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ABSTRACT

Federated Learning (FL) has emerged as a promising paradigm for collaborative
machine learning while preserving data privacy. However, existing FL approaches
face challenges in balancing model generalization among heterogeneous clients
and resistance to malicious attacks. This paper introduces Dynamic SVD-driven
Federated Learning (DSVD-FL), a novel approach that addresses these challenges
simultaneously. DSVD-FL dynamically adjusts the contribution of each client
using Singular Value Decomposition (SVD), introducing an adaptive weighting
mechanism based on singular value contributions and vector alignments. The-
oretical analysis demonstrates the convergence properties and computational ef-
ficiency of our approach. Experimental results on both IID and non-IID datasets
show that DSVD-FL outperforms state-of-the-art FL. approaches in terms of model
accuracy, robustness against various attack scenarios, while maintaining compet-
itive computational efficiency. We perform an ablation study to explore the key
components of SVD that impact the federated learning performance.

1 INTRODUCTION

Federated Learning (FL) has emerged as a transformative approach in distributed machine learning,
allowing multiple clients to collaboratively train a model without sharing their raw data (McMahan
et all 2017 Krizhevsky et al., [2009; Yang et al., [2019) . In FL, clients typically refer to devices or
nodes that possess local data and participate in the training process. These diverse clients unite their
efforts to collectively train a robust global model (Kairouz et al., [2021}; | Bonawitz,[2019). Such col-
laboration leverages the unique strengths of each client’s data and computational resources (Smith
et al.l 2017} Konecny, [2016), enhancing the overall learning outcomes by integrating varied per-
spectives and information into a single model (Zhao et al., 2018} Hard et al.| |2018}; |Briggs et al.,
2020).

Despite these advantages, FL faces several core challenges that limit its widespread adoption. One
major issue is the poor generalization performance of existing FL approaches when dealing with
non-IID (non-Independent and Identically Distributed) data, where data distributions differ signif-
icantly across clients (Li et al.| [2020a; Karimireddy et al., 2020). Non-IID data conditions are
prevalent in real-world scenarios (Li et al.l [2022; Zhu et al.,|2021}; L1 et al., | 2021)) and can result in
biased global models that disproportionately favor clients with larger or higher-quality dataset (Hsu
et al.,|2019; |Arivazhagan et al., 2019; |Li et al., 2019b), reducing the overall model accuracy (Wang
et al., 2020; Sattler et al.l [2020; |Yeganeh et al., 2020) and limiting its generalization capacity (Yu
et al.| [2020; |Ghosh et al.| [2020; [Fallah et al., [2020).

In addition to generalization issues, FL approaches are vulnerable to malicious clients (Bagdasaryan
et al.,|2020;|Bhagoji et al., 2019). Attackers can participate in the FL process by submitting poisoned
model updates (Xie et al.l|2018; Tolpegin et al., 2020), which can severely degrade the performance
of the global model (Fang et al.| 2020).

Addressing these intertwined challenges requires a more adaptive approach. To this end, we intro-
duce DSVD-FL, a Dynamic SVD-driven FL approach, designed to optimize federated learning in
heterogeneous and adversarial environments. Unlike traditional FL methods, such as FedProx (L1
et al.,2020a)), FedSVD (Grammenos et al., |2020), and FedCPA (Han et al., 2023)), which primar-
ily focus on static aggregation techniques or compression for communication efficiency, DSVD-FL
introduces a novel dynamic mechanism that combines SVD-driven similarity measures, adaptive
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weighting, and dynamic truncation. DSVD-FL adapts to both the diversity of client data and the
potential presence of malicious participants by dynamically adjusting the contribution of each client
to the global model. This is achieved through Singular Value Decomposition (SVD), which analyzes
the structure of client updates to assess and weigh contributions based on their similarity and rele-
vance to the overall model improvement. By continuously fine-tuning client influence, DSVD-FL
not only enhances model generalization in challenging non-IID settings but also improves defense
against adversarial attacks by mitigating the impact of poisoned updates. Therefore, DSVD-FL
fundamentally improves the process of representation learning.

This paper makes the following contributions:

* We propose a dynamic SVD-driven approach, DSVD-FL, which adapts client contribu-
tions based on multi-faceted model similarity, ensuring fairness and improving robustness
against adversarial attacks.

* DSVD-FL improves model generalization in non-IID settings through dynamic adjustment
and adaptive weighting of client updates, addressing data heterogeneity across clients.

* DSVD-FL introduces a dynamic truncation mechanism that adjusts the complexity of client
updates based on their performance. This approach filters noisy or adversarial updates.

* DSVD-FL provides both theoretical convergence guarantees and empirical validation on
real-world datasets, outperforming state-of-the-art methods like FedProx, FedSVD, and
FedCPA in terms of accuracy, fairness, and resilience to adversarial behavior.

