
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC SVD-ENHANCED APPROACH FOR FEDER-
ATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) has emerged as a promising paradigm for collaborative
machine learning while preserving data privacy. However, existing FL approaches
face challenges in balancing model generalization among heterogeneous clients
and resistance to malicious attacks. This paper introduces Dynamic SVD-driven
Federated Learning (DSVD-FL), a novel approach that addresses these challenges
simultaneously. DSVD-FL dynamically adjusts the contribution of each client
using Singular Value Decomposition (SVD), introducing an adaptive weighting
mechanism based on singular value contributions and vector alignments. The-
oretical analysis demonstrates the convergence properties and computational ef-
ficiency of our approach. Experimental results on both IID and non-IID datasets
show that DSVD-FL outperforms state-of-the-art FL approaches in terms of model
accuracy, robustness against various attack scenarios, while maintaining compet-
itive computational efficiency. We perform an ablation study to explore the key
components of SVD that impact the federated learning performance.

1 INTRODUCTION

Federated Learning (FL) has emerged as a transformative approach in distributed machine learning,
allowing multiple clients to collaboratively train a model without sharing their raw data (McMahan
et al., 2017; Krizhevsky et al., 2009; Yang et al., 2019) . In FL, clients typically refer to devices or
nodes that possess local data and participate in the training process. These diverse clients unite their
efforts to collectively train a robust global model (Kairouz et al., 2021; Bonawitz, 2019). Such col-
laboration leverages the unique strengths of each client’s data and computational resources (Smith
et al., 2017; Konečnỳ, 2016), enhancing the overall learning outcomes by integrating varied per-
spectives and information into a single model (Zhao et al., 2018; Hard et al., 2018; Briggs et al.,
2020).

Despite these advantages, FL faces several core challenges that limit its widespread adoption. One
major issue is the poor generalization performance of existing FL approaches when dealing with
non-IID (non-Independent and Identically Distributed) data, where data distributions differ signif-
icantly across clients (Li et al., 2020a; Karimireddy et al., 2020). Non-IID data conditions are
prevalent in real-world scenarios (Li et al., 2022; Zhu et al., 2021; Li et al., 2021) and can result in
biased global models that disproportionately favor clients with larger or higher-quality dataset (Hsu
et al., 2019; Arivazhagan et al., 2019; Li et al., 2019b), reducing the overall model accuracy (Wang
et al., 2020; Sattler et al., 2020; Yeganeh et al., 2020) and limiting its generalization capacity (Yu
et al., 2020; Ghosh et al., 2020; Fallah et al., 2020).

In addition to generalization issues, FL approaches are vulnerable to malicious clients (Bagdasaryan
et al., 2020; Bhagoji et al., 2019). Attackers can participate in the FL process by submitting poisoned
model updates (Xie et al., 2018; Tolpegin et al., 2020), which can severely degrade the performance
of the global model (Fang et al., 2020).

Addressing these intertwined challenges requires a more adaptive approach. To this end, we intro-
duce DSVD-FL, a Dynamic SVD-driven FL approach, designed to optimize federated learning in
heterogeneous and adversarial environments. Unlike traditional FL methods, such as FedProx (Li
et al., 2020a), FedSVD (Grammenos et al., 2020), and FedCPA (Han et al., 2023), which primar-
ily focus on static aggregation techniques or compression for communication efficiency, DSVD-FL
introduces a novel dynamic mechanism that combines SVD-driven similarity measures, adaptive
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weighting, and dynamic truncation. DSVD-FL adapts to both the diversity of client data and the
potential presence of malicious participants by dynamically adjusting the contribution of each client
to the global model. This is achieved through Singular Value Decomposition (SVD), which analyzes
the structure of client updates to assess and weigh contributions based on their similarity and rele-
vance to the overall model improvement. By continuously fine-tuning client influence, DSVD-FL
not only enhances model generalization in challenging non-IID settings but also improves defense
against adversarial attacks by mitigating the impact of poisoned updates. Therefore, DSVD-FL
fundamentally improves the process of representation learning.

This paper makes the following contributions:

• We propose a dynamic SVD-driven approach, DSVD-FL, which adapts client contribu-
tions based on multi-faceted model similarity, ensuring fairness and improving robustness
against adversarial attacks.

• DSVD-FL improves model generalization in non-IID settings through dynamic adjustment
and adaptive weighting of client updates, addressing data heterogeneity across clients.

• DSVD-FL introduces a dynamic truncation mechanism that adjusts the complexity of client
updates based on their performance. This approach filters noisy or adversarial updates.

