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Abstract

Within wind farms, wake effects between turbines can significantly reduce overall
energy production. Wind farm flow control encompasses methods designed to
mitigate these effects through coordinated turbine control. Wake steering, for
example, consists in intentionally misaligning certain turbines with the wind to
optimize airflow and increase power output. However, designing a robust wake
steering controller remains challenging, and existing machine learning approaches
are limited to quasi-static wind conditions or small wind farms. This work presents
a new deep reinforcement learning methodology to develop a wake steering policy
that overcomes these limitations. Our approach introduces a novel architecture that
combines graph attention networks and multi-head self-attention blocks, alongside
a novel reward function and training strategy. The resulting model computes the
yaw angles of each turbine, optimizing energy production in time-varying wind
conditions. An empirical study conducted on steady-state, low-fidelity simulation,
shows that our model requires approximately 10 times fewer training steps than a
fully connected neural network and achieves more robust performance compared
to a strong optimization baseline, increasing energy production by up to 14 %.
To the best of our knowledge, this is the first deep reinforcement learning-based
wake steering controller to generalize effectively across any time-varying wind
conditions in a low-fidelity, steady-state numerical simulation setting.

1 Introduction

1.1 Wind farm flow control

A wind turbine converts wind energy into electricity. As wind passes through the blades, its speed
decreases, and turbulence increases for a certain distance, creating wake effects. Within wind farms,
wake effects of upstream turbines reduce the power output of downstream turbines (because of lower
wind speed) and increase their structural fatigue (because of increased turbulence). Consequently,
wake interactions can significantly decrease overall wind farm energy production. Wake losses
quantify this impact as the percentage of power loss due to wake-induced interference.

Greedy control aims to maximize the power output of each turbine individually by keeping all turbines
aligned with the wind direction, without considering wake interactions. To mitigate the negative
impact of wake effects, wind farm flow control (WFFC), i.e., coordinated turbine control, can be
implemented. One method, known as wake steering, consists in misaligning upstream turbines in
relation to the incoming wind in order to move their wakes away from the downstream turbines. This
is accomplished through yaw control, i.e., active rotation of a turbines nacelle around its vertical axis.
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Figure 1 displays a simulation of wake steering applied to a three turbines wind farm with the wind
coming from the west. The darker areas behind each machine correspond to the wake effects. The
first two (upstream) machines are slightly misaligned with the wind direction to redirect their wake
away from the third (downstream) turbine. In this example, the overall farm energy production is
improved by 14 % compared to a standard solution where the three turbines would be aligned with
the wind. However, as wind farms grow larger, the number of wake interactions increases, leading to
a high-dimensional control problem with complex spatial dependencies. In parallel, time-varying
and uncertain wind conditions pose additional challenges, as yaw actuators are subject to rotational
constraints that limit how quickly and frequently turbines can reorient to shifting flow directions.
Together, these factors make the implementation of WFFC solutions increasingly challenging.

Figure 1: Example of WFFC on a three turbines wind farm viewed from above. The first two turbines
are slightly misaligned with the wind to steer their wake away from the third turbine, maximizing
energy production.

1.2 Related works

Wake steering is traditionally implemented using lookup tables (LUTs), where precomputed yaw
settings are applied based on discrete wind conditions [1]. These methods fail to adapt to real-
time wind dynamics, leading to suboptimal power production. Model-based approaches like model
predictive control (MPC) [2] offer some adaptability but heavily depend on the accuracy of their
underlying wind model and require significant computational resources to solve optimization problems
in real time. To overcome these limitations, data-driven learning-based approaches provide more
adaptive and robust control strategies, capable of continuously adjusting yaw settings in response to
dynamic and uncertain wind conditions.

In particular, model-free reinforcement learning (RL) has emerged as a powerful alternative to
traditional wake steering methods [3, 4, 5]. Model-free RL algorithms are inherently more robust to
wind farm model uncertainties and learn solely from experience, enabling the discovery of new and
unexpected control strategies, which is especially valuable for large-scale wind farms. Additionally,
RL seamlessly integrates multi-objective optimization, making it easy to incorporate fatigue reduction
alongside power maximization.