1.1 RELATED WORK

Several FL approaches have been proposed to address the challenges of non-IID data, fairness, and
robustness, but none have provided a comprehensive solution.

FedProx (Li et al., |2020a) builds upon the standard FedAvg approach by introducing a proximal
term in the local objective function, which helps stabilize the training process in non-IID settings
by constraining the distance between local model and the global model. While FedProx improves
convergence in heterogeneous environments, its inability to handle adversarial threats leaves models
vulnerable to poisoned updates.

FedSVD (Grammenos et al., [2020) incorporates SVD for FL to compress client updates, thereby
reducing communication costs. However, the focus of FedSVD is on data compression rather than
optimizing model generalization or robustness against adversarial attacks. In addition, it does not
dynamically adjust client contributions based on model similarity or address non-IID challenges
explicitly, thus resulting in suboptimal performance in non-IID environments.

FedCPA (Han et al., [2023)) addresses the problem of adversarial attacks in FL by performing crit-
ical parameter analysis to detect and down-weight potentially malicious clients. FedCPA measures
model similarity across clients and discards updates that deviate significantly from the majority.
However, this approach focuses primarily on attack resistance and does not explicitly account for
the heterogeneity of non-IID data, limiting its ability to generalize well across diverse client popu-
lations.

Table 1: Comparison of DSVD-FL with existing FL approaches

Feature FedProx FedSVD FedCPA DSVD-FL
Dynamic client contribution X X v v
SVD-based compression X v X v
Attack resistance X X v v
Adaptive weighting X X v v
Convergence guarantee v X X v
Non-IID optimization v X v v
Parameter importance analysis X X v v

In contrast to existing approaches, DSVD-FL uniquely integrates dynamic client weighting, leverag-
ing SVD for robust update analysis and adaptability to non-IID data. As shown in Table[[ DSVD-FL
addresses key limitations found in current FL methods, including the lack of robust attack resistance
and non-IID data optimization.
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2 METHODOLOGY

In this section, we present DSVD-FL (Dynamic SVD-based Federated Learning), a novel approach
designed to enhance federated learning in environments characterized by non-IID data distributions,
client heterogeneity, and potential adversarial threats. DSVD-FL achieves this by dynamically ad-
justing client contributions leveraging SVD, thereby optimizing both generalization and robustness
of the global model. We detail the problem formulation, introduce the SVD-driven aggregation
process, and describe the dynamic truncation mechanism that drives performance improvement of
DSVD-FL.

2.1 PROBLEM FORMULATION

We consider a federated learning scenario involving a central server and N clients, each client ¢
holds a local dataset D; = {(x%,y%)}~,, where X’ € R represents the input features, y} presents
the corresponding label, and n; represents the number of samples in the local dataset of client <.
The goal of FL is to collaboratively train a global model w € R™ that minimizes the overall loss
function:

N
H‘lin F(W) = Zwin‘(W) (])
=1

where F;(w) is the local loss function for client ¢, and w; is the weight assigned to client ¢,
with Zil w; = 1. Typically, w; is set proportional to the client’s dataset size, i.e., w; = =x* —
j=1"

to ensure fair representation of each client’s data in the aggregation process.

The FL training process proceeds in series of communication rounds. In each communication
round ¢, the server sends the current global model w; to a subset of clients. Each selected client ¢
then updates the global model locally based on its local data:

Wé = wy — NV F;(wy) 2)

where 7 is the learning rate. This step allows each client to adapt the global model to its local data,
capturing client-specific patterns and information without sharing raw data. Here, V F;(w;) repre-
sents the gradient of the local loss function F;(w;) for client 7 with respect to the global model wy,
reflecting the update direction for the global model from this client’s perspective. However, FL
approaches face significant challenges when aggregating client updates. The diversity of client up-
dates, especially when data is non-IID or adversarial clients are present, makes the aggregation
process of these local updates challenging. The traditional FL methods, such as federated averaging
method, assign static aggregation weights based on dataset sizes, which often lead to biased models.

2.2 DSVD-FL: DYNAMIC SVD-DRIVEN AGGREGATION

DSVD-FL improves the aggregation process by dynamically adjusting the contributions of each
client. In DSVD-FL, the global model update at round ¢ is computed as:

N
Wi =wit+ > vi(wi — wy) 3)

i=1

where ~y; is a dynamically computed aggregation weight using SVD. This aggregation step is crucial
for combining the knowledge from all clients while mitigating the impact of potential adversaries or
low-quality updates. To dynamically assign aggregation weights, DSVD-FL examines the charac-
teristics of the local model trained on each client’s dataset. Each local model update A; is defined
as A; = wi — wy, representing the difference between the global model and the local model of
client 7. These local updates are modeled as matrices.