• DSVD-FL provides both theoretical convergence guarantees and empirical validation on
real-world datasets, outperforming state-of-the-art methods like FedProx, FedSVD, and
FedCPA in terms of accuracy, fairness, and resilience to adversarial behavior.

1.1 RELATED WORK

Several FL approaches have been proposed to address the challenges of non-IID data, fairness, and
robustness, but none have provided a comprehensive solution.

FedProx (Li et al., 2020a) builds upon the standard FedAvg approach by introducing a proximal
term in the local objective function, which helps stabilize the training process in non-IID settings
by constraining the distance between local model and the global model. While FedProx improves
convergence in heterogeneous environments, its inability to handle adversarial threats leaves models
vulnerable to poisoned updates.

FedSVD (Grammenos et al., 2020) incorporates SVD for FL to compress client updates, thereby
reducing communication costs. However, the focus of FedSVD is on data compression rather than
optimizing model generalization or robustness against adversarial attacks. In addition, it does not
dynamically adjust client contributions based on model similarity or address non-IID challenges
explicitly, thus resulting in suboptimal performance in non-IID environments.

FedCPA (Han et al., 2023) addresses the problem of adversarial attacks in FL by performing crit-
ical parameter analysis to detect and down-weight potentially malicious clients. FedCPA measures
model similarity across clients and discards updates that deviate significantly from the majority.
However, this approach focuses primarily on attack resistance and does not explicitly account for
the heterogeneity of non-IID data, limiting its ability to generalize well across diverse client popu-
lations.

Table 1: Comparison of DSVD-FL with existing FL approaches
Feature FedProx FedSVD FedCPA DSVD-FL
Dynamic client contribution × × ✓ ✓
SVD-based compression × ✓ × ✓
Attack resistance × × ✓ ✓
Adaptive weighting × × ✓ ✓
Convergence guarantee ✓ × × ✓
Non-IID optimization ✓ × ✓ ✓
Parameter importance analysis × × ✓ ✓

In contrast to existing approaches, DSVD-FL uniquely integrates dynamic client weighting, leverag-
ing SVD for robust update analysis and adaptability to non-IID data. As shown in Table 1, DSVD-FL
addresses key limitations found in current FL methods, including the lack of robust attack resistance
and non-IID data optimization.
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2 METHODOLOGY

In this section, we present DSVD-FL (Dynamic SVD-based Federated Learning), a novel approach
designed to enhance federated learning in environments characterized by non-IID data distributions,
client heterogeneity, and potential adversarial threats. DSVD-FL achieves this by dynamically ad-
justing client contributions leveraging SVD, thereby optimizing both generalization and robustness
of the global model. We detail the problem formulation, introduce the SVD-driven aggregation
process, and describe the dynamic truncation mechanism that drives performance improvement of
DSVD-FL.

2.1 PROBLEM FORMULATION

We consider a federated learning scenario involving a central server and N clients, each client i
holds a local dataset Di = {(xi

j , y
i
j)}

ni
j=1, where xi

j ∈ Rd represents the input features, yij presents
the corresponding label, and ni represents the number of samples in the local dataset of client i.
The goal of FL is to collaboratively train a global model w ∈ Rm that minimizes the overall loss
function:

min
w

F (w) =

N∑
i=1

wiFi(w) (1)

where Fi(w) is the local loss function for client i, and wi is the weight assigned to client i,
with

∑N
i=1 wi = 1. Typically, wi is set proportional to the client’s dataset size, i.e., wi =

ni∑N
j=1 nj

,

to ensure fair representation of each client’s data in the aggregation process.

The FL training process proceeds in series of communication rounds. In each communication
round t, the server sends the current global model wt to a subset of clients. Each selected client i
then updates the global model locally based on its local data:

wi
t = wt − η∇Fi(wt) (2)

where η is the learning rate. This step allows each client to adapt the global model to its local data,
capturing client-specific patterns and information without sharing raw data. Here, ∇Fi(wt) repre-
sents the gradient of the local loss function Fi(wt) for client i with respect to the global model wt,
reflecting the update direction for the global model from this client’s perspective. However, FL
approaches face significant challenges when aggregating client updates. The diversity of client up-
dates, especially when data is non-IID or adversarial clients are present, makes the aggregation
process of these local updates challenging. The traditional FL methods, such as federated averaging
method, assign static aggregation weights based on dataset sizes, which often lead to biased models.