Despite these promising advantages, existing RL-based wake steering methods face significant limita-
tions in terms of scalability, sample efficiency, wind dynamics consideration, and wind conditions
generalization. While some studies address one or more of these challenges, none comprehensively
tackle all of them together. Most existing research on RL for yaw control assumes quasi-constant wind
directions and small wind farms [6, 7]. While some studies consider time-varying wind directions,
they remain constrained to a limited range [8, 9], leaving uncertainty about their ability to generalize
across diverse wind conditions, which is a critical requirement for real-world deployment. In Dong
et al. [10], wind conditions are segmented into discrete intervals, each controlled by a separate RL
policy. In this work, we aim to develop a single policy generalizing across all wind conditions.

To enhance learning speed and efficiency, some studies investigate the use of multi-agent RL for
WFFC [9, 11]. However, these approaches often rely on feed forward neural networks (FNNs),
which struggle to fully capture the complexity of WFFC. Li et al. [12] have recently introduced
promising results with the use of graph transformers to build deep learning (DL)-based surrogate
models for wind power predictions. In this work, we go further by leveraging graph attention networks
(GATs) and self-attention mechanisms within a single-agent RL policy, demonstrating significant
improvements in sample efficiency, learning performance and generalization.
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1.3 Contributions

In this work, we develop a single-agent deep RL policy for wind farm wake steering that generalizes
robustly across time-varying and noisy wind conditions. Our contributions are threefold. (1) We
introduce a novel RL architecture combining GATs and multi-head self-attention (MHSA) which
improves by about a factor 10 the sample efficiency of a traditional FNN and achieves superior perfor-
mance compared to both a FNN and a traditional GAT. (2) We propose a new training methodology
and reward design that enable the policy to generalize across the full 360° range of wind directions
under unsteady and noisy conditions. (3) And we employ a proximal policy optimization (PPO)
actor-critic framework with a von Mises policy head to compute yaw angles, achieving up to 14 %
higher energy capture than a standard wind-tracking strategy in a low-fidelity steady-state simulator.

2 Markov Decision Process

A wind farm is a set of N ∈ N∗ turbines, indexed by i ∈ {0, . . . , N −1}, each located at fixed spatial
coordinates (xi, yi) and characterized by a rotor diameter d [m]. The control problem is defined over
an episode consisting of T ∈ N∗ discrete time steps, indexed by t ∈ {0, . . . , T − 1}, during which
the yaw angle of each turbine is adjusted to optimize performance. The WFFC problem is formalized
as a Markov decision process (MDP) represented by a tuple 〈S,A,P,R, γ〉, with: S the set of states,
A the set of actions, P : S ×A → S the transition function,R : S ×A → R the reward function,
and γ ∈ [0, 1] a discount factor.

2.1 State

At each time step t, the wind is characterized by a direction Kt ∈ [0, 360] degrees and a speed
Vt ∈ [Vmin, Vmax] m/s. This defines the free-stream wind field, which is assumed to be spatially
homogeneous across the farm prior to any wake-induced disturbances. To account for measurement
or forecasting uncertainty, we also define K ′

t and V ′
t as the observed or predicted wind direction and

speed, respectively, which may differ from the true values due to sensor noise or forecast error. Each
turbine i has an absolute nacelle orientation βi

t ∈ [0, 360] degrees, and a yaw angle αi
t ∈ [−180, 180]

degrees. As described in Sub-Figure 2a, the yaw angle is the offset between the absolute nacelle
orientation and the wind direction, i.e., αi

t = (Kt − βi
t + 180) mod 360 − 180. The state is

st = (XWt
, XFt

, XYt
, XLt

) where:

• XWt
= (K ′

t, V
′
t ) represents the current, measured wind conditions;

• XFt = (K ′
t+l, V

′
t+l)l∈{1,2,3} represents a wind forecast on the next three time steps;

• XYt
= (βi

t)i∈{0,...,N−1} represents the current absolute orientations of each turbine;

• XLt = (xi, yi, d)i∈{0,...,N−1} represents the static layout and rotor diameter of each turbine.

2.2 Action

The wake steering controller is characterized by a policy πθ parameterized by θ, computing the yaw
settings from the state such that πθ(st) = at. The action at = (ait)i∈{0,...,N−1} is the vector of each
turbine individual yaw setting. Each action ait corresponds to the rotational movement of turbine i
between time step t and t+1 and is bounded in [−20, 20] degrees due to mechanical constraints of the
yaw actuators. Before action ait is applied (Figure 2a), the yaw angle is αi

t and the absolute orientation
is βi

t . When action is applied (Figure 2b), the turbine is rotated, giving an updated orientation βi
t+1

and an updated yaw angle α̃i
t. At the end of the time step t (Figure 2c), wind direction evolves from

Kt to Kt+1 and the next yaw angle αi
t+1 is computed accordingly.