DSVD-FL performs SVD on each A; to decompose this update into orthogonal components:
A = USRSV “4)

where U; € R™*™ and V; € R™*™ are orthogonal matrices, and 3; € R™*" is a diagonal

matrix containing the singular values 0% > 0% > ... > o > 0. Note that m is the dimension of
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the global model w, representing the number of model parameters. The singular values represent
the importance of the update’s components, allowing DSVD-FL to identify and focus on the most
significant contributions from each client. This decomposition helps mitigate the effect of outliers
or adversarial clients and ensuring that updates from clients with highly varied data distributions
(non-IID) are appropriately weighted in the global model.

To ensure robustness and fairness, DSVD-FL incorporates a multi-faceted similarity measure S
between clients ¢ and j based on their SVD components in each aggregation round. This similarity
measure captures multiple aspects of the local updates:

Si,' - alsv(imj) + a2SS(ia.j) + O‘3Sl(7:7j) (5)

where S, (i, j) = $(tr(UL'U;) + tr(V;"V;)) measures the alignment of singular vectors (i.e., the
structural alignment of the updates), S;s(7,j) = —||X; — ;|| r measures the similarity of singular
values (i.e., the importance of each update), and S;(é,j) = —||A; — A,||F is the low-rank ap-
proximation similarity, which measures the overall similarity of updates. These measures capture
different aspects of the client updates, helping to detect anomalies, adversarial behavior, or disagree-
ments. The weighting factors a1, e, a3 are non-negative and sum up to 1 in our experiment, and
we will discuss them in detail in ablation studies.

The aggregation weight w; for client ¢ represents the importance of client ¢’s contribution to the
global model update in the DSVD-FL approach. These weights are not static; they are dynamically
computed based on the similarity between client ¢’s updates and those of other clients, ensuring
that updates with higher relevance and alignment to the global learning objective receive greater
emphasis. To compute the weights, DSVD-FL uses a softmax function to normalize the similarity
values across all clients, ensuring that the weights are positive and sum to 1. The weight for client ¢
is calculated as follows:
exp(A;)

> =1 exp(A;)
where \; represents the similarity score for client ¢, which is derived by averaging the similarities
between client 7 and all other clients:

1
Ni= 57 2.5 (7)

This step assigns higher weights to clients whose updates are more similar to the majority, potentially
reducing the impact of outliers or adversarial clients.

To further enhance the robustness and efficiency of DSVD-FL, we introduce a dynamic truncation
mechanism, where the number of singular values used for client ¢, denoted as k;, is adjusted based
on the client’s contribution to the global model:

KT = f(kLpl) (8)

where f is an adaptive function that adjusts the value of k; based on the client’s contribution to the
global model captured using performance score pf. Specifically:

min(k! +6,m) ifpt > 7,
Fkisp)) = { max(kf —6,1) ifp; <7 )
k! otherwise

Here, 0 is a step size, and 7, and 7; are performance thresholds that can be set based on the distribu-
tion of client performances. The performance score p! measures the improvement in the local loss
function: )

pl = Fij(wy) — Fi(w?)) (10)

This dynamic truncation mechanism allows the DSVD-FL to adapt the complexity of client repre-
sentations based on their performance and reduce noise. Clients that consistently improve the model
are allowed to contribute more detailed information (higher k;), while less helpful clients are limited
to more basic contributions (lower k;). The truncation mechanism filters noise and partial informa-
tion of client model, increasing the generalization ability of the final aggregated global model, it
allows DSVD-FL to adapt to non-IID (non-independent and identically distributed) data distribu-
tions and potential attacks by leveraging SVD-driven analysis and dynamic truncation together with
aggregation weight, providing a robust and flexible approach to federated learning.
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2.3 ALGORITHMIC OVERVIEW

The pseudocode of DSVD-FL is presented in Algorithm [I] (Client-Side) and Algorithm 2| (Server-
Side). These algorithms detail the steps taken by each client to locally update their models and
compute SVD components, as well as the steps performed by the server to aggregate these updates
dynamically and adaptively. DSVD-FL’s client-side algorithm describes the local update process
for each client. In each round, the global model is updated locally on the client’s dataset, and
SVD is performed on the local update to extract key components that will be truncated to reduce
communication overhead when sending them back to the server.

Algorithm 1 DSVD-FL Client Algorithm

Require: Local dataset D;, global model w,, current k;
Ensure: Updated model, SVD components, and performance score

I v < wy —nVLi(wy) > Local update
20 A — vy —wy

3: U;, %, V' < SVD(A) > Perform SVD
4: U; + U[ k4], >, = B[ ki kil Vio= Vil s Ky > Truncate SVD
50 p; Ly (Wt) — Li(v ) > Compute performance score
6: return vt,UL, i ViyDi

Algorithm 2 DSVD-FL Server Algorithm

Require: Number of clients [V, number of rounds 7, initial model wy, a1, a2, as, 7, Th, 0
Ensure: Final global model w
1: Initialize k; < m/2 for all clients > Initial truncation
2: fort =0toT —1do