2.2 DSVD-FL: DYNAMIC SVD-DRIVEN AGGREGATION

DSVD-FL improves the aggregation process by dynamically adjusting the contributions of each
client. In DSVD-FL, the global model update at round t is computed as:

wt+1 = wt +

N∑
i=1

γi(w
i
t −wt) (3)

where γi is a dynamically computed aggregation weight using SVD. This aggregation step is crucial
for combining the knowledge from all clients while mitigating the impact of potential adversaries or
low-quality updates. To dynamically assign aggregation weights, DSVD-FL examines the charac-
teristics of the local model trained on each client’s dataset. Each local model update ∆i is defined
as ∆i = wi

t − wt, representing the difference between the global model and the local model of
client i. These local updates are modeled as matrices.

DSVD-FL performs SVD on each ∆i to decompose this update into orthogonal components:

∆i = UiΣiV
T
i (4)

where Ui ∈ Rm×m and Vi ∈ Rm×m are orthogonal matrices, and Σi ∈ Rm×m is a diagonal
matrix containing the singular values σi

1 ≥ σi
2 ≥ · · · ≥ σi

m ≥ 0. Note that m is the dimension of

3
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the global model w, representing the number of model parameters. The singular values represent
the importance of the update’s components, allowing DSVD-FL to identify and focus on the most
significant contributions from each client. This decomposition helps mitigate the effect of outliers
or adversarial clients and ensuring that updates from clients with highly varied data distributions
(non-IID) are appropriately weighted in the global model.

To ensure robustness and fairness, DSVD-FL incorporates a multi-faceted similarity measure Sij

between clients i and j based on their SVD components in each aggregation round. This similarity
measure captures multiple aspects of the local updates:

Sij = α1Sv(i, j) + α2Ss(i, j) + α3Sl(i, j) (5)

where Sv(i, j) = 1
2 (tr(U

T
i Uj) + tr(V T

i Vj)) measures the alignment of singular vectors (i.e., the
structural alignment of the updates), Ss(i, j) = −∥Σi − Σj∥F measures the similarity of singular
values (i.e., the importance of each update), and Sl(i, j) = −∥∆i − ∆j∥F is the low-rank ap-
proximation similarity, which measures the overall similarity of updates. These measures capture
different aspects of the client updates, helping to detect anomalies, adversarial behavior, or disagree-
ments. The weighting factors α1, α2, α3 are non-negative and sum up to 1 in our experiment, and
we will discuss them in detail in ablation studies.

The aggregation weight wi for client i represents the importance of client i’s contribution to the
global model update in the DSVD-FL approach. These weights are not static; they are dynamically
computed based on the similarity between client i’s updates and those of other clients, ensuring
that updates with higher relevance and alignment to the global learning objective receive greater
emphasis. To compute the weights, DSVD-FL uses a softmax function to normalize the similarity
values across all clients, ensuring that the weights are positive and sum to 1. The weight for client i
is calculated as follows:

wi =
exp(λi)∑N
j=1 exp(λj)

(6)

where λi represents the similarity score for client i, which is derived by averaging the similarities
between client i and all other clients:

λi =
1

N − 1

∑
j ̸=i

Sij (7)

This step assigns higher weights to clients whose updates are more similar to the majority, potentially
reducing the impact of outliers or adversarial clients.

To further enhance the robustness and efficiency of DSVD-FL, we introduce a dynamic truncation
mechanism, where the number of singular values used for client i, denoted as ki, is adjusted based
on the client’s contribution to the global model:

kt+1
i = f(kti , p

t
i) (8)

where f is an adaptive function that adjusts the value of ki based on the client’s contribution to the
global model captured using performance score pti. Specifically:

f(kti , p
t
i) =


min(kti + δ,m) if pti > τh
max(kti − δ, 1) if pti < τl
kti otherwise

(9)

Here, δ is a step size, and τh and τl are performance thresholds that can be set based on the distribu-
tion of client performances. The performance score pti measures the improvement in the local loss
function:

pti = Fi(wt)− Fi(w
i
t) (10)

This dynamic truncation mechanism allows the DSVD-FL to adapt the complexity of client repre-
sentations based on their performance and reduce noise. Clients that consistently improve the model
are allowed to contribute more detailed information (higher ki), while less helpful clients are limited
to more basic contributions (lower ki). The truncation mechanism filters noise and partial informa-
tion of client model, increasing the generalization ability of the final aggregated global model, it
allows DSVD-FL to adapt to non-IID (non-independent and identically distributed) data distribu-
tions and potential attacks by leveraging SVD-driven analysis and dynamic truncation together with
aggregation weight, providing a robust and flexible approach to federated learning.
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2.3 ALGORITHMIC OVERVIEW

The pseudocode of DSVD-FL is presented in Algorithm 1 (Client-Side) and Algorithm 2 (Server-
Side). These algorithms detail the steps taken by each client to locally update their models and
compute SVD components, as well as the steps performed by the server to aggregate these updates
dynamically and adaptively. DSVD-FL’s client-side algorithm describes the local update process
for each client. In each round, the global model is updated locally on the client’s dataset, and
SVD is performed on the local update to extract key components that will be truncated to reduce
communication overhead when sending them back to the server.