2.3 Transition

At the beginning of each episode, initial wind direction and speed are sampled from uniform
distributions such that K0 ∼ U(0, 360) and V0 ∼ U(Vmin, Vmax), respectively. Initial yaw angles
are sampled from a uniform distribution such that αi

0 ∼ U(−20, 20) ∀i ∈ {0, . . . , N − 1}. The
absolute nacelle orientations βi

0 are then computed based on K0. The wind farm layout remains fixed
throughout all episodes. At each time step t, and for each turbine i:
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(a) Time step t, start. (b) Time step t, update. (c) Time step t, end.

Figure 2: Graphical representation of a turbine i at time step t with wind direction Kt. After action ait
is being applied, the turbine has an updated yaw angle α̃i

t. At the end of the time step, wind direction
evolves from Kt to Kt+1 and the next yaw angle αi

t+1 is computed.

1. the policy computes the yaw settings such that πθ(st) = at;
2. absolute orientations are updated βi

t+1 = (βi
t + ait) mod 360;

3. yaw angles are updated α̃i
t = (Kt − βi

t+1 + 180) mod 360− 180;
4. the power output of the wind farm Pt in megawatts (MW) is computed;
5. a reward rt+1 is computed, and wind conditions evolve from (Kt, Vt) to (Kt+1, Vt+1);
6. yaw angles are updated αi

t+1 = (Kt+1 − βi
t+1 + 180) mod 360− 180;

Power computation is based on the current wind conditions (Kt, Vt) and the updated yaw angles α̃i
t.

In this work, we use a steady-state, low-fidelity wind farm simulator to compute the power outputs
and a simple model to generate wind data time series, both later described in Sub-Section 4.1. To
maintain a consistent and valid discretization of the continuous WFFC problem, we account for
turbine rotational constraints by assuming that reorientation occurs rapidly relative to the time step
duration, and that wind conditions remain quasi-stationary over each time step.

2.4 Reward

At each time step t, the reward rt+1 (Equation 1) is the weighted sum of two terms: one for invalid
policies and one for power maximization, such that

rt+1 = w0r
invalid
t+1 + w1r

power
t+1 . (1)

The objective of the rinvalid
t+1 term (Equation 2) is to penalize the total reward when some yaws are

outside [−20, 20]. Indeed, outside this interval, turbines are shut down for safety reason, resulting in
no power output. This makes the power maximization reward uninformative. Therefore, this term
is used to guide the policy towards good control strategies, i.e., keeping turbines close to the wind
direction. It is defined as

rinvalid
t+1 =

−1
N

N−1∑
i=0

((
|α̃i

t|
180

)3

1α̃i
t /∈[−20,20]

)
. (2)

The objective of the rpower
t+1 term (Equation 3) is to maximize power production relative to a baseline,

using the power ratio ∆Pt
= (Pt − P̄t)/P̄t with P̄t the baseline power output. Unlike using the

absolute power output as a reward - which can bias the agent toward high-production wind conditions
only - this ratio normalizes improvements relative to a baseline and ensures the agent optimizes
wake steering across all conditions, including those where wake losses are less significant. We use
as a baseline a perfect wind tracking controller that does not perform any wake steering. It is not
subject to the rotational constraints of the turbines, as it always performs simulations with all turbines
aligned with the exact wind direction Kt. The baseline wake losses denoted L̄t gives some insights
about the complexity and importance of WFFC for the given wind conditions. High values indicate a
significant reduction in energy production, making wake steering essential.
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The optimal magnitude of ∆Pt depends on the wake losses: a near-zero ratio can be optimal when
wake losses are low (making WFFC unnecessary) but suboptimal when wake losses are high (making
WFFC necessary). To address this, we introduce an exponential scaling term, parameterized by p,
that adjusts the reward based on the baseline wake losses L̄t. This term ensures a balanced reward
across different wind conditions by restricting the power ratio when the wake losses are significant.
Additionally, if power production falls below the baseline, the agent is penalized with a negative
reward. An ablation study is given in Figure 9, in Appendix. It is defined as

rpower
t+1 = ∆Pt

1∆Pt<0 + exp(−pL̄t)∆Pt
1∆Pt≥0. (3)

3 Models

We train and compare three models in a single-agent, continuous action space setting: a FNN-based
model named V0 model; a GAT named V1 model; and our contribution, the V2 model, an attention-
based neural network. Each model follows an actor-critic framework, taking the state st as input
and giving both an actor distribution (µ̄t, κ̄t) and a critic value v as outputs. The actor distribution
independently parameterizes a von Mises distribution for each turbine, with the location parameters
µ̄t := (µ0

t , µ
1
t , . . . , µ

N−1
t ) and the concentration parameters κ̄t := (κ0

t , κ
1
t , . . . , κ

N−1
t ).

