
Under review as a conference paper at ICLR 2023

FULLY CONTINUOUS GATED RECURRENT UNITS
FOR PROCESSING TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

For a long time, RNN-based models, such as RNNs, LSTMs, and GRUs, have
been used to process time series data. However, RNN-based models do not fit
well with real-world sporadically observed data. As a result, many researchers
have suggested various enhancements to overcome the limitation. Among them,
differential equation-based models, e.g., GRU-ODE-Bayes, ODE-RNN, and so
forth, show good accuracy in many cases. Those methods try to continuously model
the hidden state of RNNs (or GRUs). However, existing methods’ hidden states
are piece-wise continuous. In this paper, we represent GRUs as delay differential
equations and present fully continuous GRUs. To our knowledge, we propose the
first model that continuously generalizes all the parts of GRUs, including their
hidden state and various gates. After reconstructing a continuous path x(t) from
discrete time series observations {(xi, ti)}N−1

i=0 (with an appropriate interpolation
algorithm), we calculate the time derivatives of the reset gate r(t), the update
gate z(t), the update vector g(t), and the hidden state h(t). Then, we develop an
augmented delay differential equation (DDE) that continuously generalizes all the
parts. In our experiments with 3 real-world datasets and 13 baselines, our fully
continuous GRU method outperforms existing baselines by non-trivial margins.

1 INTRODUCTION

(a) Existing piece-wise continuous ap-
proach (e.g., GRU-ODE-Bayes ODE-
RNN, NJODE, etc.), where the jump
mechanism is mandatory to read new
time series input.

(b) Our proposed fully continuous ap-
proach, called Cont-GRU

Figure 1: Existing vs. Cont-GRU

Recurrent neural networks (RNNs) are one of the most
popular neural networks in deep learning. They have been
actively used for processing sequential data (Yin et al.,
2017; Fu, 2011). Several different recurrent units have
been proposed, ranging from long short-term memory
(LSTMs (Hochreiter & Schmidhuber, 1997)) to gated
recurrent units (GRUs (Cho et al., 2014)). Among
them, GRUs are one of the most popular units and have
advantages in terms of processing efficiency and effi-
cacy (Brouwer et al., 2019).

Among various enhancements for GRUs, GRU-ODE-
Bayes, ODE-RNN, NJODE, and some others (Herrera
et al., 2021; Lukoševičius & Uselis, 2022; Schirmer et al.,
2021; Brouwer et al., 2019) make a fundamental and
unique contribution in continuously generalizing GRUs
and therefore, they have a strong point in processing irregular time series. However, we found that
they (piece-wise) continuously generalize only the hidden state h(t) of GRUs, but the reset gate r(t),
the update gate z(t), and the update vector g(t) of GRUs are not properly continuously generalized.
For instance, the continuous generalization of GRUs by GRU-ODE-Bayes can be written as follows:

dh(t)

dt
:=

(
1− z(t))⊙

(
g(t)− h(t)

)
,

z(t) := σ
(
Wzx(t) +Uzh(t− 1) + bz

)
,

g(t) := ϕ
(
Wgx(t) +Ug

(
r(t)⊙ h(t− 1)

)
+ bg

)
,

r(t) := σ
(
Wrx(t) +Urh(t− 1) + br

)
,

(1)

1



Under review as a conference paper at ICLR 2023

where W ∈ Rdim(h)×dim(x) and U ∈ Rdim(h)×dim(h) are weight matrices, and b ∈ Rdim(h) is a
bias vector. σ is a sigmoid function and ϕ is a hyperbolic tangent function. ⊙ means an element-wise
product. We note that only the hidden state is modeled as an ODE.

As noted above, GRU-ODE-Bayes does not calculate the time derivatives of the reset gate, the update
gate, and the update vector, denoted dr(t)

dt , dz(t)
dt , and dg(t)

dt respectively, since the input time series
sample {(xi, ti)}N−1

i=0 is discrete and it is impossible to calculate dx(t)
dt . When estimating dh(t)

dt for
arbitrary time t, one can circumvent the situation by reusing the most recently observed input xi,
where ti is the closest observation time to t. In addition, GRU-ODE-Bayes uses the jump mechanism
to read the discrete observations in {(xi, ti)}N−1

i=0 (cf. Figure 1 (a)).

In all those continuous methods, only the hidden state is (piece-wise) continuously generalized.
In addition, such ODE-based continuous generalizations inherit the limitation of ODEs, i.e., all
ODEs are homeomorphic and sometimes lack in their representation learning capabilities (Dupont
et al., 2019). In this paper, however, we completely continuously generalize GRUs based on delay
differential equations (DDEs), including the reset gate, the update gate, and the update vector (cf.
Figure 1 (b)) — our method neither use the jump mechanism and nor have the ODE’s limitations.
To our knowledge, our model, called Continuous GRU (Cont-GRU), is the first fully continuous
interpretation of GRUs. Our method can be summarized as follows:

1. We calculate the time derivatives of the hidden state h(t), the reset gate r(t), the update
gate z(t), and the update vector g(t) of GRUs.

2. We then define an augmented delay differential equation (DDE) in Equation 10 after
combining all those time derivative terms. The advantages of our model are as follows:
(a) DDEs share the same base philosophy as that of GRUs, which is past information

influences current output. DDEs are for modeling these time-delay systems.
(b) Using an interpolation algorithm, we convert the discrete time series sample

{(xi, ti)}N−1
i=0 into a continuous path x(t), where x(ti) = (xi, ti) at each observa-

tion time point ti and for other non-observed time points, the interpolation algorithm
fills out appropriate values.

(c) There is no need to use the jump mechanism since x(t) is continuous and therefore,
our method is fully continuous rather than being piece-wise continuous.

(d) Our DDE-based method does not have the limitation of ODEs — DDEs are not
homeomorphic — and therefore, we expect better representation learning capability
which is important for downstream tasks. In addition, our Cont-GRU model is relatively
lightweight in terms of computation time. See Appendix I for more discussion.

2 RELATED WORK

RNN-based models Machine learning with time series has a long history. RNNs, LSTMs, and
GRUs have been typically used for processing time series data. However, many real-world time series
applications suffer from the irregularity of time series.

As a result, typical RNN-based models show good performance for regular time series datasets only.
In order to overcome the limitation, their recent enhancements have attempted to implement simple
heuristic methods to handle irregular time series. GRU-D (Che et al., 2018) is one of such models
that can handle missing observations of time series.

Differential Eqauation-based models Deep learning models based on differential equations are
commonly utilized for processing irregular time series. Many of them rely on a technology called
neural ordinary differential equations (NODEs (Chen et al., 2018)), which solve the following initial
value problem:

h(ti) = h(ti−1) +

∫ ti

ti−1

f(t,h(t),θf )dt, (2)

where f , called ODE function, is a neural network which is parameterized by θf and approximates
dh(t)
dt . We can get h(ti) by solving the initial value problem with various ODE solvers. However,

NODEs are homeomorphic. In other words, the mapping from h(ti−1) to h(ti) continuously changes

2



Under review as a conference paper at ICLR 2023

in a bijective manner, which is too restrictive in some cases for complicated tasks and therefore,
augmenting h(t) with zeros had been proposed in (Dupont et al., 2019). We also consider this
augmentation technique to enhance some baselines for thorough experiments. However, this increases
the model size and computation amount.

NODEs overcome the limitation posed by discrete time RNNs. In other words, utilizing Equation 2
between two observations allows us to model the evolutionary process of the hidden state between
the two observations in a continuous time. Following this idea, various differential equation-based
time series models have been recently proposed. Most of them use a mechanism called jump. A jump
means that we read a new observation after solving the previous initial value problem and before
solving the next initial value problem (cf. Figure 1 (a)).

