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ABSTRACT

Prompt tuning has become a crucial technique for adapting pre-trained vision-
language models (VLMs) to various downstream tasks. Recent advancements
introduce multi-modal learnable prompts to enhance the creation of task-specific
classifiers. Despite their utility, these methods commonly encounter challenges
in generalizing to unseen classes, as their symmetrically designed visual prompt
struggles to capture task-relevant textual knowledge and lacks the flexibility in
adjusting to novel test class distributions. To tackle these obstacles, we propose a
novel Text-Guided Visual Prompt Tuning (TGVP) method, which uniquely lever-
ages the robust generalizability of textual knowledge to guide the generation of
visual prompt. Our method introduces a simple yet effective Text-Knowledge
Guidance Module that dynamically incorporates visual prompt with task-relevant
textual knowledge through cross-attention mechanism. The generated text-guided
visual prompt endows the visual encoder with semantic awareness and thus en-
hances both generalization and discriminability of VLMs across various scenarios.
Comprehensive experiments demonstrate that TGVP significantly outperforms ex-
isting methods in base-to-novel generalization, cross-dataset transfer, and domain
generalization tasks, offering a substantial improvement in VLM adaptation.

1 INTRODUCTION

Foundational vision-language models (VLMs), such as CLIP (Radford et al.,|2021b) and BLIP (L1
et al., 2022a)), pre-trained on large-scale image-text pairs, have demonstrated remarkable general-
ization abilities across diverse downstream vision tasks. However, training models from scratch
generally requires large labeled datasets, which limits their applicability to downstream tasks with
fewer samples. To overcome this, parameter-efficient adaptation techniques such as prompt tun-
ing (Zhou et al.l 2022c)), adapters (He et al.,|2021), and LoRA (Hu et al.| 2021} have been introduced.
Among these, prompt tuning has become a prominent approach for maximizing the potential of
VLMs, balancing parameter efficiency while effectively preserving pre-trained knowledge.

CoOp (Zhou et al.,|2022c)) was the pioneer in introducing prompt tuning by concatenating learnable
contextual tokens to class names, demonstrating its effectiveness. However, these learnable prompts
face over-fitting problem, particularly with limited training data, leading to degraded generalization
on unseen classes. To mitigate the issue, subsequent methods have incorporated various regularization
techniques when updating these prompts. For instance, CoCoOp (Zhou et al.| 2022b) conditions
on image features to enhance the learnable textual prompts with instance-level visual information.
Follow-up methods such as KgCoOp (Yao et al.,[2023b), ProGrad (Zhu et al.|, 2023a)), and ProReg (Zhu
et al.| [2023b) impose stronger constraints on learnable prompts from vanilla CLIP features to ensure
that they effectively encapsulate essential general knowledge.

Alternative methods, such as PromptSRC (Khattak et al., [2023c), address the over-fitting problem by
enhancing cross-modal alignment in the shared vision-language space. Instead of solely updating
textual prompts, they take advantage of the multi-modal encoding capabilities of VLMs by learning
both textual and visual prompts. While these two-branch designs yield improved results, both types
of prompts are independently optimized to over-fit the base classes and cannot effectively handle
novel classes. Additionally, the lack of cross-modal interactions constrains the sufficient multi-modal
alignment.
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Figure 1: Prompt tuning in different modalities. (a) Unimodal prompt in text encoder. (b) Unimodal
prompt in image encoder. (c) Experiment shows that textual prompts result in less performance
degradation on novel classes compared to visual prompt.

A natural question arises: which modality of prompt tuning enhances the model’s generalization
ability? To gain a deeper understanding of prompt learning across different modalities, we set
up a comparative experiment in which only one modality of prompts (either visual or text) is
set as learnable and trained on base classes. Figure [I] illustrates that textual prompts result in
less performance degradation on novel classes compared to visual prompts, exhibiting stronger
generalization capability. This motivates us to incorporate textual knowledge into visual branch for
enhanced the generalization capability when adapting VLMs. The previous method, MaPLee (Khattak
et al.,[2023al)), also notices this problem and establishes a mapping from textual prompts to visual
prompts for better alignment of two modalities. However, it has certain limitations. First, the source
of textual information is confined to fixed text prompts, which are uniform across both seen and
unseen scenarios, thereby hindering effective adaptation to unseen classes.Moreover, the simple
symmetrically projection mechanism is insufficient for information interaction between visual and
textual modalities, as textual features naturally contain semantic information while visual features
carry local patch information from the current image.

