβ(t)− y). (83)

With initialization w+(0) = w−(0) = α1, we write implicit solutions to (82) and (83) as

w+(t) = α exp

(
−
∫ t

0

X⊤(Xβ(s)− y) ds

)
w−(t) = α exp

(∫ t

0

X⊤(Xβ(s)− y) ds

)
.

Therefore, we have

β(t) = w+(t)⊙w+(t)−w−(t)⊙w−(t)

= α2

[
exp

(
−2

∫ t

0

X⊤(Xβ(s)− y) ds

)
− exp

(
2

∫ t

0

X⊤(Xβ(s)− y) ds

)]
= 2α2 sinh

(
−2

∫ t

0

X⊤(Xβ(s)− y) ds

)
.

It follows that

1

2α2
β(t) = sinh

(
−2

∫ t

0

X⊤(Xβ(s)− y) ds

)
arcsinh

(
β(t)

2α2

)
= −

∫ t

0

2X⊤(Xβ(s)− y) ds

d arcsinh
(

β(t)
2α2

)
dt

= −2X⊤(Xβ(t)− y).

We note that ∇βL(β(t)) =
1
2X

⊤(Xβ(t)− y). In turn, we have

d arcsinh
(

β(t)
2α2

)
dt

= −2X⊤(Xβ(t)− y) = −4∇βL(β(t)). (84)

Given the potential function Ψα(β(t)) =
1
4

(∑D
i=1 βi arcsinh(

βi

2α2 ) +
√
β2
i + 4α4

)
, we have the mirror map

∇Ψα(β(t)) =
1

4
arcsinh

(
β(t)

2α2

)
. (85)

Combining (84) and (85), we get the dual dynamics for GD

d∇Ψα(β(t))

dt
= −∇βL(β(t)).
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