ODE-RNN (Rubanova et al., 2019) is a hybrid NODE model that combines RNNs and NODEs
with the jump mechanism. Unlike ordinary RNNs, ODE-RNN can calculate the hidden state at any
time by controlling the terminal integral time. There are various efforts for enhancing ODE-RNN,
such as Latent-ODE, Augmented-ODE, ACE-NODE and GRU-ODE-Bayes. These models are
the ones that piece-wise continuously generalize the hidden state of RNNs. Among them, GRU-
ODE-Bayes (Brouwer et al., 2019) is a representative continuous method with the jump mechanism.
Compared to others, it piece-wise continuously generalizes GRUs. GRU-ODE-Bayes consists of two
parts, GRU-ODE and GRU-Bayes.

Neural jump ODEs (NJODEs) (Herrera et al., 2021) are data-driven and continuous in time. In
NJODEs, the ODE function f transforms the hidden state between observations and jumps the hidden
state according to the jump neural network when a new observation is available.

Table 1: Comparison among continuous RNN models
Model Is it continuous? What are continuous?

ODE-RNN Piece-wise h(t)
GRU-ODE-Bayes Piece-wise h(t)

NJODE Piece-wise h(t)
NCDE Fully h(t)

Cont-GRU Fully h(t), r(t), z(t),g(t)

Various methods have been proposed to ad-
dress the issue. In (Kidger et al., 2020),
neural controlled differential equations
(NCDEs) were proposed to resolve the
issue by using the controlled differential
equation paradigm. To continuously gener-
alize the hidden state, NCDEs read a con-
tinuous path and evolve the hidden state

h(t) continuously over time. There also exist several variants of NCDES, such as ANCDE and EXIT,
which focus on how to account for hidden states. In the case of ANCDE, they added an attention to
NCDEs to selectively drop (or select) observations. EXIT proposed an effective way to construct
a continuous path from a discrete time series input. However, those works are also interested in
continuously generalizing the hidden state only. In Table 1, we compare existing popular continuous
RNN models. All previous methods (piece-wise) continuously generalize the hidden state only. Our
Cont-GRU is the first model that fully continuously generalizes all the parts of GRUs.

Delay Differential Equations Delay differential equations (DDEs) are a type of differential
equation in mathematics that uses the value of a function from a previous time to determine the
derivative of the function at a given time. DDEs are also known as time-delay systems. They are a
functional state system, similar to partial differential equations (PDEs) with infinite-dimensional state
vectors, as opposed to ordinary differential equations (ODEs) with finite-dimensional state vectors.
DDEs overcome the limitations of NODEs. In particular, it overcomes the limitations of NODEs well
in physical or physiological systems where the effect of time delay cannot be avoided. In this context,
two interesting papers (Zhu et al., 2021; 2022) have been published. In them, the simplest form of
neural delay differential equations (NDDEs) can be written as follows:

h(ti) = h(ti−1) +

∫ ti

ti−1

f(t,h(t),h(t− τ),θf )dt, (3)

where τ is a delay effect. The difference between Equation 2 and Equation 3 is that NDDEs consider
the function evaluations of previous times.

3 PROPOSED METHOD

In this section, we describe our proposed fully continuous GRU concept. Unlike the previous
methods that only make the hidden state h(t) continuous, we continuously generalize all the hidden

3



Under review as a conference paper at ICLR 2023

state. the update gate, the update vector, and the reset gate — to our knowledge, we are the first
fully continuously generalizing GRUs. We first redefine GRUs to construct their fully continuous
counterparts as follows — we simply replace t− 1 in GRUs with t−∆t:

h(t) := z(t)⊙ h(t−∆t) + (1− z(t))⊙ g(t),

z(t) := σ
(
Wzx(t) +Uzh(t−∆t) + bz

)
= σ(A(t, t−∆t))

g(t) := ϕ
(
Wgx(t) +Ug

(
r(t)⊙ h(t−∆t)

)
+ bg

)
= ϕ(B(t, t−∆t)),

r(t) := σ
(
Wrx(t) +Urh(t−∆t) + br

)
= σ(C(t, t−∆t)).

(4)

We note that we adopt A(t, t−∆t), B(t, t−∆t), and C(t, t−∆t) to simplify our definition, which
is helpful later in defining the time derivative terms of all GRU parts.

3.1 OVERALL WORKFLOW

Figure 2 (b) shows the overall workflow diagram of our method, Cont-GRU, which is defined as
follows:

1. A continuous path x(t) is created from a discrete time series sample by an interpolation
algorithm — one can choose any interpolation method, e.g., natural cubic spline.

2. All the reset gate r(t), the update gate z(t), the update vector g(t), and the hidden state h(t)
of GRUs are modeled as an augmented DDE, which means that they are all continuous in
our framework.

3. After that, there is one more fully connected layer to further process h(t) for a downstream
task, i.e., output layer.

3.2 FULLY CONTINUOUS GRUS

In order to continuously generalize GRUs, we need to calculate the time derivatives of GRU’s various
parts. Considering Equation 4, we can define them as an augmented DDE.

Time derivative of h(t) Since the hidden state h(t) is a composite function of r(t), z(t), and g(t),
the derivative of h(t) can be written as follows:

dh(t)

dt
=

dz(t)

dt
⊙ h(t−∆t) + z(t)⊙ dh(t−∆t)

dt
− dz(t)

dt
⊙ g(t) + (1− z(t))⊙ dg(t)

dt
,

=
dz(t)

dt
⊙
(
h(t−∆t)− g(t)

)
+ z(t)⊙

(dh(t−∆t)

dt
− dg(t)

dt

)
+

dg(t)

dt
,

=
dz(t)

dt
⊙ ζ(t, t−∆t) + z(t)⊙ dζ(t, t−∆t)

dt
+

dg(t)

dt
,

(5)

where ζ(t, t−∆t) = h(t−∆t)− g(t). So, we can write dh(t)
dt as follows:

dh(t)

dt
=

d(z(t)⊙ ζ(t, t−∆t))

dt
+

dg(t)

dt
(6)

Time derivative of z(t) The continuous update gate is written as z(t) = σ
(
Wzx(t) +Uzh(t−

∆t) + bz

)
, and its derivative, denoted dz(t)

dt , is as follows:
dz(t)

dt
= σ

(
A(t, t−∆t))(1− σ(A(t, t−∆t))

)dA(t, t−∆t)

dt
, (7)

where A(t, t−∆t) = Wzx(t) +Uzh(t−∆t) + bz , and dA(t,t−∆t)
dt = Wz

dx(t)
dt +Uz

dh(t−∆t)
dt .

Time derivative of g(t) The continuous update vector has the form of g(t) = ϕ
(
Wgx(t) +

Ug

(
r(t)⊙ h(t−∆t)

)
+ bg

)
, and its derivative, dg(t)

dt , can be calculate as follows:
dg(t)

dt
=

(
1− ϕ(B(t, t−∆t))

)(
1 + ϕ(B(t, t−∆t))

)dB(t, t−∆t)

dt
, (8)

where B(t, t − ∆t) = Wgx(t) + Ug

(
r(t) ⊙ h(t − ∆t)

)
+ bg, and dB(t,t−∆t)

dt = Wg
dx(t)
dt +

Ug
dr(t)
dt h(t−∆t) +Ugr(t)

dh(t−∆t)
dt .