Therefore, to mitigate these limitations, we propose a novel Text-Guided Visual Prompt Tuning
(TGVP) approach to leverage the generalization capability of textual knowledge to guide the genera-
tion of visual prompts, focusing on both the knowledge source and the method of knowledge transfer.
We emphasize that high-level textual semantics are key to facilitating the learning of general-
izable visual prompts. Instead of using textual prompts to enhance their visual counterparts, we
utilize the text embeddings, which encode high-level semantic information, as the knowledge source
to guide the optimization of visual prompts. To better harness this knowledge, we propose a novel
Text-Knowledge Guidance Module to dynamically select and fuse the task-relevant textual knowledge
into the visual encoder, enabling it to be semantically aware of both seen and unseen classes. Specifi-
cally, both visual prompt tokens and the CLS token cooperatively serve as queries to dynamically
select the most relevant textual guidance through cross-attention mechanism. We conducted extensive
experiments to evaluate the proposed TGVP approach on base-to-novel generalization, cross-dataset
transfer, few-shot classification, and domain generalization tasks. Experimental results demonstrate
the significantly superior performance of TGVP compared to existing state-of-the-art methods. The
main contributions can be summarized as follows:

* We point out that text embeddings can be leveraged as knowledge source at the cross-
modal interaction rather than text prompts, thereby enhancing both discriminability and
generalizability of the visual representation in VLMs.

* We propose a novel Text-Guided Visual Prompt Tuning mechanism, which dynamically
transfers textual knowledge to guide the generation of visual prompt, making it semantically
aware for both seen and unseen classes.

» Extensive and comprehensive experiments have validated the consistent effectiveness and
the superior performance by significant margins.

2 RELATED WORK

2.1 VISION-LANGUAGE MODELS

In recent years, Vision-Language Models (VLMs) (Radford et al., 2021bj Jia et al.| 2021} [Yuan
et al., 2021} |Li et al.,|2022a) have emerged as a powerful paradigm, effectively leveraging visual
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and textual modalities trained on large-scale image-text datasets. Current research underscores
that these models, pre-trained on extensive image-text pairs sourced from the internet, possess the
capability to comprehend the semantics of images in conjunction with their corresponding textual
descriptions (Radford et al.l|2021b; [Yu et al.}|2022). Notably, recent studies (Zhang et al.|[2021}; [Zhou
et al.| 2022c) have demonstrated that, with a deep understanding of open-vocabulary concepts, VLMs
exhibit proficiency in addressing a diverse array of downstream visual tasks, including but not limited
to image retrieval (Duan et al.| 2022)), depth estimation (Hu et al.}2023)), visual grounding (Li et al.|
2022b), and visual question answering (Duan et al.,|2022).

2.2 PROMPT TUNING

Prompt tuning (Gan et al.| |2022;|Ouali et al., 2023} Lee et al.,[2023} Zang et al.l 2022; Radford et al.|
2021a) has emerged as a prominent approach for adapting pre-trained VLMs to downstream tasks by
leveraging learnable tokens to encapsulate task-specific knowledge. In models like CLIP, handcrafted
templates such as "a photo of a [CLASS]" are employed to encode textual embeddings for zero-shot
predictions. However, these handcrafted prompts often fall short of capturing the subtle nuances
required for downstream tasks. To overcome this limitation, textual prompt tuning techniques have
been developed to enhance textual embeddings by inferring a set of learnable tokens combined with
class tokens.

For example, CoOp (Zhou et al.|,[2022c)) replaces static handcrafted prompts with dynamic, learn-
able soft prompts. To further improve the generalization capability of these learnable prompts,
CoCoOp (Zhou et al.,[2022b) introduces image-conditional prompts that integrate image features
with learnable tokens. Additionally, approaches like KgCoOp (Yao et al.| [2023b), ProGrad (Zhu et al.}
2023al) impose constraints on learnable prompts to ensure they encapsulate essential, generalized
knowledge. Beyond textual prompt tuning, recent advancements such as MaPLe (Khattak et al.,
2023al) and PromptSRC (Khattak et al.,|2023c) propose joint optimization of both visual and textual
prompts. CLIP-Adapter (Gao et al.2021)) integrates an adapter mechanism to fine-tune both visual
and textual embeddings, further enhancing model adaptability.

However, previous unimodal prompt tuning methods often struggle with generalization to unseen
classes due to inadequate modeling of test class distributions, while existing multi-modal prompt
tuning strategies are also hampered by limited cross-modality information exchange, restricting
performance improvements. To tackle these obstacles, we propose Text-Guided Visual Prompt
Tuning (TGVP), which transfers general textual knowledge into the vision encoder via a Text-
Knowledge Guidance (TKG) Module. Utilizing a streamlined cross-attention mechanism, visual
prompts, alongside the CLS token, dynamically select relevant textual guidance. This process enables
the creation of a semantic-aware vision classifier that effectively adapts to diverse downstream tasks.

3 METHOD

3.1 PRELIMINARIES

CLIP CLIP is a representative and powerful Vision-Language Pre-Trained Model (VL-PTM) that
includes a vision encoder V' and a text encoder T, both of which are well-mapped to a common
feature space for alignment.