During training, turbine actions are sampled from their respective von Mises distribution: ait ∼
V(µi

t, κ
i
t) ∀i ∈ {0, 1, . . . , N − 1}. During testing, each turbine’s action is set directly to its location

parameter: ait = µi
t, ∀i ∈ {0, 1, . . . , N − 1}. Due to the inherent symmetry in the WFFC problem,

if an effective solution exists near the lower bound of the action space, a corresponding solution near
the upper bound is often equally viable. By modeling actions with a circular distribution, like the
von Mises, we ensure that the policy can explore these equivalent solutions efficiently. It promotes a
more effective and balanced exploration.

To ensure a fair and meaningful comparison, we use approximately the same number of parameters for
each model: around 22 million of parameters each. More details are given in the sub-Section A.1 of
the Appendix. A hyperbolic tangent activation function, scaled by π, is used for µ̄t to ensure bounded
actions in [−π, π]. Actions are later denormalized to the turbine’s operational range [−20, 20] before
being sent to the environment. A softplus activation function is used for κ̄t to ensure values strictly
superior to 1. A linear activation function is used for the critic output.

3.1 Model V0

The V0 model (Figure 3) is a FNN composed exclusively of fully connected (FC) layers. Its input
is a single concatenated vector comprising the current wind data, wind forecast, and the absolute
orientations of the turbines. The layout feature vector XLt

is excluded from the inputs as it remains
constant across all episodes. Instead, the model is expected to implicitly learn spatial relationships
between turbine coordinates, wind flow, and wake effects during training. Most existing approaches
similarly rely on FNNs that process concatenated inputs. However, this strategy may be inefficient,
as it requires the model to simultaneously infer complex spatial and temporal dependencies from a
high-dimensional, entangled input vector without explicit structural guidance.

Figure 3: V0 model, a FNN-based architecture.
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3.2 Model V1

The V1 model (Figure 4) is based on GATs [13]. The input of the V1 model is a graph
g1(XWt

, XFt
, XYt

, XLt
) built from the state. Each node in the graph corresponds to a turbine

at a fixed position determined by the layout. The node feature vector for turbine i consists in
(XWt

, XFt
, βi

t), which includes current wind data, wind forecast and the turbine’s orientation. A
directed edge exists from turbine i to turbine j if the distance between them is less than eight turbine
diameters and if turbine i is upstream to j. We use a distance of eight turbine diameters to balance
wake interaction modeling and graph complexity. Each edge feature vector encodes the normalized
distance and relative angle between connected turbines with respect to the wind direction. Graph
neural networks (GNNs) have been successfully applied in deep surrogate modeling [12] and various
wind farm analysis tasks but remain relatively underexplored for direct WFFC optimization. Still,
GNNs may not be optimal since certain data (like wind conditions) are duplicated across all turbine
nodes, potentially leading to redundancy.

(a) Graph. (b) Network.

Figure 4: V1 model, based on GATs. Sub-Figure 4a illustrates an example input graph with a wind
direction of 256°, where wake effects are shown in the background. Sub-Figure 4b presents the
architecture of the V1 model.

3.3 Model V2

Our proposed architecture, described as the V2 model (Figure 5), leverages both a GAT and MHSA
blocks Vaswani et al. [14]. To better exploit the multi-modality of the WFFC problem, inputs are split
in four different embeddings. 1) A FNN is used to create the wind embedding EWt . 2) A FNN is used
to create the forecast embedding EFt . 3) A GAT is used to create each turbine positional encoding
Ei

pet . The input is a graph similar to the one built by the V1 model (Sub-Section 3.2), without wind
speed neither wind forecast. 4) A FNN is used to create each turbine specific embedding Ei