4



Under review as a conference paper at ICLR 2023

Algorithm 1: How to train Cont-GRU
Input: Training data Dtrain, Validating data Dval, Maximum iteration numbers max iter

1 Initialize θ (θ means the parameters of Cont-GRU, e.g., Wh, Uh, etc.);
2 Create a continuous path x(t) for each discrete time series sample {(xi, ti)}N−1

i=0 in Dtrain and Dval with
an interpolation algorithm;

3 i← 0;
4 while i < max iter do
5 Train θ and using a task loss L;
6 Validate and update the best parameters θ∗ with Dval;
7 i← i+ 1;
8 return θ∗;

Time derivative of r(t) The continuous reset gate is defined as r(t) = σ
(
Wrx(t) + Urh(t −

∆t) + br

)
, and its derivative dr(t)

dt is derived as follows:

dr(t)

dt
= σ

(
C(t))(1− σ(C(t, t−∆t))

)dC(t, t−∆t)

dt
, (9)

where C(t, t−∆t) = Wrx(t) +Urh(t−∆t) + br, and dC(t,t−∆t)
dt = Wr

dx(t)
dt +Ur

dh(t−∆t)
dt .

Finally, the time derivatives of h(t), r(t), z(t), and g(t) is written as follows :

d

dt

h(t)z(t)
g(t)
r(t)

=


d(z(t)⊙ζ(t,t−∆t))

dt + dg(t)
dt

σ
(
A(t, t−∆t))(1− σ(A(t, t−∆t))

)dA(t,t−∆t)
dt(

1− ϕ(B(t, t−∆t))
)(
1 + ϕ(B(t, t−∆t))

)dB(t,t−∆t)
dt

σ
(
C(t, t−∆t))(1− σ(C(t, t−∆t))

)dC(t,t−∆t)
dt

 . (10)

We note that the above definition becomes a DDE since ζ,A,B, and C have internally h(t−∆t). In
the perspective of implementations, h(t−∆t) can be approximated with h(t− s), where s is a small
step size of ODE solvers. dx(t)

dt contained by the derivatives of A,B, and C can also be calculated
since we use an interpolation method to construct x(t) (see Section 4.4 and Appendix E).

3.3 TRAINING METHOD

In Alg. 1, we show our training algorithm. Since our Cont-GRU can be used for various tasks, we
show a brief pseudo-code of the training method in Alg. 1. For a more concrete example, suppose a
time series classification task with ({(xi, ti)}N−1

i=0 ,y), where y is the ground-truth class label of the
discrete time series sample. For this, we first solve the following integral problem:h(tN−1)

r(tN−1)
z(tN−1)
g(tN−1)

=

h(0)r(0)
z(0)
g(0)

+
∫

tN−1

0

d

dt

h(t)r(t)
z(t)
g(t)

dt, (11)

where h(0), r(0), z(0),g(0) are set in the same way as the original discrete GRU.

We then feed h(tN−1) into a following output layer with a softmax activation to predict its class
label ŷ, where the task loss L is a cross-entropy loss between the prediction ŷ and the ground-truth y.
During the process, one can easily calculate the gradients using either the standard backpropagation
or the adjoint sensitivity method (Chen et al., 2018).

Well-posedness The well-posedness1 of NODEs was already proved in (Lyons et al., 2004, Theorem
1.3) under the mild condition of the Lipschitz continuity. We show that our fully continuous GRUs
are also well-posed. Almost all activations, such as ReLU, Leaky ReLU, SoftPlus, Tanh, Sigmoid,
ArcTan, and Softsign, have a Lipschitz constant of 1. Other common neural network layers, such as
dropout, batch normalization, and other pooling methods, have explicit Lipschitz constant values.
Therefore, the Lipschitz continuity of dh(t)

dt , dr(t)
dt , dz(t)

dt , and dg(t)
dt can be fulfilled in our case.

Accordingly, it is a well-posed problem. Thus, its training process is stable in practice.
1A well-posed problem means i) its solution uniquely exists, and ii) its solution continuously changes as

input data changes.

5



Under review as a conference paper at ICLR 2023

(a) GRU-ODE-Bayes (b) Cont-GRU

Figure 2: Whereas GRU-ODE-Bayes piece-wise continuously generalizes GRUs, our proposed
Cont-GRU fully continuously generalizes them.

3.4 DISCUSSION

In Figure 2, we compare our proposed method with GRU-ODE-Bayes. First, our method does not
need to use the jump mechanism since i) the time derivative of x(t) can be properly defined, and
ii) our DDE definition keeps reading the time derivative. Second, our continuous generalization
makes sense mathematically since we consider the time derivative terms of the reset gate, the update
gate, and the update vector in conjunction with the time derivative term of the hidden state. In fact,
calculating the time derivative of the hidden state requires the time derivatives of other gates, which
were ignored in GRU-ODE-Bayes. In addition, our DDE-based fully continuous GRUs do not have
the homeomorphic limitation of ODEs.

Owing to these facts of Cont-GRU, it shows more robust processing for irregular time series. In our
experiments, we compare our method with existing methods in diverse environments.

4 EXPERIMENTS

We describe our experimental environments and results. We evaluate our model on three datasets,
considering the following three situations:

1. Forecast weather in various sequence lengths with USHCN.
2. Predict patient conditions with PhysioNet Sepsis.
3. Forecast volatile stock prices and volumes for a period, which includes the COVID-19

period, with Google Stock.

We repeat training and testing procedures with five different random seeds and report their mean and
standard deviation scores. We will explain our 13 baselines in Appendix A.

4.1 FORECAST WEATHER IN VARIOUS SEQUENCE LENGTH

Ecosystems and other social systems have long been accustomed to predictable weather characteristics.
Unexpected weather conditions, such as global warming or extreme weather, occur frequently from
recently. Therefore, predicting these future weather conditions is very important to society (Salman
et al., 2015; Grover et al., 2015). Due to the nature of weather data, it is challenging to predict
long-distance weather conditions, but it is an important issue for our society.

In this paper, we forecast weather conditions with various sequence lengths. We use the United State
Historical Climatology Network (USHCN) daily dataset (Menne & Williams Jr, 2009). USHCN data
includes five climatic variables (daily temperatures, precipitation, snow, and so on) for 1,218 meteo-
rological stations across the United States over 150 years. We use a subset of 1,114 meteorological
stations over four years from 1996 to 2000 using the cleaning method proposed in (Brouwer et al.,
2019). To evaluate various models, each model reads 100 sequences and forecasts the next 10, 20, or
30 sequences.

Experimental results Table 2 shows one of the most extensively used benchmark experiments,
i.e., time series forecasting with the USHCN weather dataset. We conduct three sorts of experiments:
forecasting the next 10, 20, or 30 sequences — GRU-ODE-Bayes forecasts up to the next 3 sequences

6



Under review as a conference paper at ICLR 2023

Table 2: USHCN

Model Test MSE Memory
(MB)

Training
Time (s)10 sequence 20 sequence 30 sequence

NODE 0.23 ± 0.02 0.18 ± 0.03 0.25 ± 0.04 55.79 30.6
ODE-RNN 0.21 ± 0.03 0.17 ± 0.04 0.23 ± 0.05 565.1 9.14
GRU-∆t 0.28 ± 0.04 0.25 ± 0.02 0.30 ± 0.03 492.7 1.26
GRU-D 0.30 ± 0.02 0.25 ± 0.02 0.30 ± 0.04 528.9 1.50

GRU-ODE 0.27 ± 0.07 0.23 ± 0.09 0.31 ± 0.07 76.79 8.63
Latent-ODE 0.34 ± 0.00 0.32 ± 0.02 0.38 ± 0.00 210.3 15.2

Augmented-ODE 0.33 ± 0.01 0.33 ± 0.03 0.35 ± 0.02 197.2 46.5
ACE-NODE 0.35 ± 0.09 0.34 ± 0.07 0.38 ± 0.05 210.4 44.7

GRU-ODE-Bayes 0.39 ± 0.08 0.37 ± 0.04 0.42 ± 0.01 1,613 33.7
NJODE 0.37 ± 0.06 0.36 ± 0.01 0.39 ± 0.03 1,889 36.1
NCDE 0.24 ± 0.08 0.20 ± 0.00 0.41 ± 0.09 62.32 251

ANCDE 0.22 ± 0.04 0.18 ± 0.01 0.30 ± 0.07 121.7 267
EXIT 0.28 ± 0.01 0.24 ± 0.01 0.27 ± 0.00 182.3 271

Cont-GRU 0.18 ± 0.00 0.14 ± 0.01 0.21 ± 0.01 67.85 20.2

and our settings are much more challenging. For all cases, Cont-GRU shows the best accuracy.
Jump-based models, i.e., GRU-ODE-Bayes and NJODE, show poor accuracy, which shows that their
piece-wise continuous concepts do not effectively process weather data. Exceptionally, ODE-RNN,
whose jump mechanism is based on RNN cells, shows good performance. Since GRU-based models
are typically used for time series forecasting, some of them show reasonable results with small
standard deviations. We visualize the prediction results of Cont-GRU and the top-2 baseline models
for 20 sequences in Appendix B.