Given an input image x, the vision encoder extracts its representation, denoted as I, = V' (z). For
each downstream dataset with k classes, a manual prompt template like "a photo of <CLASS>"
is used. The text encoder generates feature representations for each class. During training, CLIP
maximizes the cosine similarity between matched image and text representations while minimizing it
for unmatched pairs. In zero-shot inference, the prediction probability for the ¢-th class is:

exp(cos(I, T(y:))/7)
Sk exp(eos(Ly, T(y;)) /7))

where 7 is a temperature parameter, and cos represents cosine similarity.

ply=ill)= 1)

Prompt Engineering To further improve the discriminative capabilities of VLMs, CoOp (Context
Optimization) introduces learnable tokens into the prompt templates. Rather than employing a static



Under review as a conference paper at ICLR 2025

Multimodal prompt tuning in dual branches Text-Guided Visual Prompt Tuning
’—> sim 4—‘ S lm
( image Embedding | ([ TextEmbedding | [ Text Embedding ]
; ‘ N — Yoy )
el BT i Projector 05
* #*w00000ceww| = T
% SEEEEEEEEs -

rd Embedding %) T

t

el | [ | [ [ [

MEEM + {class} g Text-Knowledge
ey | 11T —— e
v

e — Cross-attention Module
f i i
[ W Vi Token ) Learnable Prompt Token i t 8 BeEs
i H Patch Embedding Word Embedding
. Visual CLS Token W Text-Guided Visual Prompt Token | 4 4

t | j ' t

Textual Token Text-Guided Visual CLS Token |

BEEE + {class}

H ’) Learnable Component 3§ Frozen Component

Figure 2: An overview of previous multi-modal prompt tuning methods and our proposed Text-Guided
Prompt Tuning (TGVP), which dynamically transfers textual knowledge to guide the generation of
visual prompt through a novel Text-Knowledge Guidance Module.

prompt like "a photo of <CLASS>", CoOp replaces it with a series of learnable tokens. The CoOp
prompt template is defined as follows:

% = [TW[Ts] . .. [T,][< CLASS >], @)

where [T1], [T3], . . ., [T5,] represent learnable tokens. These tokens are optimized during training to
enhance the alignment of text and image representations.

3.1.1 DEEP LANGUAGE PROMPTING.

To further enhance the learning of language context prompts, some methods introduce n learnable
tokens { P! € R% }_, in the language branch of the CLIP model. The input embeddings now follow
the structure [Pt, P2,--. | P9, X,], where X, denotes the fixed input tokens. New learnable tokens
are additionally introduced within each transformer block of the text encoder (7;) up to a specified
depth L:

[77 Xz] :7—1‘([}37;,1,)(1'71]) i = 1127"'3-[/' 3)

Here, [-, -] indicates the concatenation operation and [ __ ] denotes the tokens to be replaced by the
prompt in next layer.

3.1.2 DEEP VISION PROMPTING.

Similarly, in the vision branch of CLIP, we introduce g learnable tokens { P? € R%}_, , which are

integrated with the input image tokens. Additional learnable tokens are incorporated into deeper
transformer layers of the image encoder (V) up to a depth L:

[Ciinv 7]=V¢([Ci,1,Ei71,PfL‘,1]) i=172a"'7L7 (4)

where c; is the CLS token in the i-th layer, F; denotes fixed input tokens.

3.2 TEXT-GUIDED VISUAL PROMPT TUNING

Overview. In Figure[2] we present an overview of our proposed TGVP method, alongside a brief
comparison with existing multi-modal prompt techniques. As depicted in Figure2]a), prior methods
tend to design visual prompts symmetrically to textual prompts, treating them as direct counterparts
or projections. However, this approach limits the extent to which visual prompts can internalize
textual knowledge, thus preventing them from serving as optimal context for target classes at a natural
semantic level. This restricted interaction between modalities further hinders model performance
enhancement. To address these challenges, we introduce TGVP, which uniquely harnesses the robust
generalizability of textual knowledge to guide the generation of visual prompt. As illustrated in
Figure 2] TGVP employs a Text-Knowledge Guidance (TKG) Module that first transfers general
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textual embeddings into targeted guidance for the visual modality. Within the visual feature space,
visual prompt tokens and the corresponding CLS token act as queries, dynamically selecting the most
relevant text guidance via a streamlined cross-attention mechanism. This selected guidance, combined
with the original visual prompt tokens and CLS token, enables the creation of a semantic-aware vision
classifier, capable of dynamically perceiving relevant textual knowledge and adapting effectively to
unseen classes.

Text-Knowledge Guidance Module. Given the text embedding W.,; € RVe*Pt with N, classes
generated from text encoder 7, the TKG Module is designed to enable the visual branch to incorporate
guidance from the text embedding W;.,:, where N, represents the number of text categories, Ly,
denotes the length of text guidance tokens/visual prompts, and D,, is the dimensionality of the vision
embedding space. As shown in Figure 2, text knowledge, represented by textual embedding Wi, is
first projected into vision embedding space as Wyiqe € RNexDvxLavp  The projector is realized

RDtxD

by a down-project layer Wyown € mid followed by an up-project layer W,,,, € RPmiaxD / ,

where D' = Dy X Layp.