Yt
from

turbine orientations. The final embedding of each turbine is the sum of all these embeddings. Whereas
wind and forecast embeddings are shared between all turbines, positional and turbine embeddings
are specific for each turbine. In the context of WFFC, self-attention captures relationships between
turbines by identifying which ones are most relevant for yaw control. It allows the model to consider
all turbines simultaneously and understand how wake effects propagate across the farm. The multi-
head mechanism enhances this by providing multiple perspectives on these interactions. In natural
language processing, positional encoding is straightforward, as it follows word order in a sentence.
In a wind farm, however, turbine positions depend on wind conditions, yaw angles, and wake effects,
making encoding more complex. To address this, we use a GAT to learn positional embeddings,
capturing spatial dependencies more effectively. By representing the wind farm as a graph, we
encode expert knowledge into the model and provide a structured representation of wake interactions,
accelerating learning.
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Figure 5: V2 model architecture, incorporating GAT and MHSA blocks. FC layers refer to standard
dense layers applied once to the input, while feed-forward layers apply the same FC layer indepen-
dently (a) to each turbine’s embedding, (b) in attention blocks, (c) and to each turbine’s embedding in
the actor branch, after the last attention block.

4 Simulations

4.1 Experimental setting

We employ episodic RL with a horizon of T = 18 time steps, each lasting 10 minutes, resulting in
a 3 hours control period for the turbines. The reward loss parameter is set to p = 3 and the reward
weights are w0 = 1 and w1 = 100. States are normalized to the range [−1, 1]: wind speeds are scaled
accordingly and angles are converted to their sine and cosine representations. We consider a wind
farm of N = 19 turbines and a custom diamond layout as displayed in Figure 4a, with a distance
of four turbines diameters between a turbine and its closest neighbors. Numerical simulations are
conducted with FLOw Redirection and Induction in Steady State (FLORIS) [15], a steady-state,
low-fidelity simulator developed by National Renewable Energy Laboratory (NREL).

We consider low speed winds, i.e., Vmin = 3 m/s and Vmax = 10 m/s because this is where WFFC
is the most beneficial for energy production (wake losses have a greater impact). At each time
step step t ≥ 1, we use a simple auto-regressive moving average (ARMA) process of order 1 to
generate wind data. The direction is computed such that Kt = (εt +Kt−1 + 0.1εt−1) mod 360
with εt ∼ N (0, 9). The speed is computed such that Vt = ε′t+Vt−1+0.1ε′t−1 with ε′t ∼ N (0, 0.01).
A mirroring function is used for the generated speeds to ensure that values stay in [Vmin, Vmax]. Noisy
wind data is obtained by perturbing the original values with noise sampled from uniform distributions:
K ′

t = Kt + εK , where εK ∼ U(−3, 3), and V ′
t = Vt + εV , where εV ∼ U(−0.1, 0.1).

During testing, we use three benchmarks. Standard: simple benchmark keeping every turbine aligned
as possible with the current measured wind direction K ′

t. It does not perform any optimization and
does not rely on the wind forecast. Gauss-Seidel (GS): good optimized benchmark, introduced
by Fleming et al. [16]. It optimizes turbine yaw settings sequentially, where the initial solution is
computed with the standard solution. Then, it sequentially optimizes each turbine from upstream to
downstream, keeping the others fixed, by performing a grid search over 40 discretized yaw angles. It
does not rely on the wind forecast. Heuristic: strong optimized benchmark, introduced by Kadoche
et al. [17]. It consists in an improved version of the GS solution, where the objective function is
augmented by a heuristic. It does rely on the wind forecast to optimize its solutions on a given
horizon, making the comparison with our models more relevant.
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4.2 Proximal policy optimization

We train each model using a PPO [18] actor-critic method and generalized advantage estimator
(GAE) [19]. We use a custom implementation of PPO and a custom RL environment. By paralleliz-
ing experience collection in our PPO implementation and vectorizing power computations in the
FLORIS simulator, we achieve a 70 speedup in training. Specifically, training the V2 model takes
approximately two hours, whereas without parallelization and vectorization, the same training would
require 140 hours. For reproducibility purpose, more details regarding the training times (Figure 8),
the hyperparameters (Table 1) and our PPO implementation (sub-Section A.5) are given in Appendix.

At each training step, we simulate 360 independent episodes of 3 hours, resulting in 6,480 time steps.
To ensure comprehensive coverage of all possible wind conditions, each of the 360 episodes has a
different initial wind direction. Each episode is initialized with a wind direction sampled from a
discrete set of 360 distinct values, uniformly distributed between 0° and 360°. More specifically,
wind directions are sampled in 1° increments, such that the first episode has an initial direction in
[0, 1] degrees, the second episode in [1, 2], etc. It ensures that the entire directional space is covered,
speeding up generalization and mitigating sampling biases during training.