4.2 PREDICT PATIENT CONDITION WITH IRREGULAR MISSING DATA

Sepsis (Reyna et al., 2019; Reiter, 2005) is a life-threatening condition caused by bacteria or bacterial
toxins in the blood. About 1.7 million people develop sepsis in the U.S., and 270,000 die from sepsis
in a year. More than a third of people who die in U.S. hospitals have sepsis. Early sepsis prediction
could potentially save lives, so this experiment is especially meaningful.

Table 3: PhysioNet Sepsis

Model AUCROC Memory
(MB)

Training
Time (s)

NODE 0.53 ± 0.04 177.8 51.8
ODE-RNN 0.87 ± 0.02 387.3 10.8
GRU-∆t 0.88 ± 0.01 352.5 2.03
GRU-D 0.87 ± 0.02 369.8 2.45

GRU-ODE 0.85 ± 0.01 178.8 15.5
Latent-ODE 0.79 ± 0.01 207.8 314

Augmented-ODE 0.83 ± 0.02 742.3 322
ACE-NODE 0.80 ± 0.01 184.5 212

GRU-ODE-Bayes 0.52 ± 0.01 456.3 104
NJODE 0.53 ± 0.01 401.4 113
NCDE 0.88 ± 0.01 204.4 191

ANCDE 0.90 ± 0.00 247.7 181
EXIT 0.91 ± 0.00 257.2 211

Cont-GRU 0.93 ± 0.04 177.9 49.2

The dataset used in this paper consists of data from
40,335 patients in intensive care units (ICU). The data
consists of 5 static variables that do not change over
time, such as gender and age, and 34 non-static vari-
ables, such as the respiratory rate or partial pressure of
carbon dioxide from arterial blood (PaCO2). This data
can be described as an irregular time series dataset with
90% of values removed from the original full data to
protect the privacy of patients. To classify the onset of
sepsis, we consider the first 72 hours of the patient’s
hospitalization.

Experimental results Table 3 shows our experimen-
tal results of the time series classification with Phys-
ioNet Sepsis. We conduct the time series classification
task with observation intensity (OI) as an additional
variable, which was used in (Kidger et al., 2020). We report AUCROC rather than accuracy because
the dataset is significantly imbalanced. Cont-GRU shows the best performance and the model size is
small in comparison with other differential equation-based models. In this dataset, however, more
than 90% of values are missing to protect the privacy of patients. For this reason, GRU-ODE-Bayes
and NJODE do not show good performance. They can process irregular time series, but their accura-
cies are worse than others. We consider that this is because they piece-wise continuously generalize
the hidden state only. However, all NCDE-based models, i.e., NCDE, ANCDE, and EXIT, show
reasonable results since they fully continuously generalize the hidden state.

4.3 FORECAST VOLATILE STOCK PRICES AND VOLUMES

Stock prices are the results of the combination of social conditions and people’s psychological fac-
tors (Andreassen, 1987; Wäneryd, 2001). Thus, accurate stock price forecasting is a very challenging

7



Under review as a conference paper at ICLR 2023

Table 4: Google Stock

Model Test MSE Memory
(MB)

Training
Time (s)30% dropped 50% dropped 70% dropped

NODE 0.057 ± 0.006 0.054 ± 0.005 0.052 ± 0.013 4.23 1.14
ODE-RNN 0.116 ± 0.018 0.145 ± 0.006 0.129 ± 0.011 5.95 0.35
GRU-∆t 0.145 ± 0.002 0.146 ± 0.001 0.145 ± 0.002 2.35 0.02
GRU-D 0.143 ± 0.002 0.145 ± 0.002 0.146 ± 0.002 3.33 0.02

GRU-ODE 0.064 ± 0.009 0.057 ± 0.003 0.059 ± 0.004 7.93 0.28
Latent-ODE 0.052 ± 0.005 0.053 ± 0.001 0.054 ± 0.007 17.3 4.17

Augmented-ODE 0.045 ± 0.004 0.051 ± 0.005 0.057 ± 0.002 21.3 4.26
ACE-NODE 0.044 ± 0.002 0.053 ± 0.008 0.056 ± 0.003 22.6 4.88

GRU-ODE-Bayes 0.175 ± 0.001 0.185 ± 0.022 0.197 ± 0.013 24.2 4.83
NJODE 0.185 ± 0.002 0.191 ± 0.012 0.181 ± 0.031 20.8 3.48
NCDE 0.056 ± 0.015 0.054 ± 0.002 0.056 ± 0.007 9.36 1.37

ANCDE 0.048 ± 0.012 0.047 ± 0.001 0.049 ± 0.004 10.3 3.42
EXIT 0.042 ± 0.020 0.045 ± 0.001 0.046 ± 0.002 14.7 4.01

Cont-GRU 0.007 ± 0.001 0.007 ± 0.001 0.007 ± 0.002 8.89 0.79

task. Particularly, forecasting stock prices, including the duration of COVID-19, makes our task
more challenging and can properly evaluate time series forecasting models. We use the Google Stock
data (Alphabet, 2021), which has six variables, i.e., the trading volumes of Google in conjunction
with its high, low, open, close, and adjusted closing prices. We use the period from 2011 to 2021 of
Google stock data, purposely including the COVID-19 period. The goal is, given the past 20 days of
the time series values, to forecast the high, low, open, close, adjusted closing price, and volumes at
the very next 10 days.

202
0-0

8-1
1

202
0-0

8-1
3

202
0-0

8-1
5

202
0-0

8-1
7

202
0-0

8-1
9

202
0-0

8-2
1

202
0-0

8-2
3

1000

1100

1200

1300

1400

1500

1600

True
NODE
NCDE
Cont-GRU

(a) Open price

202
1-0

8-0
3

202
1-0

8-0
5

202
1-0

8-0
7

202
1-0

8-0
9

202
1-0

8-1
1

202
1-0

8-1
3

1000

1250

1500

1750

2000

2250

2500

2750

3000

True
NODE
NCDE
Cont-GRU

(b) High price

Figure 3: Forecasting visualization on
Google Stock

Experimental results The experimental results on
Google Stock are in Table 4. We conduct three sorts of
experiments — randomly drop 30%, 50%, and 70% of
observations in a time series sample. Overall, our model,
Cont-GRU, shows the best accuracy. One impressive out-
come of our method is that it is not greatly affected by the
dropping ratio. ODE-based models, except ODE-RNN,
show reasonable results and CDE-based models show bet-
ter results than ODE-based models. Among CDE-based
models EXIT shows the second-best performance in all
the dropping ratio settings. Figure 3 visualizes prediction
results. Figure 3(a) forecasts the open price from August
11, 2020 to August 23, 2020, and Figure 3(b) forecasts the
high price from August 3, 2021 to August 13, 2021. Com-
pared with the top-2 baseline models, NODE and NCDE,
our model forecasts more accurately. More visualizations
of the forecasting results are in Appendix C.