Wouide = Projector(Wieq:) 5)

After obtaining the text knowledge guidance W, ;q., a simplified cross-attention block is proposed
to capture the most relevant text category knowledge as guidance for current vision task at various
levels. More specifically, we conceptualize and implement a streamlined cross-attention module
designed to facilitate the alignment and feature integration between textual and visual prompts.

Initially, we compute the dot-product similarity between the text guidance tokens and the visual
prompt, represented by P € REFar*Pv to obtain the similarity matrix S. And for each visual
prompt token, we identify the top-k most relevant text categories. Let S; denote the similarity values
corresponding to the j-th visual prompt token:

S = Wi PT ©
T = TopK (S, k), j € [1, Lauy) "

Here, T;OP k encapsulates the top-k most relevant text categories corresponding to the j-th visual
prompt.

After the selection of top-k text categories, we employ a softmax function with a temperature
coefficient 7 to modulate the distribution, yielding the attention map:

topk S;Opk
A i = softmax ®)

T

Then we proceed to perform feature aggregation for the top-k text categories based on the derived
attention map. For each visual prompt token, the corresponding text guidance is accomplished by
computing a weighted sum of the top-k text category knowledge, where the attention scores function

as weights:
k

id topk
T = 3" o, TP )
i=1
In this equation, c;; represents the attention weight from the map A?Op , and Tf;’p corresponds to the
i-th top-k text category knowledge.

Finally, the text-guided visual prompt can be formulated as the incorporation of the textual guidance
with the visual prompts through a linear combination utilizing an Exponential Moving Average
(EMA) approach. Specifically, for each text-guided visual prompt token, the final representation is
computed as follows:

P9 = NTIU | (1~ \)P (10)

where )\ is the EMA coefficient that controls the balance between the newly fused textual guidance
token and the original visual prompt token. The EMA-based linear fusion ensures that the final
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representation retains essential visual characteristics while integrating the most relevant textual
guidance, thereby enhancing overall representation quality.

Given that the CLS token encapsulates rich semantic information about the current image, we can
further enhance the representation capabilities of the vision classifier by utilizing the CLS token as a
query. By applying the same aforementioned steps, we derive an instance-level text-guided CLS
token, referred to as C?9.

Assuming we insert the text-guided visual prompt P9 into the [-th transformer layer of the Image
Encoder ©;, the prompted visual feature F; is presented as

F,=©,(C/’,,E,1,P? ] (11)

where Cfg 1 is the text-guided CLS token, Pfﬂ 1 is text-guided visual prompt and E;_; is the rest of
vision tokens.

4 EXPERIMENTS

In this section, we present quantitative results of our method and comprehensive comparisons with
other state-of-the-art methods to demonstrate the effectiveness of our proposed TGVP. Similar to
previous works, we evaluate the proposed TGVP across four challenging task settings:

* Base-to-Novel Generalization. We evaluate the generalization ability of our approach in a
zero-shot context by dividing the datasets into base and novel classes. The model is trained
with a few examples from the base classes and then tested on unseen novel classes to assess
its performance.

* Cross-Dataset Transfer. To examine the transferability of our method, we conduct a
direct evaluation of our ImageNet-trained model across a diverse array of external datasets.
Adhering to established protocols, the model is trained on all 1,000 ImageNet classes under
a few-shot paradigm.

* Domain Generalization. We further test the robustness of our method by evaluating it on
out-of-distribution (OOD) datasets. Specifically, the model trained on ImageNet is assessed
on four different ImageNet variants, each representing a different type of domain shift.

» Few-shot Classification. This scenario allows us to compare the model’s learning capacity
under very limited supervision. It also helps determine whether our approach effectively
learns both task-specific and generalizable knowledge.

Datasets. For base-to-novel generalization, cross-dataset transfer tasks, we follow previous
work (Radford et al.| 2021bj |[Zhou et al., |2022cib) to conduct the experiments on 11 represen-
tative image classification datasets, including ImageNet (Deng et al., |2009) and Caltech101 (Fei-Fei
et al.,2004) for generic object classification; OxfordPets (Parkhi et al., 2012)), StanfordCars (Krause
et al.,2013)), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), and FGV-
CAircraft (Maji et al. |2013)) for fine-grained classification; SUN397 (Xiao et al., |2010) for scene
recognition; UCF101 (Soomro et al.l 2012) for action recognition; DTD (Cimpoi et al., [2014) for
texture classification; and EuroSAT (Helber et al.l 2019) for satellite image recognition. For do-
main generalization, we utilize ImageNet as the source dataset and four ImageNet variants as target
datasets including ImageNet-A (Hendrycks et al.,[2021b)), ImageNet-R (Hendrycks et al., [2021a)),
ImageNet-V2 (Recht et al., [2019)), ImageNet-Sketch (Wang et al.| 2019).