3: Send w to all clients_

4: Receive {vi,U;, 3, Vi, p; 1Y | from clients

5: fori =1to N do

6: for j =1to N do

7: if i #~ j then

8: Compute S(i, 7). Su(i. §), S1(i, )

9: Sij «— alsv(i,j)JraQSs(i,j) +a351(i,j)
10: end if

11: end for

12: i 12#25”

13: end for

14: w; — ==PA)_ for gl 4 > Compute weights

=1 XP(AJ)

15: Wil ¢ Wi + Zf\;l w; (vi—wy) > Update global model
16: fori =1to N do

17: if p; > 75, then

18: k; < min(k; + 0, m)

19: else if p; < 7; then
20: k; < max(ki — (S, 1)
21: end if
22: end for
23: end for

24: return wp

The DSVD-FL’s server-side algorithm ensures the server collects the local updates from clients,
computes similarity scores between clients based on their SVD components, and aggregates these
updates by dynamically adjusting the contribution of each client based on the computed weights.
This approach enhances the robustness of the global model by assigning higher weights to updates
that are consistent with the majority, while down-weighting outliers or adversarial updates. Addi-
tionally, the dynamic truncation mechanism adapts to the performance of each client, ensuring that
clients contributing to global model improvements are allowed to send more detailed information.
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3 EXPERIMENTS

To evaluate the performance of our proposed DSVD-FL approach, we conducted a series of exper-
iments on various datasets and compared it with state-of-the-art federated learning methods. In this
section, we describe our experimental setup, datasets, evaluation metrics, and results.

3.1 EXPERIMENTAL SETUP
3.1.1 DATASETS

We evaluated DSVD-FL on the following datasets:

MNIST: A dataset of handwritten digits, containing 60,000 training images and 10,000 test images,
each representing a digit from 0 to 9 (LeCun et al.| |1998).

FashionMNIST: A dataset of Zalando’s article images, consisting of 10 classes of fashion products
with 60,000 training samples and 10,000 test samples (Xiao et al., 2017).

EMNIST: A dataset of text from Shakespeare’s works (McMahan et al.,[2017).

For each dataset, we simulated both IID and non-IID data distributions among clients to evaluate the
performance of DSVD-FL in each model aggregate round.

3.1.2 BASELINE METHODS AND KEY METRICS

We compared the performance of DSVD-FL against several well-known federated learning methods:

FedAvg (McMahan et al.,2017)): A baseline algorithm that averages local updates based on client
data size.

q-FFL (Li et al., 2019a)): A method that focuses on fairness by optimizing the performance across
all clients.

FedProx (Li et al.,|2020a): An extension of FedAvg that includes a proximal term to handle client
heterogeneity.

FedCPA (Han et al., 2023): A method that detects adversarial updates and down-weights malicious
clients.

In our evaluation, we considered the following key metrics to assess the performance of DSVD-FL
and compare it with other baseline methods:

Final Accuracy: The ultimate performance of the model after training, reflecting its ability to main-
tain effectiveness despite potential attacks or data heterogeneity (McMahan et al., 2017). Higher
values indicate better performance.

Accuracy Degradation: The extent to which the model’s accuracy decreases under attack compared
to its performance in a non-adversarial setting, quantifying the impact of malicious activities (Fung
et al.L [2018). Lower values indicate better robustness.

Convergence Speed: The number of rounds required for the model to reach a stable performance,
indicating the algorithm’s efficiency in achieving consensus among distributed clients (L1 et al.,
2020b). Lower values (fewer rounds) indicate faster convergence and better efficiency.

Robustness Quotient: A metric that combines the model’s final accuracy with its resilience to the
proportion of compromised clients, providing a comprehensive measure of robustness (Blanchard
et al.,[2017). Higher values indicate better overall robustness.

Attack Tolerance: The model’s capacity to maintain performance in the presence of adversarial
attacks, often measured as the inverse of accuracy degradation (Sun et al., [2019). Higher values
indicate better resilience against attacks.

All experiments were implemented using PyTorch and were run on a Macbook with Apple Silicon.
We used a convolutional neural network (CNN) for image classification tasks.
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3.2 EXPERIMENTAL RESULTS AND ANALYSIS

We present the results of our experiments on both IID and non-IID datasets, comparing DSVD-
FL with the baseline methods across several key metrics: average accuracy, final accuracy, max
accuracy, convergence time, and post-convergence accuracy.

Table 3] shows the metrics of different methods on FashionMNIST Non-IID dataset.

Average Accuracy: DSVD-FL consistently achieved the highest average accuracy (with a notable
peak of 80.11% at n = 100 clients. This demonstrates DSVD-FL’s strong generalization ability in
non-IID settings.

Final Accuracy: DSVD-FL achieved the highest final accuracy (85.23%) at n = 100, demonstrating
strong convergence behavior.