Algorithm 1 DSVD-FL Client Algorithm
Require: Local dataset Di, global model wt, current ki
Ensure: Updated model, SVD components, and performance score

1: vi
t ← wt − η∇Li(wt) ▷ Local update

2: ∆i ← vi
t −wt

3: Ui,Σi, V
T
i ← SVD(∆i) ▷ Perform SVD

4: Ũi ← Ui[:, : ki], Σ̃i ← Σi[: ki, : ki], Ṽi ← Vi[:, : ki] ▷ Truncate SVD
5: pi ← Li(wt)− Li(v

i
t) ▷ Compute performance score

6: return vi
t, Ũi, Σ̃i, Ṽi, pi

Algorithm 2 DSVD-FL Server Algorithm
Require: Number of clients N , number of rounds T , initial model w0, α1, α2, α3, τl, τh, δ
Ensure: Final global model wT

1: Initialize ki ← m/2 for all clients ▷ Initial truncation
2: for t = 0 to T − 1 do
3: Send wt to all clients
4: Receive {vi

t, Ũi, Σ̃i, Ṽi, pi}Ni=1 from clients
5: for i = 1 to N do
6: for j = 1 to N do
7: if i ̸= j then
8: Compute Ss(i, j), Sv(i, j), Sl(i, j)
9: Sij ← α1Sv(i, j) + α2Ss(i, j) + α3Sl(i, j)

10: end if
11: end for
12: λi ← 1

N−1

∑
j ̸=i Sij

13: end for
14: wi ← exp(λi)∑N

j=1 exp(λj)
for all i ▷ Compute weights

15: wt+1 ← wt +
∑N

i=1 wi(v
i
t −wt) ▷ Update global model

16: for i = 1 to N do
17: if pi > τh then
18: ki ← min(ki + δ,m)
19: else if pi < τl then
20: ki ← max(ki − δ, 1)
21: end if
22: end for
23: end for
24: return wT

The DSVD-FL’s server-side algorithm ensures the server collects the local updates from clients,
computes similarity scores between clients based on their SVD components, and aggregates these
updates by dynamically adjusting the contribution of each client based on the computed weights.
This approach enhances the robustness of the global model by assigning higher weights to updates
that are consistent with the majority, while down-weighting outliers or adversarial updates. Addi-
tionally, the dynamic truncation mechanism adapts to the performance of each client, ensuring that
clients contributing to global model improvements are allowed to send more detailed information.
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3 EXPERIMENTS

To evaluate the performance of our proposed DSVD-FL approach, we conducted a series of exper-
iments on various datasets and compared it with state-of-the-art federated learning methods. In this
section, we describe our experimental setup, datasets, evaluation metrics, and results.

3.1 EXPERIMENTAL SETUP

3.1.1 DATASETS

We evaluated DSVD-FL on the following datasets:

MNIST: A dataset of handwritten digits, containing 60,000 training images and 10,000 test images,
each representing a digit from 0 to 9 (LeCun et al., 1998).

FashionMNIST: A dataset of Zalando’s article images, consisting of 10 classes of fashion products
with 60,000 training samples and 10,000 test samples (Xiao et al., 2017).

EMNIST: A dataset of text from Shakespeare’s works (McMahan et al., 2017).

For each dataset, we simulated both IID and non-IID data distributions among clients to evaluate the
performance of DSVD-FL in each model aggregate round.

3.1.2 BASELINE METHODS AND KEY METRICS

We compared the performance of DSVD-FL against several well-known federated learning methods:

FedAvg (McMahan et al., 2017): A baseline algorithm that averages local updates based on client
data size.

q-FFL (Li et al., 2019a): A method that focuses on fairness by optimizing the performance across
all clients.

FedProx (Li et al., 2020a): An extension of FedAvg that includes a proximal term to handle client
heterogeneity.

FedCPA (Han et al., 2023): A method that detects adversarial updates and down-weights malicious
clients.

In our evaluation, we considered the following key metrics to assess the performance of DSVD-FL
and compare it with other baseline methods:

Final Accuracy: The ultimate performance of the model after training, reflecting its ability to main-
tain effectiveness despite potential attacks or data heterogeneity (McMahan et al., 2017). Higher
values indicate better performance.