Baselines. The baselines used for comparison in the experimental section include: CLIP (Radford
et al.| 2021b), CoOp Zhou et al.| (2022c), CoCoOp|Zhou et al.|(2022a)), ProGrad Zhu et al.| (2023al),
WiSE-FT |Wortsman et al.| (2022), KgCoOp|Yao et al.|(2023a)), PromptSRC Khattak et al.| (2023b)),
MaPLe Khattak et al.[(2023al), TCP|Yao et al. (2024), DAPT Cho et al. (2023)

Implementation Details. For a fair comparison, all experiments are conducted based on the CLIP
with the backbone of ViT-B/16 (Dosovitskiy et al.,[2021)) and reported results are averaged over 3
runs. We employ deep prompting, and the prompts length in both text/vision branch, denoted by L, is
set as 4 with a normal distribution. The SGD optimizer is adopted for optimization with the learning



Under review as a conference paper at ICLR 2025

Table 1: Comparison with state-of-the-art methods on base-to-novel generalization using the ViT-
B/16 backbone. Our proposed approach exhibits superior generalization performance across eleven
recognition datasets, surpassing existing methods. The highest-performing results are highlighted in
bold, while the second-best outcomes are underlined. HM indicates the harmonic mean.

(a) Average over 11 datasets. (b) ImageNet. (c) Caltech101.
Method Base Novel| HM Method Base Novel| HM Method Base Novel| HM
CLIP 69.34 74.22|71.70 CLIP 72.43 68.14]70.22 CLIP 96.84 94.00(95.40
CoOp  82.69 63.22|71.66 CoOp  76.47 67.88|71.92 CoOp  98.00 89.81(93.73
CoCoOp 80.47 71.69|75.83 CoCoOp 75.98 70.43|73.10 CoCoOp 97.96 93.81(95.84
KgCoOp 80.73 73.60|77.00 KgCoOp 75.83 69.96|72.78 KgCoOp 97.72 94.39196.03
MaPLe 82.28 75.14|78.55 MaPLe 76.66 70.54|73.47 MaPLe 97.74 94.3696.02
TCP 84.13 75.36|79.51 TCP 77.27 69.87(73.38 TCP 98.23 94.67|96.42
PSRC  84.26 76.10|79.97 PSRC  77.60 70.73|74.01 PSRC  98.10 94.03|96.02
Ours 85.10 77.73|81.24 Ours 77.74 70.83|74.12 Ours 98.55 94.72196.57
+0.84 +1.63|+1.27 +0.14 +0.10(+0.11 +0.32 +0.05|+0.15
(d) OxfordPets. (e) StanfordCars. (f) Flowers.
Method Base Novel| HM Method Base Novel| HM Method Base Novel| HM
CLIP 91.17 97.26|94.12 CLIP 63.37 74.8968.65 CLIP 72.08 77.80|74.83
CoOp  93.67 95.29(94.47 CoOp  78.12 60.40|68.13 CoOp  97.60 59.67|74.06
CoCoOp 95.20 97.69(96.43 CoCoOp 70.49 73.59|72.01 CoCoOp 94.87 71.75|81.71
KgCoOp 94.65 97.76(96.18 KgCoOp 71.76 75.04|73.36 KgCoOp 95.00 74.73 |83.65
MaPLe 94.67 97.20|95.92 MaPLe 72.94 74.00|73.47 MaPLe 95.92 72.46|82.56
TCP 95.43 97.76196.58 TCP 80.80 74.13(77.32 TCP 97.73 75.57|85.23
PSRC  95.33 97.30(96.30 PSRC  78.27 74.97|76.58 PSRC  98.07 76.50|85.95
Ours 96.36 98.03(97.18 Ours 80.86 75.45|78.06 Ours 98.27 76.86(86.25
+0.93 +0.27|+0.60 +0.06 +0.41|+0.74 +0.20 -0.94 |+0.30
(g) Food101. (h) FGVCAircraft. (i) DTD.
Method Base Novel| HM Method Base Novel| HM Method Base Novel| HM
CLIP 90.10 91.221]90.66 CLIP 27.19 36.29(31.09 CLIP 53.24 59.90|56.37
CoOp  88.33 82.26(85.19 CoOp  40.44 22.30(28.75 CoOp  79.44 41.18|54.24
CoCoOp 90.70 91.29(90.99 CoCoOp 33.41 23.71|27.74 CoCoOp 77.01 56.00|64.85
KgCoOp 90.05 91.70(91.09 KgCoOp 36.21 33.55|34.83 KgCoOp 77.55 54.99|64.35
MaPLe 90.71 92.05(91.38 MaPLe 37.44 35.61(36.50 MaPLe 82.77 58.07|68.25
TCP 90.57 91.37(90.97 TCP 41.97 34.43|37.83 TCP 80.36 59.18(68.16
PSRC  90.67 91.53(91.10 PSRC  42.73 37.87(40.15 PSRC  83.37 62.97|71.75
Ours 90.88 92.28(91.57 Ours 43.27 38.65|40.83 Ours 83.62 64.37|72.43
+0.17 +0.23|+0.19 +0.54 +0.78|+0.68 +0.25 +1.40|+0.68
(j) SUN397. (k) EuroSAT. (1) UCF101.
Method Base Novel| HM Method Base Novel | HM Method Base Novel| HM
CLIP 69.36 75.35(72.23 CLIP 56.48 64.05 |60.03 CLIP 70.53 77.50]73.85
CoOp  80.60 65.89(72.51 CoOp  92.19 54.74 |68.69 CoOp  84.69 56.05(67.46
CoCoOp 79.74 76.86|78.27 CoCoOp 87.49 60.04 |71.21 CoCoOp 82.33 73.45|77.64
KgCoOp 80.29 76.53|78.36 KgCoOp 85.64 64.34 |73.48 KgCoOp 82.89 76.67|79.65
MaPLe 80.82 78.70(79.75 MaPLe 94.07 73.23 82.35 MaPLe 83.00 78.66|80.77
TCP 82.63 78.20(80.35 TCP 91.63 74.73 |182.32 TCP 87.13 80.77 |83.83
PSRC  82.67 78.47|80.52 PSRC  92.90 73.90 (82.32 PSRC 87.10 78.80|82.74
Ours 82.88 78.8580.81 Ours 95.88 85.42 |90.35 Ours 87.83 79.67|83.55
+0.21 +0.15|+0.29 +1.81 +10.69(+8.00 +0.73 -1.10|-0.28