Figure 4 shows the difference between the reset gates of
Cont-GRU and GRU-ODE-Bayes. The role of the reset
gate is to determine how much of the previous hidden state
is reflected. The red line in Figure 4 shows the stock mar-
ket price for the 20-day period from April 30 to May 28,
2019. One can see that the reset gate of GRU-ODE-Bayes
does not fluctuate much, but the reset gate of Cont-GRU
captures meaningful information. More visualizations of
values in the reset gate are in Appendix D.

4.4 EMPIRICAL STUDY ON INTERPOLATION METHODS

In this section, we further experiment with several interpolation methods to create a continuous path
x(t) from {(xi, ti)}N−1

i=0 and compare their results. The results are in Table 5. We test with the natural
cubic spline (McKinley & Levine, 1998), linear control (Martin et al., 1995), and cubic Hermite
spline (De Boor et al., 1987) methods. We show that the interpolation method leads to the continuous
derivative of dx(t)

dt in Appendix E, which enables our DDE-based fully continuous Cont-GRU.

8



Under review as a conference paper at ICLR 2023

2019-4-30

2019-5-7

2019-5-14

2019-5-21

2019-5-28

1120

1130

1140

1150

1160

1170

1180

1190 Open Price

0.6

0.7

0.8

0.9

1.0

1.1

(a) GRU-ODE-Bayes

2019-4-30

2019-5-7

2019-5-14

2019-5-21

2019-5-28

1120

1130

1140

1150

1160

1170

1180

1190 Open Price

0.90

0.95

1.00

1.05

1.10

1.15

(b) Cont-GRU

Figure 4: Values in the reset gate. Our method gives higher weights to recent observations whereas
GRU-ODE-Bayes gives almost equal weights to all observations, which shows the correctness of our
method.

Table 5: Interpolation methods
Interpolation Methods USHCN (MSE) Sepsis (AUCROC) Google Stock (MSE)
Natural Cubic Spline 0.15 ± 0.03 0.89 ± 0.01 0.007 ± 0.001

Linear Control 0.16 ± 0.02 0.88 ± 0.04 0.008 ± 0.001
Cubic Hermite Spline 0.14 ± 0.01 0.93 ± 0.04 0.007 ± 0.001

Natural cubic spline The natural cubic spline method must have access to the entire time series
data for this control signal before constructing a continuous path. Changes to one previous data point
do not affect the overall structure. This method can be integrated numerically quickly because it is
relatively smooth and changes slowly.

Linear control The linear control method generates the simplest and most natural control signal
among the interpolation methods. An interpolated path is generated while applying the linear
interpolation between observations. This linear control defines discrete online control paths for all
observed data across all time, and so has the same online qualities as RNNs.

Cubic Hermite spline The linear control method is discrete, which can be a drawback. However,
the cubic Hermite spline interpolation method smooths out discontinuities. This method achieves this
by combining adjacent observations with a cubic spline. Comparing the cubic Hermite spline method
with the natural cubic spline method, the main difference is that equations are solved independently
at each point in time.

For USHCN, the cubic Hermite spline method shows the best performance. However, all interpolation
methods show good results. In the case of PhysioNet Sepsis, the cubic Hermite spline method shows
the best performance. Since it is highly irregular, the linear control method shows relatively poor
results. In Google Stock, the linear control method and the cubic Hermite spline method show the
best performance among the three interpolation methods. However, all three interpolation results are
significantly better than existing baselines.

5 CONCLUSIONS AND LIMITATIONS

We present the first fully continuous GRU model. The hidden state h(t) had been continuously
generalized by existing methods. However, to our knowledge, Cont-GRU is the first model to
successively generalize all parts (gates) of the GRU, including hidden states. To this end, we rely
on interpolation methods to reconstruct a continuous path from a discrete time series sample. We
then define a DDE-based model to interpret GRUs in a continuous manner. In our experiment with 3
real-world datasets and 13 baselines, our method consistently shows the best accuracy. Interestingly,
other piece-wise continuous models generalizing the hidden state only do not work well in some
cases where our fully continuous model works well. We consider that these experimental results well
prove the efficacy of the fully continuous model. However, our model shows good performance, but
there exists room for improvement. For example, in the USHCN dataset, our model performs well at
forecasting sudden changes, but its absolute error scale is not always satisfactory.

9



Under review as a conference paper at ICLR 2023

6 ETHICS STATEMENT

In PhysioNet Sepsis, there are 40,335 patients’ bio data recorded for 72 hours. We downloaded this
data from PhysioNet. They intentionally deleted 90% of observations to protect the patients’ personal
information. Therefore, there are no concerns about their privacy leakage via our research.

Our method can be used for various purposes. One can use our method for forecasting stock prices
and Bitcoin prices to abuse the forecast information. At the same time, however, others can use it for
their business decision-making, e.g., controlling the risk of financial institutions. In total, we consider
that our research will bring more positive benefits to our society than negative ones.

7 REPRODUCIBILITY STATEMENT

The source codes and data required to reproduce the reported results are available in the supplementary
material. We enclose a ReadMe file describing all the detailed execution steps to reproduce our
results. We also list all the GitHub links to our baselines and all the hyperparameter settings we used
for our experiments.

REFERENCES

Alphabet. Google Stock. https://finance.yahoo.com/quote/GOOG/history?p=
GOOG&guccounter=1, 2021.

Paul B Andreassen. On the social psychology of the stock market: Aggregate attributional effects and
the regressiveness of prediction. Journal of Personality and Social Psychology, 53(3):490, 1987.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. In NeurIPS, 2019.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural
networks for multivariate time series with missing values. Scientific reports, 8(1):1–12, 2018.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In NeurIPS, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Carl De Boor, Klaus Höllig, and Malcolm Sabin. High accuracy geometric hermite interpolation.
Computer Aided Geometric Design, 4(4):269–278, 1987.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In NeurIPS, 2019.

Tak-chung Fu. A review on time series data mining. Engineering Applications of Artificial Intelligence,
24(1):164–181, 2011.

Aditya Grover, Ashish Kapoor, and Eric Horvitz. A deep hybrid model for weather forecasting. In
Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data
mining, pp. 379–386, 2015.

Calypso Herrera, Florian Krach, and Josef Teichmann. Neural jump ordinary differential equations:
Consistent continuous-time prediction and filtering. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=JFKR3WqwyXR.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:1735–80,
12 1997. doi: 10.1162/neco.1997.9.8.1735.

Sheo Yon Jhin, Minju Jo, Taeyong Kong, Jinsung Jeon, and Noseong Park. Ace-node: Attentive
co-evolving neural ordinary differential equations. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 736–745, 2021a.

10

https://finance.yahoo.com/quote/GOOG/history?p=GOOG&guccounter=1
https://finance.yahoo.com/quote/GOOG/history?p=GOOG&guccounter=1
https://openreview.net/forum?id=JFKR3WqwyXR


Under review as a conference paper at ICLR 2023

Sheo Yon Jhin, Heejoo Shin, Seoyoung Hong, Minju Jo, Solhee Park, Noseong Park, Seungbeom
Lee, Hwiyoung Maeng, and Seungmin Jeon. Attentive neural controlled differential equations for
time-series classification and forecasting. In 2021 IEEE International Conference on Data Mining
(ICDM), pp. 250–259. IEEE, 2021b.

Sheo Yon Jhin, Jaehoon Lee, Minju Jo, Seungji Kook, Jinsung Jeon, Jihyeon Hyeong, Jayoung
Kim, and Noseong Park. Exit: Extrapolation and interpolation-based neural controlled differential
equations for time-series classification and forecasting. In Proceedings of the ACM Web Conference
2022, pp. 3102–3112, 2022.

Ian D Jordan, Piotr Aleksander Sokół, and Il Memming Park. Gated recurrent units viewed through
the lens of continuous time dynamical systems. Frontiers in computational neuroscience, pp. 67,
2021.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. In NeurIPS, 2020.