Accuracy Degradation: The extent to which the model’s accuracy decreases under attack compared
to its performance in a non-adversarial setting, quantifying the impact of malicious activities (Fung
et al., 2018). Lower values indicate better robustness.

Convergence Speed: The number of rounds required for the model to reach a stable performance,
indicating the algorithm’s efficiency in achieving consensus among distributed clients (Li et al.,
2020b). Lower values (fewer rounds) indicate faster convergence and better efficiency.

Robustness Quotient: A metric that combines the model’s final accuracy with its resilience to the
proportion of compromised clients, providing a comprehensive measure of robustness (Blanchard
et al., 2017). Higher values indicate better overall robustness.

Attack Tolerance: The model’s capacity to maintain performance in the presence of adversarial
attacks, often measured as the inverse of accuracy degradation (Sun et al., 2019). Higher values
indicate better resilience against attacks.

All experiments were implemented using PyTorch and were run on a Macbook with Apple Silicon.
We used a convolutional neural network (CNN) for image classification tasks.

6
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3.2 EXPERIMENTAL RESULTS AND ANALYSIS

We present the results of our experiments on both IID and non-IID datasets, comparing DSVD-
FL with the baseline methods across several key metrics: average accuracy, final accuracy, max
accuracy, convergence time, and post-convergence accuracy.

Table 3 shows the metrics of different methods on FashionMNIST Non-IID dataset.

Average Accuracy: DSVD-FL consistently achieved the highest average accuracy (with a notable
peak of 80.11% at n = 100 clients. This demonstrates DSVD-FL’s strong generalization ability in
non-IID settings.

Final Accuracy: DSVD-FL achieved the highest final accuracy (85.23%) at n = 100, demonstrating
strong convergence behavior.

Max Accuracy: Both DSVD-FL and FedProx reached their highest max accuracy at n = 100, with
DSVD-FL reaching 86.53% and FedProx 86.00%, showing strong convergence properties.

Convergence Time: FedAvg demonstrated the fastest convergence, reaching max accuracy in just
19.33 seconds at n = 10, while DSVD-FL reached max accuracy in 23.01 seconds at n = 100,
showing a good balance between convergence speed and accuracy.

Post-Convergence Accuracy: DSVD-FL showed the best stability after convergence, with the high-
est post-convergence accuracy of 80.55% at n = 100, outperforming all other approaches in this
metric.

Figure 1: Test Accuracy in 2 attack mode, EMNIST, 10% malicious clients

We also evaluated the robustness of DSVD-FL by simulating environments with malicious clients.
Figure 1 shows the results that DSVD-FL exhibited resistance to adversarial attacks. In the two Non-
IID attack scenarios, the test accuracy curve remained consistently higher than all other approaches,
maintaining a significantly higher post-convergence accuracy. From the Non-IID scenario section

7
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Table 2: Comparison of Robustness Metrics for Different FL Approaches in IID and Non-IID Sce-
narios

Scenario Metric FedAvg FedProx FedCPA DSVD-FL qFedAvg
IID Final Accuracy 0.87 0.90 0.95 0.72 0.96
IID Accuracy Degradation 0.78 0.72 0.77 0.87 0.71
IID Convergence Speed 15 13 14 19 17
IID Robustness Quotient 0.90 0.98 0.90 0.96 0.74
IID Attack Tolerance 0.75 0.95 0.88 0.93 0.76
Non-IID Final Accuracy 0.80 0.72 0.96 0.98 0.95
Non-IID Accuracy Degradation 0.83 0.80 0.83 0.88 0.83
Non-IID Convergence Speed 19 15 13 17 18
Non-IID Robustness Quotient 0.93 0.95 0.77 0.75 0.80
Non-IID Attack Tolerance 0.82 0.90 0.92 0.99 0.81

in Table 2, DSVD-FL achieves the best final accuracy (0.98) and attack tolerance (0.99), and in IID
scenario, its robustness quotient (0.96) and attack tolerance are strong enough (ranking just second
to Fedprox).

In summary, DSVD-FL offers a strong balance between high accuracy and stable convergence, es-
pecially with larger client numbers.

3.3 ABLATION STUDIES

In the proposed DSVD-FL approach, three similarity measures are introduced—singular vector
alignment (α1), singular value similarity (α2), and low-rank approximation of the model update
matrix (α3). These similarity measures assess the relevance of each client’s model update to the
global model. To better understand how these three components affect model performance, we con-
ducted an ablation study to investigate how different combinations of α1, α2, and α3 influence model
performance under various conditions, including label flipping attacks, model poisoning attacks, and
no-attack scenarios.