rate of 2e-3 and the batch size of 4, and the training epochs is 20. All experiments are conducted on a
single A800-40G GPU.

4.1 BASE TO NOVEL GENERALIZATION

As illustrated in Table[I] the proposed TGVP method achieves the highest average performance in
terms of Base/Novel/HM, specifically obtaining 85.10%, 77.73%, and 81.24%. Since TGVP can
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dynamically leverage the beneficial textual knowledge to generate semantic-aware visual classifier
when confronting unseen classes, it obtains the best performance on Novel classes of 77.73%, achiev-
ing a 1.63% improvement over the existing state-of-the-art, PromptSRC. The superior performance of
TGVP verifies the necessity and the significance of using textual knowledge to guide the generation
of visual prompt. Additionally, the TGVP also demonstrates strong few-shot performance on Base
classes with a 0.97% improvement over the PSRC. In conclusion, the superior performance of TGVP
demonstrates that the text-guided semantic-aware visual prompts can enhance both discriminative
and generalization capacities of VLMs.

Table 2: Comparison of our method with existing approaches on cross-dataset evaluation. Overall,
our method demonstrates superior generalization capabilities with the highest average accuracy on 11
datasets.

Source Target

ImageNet Caltech101 OxfordPets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Avg.
CoOp 71.51 93.70 89.14 6451 6871 8530 1847 64.15 4192 4639 6655 63.88
CoCoOp 71.02 94.43 90.14 6532 71.88 86.06 2294 67.36 4573 4537 6821 65.74
MaPLe 70.72 93.53 90.49  65.57 7223 8620 24.74 67.01 4649 48.06 68.69 66.30
TCP 71.40 93.97 91.25 64.69 7121 86.69 2345 67.15 4435 5145 68.73 66.29

PSRC 71.27 93.60 90.25 65.70 7025 86.15 2390 67.10 46.87 4550 68.75 65.81
Ours 71.88 95.42 91.44 6597 7345 8718 2626 68.04 4796 5245 70.21 67.83

Table 3: Comparison of our method with existing approaches on few-shot learning with 4-shot
samples. Overall, our method demonstrates superior discriminative capacity with the highest average
accuracy on 11 datasets.

Method ‘ImageNet Caltech101 OxfordPets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCFIOI‘ Avg.

CLIP 66.70 93.30 89.10 65.70 70.70 8590 2490 62.60 4430 48.30 67.60 |65.37
CoOp 69.37 94.44 91.30 7273 91.14 8258  33.18 70.13 58.57 68.62 77.41 |73.59
CoCoOp| 70.55 94.98 93.01 69.10 8256 86.64 30.87 7050 54.79 63.83 74.99 |71.98
ProGrad | 70.21 94.93 9321 7175 8998 8577 3293 71.17 57.72 70.84 77.82 |74.21
KgCoOp| 70.19 94.65 9320 7198 90.69 86.59 3247 71.79 58.31 71.06 78.40 |74.48
MaPLe 70.67 94.30 92.05 6870 80.80 86.90 29.03 7147 5473 54.87 73.70 |70.66
DAPT 70.80 94.23 92.17 7440 9237 83.60 3247 7220 6137 7273 79.40 |75.07
PSRC 70.80 94.77 9323  71.83 9131 86.06 22.80 72.80 60.64 75.02 79.35 |75.33
TCP 70.48 95.00 9190 7630 9440 8530 36.20 72.11 6397 7743 80.83 [76.72
Ours 71.28 95.25 9345 7656 9342 8712 36.87 7414 6543 86.42 80.83 |78.21