The discount factor γ determines how much future rewards influence current decisions, where a higher
γ prioritizes long-term optimization. Although our goal is to optimize long-term energy production,
we use a small discount factor (γ = 0.1) due to the steady-state nature of the low-fidelity simulation.
If training were conducted on a higher-fidelity simulation, where state transitions introduce stronger
temporal dependencies, increasing the discount factor would be necessary to properly account for
long-term effects.

4.3 Results

Each model is trained for 150 steps, corresponding to a total of 972,000 simulated time steps. Training
is conducted across 10 different random seeds to ensure robustness and account for variability in
learning performance. The training curves, shown in Figure 6, highlight key differences between
models. The V0 model exhibits high variance in the early stages and converges significantly slower
than the V1 and V2 models. Because input data is concatenated into a single vector, the V0 model
struggles to learn an effective policy efficiently, likely due to the lack of an explicit structural
representation of the data, requiring more training steps to stabilize. In contrast, the V2 model
demonstrates superior stability and faster convergence, ultimately outperforming both the V0 and V1
models in terms of learning efficiency and final performance.

Figure 6: Training curves of each model, showing mean and variance over 10 different seeds. The V1
and V2 models have much faster and stable convergence compared to the V0 model. And the V2
model achieves better performance compared to the V0 and V1 models.

To evaluate the generalization of each solution across all wind conditions, we test them on 360
wind directions, sampled in 1-degree increments. For each direction, we run 10 independent test
episodes of 18 time steps, using random seeds not used during training. This ensures that test episodes
remain distinct from training and provide comprehensive directional coverage. For each episode,
we compute each solution’s cumulative power production and quantify its improvement over the
standard wind-tracking solution. We then report the mean and variance of these improvements across
the 10 seeds for each wind direction and present the results in Figure 7.
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The V2 model consistently increases wind farm energy production, achieving gains of up to 14 % in
high wake-loss scenarios. It outperforms both the V0 and V1 models across nearly all conditions.
Although the heuristic baseline delivers strong performance, its results exhibit greater variance,
making it less reliable. The GS approach performs poorly and, in some cases, even yields lower
power output than the standard solution. This demonstrates that wind direction can shift too rapidly
relative to yaw constraints, making long-term optimization essential for effective control. The V2
model successfully leverages noisy wind forecasts to improve long-term performance. Notably, in
strong wake conditions, the V2 model outperforms the heuristic controller while being roughly 200
times more computationally efficient. However, when wake losses are low, power gains are more
limited, and the V2 model underperforms compared to the heuristic. The underlying cause of this
discrepancy remains unclear: it may come from architectural limitations or from the reward function
design. Future works should investigate these factors to further refine the model’s performance.

(a) V0 model. (b) V1 model. (c) V2 model.

(d) Heuristic. (e) Gauss-Seidel.

Figure 7: Performance of each solution relative to the standard benchmark. The V2 model significantly
outperforms the V0 and V1 models as well as the GS solution. It achieves performance comparable
to the heuristic, but with lower variance and higher gains in strong wake loss conditions.

5 Conclusion

In this work, we introduced a novel deep RL architecture for wake steering, based on GATs and
MHSA, improving by approximately a factor 10 the sampling efficiency of a FNN. Once trained with
PPO, our model computes the yaw angles of each turbine and achieves more robust performance
than a strong optimization baseline, increasing energy production by up to 14 %. To the best of
our knowledge, this work is the first to achieve complete generalization over time-varying wind
conditions, thanks to a novel reward function and training strategy. However, while this work
provides encouraging evidence of the potential for deep RL for robust wake steering, the results
remain empirical and are based on simplified, steady-state, low-fidelity wake models. For real-world
deployment, future work should incorporate turbine fatigue considerations to ensure long-term
structural integrity and validate the approach in higher-fidelity and unsteady flow environments that
better capture realistic wind dynamics. As the problem grows in complexity, the strengths of RL -
such as its ability to optimize over long horizons, adapt to uncertain dynamics, and operate without
explicit system models - should further reinforce its suitability for wake steering control.
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A Appendix

A.1 Detailed architectures

V0 model

The V0 model, a FNN-based architecture, is presented in Figure 3. In this work, nh = 2 and the two
shared FC layers have output sizes of 1024 and 4096. The shared actor branch comprises two FC
layers with output sizes of 2048 and 256. The µ̄t and κ̄t actor branches each contain a single FC
layer with output size of N . The critic branch consists of three FC layers with output sizes of 2048,
256, and 1.