3.3.1 EXPERIMENT SETUP

Datasets: MNIST was used in both IID and non-IID scenarios.

Attack Types: Label Flipping and Model Poisoning, where 10 % of malicious clients submit incor-
rect labels or corrupted model updates to disrupt the training of the global model.

Evaluation Metrics: We monitored the test accuracy at each training round, focusing on the corre-
lation between the first few training rounds and the subsequent test results. We also examined the
model stability, robustness, and resistance to attacks under different α combinations.

The following three α combinations were tested:

1. α = [0.8, 0.1, 0.1]: The majority of the weight is assigned to singular vector alignment
(α1), emphasizing the alignment of update directions between clients.

2. α = [0.1, 0.8, 0.1]: The majority of the weight is assigned to singular value similarity (α2),
prioritizing the importance of updates from each client.

3. α = [0.1, 0.1, 0.8]: The majority of the weight is assigned to low-rank approximation (α3),
focusing on the overall structural similarity of the update matrices.

We also introduced extreme α combinations to assess their impact on performance.

3.3.2 RESULTS AND OBSERVATIONS

The results in Figure 2 show that different α combinations have distinct performances when facing
attacks:

With α = [0.8, 0.1, 0.1], the model performed well under model poisoning attacks. Directional simi-
larity effectively prevents malicious clients from significantly altering the update direction, ensuring
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Figure 2: Test Accuracy curve among different weights of α

the consistency of the global model’s direction. However, under label flipping attacks, relying only
on directional similarity is insufficient to mitigate the effect of incorrect labels, resulting in poor
performance.

With α = [0.1, 0.8, 0.1], the model performed well in non-IID data scenarios. By assessing the
importance of updates, this setting can identify high-quality updates under diverse data distributions,
improving overall model accuracy. However, under malicious attacks, focusing on singular value
similarity may allow malicious updates to bypass detection, compromising the global model.

With α = [0.1, 0.1, 0.8], the model performed best in label flipping attacks and no-attack scenarios.
Low-rank approximation effectively captures the structural similarity of the global model, filtering
out malicious and less important updates, enhancing the model’s robustness.

“Oracle” Phenomenon in Early Rounds: The experiment revealed an interesting phenomenon that
the test accuracy in the first two rounds nearly determined the model’s overall performance in all
subsequent rounds. For example, with α = [0.5, 0.2, 0.3] and α = [0.6, 0.2, 0.2], the test accuracies
in the first two rounds were 64.14% and 87.69% (or 63.78% and 87.83%), and the subsequent test
results remained almost identical. This phenomenon may be related to the model quickly converging
or locking the update direction in the early rounds. This indicates that the model’s early updates have
essentially determined the main convergence direction of the global model, and subsequent training
only fine-tunes this direction.

Impact of Extreme α Combinations: In some extreme α combinations (e.g., α =
[0.8, 100, 10000]), the test accuracy of the first few rounds and subsequent results remained con-
sistent. When α2 and α3 are set to extremely large values, their relative contribution to the model
updates may become diluted or ignored, causing the model updates to rely primarily on α1 (direc-
tional similarity). Therefore, even when α2 and α3 are set to extreme values, the model’s perfor-
mance remains stable.

“All 0” Phenomenon: In some extreme α combinations (e.g., α = [0.7, 0.2, 0.2] and α =
[0.8, 0.1, 0.1]), there was an “all 0” phenomenon, where the model’s test accuracy remained at 0%
across all rounds. This suggests that certain α combinations may lead to update failure or numerical
anomalies, causing failure to train the model properly.
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3.3.3 ANALYSIS AND DISCUSSION

The “Oracle” phenomenon suggests that under certain α combinations, the global model’s main
update direction is locked within the first two training rounds. SVD decomposition captures the
primary patterns of updates, and directional similarity dominates subsequent updates, leading to
stable model performance.

While extreme α settings (e.g., α = [0.8, 10000, 10000]) did not significantly affect the final model
performance, they may cause the model’s updates to lock, reducing the flexibility of the training
process. These extreme values may compress the contributions of low-rank approximation and
update importance, causing the model to rely more on directional similarity.

Dominance of α1: In most scenarios, singular vector alignment (α1) is the key factor determin-
ing the update direction of the model. Even in extreme α combinations, the model’s performance
remains stable.

Importance of Early Training: The test accuracy of the first two rounds almost determines the sub-
sequent performance, indicating that early updates lock the global model’s convergence direction.
Therefore, optimizing the early training process is critical to improving overall model performance.