Mantas Lukoševičius and Arnas Uselis. Time-adaptive recurrent neural networks, 2022. URL
https://arxiv.org/abs/2204.05192.

Terry Lyons, M. Caruana, and T. Lévy. Differential Equations Driven by Rough Paths. Springer,
2004. École D’Eté de Probabilités de Saint-Flour XXXIV - 2004.

Clyde Martin, Per Enqvist, John Tomlinson, and Zhimin Zhang. Linear control theory, splines and
interpolation. In Computation and Control iv, pp. 269–287. Springer, 1995.

Sky McKinley and Megan Levine. Cubic spline interpolation. College of the Redwoods, 45(1):
1049–1060, 1998.

Matthew J Menne and Claude N Williams Jr. Homogenization of temperature series via pairwise
comparisons. Journal of Climate, 22(7):1700–1717, 2009.

Michael C Mozer, Denis Kazakov, and Robert V Lindsey. Discrete event, continuous time rnns.
arXiv preprint arXiv:1710.04110, 2017.

P. Jerome Reiter. Using cart to generate partially synthetic, public use microdata. Journal of Official
Statistics, 21:441, 01 2005.

Matthew A Reyna, Chris Josef, Salman Seyedi, Russell Jeter, Supreeth P Shashikumar, M Bran-
don Westover, Ashish Sharma, Shamim Nemati, and Gari D Clifford. Early prediction of sepsis
from clinical data: the physionet/computing in cardiology challenge 2019. In CinC, pp. Page
1–Page 4, 2019. doi: 10.23919/CinC49843.2019.9005736.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In NeurIPS. 2019.

Afan Galih Salman, Bayu Kanigoro, and Yaya Heryadi. Weather forecasting using deep learning
techniques. In 2015 international conference on advanced computer science and information
systems (ICACSIS), pp. 281–285. Ieee, 2015.

Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time series
with continuous recurrent units. CoRR, abs/2111.11344, 2021. URL https://arxiv.org/
abs/2111.11344.

Karl-Erik Wäneryd. Stock-market psychology: How people value and trade stocks. Edward Elgar
Publishing, 2001.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Comparative study of cnn and rnn for
natural language processing. arXiv preprint arXiv:1702.01923, 2017.

Qunxi Zhu, Yao Guo, and Wei Lin. Neural delay differential equations. arXiv preprint
arXiv:2102.10801, 2021.

Qunxi Zhu, Yifei Shen, Dongsheng Li, and Wei Lin. Neural piecewise-constant delay differential
equations. arXiv preprint arXiv:2201.00960, 2022.

11

https://arxiv.org/abs/2204.05192
https://arxiv.org/abs/2111.11344
https://arxiv.org/abs/2111.11344


Under review as a conference paper at ICLR 2023

A BASELINES

We test the following state-of-the-art baselines to compare our proposed Cont-GRU with:

1. NODEs (Chen et al., 2018) are a continuous-time model that defines the hidden state h(t)
with an initial value problem (IVP).

2. ODE-RNN is a combination of RNN and NODE. When a NODE evolves a hidden state
h(t) continuously between observations, an RNN Cell causes that h(t) jumps to another
hidden state when a new observation arrives.

3. GRU-∆t and GRU-D are advanced versions of GRU to process irregular time series. GRU-
∆t is a GRU that additionally takes the time difference between observations as an input.
GRU-D (Che et al., 2018) is a modified version of GRU-∆t with learnable exponential
decay between observations.

4. GRU-ODE similar to Neural ODE. The only difference is that used GRU Cell as an ODE
function, GRU-ODE is piece-wise continuous through all time.

5. Latent-ODE is a model that can explain the latent state with ODEs, and is a suitable model
for time series prediction.

6. Augmented-ODE is the method proposed by (Dupont et al., 2019), which inserts zeros to
the ODE state of Latent-ODE.

7. ACE-NODE (Jhin et al., 2021a) is an attention-based Neural ODE model.

8. GRU-ODE-Bayes (Brouwer et al., 2019) is a combination of GRU-ODE and GRU-Bayes.
GRU-ODE calculates a hidden state h(t) in a continuous manner between observations,
and GRU-Bayes is used to discretely jump h(t) to another state when a new observation
arrives. GRU-ODE-Bayes is often used to predict sporadically observed data. However,
those models that combine NODEs with jumps, such as ODE-RNN and GRU-ODE-Bayes,
are not completely continuous but piece-wise continuous.

9. Neural jump ODEs (NJODEs) (Herrera et al., 2021), on the other hand, are a data-driven
approach that continuously learns the conditional expectations of a probabilistic process.

10. Neural CDEs (NCDEs (Kidger et al., 2020)) are a conceptually enhanced model of NODEs
based on the theory of controlled differential equations.

11. Attentive Neural CDE (ANCDE) (Jhin et al., 2021b) is an attention-based NCDE model.

12. Extrapolation and Interpolation-based Neural CDE (EXIT) (Jhin et al., 2022) use inter-
polation process of NCDEs, an encoder-decoder architecture corresponding to our neural
network-based interpolation versus conventional explicit interpolation, to generate another
latent continuous path and exploit its generative properties. In this paper, they can extrapo-
late beyond the temporal domain of the original data, if necessary. Thus, NCDEs design
of EXIT can use both interpolated and extrapolated information for downstream machine
learning tasks.

The best hyperparameters of our model and baselines are reported in Appendix G.

1. NODE : https://github.com/rtqichen/torchdiffeq

2. ODE-RNN, GRU-∆t, GRU-D, GRU-ODE and NCDE : https://github.com/
patrick-kidger/NeuralCDE

3. Latent-ODE, Augmented-ODE : https://github.com/YuliaRubanova/
latent_ode

4. ACE-NODE : https://github.com/sheoyon-jhin/ACE-NODE

5. GRU-ODE-Bayes : https://github.com/edebrouwer/gru_ode_bayes

6. NJODE : https://github.com/HerreraKrachTeichmann/NJODE

7. ANCDE : https://github.com/sheoyon-jhin/ANCDE

8. EXIT : https://github.com/sheoyon-jhin/EXIT

12

https://github.com/rtqichen/torchdiffeq
https://github.com/patrick-kidger/NeuralCDE
https://github.com/patrick-kidger/NeuralCDE
https://github.com/YuliaRubanova/latent_ode
https://github.com/YuliaRubanova/latent_ode
https://github.com/sheoyon-jhin/ACE-NODE
https://github.com/edebrouwer/gru_ode_bayes
https://github.com/HerreraKrachTeichmann/NJODE
https://github.com/sheoyon-jhin/ANCDE
https://github.com/sheoyon-jhin/EXIT


Under review as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time

−0.3

−0.2

−0.1

0.0

0.1

True
NODE
ODERNN
Cont-GRU

(a) SNOW

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

True
NODE
ODERNN
Cont-GRU

(b) SNOW

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

True
NODE
ODERNN
Cont-GRU

(c) PRCP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

True
NODE
ODERNN
Cont-GRU

(d) PRCP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time

−0.6

−0.4

−0.2

0.0

0.2

0.4 True
NODE
ODERNN
Cont-GRU

(e) SNWD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6 True
NODE
ODERNN
Cont-GRU

(f) SNWD

Figure 5: Forecasting visualization on USHCN

B VISUALIZATION ON USHCN

Figure 6 visualizes the prediction results for snowfall (SNOW), precipitation (PRCP), snow depth
(SNWD), maximum temperature (TMAX), and minimum temperature (TMIN). It can be seen that
our model in blue line predicts trends better than the top-2 baseline models, ODE-RNN and NODE.

C VISUALIZATION ON GOOGLE STOCK

In addition to the period shown in Figure 3, we show the visualization of Google Stock for various
periods and various variables in Figure 7 and 8.