4.2 CROSS-DATASET TRANSFER

Unlike base-to-new generalization, cross-dataset transfer presents a more rigorous challenge in
generalization than base-to-novel transfer, as it demands adaptation across distinct datasets rather than
within a single one. Comparative results with CoOp, CoCoOp, MaPLe, TCP and PSRC are presented
in Table[2] Our TGVP method consistently demonstrates superior performance on both the source
and target datasets, achieving a target average of 67.83%, and surpassing existing state-of-the-art,
MaPLE, by 1.53%. The superior performance highlights our method’s robust dynamic representation
capabilities for unseen data.

4.3 FEW-SHOT CLASSIFICATION

To further validate the strong representation ability with fewer limitation of the proposed TGVP,
we perform few-shot classification across all 11 datasets using K-shot labeled source images. The
evaluation is conducted on the standard testing domain, which shares the same class space as the
training classes. A comparison of the 4-shot setting between the proposed TGVP and existing
methods is presented in Table [3] The results indicate that our method consistently outperforms
existing approaches, achieving an average performance of 78.21%, which represents a 1.39% gain
over the previous state-of-art, TCP. Notably, our method outperforms TCP by 8.99% on EuroSAT, a
satellite image dataset fundamentally distinct from ImageNet, showcasing our method’s powerful
visual representation capabilities in few-shot scenarios.
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4.4 DOMAIN GENERALIZATION Table 4: Comparison with other methods on robustness

(%) to domain generalization.
Table 4] presents a summary of the perfor-

mance of our TGVP in comparison to previ- Source Target
ous methods on out-of-distribution datasets.

o ’ ImageNet -V2  -Sketch  -A -R Avg.

We evaluated. our model, which is trained on CLIP 6673 G083 4615 4777 7396 5118
ImageNet, directly on these target datasets.  wiSE-FT ~ 73.02 6519 49.09 4981 77.63 60.43
TGVP consistently outperforms all other ap- gogpo 71'8; 2%0 3;92 ‘5‘(9)';; 72-% ggg?

P . _ 0oCoOp 71. .07 N . 76. .

proaches, achieving the highest average ac KeCoOp 7120 6410 4897 50.69 7670 60.12
curacy of 61.07%. These results suggest that ~ MaPLe 7072 6407  49.15 5090 7698 60.27
our TGVP effectively enhances generaliza-  TCP 7092 6442 4933 5078 7711 6041
PSRC 7127 6435 4955 5090 77.80 60.65

tion for datasets exhibiting domain shifts. Ours 7188 6512 4998 5168 7752 6107

4.5 ABLATION STUDIES

Contributions of major algorithm components. From Table[5] we can see that both components
contribute significantly to the enhanced performance. Among them, text-guided visual prompt
tokens brings the largest performance improvement, for example, a notable 4.43% improvement in
Novel. And the inclusion of the text-guided CLS token can further enhance the overall performance,
demonstrating that multi-modal interaction should not be restricted to the certain prompt tokens. The
baseline here is IVLP(Independent Vision Language Prompt), which contains independent prompts
in vision and language branches.

Table 5: Effectiveness of different components in our Table 6: Comparison with other LLM-

method. based methods
Method Base Novel | HM
Method Base Novel HM CoPrompt  84.00 77.23 | 80.84
IVLP 83.47 7246  77.57 LLaMP 85.16 77.71 81.27
+ CLS-tg 84.26 7498 79.34 CGP 84.38 78.03 81.08
+ VP-tg 84.88 76.89  80.69 ArGue 83.77 78.74 | 81.18
+ CLS-tg + VP-tg 85.10 77.73 81.24 Ours 85.57 78.42 | 82.35

Compared to methods with help of LLM. Some existing methods, such as CoPromp (Roy &
Etemad| |2024)), LLaMP (Chiang et al.| 2024), CGP (Zhang et al.||2024)) and ArGue (Tian et al.| 2024)),
focus on harnessing the power of large language models (LLMs) to provide richer and more targeted
textual knowledge for prompt construction. By simply replicating the process used by ArGue to
generate more accurate and comprehensive textual knowledge through LLMs, the results in Table [f]
demonstrate that our method can more effectively harness LLM-generated knowledge, leading to
superior performance in HM.

The Number K of Most Relevant Textual Table 7: Number top-K of most relevant text classes
Guidance Selected. We examine the in- gelected.

fluence of varying the number of selected

relevant classes (K) on performance, with  “Vgue of & 1 3 5 ) 10
the results presented in Table P} Our find- Base | 8452 84838 8510 8486 84.94
ings indicate that the optimal performance

is achieved when K = 5, and the results Novel | 76.84 7735 7773 7158 77.42
demonstrate that our method remains robust HM | 80.49 80.94 81.24 81.05 81.06

to variations in K, further underscoring the
effectiveness of the proposed TKG module. Note that if K is larger than the number of current classes
or we use visual prompt token as queries, TKG will directly select textual guidance of all classes.