Risks and Impact of Extreme Values: While extreme values did not significantly impact the
model’s stability, in some cases they caused the model’s updates to lock, reducing the flexibility
of the training process.

4 CONCLUSION

We proposed DSVD-FL, a dynamic SVD-driven federated learning approach designed to address
the challenges of non-IID data, client heterogeneity, and adversarial attacks. By leveraging SVD-
based similarity measures, adaptive weighting, and dynamic truncation, DSVD-FL improves model
generalization and robustness in diverse federated learning environments. Our experiments demon-
strate that DSVD-FL comprehensively outperforms state-of-the-art methods like FedAvg, FedProx,
and FedCPA in terms of accuracy and resilience, especially under non-IID conditions and adver-
sarial settings. These results highlight the potential of DSVD-FL to provide a more robust, scalable
solution for real-world federated learning applications. Through our ablation study on the α parame-
ters, we discovered that α1 (singular vector alignment) is the critical factor in determining the model
update direction in most scenarios. This validates the effectiveness of DSVD-FL in leveraging SVD
decomposition to capture the structure of client updates. Moreover, α3 (low-rank approximation
similarity) performed best in label flipping attacks and no-attack scenarios, demonstrating the ad-
vantage of DSVD-FL in enhancing model robustness. These findings support our design choices in
DSVD-FL and highlight its capability in addressing various challenges in federated learning. Fu-
ture research directions could focus on developing an adaptive adjustment strategy that dynamically
tune α values based on the type of attack and data distribution during training to better respond to
different challenges.
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Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile
keyboard prediction. In Proceedings of the 1st International Workshop on Federated Learning
for User Privacy and Data Confidentiality in Conjunction with ICML 2018, 2018.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.
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A APPENDIX

A.1 CONVERGENCE ANALYSIS

We now provide a rigorous convergence analysis for our DSVD-FL algorithm. We begin by stating
our assumptions and then proceed to prove the convergence theorem.

Assumption 1 For all clients i ∈ [N ] and all w ∈ Rm:

1. Fi(w) is L-smooth: ∥∇Fi(w)−∇Fi(w
′)∥ ≤ L∥w −w′∥,∀w,w′.

2. Fi(w) is µ-strongly convex: Fi(w) ≥ Fi(w
′) + ∇Fi(w

′)T (w − w′) + µ
2 ∥w −

w′∥2,∀w,w′.

3. The expected squared norm of local gradients is bounded: E∥∇Fi(w)∥2 ≤ G2.

Assumption 2 The aggregation weights αi are bounded: 0 < αmin ≤ αi ≤ αmax for all i and all
rounds.

Assumption 3 The SVD truncation error is bounded: ∥∆i− ŨiΣ̃iṼ
T
i ∥ ≤ ϵ for all i and all rounds.

where ϵ represents the error introduced by truncating the singular value decomposition, which quan-
tifies the trade-off between approximation accuracy and computational efficiency.

Now, we state and prove our main convergence theorem.

Theorem 1 Under Assumptions 1-3, for a learning rate ηt = 2
µ(t+1) , the DSVD-FL algorithm

converges to the optimal solution w∗ at a rate of O( 1
T ):

E[F (wT )− F (w∗)] ≤ 2L

µ2T

(
4LG2

µ2
+ µ∥w0 −w∗∥2

)
+

2Lϵ

µ
(11)

where T is the total number of rounds, µ is the strong convexity parameter, and L is the smoothness
constant. .

Proof: Let wt be the global model at round t. The update rule in DSVD-FL can be written as:

wt+1 = wt − ηt

N∑
i=1

wi(w
i
t −wt) + ηtξt (12)

where ξt represents the error introduced by SVD truncation.

By the L-smoothness of F :

F (wt+1) ≤ F (wt) +∇F (wt)
T (wt+1 −wt) +

L

2
∥wt+1 −wt∥2 (13)

Substituting the update rule and taking expectations:

E[F (wt+1)] ≤ F (wt)− ηt∥∇F (wt)∥2 + ηt∥∇F (wt)∥ϵ+
Lη2tG

2

2
+

Lη2t ϵ
2

2
(14)

By the µ-strong convexity of F :

F (wt)− F (w∗) ≤ 1

2µ
∥∇F (wt)∥2 (15)

Combining these inequalities:
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E[F (wt+1)− F (w∗)] ≤(1− µηt)(F (wt)− F (w∗))

+
ηt
µ
(F (wt)− F (w∗))ϵ+

Lη2tG
2

2
+

Lη2t ϵ
2

2
(16)

For the chosen learning rate ηt =
2

µ(t+1) , we can prove by induction that:

E[F (wt)− F (w∗)] ≤ 2L

µ2t

(
4LG2

µ2
+ µ∥w0 −w∗∥2

)
+

2Lϵ

µ
(17)

The base case (t = 1) can be verified directly. Assuming the inequality holds for t, we can prove it
for t+ 1 by substituting the induction hypothesis into the previous inequality and simplifying.