Max Accuracy: Both DSVD-FL and FedProx reached their highest max accuracy at n = 100, with
DSVD-FL reaching 86.53% and FedProx 86.00%, showing strong convergence properties.

Convergence Time: FedAvg demonstrated the fastest convergence, reaching max accuracy in just
19.33 seconds at n = 10, while DSVD-FL reached max accuracy in 23.01 seconds at n = 100,
showing a good balance between convergence speed and accuracy.

Post-Convergence Accuracy: DSVD-FL showed the best stability after convergence, with the high-

est post-convergence accuracy of 80.55% at n = 100, outperforming all other approaches in this
metric.
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Figure 1: Test Accuracy in 2 attack mode, EMNIST, 10% malicious clients

We also evaluated the robustness of DSVD-FL by simulating environments with malicious clients.
Figure[T|shows the results that DSVD-FL exhibited resistance to adversarial attacks. In the two Non-
IID attack scenarios, the test accuracy curve remained consistently higher than all other approaches,
maintaining a significantly higher post-convergence accuracy. From the Non-IID scenario section
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Table 2: Comparison of Robustness Metrics for Different FL. Approaches in IID and Non-IID Sce-
narios

Scenario Metric FedAvg FedProx FedCPA DSVD-FL qFedAvg
11D Final Accuracy 0.87 0.90 0.95 0.72 0.96
1D Accuracy Degradation 0.78 0.72 0.77 0.87 0.71
11D Convergence Speed 15 13 14 19 17
1ID Robustness Quotient 0.90 0.98 0.90 0.96 0.74
11D) Attack Tolerance 0.75 0.95 0.88 0.93 0.76
Non-IID  Final Accuracy 0.80 0.72 0.96 0.98 0.95
Non-IID  Accuracy Degradation 0.83 0.80 0.83 0.88 0.83
Non-IID  Convergence Speed 19 15 13 17 18
Non-IID  Robustness Quotient 0.93 0.95 0.77 0.75 0.80
Non-IID  Attack Tolerance 0.82 0.90 0.92 0.99 0.81

in Table 2| DSVD-FL achieves the best final accuracy (0.98) and attack tolerance (0.99), and in IID
scenario, its robustness quotient (0.96) and attack tolerance are strong enough (ranking just second
to Fedprox).

In summary, DSVD-FL offers a strong balance between high accuracy and stable convergence, es-
pecially with larger client numbers.

3.3 ABLATION STUDIES

In the proposed DSVD-FL approach, three similarity measures are introduced—singular vector
alignment («v1), singular value similarity (o), and low-rank approximation of the model update
matrix (a3). These similarity measures assess the relevance of each client’s model update to the
global model. To better understand how these three components affect model performance, we con-
ducted an ablation study to investigate how different combinations of a1, a2, and a3 influence model
performance under various conditions, including label flipping attacks, model poisoning attacks, and
no-attack scenarios.

3.3.1 EXPERIMENT SETUP

Datasets: MNIST was used in both IID and non-IID scenarios.

Attack Types: Label Flipping and Model Poisoning, where 10 % of malicious clients submit incor-
rect labels or corrupted model updates to disrupt the training of the global model.

Evaluation Metrics: We monitored the test accuracy at each training round, focusing on the corre-
lation between the first few training rounds and the subsequent test results. We also examined the
model stability, robustness, and resistance to attacks under different o combinations.

The following three oo combinations were tested:
l. @ = [0.8,0.1,0.1]: The majority of the weight is assigned to singular vector alignment
(a1), emphasizing the alignment of update directions between clients.

2. @ =[0.1,0.8,0.1]: The majority of the weight is assigned to singular value similarity (as),
prioritizing the importance of updates from each client.

3. a =10.1,0.1,0.8]: The majority of the weight is assigned to low-rank approximation (cs),
focusing on the overall structural similarity of the update matrices.

We also introduced extreme « combinations to assess their impact on performance.

3.3.2 RESULTS AND OBSERVATIONS

The results in Figure [2| show that different oo combinations have distinct performances when facing
attacks:

With o = [0.8, 0.1, 0.1], the model performed well under model poisoning attacks. Directional simi-
larity effectively prevents malicious clients from significantly altering the update direction, ensuring
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Figure 2: Test Accuracy curve among different weights of «

the consistency of the global model’s direction. However, under label flipping attacks, relying only
on directional similarity is insufficient to mitigate the effect of incorrect labels, resulting in poor
performance.

With @ = [0.1,0.8,0.1], the model performed well in non-IID data scenarios. By assessing the
importance of updates, this setting can identify high-quality updates under diverse data distributions,
improving overall model accuracy. However, under malicious attacks, focusing on singular value
similarity may allow malicious updates to bypass detection, compromising the global model.