V1 model

The V1 model, a GAT, is presented in Figure 4. In this work, the two shared GAT layers have three
attention heads and output sizes of 1024. The shared actor branch comprises two GAT layers with
three attention heads and output sizes of 128 and 64. The µ̄t and κ̄t actor branches have both a single
GAT layer with one attention head, giving a scalar output for each node (i.e., for each turbine). The
critic branch consists of three FC layers with output of sizes 128, 64, and 1.

V2 model

The V2 model, an attention-based neural network, is presented in Figure 5. In this work, each
embedding layer has an output size of 256 and the GAT used for positional encoding has a single
attention head. The three attention blocks consist of a MHSA layer with three attention heads and
an output size of 256, followed by two feed-forward layers: one increases the size four times and
the other restores it. Both actor branches contain three feed-forward layers with output sizes of 128,
64, and 1. The critic branch follows the same structure, with three FC layers of output sizes 128, 64,
and 1.

A.2 Training times

Figure 8: Training time of the V2 model under different resource configurations. Parallelizing
experience collection in PPO and vectorizing power computations in the FLORIS simulator leads to
a 70 speedup for training. Each model is trained on a NVIDIA Grace central processing unit (CPU)
and NVIDIA GH200 Hopper graphics processing unit (GPU).
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A.3 Hyperparameters

Numerical simulations are conducted with FLORIS [15], a steady-state, low-fidelity simulator
developed by NREL. The default Gaussian-curl hybrid model [20] provided by FLORIS is used.
The machines are International Energy Agency (IEA) 15 MWs wind turbines [21]. For the PPO,
hyperparameters are listed in Table 1.

Table 1: PPO hyperparameters used for each model. Only the learning rates and gradient clipping
parameters differ. At each training step, the current learning rate is sampled using linear interpolation
between the initial and final values.

Hyperparameter Model V0 Model V1 Model V2
Training steps 150 150 150
Discount factor 0.1 0.1 0.1
Learning rate (first) 1e-4 1e-5 1e-5
Learning rate (last) 1e-6 1e-7 1e-7
Gradient clipping 10 None None
GAE λ parameter 0.95 0.95 0.95
Entropy coefficient 0.05 0.05 0.05
Clip parameter (actor) 0.01 0.01 0.01
Clip parameter (critic) 10 10 10
Value loss coefficient 0.1 0.1 0.1
Number of epochs 11 11 11
Train batch size 6480 6480 6480
Mini batch size 360 360 360

A.4 Ablation study

We conduct an ablation study to assess the influence of the exponential and invalid terms within
our reward function. Figure 9a displays the performance of the default V2 model. In Figure 9b, we
evaluate the V2 model trained with p = 0, effectively removing the exponential term’s impact. And
Figure 9c shows results when the rinvalid

t+1 term is eliminated by setting w0 = 0. The study indicates that
the exponential term is crucial for consistent optimization across all wind conditions, as its absence
leads to suboptimal performance in scenarios with small wake losses. Furthermore, the invalid term
contributes to overall performance, with its removal resulting in a slight global degradation.

(a) Default. (b) Without exp(−pL̄t). (c) Without rinvalid
t+1 .

Figure 9: Ablation study for the V2 model. Without the exponential term, i.e., with p = 0, perfor-
mance is degraded for small wake losses conditions. And without the invalid term, i.e., with w0 = 0,
performance is globally decreased.
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A.5 Proximal policy optimization

PPO [18] is a model-free, on-policy deep RL algorithm based on policy gradients. It improves
stability and sample efficiency over standard policy gradient methods by introducing a clipped
surrogate objective that constrains policy updates. In this work, we have developed a custom actor-
critic implementation of PPO, drawing inspiration from Stable Baselines 3 [22] and RLlib [23, 24].
Our implementation is fully vectorized using NumPy and PyTorch matrix operations [25], and the
collection of trajectories is fully parallelized via the Ray library [26] to enable efficient large-scale
training. It supports both continuous and discrete action spaces. Let πθ and Vθ be a policy and value
function, respectively, with shared parameters θ. The pseudocode of our PPO training loop is given
in Algorithm 1. It consists of two distinct phases: the collection of trajectories and the update of the
parameters.