D VALUES IN THE RESET GATE

In Figure 9, we visualize the results of the role of the reset gate. We visualize for the 20-day period i)
from November 13, 2017 to December 11, 2017, and ii) from May 7, 2021 to June, 4 2021 in Google
Stock.

13



Under review as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time

−8

−6

−4

−2

0

2

4

6

True
NODE
ODERNN
Cont-GRU

(a) TMAX

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time

−2

0

2

4

True
NODE
ODERNN
Cont-GRU

(b) TMAX

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time

−2

−1

0

1

2

True
NODE
ODERNN
Cont-GRU

(c) TMIN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

True
NODE
ODERNN
Cont-GRU

(d) TMIN

Figure 6: Forecasting visualization on USHCN

E SPECIFIC DESCRIPTION OF INTERPOLATION METHODS

A cubic spline is a spline of piece-wise cubic polynomials passing through m given control points. A
second order derivative of zero at the endpoints is assumed to solve for a cubic spline. This provides
boundary conditions that allow the two equations to be solved with respect to the m-2 equation. The
system of equations for a cubic spline in one dimension can be written as :

Si(x) = ai + bi ∗ x+ ci ∗ x2 + dix
3 (12)

For the function y = f(x), we take a set of points [xi, yi] where i ∈ {0, 1, 2, ..., n}. It is a piece-wise
continuous curve that passes through each value in the table for cubic spline interpolation. The
prerequisites for the spline of degree K = 3 are as follows: first, the domain of s must lie inside the
intervals of [a, b]; second, all three parameters must be continuous functions on [a, b].

S(x) = {Si(x)|x ∈ [ti−1, ti], i ∈ [1, n)} (13)

Si(x) is defined as a cubic polynomial in the sub interval [xi, xi+1]. We need 4n parameters to solve
the spline because there are n intervals and 4 coefficients in each equation. We may derive the 2n
equation from the requirement that each cubic spline equation meet the value at both ends:

Si(xi) = yi, (14)
Si(xi+1) = yi+1 (15)

In addition to being continuous and differentiable, the aforementioned cubic spline equations should
also have defined first and second derivatives that are continuous on control points.

S
′

i−1(xi) = S
′

i(xi) (16)

S
′

i−1(xi) = S
′

i(xi) (17)

The 2n− 2 equation restrictions are given for {1, 2, 3, ..., n− 1}. Thus, two additional equations are
required to solve the above cubic spline. We’ll employ some natural boundary conditions for it. We
assume that the second derivative of the spline at boundary points is zero in the Natural Cubic Spline:

S
′′
(x0) = 0 (18)

S
′′
(xn) = 0 (19)

14



Under review as a conference paper at ICLR 2023

201
7-0

4-0
3

201
7-0

4-0
5

201
7-0

4-0
7

201
7-0

4-0
9

201
7-0

4-1
1

201
7-0

4-1
3

201
7-0

4-1
5

201
7-0

4-1
7

760

780

800

820

840

860

880

900

920

True
NODE
NCDE
Cont-GRU

(a) Open price

202
0-0

6-2
9

202
0-0

7-0
1

202
0-0

7-0
3

202
0-0

7-0
5

202
0-0

7-0
7

202
0-0

7-0
9

202
0-0

7-1
1

202
0-0

7-1
3

1100

1200

1300

1400

1500

True
NODE
NCDE
Cont-GRU

(b) Open price

201
4-1

1-2
7

201
4-1

1-2
9

201
4-1

2-0
1

201
4-1

2-0
3

201
4-1

2-0
5

201
4-1

2-0
7

201
4-1

2-0
9

520

540

560

580

600

620
True
NODE
NCDE
Cont-GRU

(c) High price

202
1-0

8-0
3

202
1-0

8-0
5

202
1-0

8-0
7

202
1-0

8-0
9

202
1-0

8-1
1

202
1-0

8-1
3

1000

1250

1500

1750

2000

2250

2500

2750

3000

True
NODE
NCDE
Cont-GRU

(d) High price

201
4-1

1-2
7

201
4-1

1-2
9

201
4-1

2-0
1

201
4-1

2-0
3

201
4-1

2-0
5

201
4-1

2-0
7

201
4-1

2-0
9

510

520

530

540

550 True
NODE
NCDE
Cont-GRU

(e) Low price

201
7-1

0-0
7

201
7-1

0-0
9

201
7-1

0-1
1

201
7-1

0-1
3

201
7-1

0-1
5

201
7-1

0-1
7

201
7-1

0-1
9

925

950

975

1000

1025

1050

1075

1100
True
NODE
NCDE
Cont-GRU

(f) Low price

Figure 7: Forecasting visualization on Google Stock

15



Under review as a conference paper at ICLR 2023

201
7-1

0-0
7

201
7-1

0-0
9

201
7-1

0-1
1

201
7-1

0-1
3

201
7-1

0-1
5

201
7-1

0-1
7

201
7-1

0-1
9

920

940

960

980

1000

1020

1040

1060

1080

True
NODE
NCDE
Cont-GRU

(a) Close price

202
1-0

3-3
1

202
1-0

4-0
1

202
1-0

4-0
3

202
1-0

4-0
5

202
1-0

4-0
7

202
1-0

4-0
9

202
1-0

4-1
1

202
1-0

4-1
3

1000

1250

1500

1750

2000

2250

2500

2750

3000
True
NODE
NCDE
Cont-GRU

(b) Close price

201
7-0

4-0
3

201
7-0

4-0
5

201
7-0

4-0
7

201
7-0

4-0
9

201
7-0

4-1
1

201
7-0

4-1
3

201
7-0

4-1
5

201
7-0

4-1
7

775

800

825

850

875

900

925

950
True
NODE
NCDE
Cont-GRU

(c) Adjusted close price

202
0-0

1-2
3

202
0-0

1-2
5

202
0-0

1-2
7

202
0-0

1-2
9

202
0-0

1-3
1

202
0-0

2-0
1

202
0-0

2-0
3

2300

2400

2500

2600

2700

True
NODE
NCDE
Cont-GRU

(d) Adjusted close price

202
1-0

6-0
7

202
1-0

6-0
9

202
1-0

6-1
1

202
1-0

6-1
3

202
1-0

6-1
5

202
1-0

6-1
7

2.66495

2.66500

2.66505

2.66510

2.66515

2.66520

2.66525

2.66530
1e6

True
NODE
NCDE
Cont-GRU

(e) Volume

202
0-0

6-0
9

202
0-0

6-1
1

202
0-0

6-1
3

202
0-0

6-1
5

202
0-0

6-1
7

202
0-0

6-1
9

202
0-0

6-2
1

200

250

300

350

400

450

500

550

+1.5420000000e6

True
NODE
NCDE
Cont-GRU

(f) Volume

Figure 8: Forecasting visualization on Google Stock

16



Under review as a conference paper at ICLR 2023

2017-11-13

2017-11-20

2017-11-28

2017-12-5

2017-12-11

990

1000

1010

1020

1030

1040

1050

1060

Open Price
0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

(a) GRU-ODE-Bayes

2017-11-13

2017-11-20

2017-11-28

2017-12-5

2017-12-11

990

1000

1010

1020

1030

1040

1050

1060

Open Price
0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

(b) Cont-GRU

2021-5-7

2021-5-14

2021-5-21

2021-5-28

2021-6-4

2250

2275

2300

2325

2350

2375

2400

2425 Open Price

0.50

0.55

0.60

0.65

0.70

(c) GRU-ODE-Bayes

2021-5-7

2021-5-14

2021-5-21

2021-5-28

2021-6-4

2250

2275

2300

2325

2350

2375

2400

2425 Open Price

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

(d) Cont-GRU

Figure 9: Values in the reset gate

Now that we know that the S(x) is a third-order polynomial, we may infer that the S
′′
(x) is an

interpolating linear spline. As a result, we first create S
′′
(x) before twice integrating it to get

S(x). Now, let’s assume that zi = S
′′
(xi), i ∈ {0, 1, 2..n} and from the natural boundary condition

z0 = zn = 0 that ti = xi for i ∈ {0, 1, ...n}. A linear spline is produced by twice differentiating a
cubic spline, and it has the following notation:

S
′′

i (x) = zi
x− ti+1

ti − ti+1
+ zi+1

x− ti
ti+1 − ti

(20)

where, ∆ti = ti+1 − ti; t ∈ {0, 1, 2, ..., n}. The equation is written as : S
′′
(x) = zi+1

x−ti
∆ti

+

zi
ti+1−x
∆ti

Integrating this equation twice we get a cubic spline.