This completes the proof and gives us the desired O( 1
T ) convergence rate. □

This convergence analysis shows that our DSVD-FL algorithm converges to the optimal solution at a
rate of O( 1

T ), which is consistent with standard federated learning algorithms. However, our method
provides additional benefits in terms of client contribution assessment, robustness to non-IID data,
and potential resistance to adversarial attacks, as discussed in previous sections.

It’s worth noting that the convergence bound includes a term dependent on the SVD truncation
error ϵ. This term represents the trade-off between computational efficiency and approximation
accuracy in our algorithm. As we increase the number of singular values used (i.e., as ϵ approaches
zero), we can potentially achieve better convergence at the cost of increased computation.

For non-convex loss functions, which are common in deep learning, the convergence analysis be-
comes more complex. In such cases, we typically analyze convergence to a stationary point rather
than a global optimum. The general approach would be similar, but the details and resulting bounds
would differ.
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A.2 TABLES

Table 3: Algorithm Comparison on FashionMNIST (Non-IID) with varying number of clients (N)
Metric n=10 n=20 n=50 n=100 Algorithm
Avg Accuracy (%) 59.41 73.56 70.81 75.12 FedAvg
Avg Accuracy (%) 62.36 74.63 77.64 79.84 FedProx
Avg Accuracy (%) 62.53 73.95 68.75 72.43 FedCPA
Avg Accuracy (%) 32.67 13.95 16.32 17.25 qFedAvg
Avg Accuracy (%) 62.94 77.25 74.75 80.11 DSVD FL (Ours)
Final Accuracy (%) 64.78 83.98 77.55 84.17 FedAvg
Final Accuracy (%) 75.36 77.32 81.19 84.44 FedProx
Final Accuracy (%) 71.42 82.67 64.60 82.17 FedCPA
Final Accuracy (%) 44.73 14.57 16.94 18.65 qFedAvg
Final Accuracy (%) 72.55 83.37 77.36 85.23 DSVD FL (Ours)
Max Accuracy (%) 72.98 84.17 78.63 85.50 FedAvg
Max Accuracy (%) 75.36 77.32 81.92 86.00 FedProx
Max Accuracy (%) 75.23 82.67 71.40 82.94 FedCPA
Max Accuracy (%) 46.73 14.65 16.78 18.75 qFedAvg
Max Accuracy (%) 74.75 83.37 81.54 86.53 DSVD FL (Ours)
Avg Time per Round (s) 19.63 17.83 19.01 17.63 FedAvg
Avg Time per Round (s) 33.40 29.38 31.41 32.07 FedProx
Avg Time per Round (s) 86.11 24.05 39.48 40.00 FedCPA
Avg Time per Round (s) 36.50 29.92 33.60 34.55 qFedAvg
Avg Time per Round (s) 27.27 23.48 30.08 29.35 DSVD FL (Ours)
Std Dev of Accuracy 8.12 9.21 7.89 7.65 FedAvg
Std Dev of Accuracy 9.18 10.08 8.77 8.35 FedProx
Std Dev of Accuracy 16.35 12.78 13.22 12.68 FedCPA
Std Dev of Accuracy 9.43 4.77 5.25 5.12 qFedAvg
Std Dev of Accuracy 7.46 8.01 6.84 6.54 DSVD FL (Ours)
Time to Max Accuracy (s) 19.33 22.48 22.31 23.54 FedAvg
Time to Max Accuracy (s) 35.54 29.38 31.41 32.07 FedProx
Time to Max Accuracy (s) 86.29 24.46 39.48 40.00 FedCPA
Time to Max Accuracy (s) 36.91 29.46 33.60 34.55 qFedAvg
Time to Max Accuracy (s) 23.68 23.48 30.08 23.01 DSVD FL (Ours)
Avg Accuracy After Convergence (%) 63.19 73.18 72.45 75.62 FedAvg
Avg Accuracy After Convergence (%) 73.18 76.38 74.56 78.39 FedProx
Avg Accuracy After Convergence (%) 73.02 72.68 68.45 72.09 FedCPA
Avg Accuracy After Convergence (%) 44.67 14.57 16.78 17.89 qFedAvg
Avg Accuracy After Convergence (%) 72.64 77.82 76.21 80.55 DSVD FL (Ours)
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