5 CONCLUSION

In this work, we present a novel approach called Text-Guided Visual Prompt Tuning (TGVP) for
vision-language models. By leveraging the robust generalizability of textual knowledge, our method
guides the generation of visual prompts through a unique Text-Knowledge Guidance Module. This
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module dynamically integrates task-relevant textual knowledge into visual prompts using a cross-
attention mechanism. The resulting text-guided visual prompts enhance the visual encoder’s semantic
awareness, thereby improving both generalization and discriminability across various scenarios.
Extensive experiments demonstrate that TGVP not only significantly outperforms existing methods
in base-to-novel generalization, cross-dataset transfer, and domain generalization tasks but also offers
a substantial improvement in the adaptation of vision-language models.
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A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS

In addition to the implementation details mentioned in the main text, our code is based on Prompt-
SRC’s code, adhering to its deep prompt configuration, where deep text/visual prompts are set in
the first 9 layer with our proposed Text-knowledge Guidance Module. Additionally, during the
deployment of the TKG module, the textual guidance is applied to the visual prompt tokens in the
first nine layers and the CLS token in the ninth layer. Finally, during training, we employed the
standard cross-entropy loss and textual diversity loss as used in PromptSRC.

A.2 MORE ABLATION STUDIES

Selecting outputs from Which layers of the text encoder as textual knowledge source. Since
we have pointed that text embeddings can be leveraged as knowledge source at the cross-modal
interaction, we evaluate the impact of using outputs from different layers of text encoder as the
source of knowledge on performance. As shown in Table[9] our findings indicate that the optimal
performance is achieved when J = 12, which demonstrates that the text embedding from the
final layer contains the richest semantic information, making it the most suitable source of textual
knowledge.

J-th Layer | 9 10 11 12
Base | 83.88 84.19 84.55 8510
Novel | 7523 7555 7652 7773
HM | 79.31 79.63 80.33 81.24

Table 8: Using outputs from different layers of text encoder as the source of textual knowledge.

Selection of hyper parameter \ For the A parameter in the EMA mechanism, we uniformly set it
to 0.5 across all experiments. To provide a comprehensive analysis, we also conducted additional
ablation studies discussing the impact of different A values. The results demonstrate that as the
parameter A increases, the strength of textual knowledge guidance intensifies, leading to a significant
improvement in the model’s generalization performance on novel classes. However, retaining a
portion of the original visual prompt token information proves beneficial for enhancing the model’s
overall performance across both base and novel classes. To balance the model’s performance on base
and novel categories, we selected A=0.5 as the optimal value.

A | 01 0.3 0.5 0.8 1
Base | 84.54 84.69 85.10 8423 83.88
Novel | 7543 76,52 7173 7159 77.63
HM | 79.73 80.40 81.24 80.77 80.63

Table 9: Abalation study of value A

Visualization To showcase the discriminative power of the proposed TGVP in generating vi-
sion classifiers for prediction, we visualize the prediction probabilities across both base and novel
classes. As illustrated in Figure[3] our TGVP achieves more pronounced inter-class separation than
existing methods in both seen and unseen scenarios, highlighting its superior discriminability and
generalization capacity

Detailed experiment to show the results of Figure [l To further substantiate the motivation
presented in Figure [I} we conducted more detailed experiments across additional datasets. The
results demonstrate that the generalization performance of visual prompts is weaker than that of text
prompts, with the gap becoming more pronounced as the dataset difficulty increases. Additionally,
the table also shows the performance of visual prompts after incorporating our proposed TGVP. It
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Figure 3: Visualization of the prediction probability obtained by PromptSRC and Ours.

PSRC:Base Ours: Base PSRC:Base Ours: Base

PSRC:Novel Ours: Novel PSRC:Novel Ours: Novel

(a) EuroSAT (b) DTD
Dataset \ Textual Prompt Visual Prompt Visual Prompt+TGVP
Base Acc. 75.23 76.53 76.97
ImageNet Novel Acc. 65.67 63.77 66.36
Base Acc. 94.68 95.59 95.77
OxfordPets Novel Acc. 97.83 97.48 98.12
Base Acc. 35.60 36.36 39.86
FGVCAircraft Novel Acc. 27.96 22.26 36.89
Base Acc. 82.26 82.26 82.59
DTD Novel Acc. 56.64 51.68 60.14
Base Acc. 91.31 94.88 97.23
EuroSAT Novel Acc. 72.46 62.18 74.01
Base Acc. 82.89 83.13 84.16
Average over 11 datasets Novel Acc. 70.79 69.38 71.94

Table 10: Detailed performance comparison on individual datasets for showing effect

can be observed that the generalization performance of visual prompts improves significantly, even
surpassing the generalization performance of textual prompts.
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