With oo = [0.1, 0.1, 0.8], the model performed best in label flipping attacks and no-attack scenarios.
Low-rank approximation effectively captures the structural similarity of the global model, filtering
out malicious and less important updates, enhancing the model’s robustness.

“Oracle” Phenomenon in Early Rounds: The experiment revealed an interesting phenomenon that
the test accuracy in the first two rounds nearly determined the model’s overall performance in all
subsequent rounds. For example, with o = [0.5,0.2,0.3] and o = [0.6, 0.2, 0.2], the test accuracies
in the first two rounds were 64.14% and 87.69% (or 63.78% and 87.83%), and the subsequent test
results remained almost identical. This phenomenon may be related to the model quickly converging
or locking the update direction in the early rounds. This indicates that the model’s early updates have
essentially determined the main convergence direction of the global model, and subsequent training
only fine-tunes this direction.

Impact of Extreme o Combinations: In some extreme « combinations (e.g., a =
[0.8,100, 10000]), the test accuracy of the first few rounds and subsequent results remained con-
sistent. When « and a3 are set to extremely large values, their relative contribution to the model
updates may become diluted or ignored, causing the model updates to rely primarily on a; (direc-
tional similarity). Therefore, even when s and a3 are set to extreme values, the model’s perfor-
mance remains stable.

“All 0” Phenomenon: In some extreme « combinations (e.g., & = [0.7,0.2,0.2] and o =
[0.8,0.1,0.1]), there was an “all 0” phenomenon, where the model’s test accuracy remained at 0%
across all rounds. This suggests that certain o combinations may lead to update failure or numerical
anomalies, causing failure to train the model properly.



Under review as a conference paper at ICLR 2025

3.3.3 ANALYSIS AND DISCUSSION

The “Oracle” phenomenon suggests that under certain o combinations, the global model’s main
update direction is locked within the first two training rounds. SVD decomposition captures the
primary patterns of updates, and directional similarity dominates subsequent updates, leading to
stable model performance.

While extreme « settings (e.g., @ = [0.8,10000, 10000]) did not significantly affect the final model
performance, they may cause the model’s updates to lock, reducing the flexibility of the training
process. These extreme values may compress the contributions of low-rank approximation and
update importance, causing the model to rely more on directional similarity.

Dominance of «;: In most scenarios, singular vector alignment («) is the key factor determin-
ing the update direction of the model. Even in extreme o combinations, the model’s performance
remains stable.

Importance of Early Training: The test accuracy of the first two rounds almost determines the sub-
sequent performance, indicating that early updates lock the global model’s convergence direction.
Therefore, optimizing the early training process is critical to improving overall model performance.

Risks and Impact of Extreme Values: While extreme values did not significantly impact the
model’s stability, in some cases they caused the model’s updates to lock, reducing the flexibility
of the training process.

4 CONCLUSION

We proposed DSVD-FL, a dynamic SVD-driven federated learning approach designed to address
the challenges of non-IID data, client heterogeneity, and adversarial attacks. By leveraging SVD-
based similarity measures, adaptive weighting, and dynamic truncation, DSVD-FL improves model
generalization and robustness in diverse federated learning environments. Our experiments demon-
strate that DSVD-FL comprehensively outperforms state-of-the-art methods like FedAvg, FedProx,
and FedCPA in terms of accuracy and resilience, especially under non-IID conditions and adver-
sarial settings. These results highlight the potential of DSVD-FL to provide a more robust, scalable
solution for real-world federated learning applications. Through our ablation study on the o parame-
ters, we discovered that a; (singular vector alignment) is the critical factor in determining the model
update direction in most scenarios. This validates the effectiveness of DSVD-FL in leveraging SVD
decomposition to capture the structure of client updates. Moreover, as (low-rank approximation
similarity) performed best in label flipping attacks and no-attack scenarios, demonstrating the ad-
vantage of DSVD-FL in enhancing model robustness. These findings support our design choices in
DSVD-FL and highlight its capability in addressing various challenges in federated learning. Fu-
ture research directions could focus on developing an adaptive adjustment strategy that dynamically
tune « values based on the type of attack and data distribution during training to better respond to
different challenges.

REFERENCES

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. In International conference on artificial intelligence and statistics,
pp- 2938-2948. PMLR, 2020.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. Analyzing federated
learning through an adversarial lens. In International conference on machine learning, pp. 634—
643. PMLR, 2019.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with

adversaries: Byzantine tolerant gradient descent. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

10



Under review as a conference paper at ICLR 2025

Keith Bonawitz.  Towards federated learning at scale: Syste m design. arXiv preprint
arXiv:1902.01046, 2019.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering
of local updates to improve training on non-iid data. In 2020 international joint conference on
neural networks (IJCNN), pp. 1-9. IEEE, 2020.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning attacks to
{Byzantine-Robust} federated learning. In 29th USENIX security symposium (USENIX Security
20), pp. 1605-1622, 2020.

Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in federated learning
poisoning. arXiv preprint arXiv:1808.04866, 2018.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. Advances in Neural Information Processing Systems, 33:19586—
19597, 2020.

Andreas Grammenos, Rodrigo Mendoza Smith, Jon Crowcroft, and Cecilia Mascolo. Federated
principal component analysis. In Advances in Neural Information Processing Systems, volume 33,
pp- 12876-12887, 2020.

Sungwon Han, Sungwon Park, Fangzhao Wu, Sundong Kim, Bin Zhu, Xing Xie, and Meeyoung
Cha. Towards attack-tolerant federated learning via critical parameter analysis. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4999-5008, 2023.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Francoise Beaufays, Sean
Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile
keyboard prediction. In Proceedings of the Ist International Workshop on Federated Learning
for User Privacy and Data Confidentiality in Conjunction with ICML 2018, 2018.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1-2):1-210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132-5143. PMLR, 2020.

Jakub Kone¢ny. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10713—-10722, 2021.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos:
An experimental study. In 2022 IEEE 38th international conference on data engineering (ICDE),
pp. 965-978. IEEE, 2022.

Tian Li, Mahan Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in federated
learning. In International Conference on Learning Representations, 2019a.

11



Under review as a conference paper at ICLR 2025

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50-60, 2020a.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019b.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. In International Conference on Learning Representations (ICLR), 2020b.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, pp. 1273-1282, 2017.

Felix Sattler, Klaus-Robert Miiller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neu-
ral networks and learning systems, 32(8):3710-3722, 2020.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. Advances in neural information processing systems, 30, 2017.

Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can you really
backdoor federated learning? arXiv preprint arXiv:1911.07963, 2019.

Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data poisoning attacks against
federated learning systems. In Computer security—-ESORICs 2020: 25th European symposium on
research in computer security, ESORICs 2020, guildford, UK, September 14—18, 2020, proceed-
ings, part i 25, pp. 480-501. Springer, 2020.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Zeno: Byzantine-suspicious stochastic gradient
descent. arXiv preprint arXiv:1805.10032, 24, 2018.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1-19,
2019.

Yousef Yeganeh, Azade Farshad, Nassir Navab, and Shadi Albarqouni. Inverse distance aggregation
for federated learning with non-iid data. In Domain Adaptation and Representation Transfer,
and Distributed and Collaborative Learning: Second MICCAI Workshop, DART 2020, and First
MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October
4-8, 2020, Proceedings 2, pp. 150-159. Springer, 2020.

Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu Cong, Xi Weng, Dusit Niyato, and Qiang
Yang. A fairness-aware incentive scheme for federated learning. In Proceedings of the AAAI/ACM
Conference on Al, Ethics, and Society, pp. 393-399, 2020.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International conference on machine learning, pp. 12878-12889. PMLR,
2021.

12



Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CONVERGENCE ANALYSIS

We now provide a rigorous convergence analysis for our DSVD-FL algorithm. We begin by stating
our assumptions and then proceed to prove the convergence theorem.

Assumption 1 For all clients i € [N] and all w € R™:
1. F;(w) is L-smooth: |V F;(w) — VF;(w')|| < L||w — w'||, Yw, w’.

2. Fy(w) is p-strongly convex: Fi(w) > Fy(w') + VE,(w)T(w — w') + &||lw —
w'||2, Vw, w'.

3. The expected squared norm of local gradients is bounded: E||V F;(w)||? < G2.

Assumption 2 The aggregation weights «; are bounded: 0 < apin < @; < amax for all i and all
rounds.

Assumption 3 The SVD truncation error is bounded: | A; — U;%; V' || < € for all i and all rounds.

where e represents the error introduced by truncating the singular value decomposition, which quan-
tifies the trade-off between approximation accuracy and computational efficiency.

Now, we state and prove our main convergence theorem.

Theorem 1 Under Assumptions 1-3, for a learning rate 1, = u(%rl) the DSVD-FL algorithm
converges to the optimal solution w* at a rate of O(%)
2L (4LG? 2Le
E[F(wr) — F(w* <(—|—,uw0—w* 2)+ (11
[F(wr) ~ Flw')] < o (5 4l ) + =

where T' is the total number of rounds, p is the strong convexity parameter, and L is the smoothness
constant. .