S(x) =
zi+1

6∆ti
(x− ti)

3 +
zi

6∆ti
(ti+1 − x)3 + Ci(xi − t) +Di(ti+1 − x) (21)

where,

Ci =
yi+1

∆ti
− zi+1 ∗∆ti

6
(22)

Di =
yi
∆ti

− zi ∗∆ti
6

(23)

Now, verify the derivative at ti is continuous. We must first locate the derivative and add the following
condition:

S′(x) =
zi+1

2∆ti
(x− ti)

2 − zi
2∆ti

(ti+1 − x)2 +
1

∆ti
(yi+1 − yi)−

∆ti
6

(zi+1 − zi) (24)

where, bi = 1
∆ti

(yi+1 − yi). The following equation results from calculating the continuity equation
mentioned above:

6(bi − bi−1) = ∆ti−1zi−1 + 2(∆ti−1 +∆ti)zi +∆tizi+1 (25)

Since there are n parameters of our z, and n systems of equations we know, we can find z by solving
the system of equations.

17



Under review as a conference paper at ICLR 2023

F DATA PREPROCESSING DETAILS

The datasets used in our experiments are publicly available and can be downloaded at the following
locations:

1. USHCN : https://cdiac.ess-dive.lbl.gov/ftp/ushcn_daily/

2. PhysioNet Sepsis2 : https://physionet.org/content/challenge-2019/1.
0.0/

3. Google Stock : https://finance.yahoo.com/quote/GOOG/history?p=
GOOG

We split the entire dataset into training/validating/testing parts. The first 70% of the data is used as
training, 15% is used for validating, and the last 15% is used for testing.

F.1 USHCN

We follow the preprocessing process of GRU-ODE-Bayes (Brouwer et al., 2019). We look at 100
time sequences for training and forecast next 10,20,30 time sequences. And the stride interval is 50
time sequences.

F.2 PHYSIONET SEPSIS

We follow the preprocessing settings of NCDE (Kidger et al., 2020). NCDE used a new variable,
called observation intensity (OI), for learning. The observation intensity (OI) is the frequency of
observations.

F.3 GOOGLE STOCK

We used the Google Stock data from 2011 to 2021. Since the scale of each variable is different,
normalization was performed between 0 and 1. We look at 20 time sequences for training and forecast
next 10 time sequences. And the stride interval is 5 time sequences.

G HYPERPARAMETERS

For reproducibility, we also report the best hyperparameters.

G.1 USHCN

In USHCN, we train for 150 epochs with a batch size of 256, and stop early if the training loss
doesn’t decrease for 50 epochs. A hidden size in {19, 29, 39, 49, 59, 69} and a learning rate λ in
{1.0e−3, 5.0e−3, 1.0e−2, 5.0e−2} are used.

1. For baselines, we use λ = 5.0e−3, hidden size = 49, and weight decay = 1.0e−3.

2. For Cont-GRU, we use λ = 5.0e−3, hidden size = 19, and weight decay = 1.0e−4.

G.2 PHYSIONET SEPSIS

In PhysioNet Sepsis, we train for 100 epochs with a batch size of 1,024, and stop early if the training
loss doesn’t decrease for 50 epochs. A hidden vector size in {29, 39, 49, 59, 69} and a learning rate λ
in {1.0e−3, 5.0e−3, 1.0e−2, 5.0e−2} are used.

1. For baselines, we use λ = 1.0e−2, hidden size = 49, and weight decay = 1.0e−3.

2. For Cont-GRU, we use λ = 1.0e−3, hidden size = 59, and weight decay = 1.0e−2.

2This dataset follows the license policy of CC-BY 4.0.

18

https://cdiac.ess-dive.lbl.gov/ftp/ushcn_daily/
https://physionet.org/content/challenge-2019/1.0.0/
https://physionet.org/content/challenge-2019/1.0.0/
https://finance.yahoo.com/quote/GOOG/history?p=GOOG
https://finance.yahoo.com/quote/GOOG/history?p=GOOG


Under review as a conference paper at ICLR 2023

G.3 GOOGLE STOCK

In Google Stock, we train for 200 epochs with a batch size of 256, and stop early if the training loss
doesn’t decrease for 100 epochs. We use a hidden vector size of {15, 25, 35, 45}, and a learning rate
λ of {1.0e−4, 5.0e−4, 1.0e−3, 5.0e−3}.

1. For baselines, we use λ = 1.0e−2, hidden size = 25, and weight decay = 1.0e−4.
2. For Cont-GRU, we use λ = 1.0e−2, hidden size = 25, and weight decay = 1.0e−4.

H COMPUTING INFRASTRUCTURES

In this section, we describe our software/hardware environments. All experiments were conducted
in the following software and hardware environments: UBUNTU 18.04 LTS, PYTHON 3.8, NUMPY
1.21.5, SCIPY 1.7.3, MATPLOTLIB 3.3.1, PYTORCH 1.7.1, CUDA 11.0, GEFORCE RTX 3090. We
repeat the training and testing procedures with five different random seeds and report their mean and
standard deviation accuracy.

I WHY GRUS SHOULD BE FORMULATED AS DDES?

There are several attempts to interpret GRUs in a continuous manner for solving problems such as time
series forecasting, classification, and so forth Mozer et al. (2017); Jordan et al. (2021). This shows
how meaningful those attempts are in the field of time series. All these continuous interpretations
of GRUs are robust to irregular time series processing — of course, then can process regular time
series as well. Therefore, one can use a trained continuous model for real-world environments where
time series observations can be missing from time to time (due to malfunctioning sensors and/or
communication channels while collecting data).

In addition, our Cont-GRU, the first DDE-based continuous modeling of GRUs, has a couple of
strong points in comparison with existing methods: i) Our DDE-based modeling does not have the
homeomorphic limitation of ODEs. In all the tasks in our experiments, our method significantly
outperforms existing methods. ii) Our method has smaller empirical memory usage and training time
than those of existing continuous models (as reported in our experimental results). Owing to the
increased model capability by DDEs, our model size is relatively smaller than others, resulting in
lightweight empirical processing.

In the design philosophy of GRU cells, previous information is used to determine current output, i.e.,
long/short-term dependencies, and this concept is closely related to that of DDEs. Since DDEs are
to model time-delay systems where long/shot-term past information influences current output, we
believe that GRUs should be continuously interpreted in DDEs and our experimental results justify it.

19


	Introduction
	Related work
	Proposed method
	Overall workflow
	Fully continuous GRUs
	Training method
	Discussion

	Experiments
	Forecast weather in various sequence length
	Predict patient condition with irregular missing data
	Forecast volatile stock prices and volumes
	Empirical study on interpolation methods

	Conclusions and limitations
	Ethics Statement
	Reproducibility Statement
	Baselines
	Visualization on USHCN
	Visualization on Google Stock
	Values in the reset gate
	Specific description of Interpolation Methods
	Data preprocessing details
	USHCN
	PhysioNet Sepsis
	Google Stock

	Hyperparameters
	USHCN
	PhysioNet Sepsis
	Google Stock

	Computing infrastructures
	Why GRUs should be formulated as DDEs?