During training, trajectories are collected by executing the current policy πθ and the current value
Vθ in the environment. These trajectories consist of tuples (st, at, rt+1, st+1) over multiple time
steps. At the end of a trajectory, the value function is used to bootstrap the final return only when the
episode is truncated (e.g., due to time limits). In that case, the final estimated value Vθ(sT ) is used as
a proxy for future rewards: rT ← rT + γVθ(sT ). This ensures consistent return estimation across
both terminated and truncated episodes. At the end of an episode, GAE [19] is used to compute the
value targets V̂t and the advantages Ât. This method provides a biased but low-variance estimator
of the advantages. It relied on the temporal difference (TD) residual δt = rt + γVθ(st+1)− Vθ(st).
The advantages are computed as an exponentially-weighted sum Ât =

∑T−t−1
k=0 (γλ)kδt+k with λ

the GAE parameter. And the value targets are estimated as V̂t = Ât + Vθ(st).

After collecting multiple trajectories, the training process enters an optimization phase consisting
of several epochs. During each epoch, the full batch of collected data is shuffled and divided into
minibatches. Each minibatch is then used to compute the loss and update the parameters of both
the policy and value networks via stochastic gradient descent (SGD). The total loss is defined as a
weighted sum of four components: L = c0Lactor+c1Lcritic+c2Lentropy, where c0, c1, and c2 are scalar
hyperparameters controlling the relative contribution of each term. The probability ratio between the
current and old policy is given by rt(θ) = πθ(at|st)/πθold(at|st) and is central to the actor loss. The
four loss terms are defined as follows.

• Actor loss: Lactor = −min
(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)
, where Ât is the advan-

tage estimate and ε ∈ (0, 1) is a trust-region hyperparameter. The clipping prevents large
policy updates that could destabilize training.

• Critic loss: Lcritic = clip
(
(Vθ(st)− V̂t)

2, 0, vf_clip_param
)

, where V̂t is the target
return and vf_clip_param controls the maximum contribution of the value error to the
total loss, ensuring stability in value updates.

• Entropy loss: Lentropy = −H(πθ(st)), whereH denotes the Shannon entropy of the policy.
This term encourages exploration by penalizing low-entropy (overly deterministic) policies.

Algorithm 1 Pseudocode of PPO training loop.
Input: Initial policy πθ and value Vθ

Input: PPO hyper-parameters
1: for iter = 0 to max_iters do
2: Collect trajectories using πθ

3: Compute value targets V̂t

4: Compute advantages Ât

5: Fix parameters θold ←− θ
6: for epoch = 0 to nb_epochs do
7: for minibatch in batches do
8: Compute ratio rt = πθ(at|st)/πθold(at|st)
9: Compute loss L = c0Lactor + c1Lcritic + c2Lentropy

10: Update parameters θ ←− θ − α∇θL
11: end for
12: end for
13: end for
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The policy outputs p0 = (pi0)i∈{0,...,N−1} and p1 = (pi1)i∈{0,...,N−1}, which parameterize a set of
independent von Mises distributions, one per turbine. For each turbine i, the location parameter is
defined as µi = π · tanh(pi0) and the concentration parameter as κi = softplus(pi1). During training,
actions are sampled independently for each turbine as ait ∼ V(µi, κi), while during evaluation,
actions are set deterministically to the mode, ait = µi. The use of von Mises distributions ensures
that the yaw angles are naturally constrained within the circular interval [−π, π].
As the von Mises distribution is rarely used as a policy output in continuous RL, we provide additional
details below. Specifically, we present the expressions for its probability density function and entropy.
The probability density function is defined as f(x | µ, κ) = exp(κ cos(x−µ))

2πI0(κ)
, with µ the measure of

location, κ the measure of concentration and I0(k) the modified Bessel function of the first kind of
order 0. The Bessel’s integral In(κ) can be written as In(κ) = 1

π

∫ π

0
cos(nx) exp(κ cos(x)) dx. The

entropyH(f) is computed as follows.

H(f) = −
∫ π

−π

f(x) log(f(x)) dx (4)

= −
∫ π

−π

f(x)(κ cos(x− µ)− log(2πI0(κ))) dx (5)

= −
∫ π

−π

f(x)κ cos(x− µ) dx+

∫ π

−π

f(x) log(2πI0(κ)) dx (6)

=
−κ

2πI0(κ)

∫ π

−π

cos(x− µ) exp(κ cos(x− µ)) dx+ log(2πI0(κ))

∫ π

−π

f(x) dx (7)

=
−κ

2πI0(κ)
2πI1(κ) + log (2πI0(κ)) (8)

= −κI1(κ)
I0(κ)

+ log (2πI0(κ)) . (9)
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