Proof: Let w, be the global model at round ¢. The update rule in DSVD-FL can be written as:

N
Witl = Wi — 1) Z w; (Wi — wy) + & (12)
i=1

where &, represents the error introduced by SVD truncation.
By the L-smoothness of F":
T L 2
F(wit1) < F(we) + VEW)" (Wi1 = We) + Sl Wes — wi| (13)
Substituting the update rule and taking expectations:

LniG? N Ln?é?
2 2

E[F(Wei1)] < F(wi) = el VE(W)|? + e[ VE (we) [le + (14)

By the p-strong convexity of F':
* 1 2
F(w) — F(w) < @HVF(Wt)H (15)
Combining these inequalities:

13



Under review as a conference paper at ICLR 2025

E[F(wi1) — F(w*)] <(1 = pne) (F(we) — F(w"))

Ln?G?  Ln?e?
+ 2 (F(wy) — Fw*))e + 12 4 2l (16)
W 2 2
For the chosen learning rate n; = ﬁ, we can prove by induction that:
. 2L (4LG? . 2Le
E{F(wi) - Fv)] < 2 (155 4 o - wep?) + 25 (1)

The base case (¢ = 1) can be verified directly. Assuming the inequality holds for ¢, we can prove it
for ¢ + 1 by substituting the induction hypothesis into the previous inequality and simplifying.

This completes the proof and gives us the desired O(%) convergence rate. ]

This convergence analysis shows that our DSVD-FL algorithm converges to the optimal solution at a
rate of O(% ), which is consistent with standard federated learning algorithms. However, our method
provides additional benefits in terms of client contribution assessment, robustness to non-IID data,
and potential resistance to adversarial attacks, as discussed in previous sections.

It’s worth noting that the convergence bound includes a term dependent on the SVD truncation
error €. This term represents the trade-off between computational efficiency and approximation
accuracy in our algorithm. As we increase the number of singular values used (i.e., as € approaches
zero), we can potentially achieve better convergence at the cost of increased computation.

For non-convex loss functions, which are common in deep learning, the convergence analysis be-
comes more complex. In such cases, we typically analyze convergence to a stationary point rather
than a global optimum. The general approach would be similar, but the details and resulting bounds
would differ.
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A.2 TABLES

Table 3: Algorithm Comparison on FashionMNIST (Non-IID) with varying number of clients (N)

Metric n=10 n=20 n=50 n=100 Algorithm
Avg Accuracy (%) 59.41 7356 70.81 75.12 FedAvg

Avg Accuracy (%) 62.36 74.63 77.64 79.84 FedProx
Avg Accuracy (%) 62.53 7395 68.75 7243 FedCPA
Avg Accuracy (%) 32.67 1395 1632 17.25 qFedAvg
Avg Accuracy (%) 6294 77.25 74775 80.11 DSVD_FL (Ours)
Final Accuracy (%) 64.78 8398 77.55 84.17 FedAvg
Final Accuracy (%) 7536 77.32 81.19 84.44 FedProx
Final Accuracy (%) 7142 82.67 64.60 82.17 FedCPA
Final Accuracy (%) 4473 1457 1694 18.65 qFedAvg
Final Accuracy (%) 72.55 83.37 77.36 85.23 DSVD_FL (Ours)
Max Accuracy (%) 7298 84.17 78.63 85.50 FedAvg
Max Accuracy (%) 75.36 77.32 81.92 86.00 FedProx
Max Accuracy (%) 7523 82.67 7140 82.94 FedCPA
Max Accuracy (%) 46.73 14.65 16.78 18.75 qFedAvg
Max Accuracy (%) 74.75 83.37 81.54 86.53 DSVD_FL (Ours)
Avg Time per Round (s) 19.63 17.83 19.01 17.63 FedAvg

Avg Time per Round (s) 3340 2938 3141 32.07 FedProx
Avg Time per Round (s) 86.11 24.05 3948 40.00 FedCPA
Avg Time per Round (s) 36.50 2992 33.60 34.55 qFedAvg
Avg Time per Round (s) 27.27 2348 30.08 2935 DSVD_FL (Ours)
Std Dev of Accuracy 812 921 7.89 7.65 FedAvg

Std Dev of Accuracy 9.18 10.08 8.77 8.35 FedProx

Std Dev of Accuracy 1635 1278 13.22  12.68 FedCPA

Std Dev of Accuracy 943 477 5.25 5.12 qFedAvg

Std Dev of Accuracy 7.46 8.01 6.84 6.54  DSVD_FL (Ours)
Time to Max Accuracy (s) 19.33 2248 2231 23.54 FedAvg
Time to Max Accuracy (s) 3554 29.38 3141 32.07 FedProx
Time to Max Accuracy (s) 86.29 2446 39.48 40.00 FedCPA
Time to Max Accuracy (s) 3691 29.46 33.60 34.55 qFedAvg
Time to Max Accuracy (s) 23.68 23.48 30.08 23.01 DSVD_FL (Ours)
Avg Accuracy After Convergence (%) 63.19 73.18 7245 75.62 FedAvg

Avg Accuracy After Convergence (%) 73.18 76.38 74.56 78.39 FedProx
Avg Accuracy After Convergence (%) 73.02 72.68 6845 72.09 FedCPA
Avg Accuracy After Convergence (%) 44.67 1457 16.78 17.89 qFedAvg

Avg Accuracy After Convergence (%) 72.64 77.82 76.21 80.55 DSVD_FL (Ours)
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