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ABSTRACT

Neural networks (NNs) have shown promise in solving constrained optimization
problems in real-time. However, ensuring that NN-generated solutions strictly ad-
here to constraints is challenging due to NN prediction errors. Recent methods have
achieved feasibility guarantees over ball-homeomorphic sets with low complexity
and bounded optimality loss, yet extending these guarantees to more general sets
remains largely open. In this paper, we develop Bisection Projection, an efficient
approach to ensure NN solution feasibility for optimization over general compact
sets with non-empty interiors, irrespective of their ball-homeomorphic properties.
Our method begins by identifying multiple interior points (IPs) within the constraint
set, chosen based on their eccentricity modulated by the NN infeasibility region.
We utilize another unsupervised-trained NN (called IPNN) to map inputs to these
interior points, thereby reducing the complexity of computing these IPs in run-time.
For NN solutions initially deemed infeasible, we apply a bisection procedure that
adjusts these solutions towards the identified interior points, ensuring feasibility
with minor projection-induced optimality loss. We prove the feasibility guarantee
and bound the optimality loss of our approach under mild conditions. Extensive
simulations, including non-convex optimal power flow problems in large-scale
networks, demonstrate that bisection projection outperforms existing methods in
solution feasibility and computational efficiency with comparable optimality losses.

1 INTRODUCTION

Constrained Optimization (CO) plays an essential role in various engineering fields, such as supply
chain management, transportation, and power systems. To solve CO problems, iterative algorithms,
such as interior point methods, have been developed and embedded within commercial solvers like
Gurobi. These tools are designed to tackle CO with high precision, providing exact or approximated
solutions. However, they can be slow for real-time applications with tight time constraints.

Recent advancements in machine learning (ML) have introduced innovative strategies for solving
real-time CO problems, including the end-to-end (E2E) solution mapping (Amo22), the learning-to-
optimize (L2O) iterative scheme (CCC+21), and hybrid approaches (KFVHW21). One powerful
idea is to leverage the universal approximation ability of neural networks (NNs) (HSW89; LLPS93)
to predict high-quality solutions given input parameters, significantly reducing computation time
compared to traditional iterative solvers. For instance, by employing this idea, NNs have been trained
to solve critical optimal power flow problems in modern grid operations, achieving a 2-4 orders of
magnitude speedup over iterative solvers (PZC19; GWWM19; PZCZ20; FMVH20; ZB20; DRK20).

Despite the minor optimality loss and significant speedup of NN-based methods, guaranteeing the
feasibility of NN solutions with respect to problem constraints remains a challenge due to inherent NN
prediction errors. While recent advances have managed to ensure NN solution feasibility within ball-
homeomorphic sets with low complexity and bounded optimality loss (LCL23; LCL24), establishing
similar guarantees for general sets remains an open problem. A discussion on related works is
provided in Section 2, and a summary is presented in Table 1.

In this paper, we develop Bisection Projection (BP) as an efficient scheme to recover infeasible
NN solutions with bounded optimality loss, with respect to general compact sets beyond ball-
homeomorphic ones under mild conditions. Our main contributions are as follows:
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▷ In Sec. 4, we introduce the BP framework for ensuring NN solution feasibility. It comprises
two steps: (i) pinpointing multiple interior points (IPs) in the constraint set with the minimized
eccentricity modulated by the NN infeasibility region and (ii) employing a bisection algorithm to
“project” infeasible solutions to constraint boundary with minor optimality loss.

We also leverage an unsupervised trained NN, called IPNN, to predict those IPs, significantly cutting
down the run-time complexity in real-time operation. We highlight the applicability of our approach
to optimization over general sets that are not necessarily ball-homeomorphic.

▷ In Sec. 5, we prove that BP can recover infeasible solutions with bounded optimality loss related
to the eccentricity of used IPs. We also analyze its run-time and training complexities under mild
conditions. Our analysis and results are general and go beyond the ball-homeomorphism setting.

▷ In Sec. 6, we carry out extensive experiments over convex and non-covnex problems to evaluate the
performance of BP. The results show that it outperforms existing methods in feasibility and run-time
complexity while achieving similar optimality losses.

To our knowledge, this is the first work to guarantee NN solution feasibility over general compact
sets with bounded optimality loss and low run-time complexity under mild conditions.

2 RELATED WORK

Recently, ML-driven optimization has been an active research field (PZC19; KFVHW21; CCC+21;
Amo22). A core challenge is ensuring the NN prediction feasibility over input-dependent constraints.
Researchers have developed various methods to enhance solution feasibility, summarized in Table 1.

Equality constraints. Linear equations and certain non-linear equations with constant ranks, can be
embedded as neural network layers by predicting a subset of variables and solving for the remaining
variables to satisfy the equality constraints (Aba69; Lee13; PZC19; DRK20; LCL23; DWDS23).
Projection approach. To enforce solution feasibility, orthogonal/L2 projection is often employed.
However, solving the projection problem either by iterative solver or equivalent optimization lay-
ers (AK17; AAB+19; CDB+21; WZG+23) is computationally intensive in real-time. Alternative
strategies include gradient-based methods (e.g., DC3 (DRK20)) and L2O models that mimic iter-
ative projection procedures to adjust infeasible solutions (HWFGY21; HFL+22). However, those
projection-analogous approaches do not guarantee feasibility for general input-adaptive constraints.
Warm-start approach. The NN predictions can serve as warm-start points for iterative solvers,
potentially reducing the number of iterations required to reach the optimal solution (Die19; Bak19;
SHAS23; SHAS24). However, it may still be computationally intensive for real-time operations.
Penalty approach. To reduce constraint violations in predicted solutions, researchers have incorpo-
rated various penalty functions, such as quadratic penalties, into the NN loss function (COMB19;
PZCZ20; ZB20; FMVH20). Additionally, integration of the Karush–Kuhn–Tucker (KKT) condi-
tions as equality constraints has been explored to refine NN performance (NC21b; NC21a; ZCZ21).
However, these methods do not consistently ensure solution feasibility due to NN prediction errors.
Sampling approach. To guarantee feasibility, an inner approximation of the original constraint
set can be constructed. For linear constraints, a convex combination of sampled vertexes and rays
is adopted to ensure feasibility (FNC20; ZSRZ21). For general compact but fixed constraint sets,
sampling-based methods are theoretically studied in (KZLD21). However, scalability remains a
challenge due to the exponential growth in required samples with increasing problem dimensionality.
Preventive learning. a Preventive Learning framework is proposed for ensuring linear constraint
feasibility in (ZPC+20; ZPCL23). It first adjusts inequality constraints to account for NN prediction
errors. Subsequently, it trains the NN using mixed-integer programming techniques to limit the worst-
case prediction error. However, it lacks an optimality guarantee. Additionally, other NN verification
techniques can also be applied to assess the worst-case performance (VQLC20; uAYKJ22; LAL+21).
Gauge function. These works utilize gauge functions (BM08) to constrain the NN. A closed-form
bijection, known as gauge mapping, between a hypercube and a polytope is used to bound the
NN output within the polytope (TZ22a; TZ22b; LKM23). For fixed convex constraints, RAYEN
and several works apply analytic expressions for gauge functions to find feasible boundary solu-
tions (THH23; KU23; LM23). However, these approaches only work for specific convex sets.
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Table 1: Existing work for ensuring NN solution feasibility for continuous constrained optimization problems.

Existing Work Constraint Set Performance Guarantee
Input Non-linear General Feasibility Optimality Low

(see Sec. 2 for ref.) dependent equality inequality ensuring bound run-time

Orthogonal Proj./Warm-start ✓ ✓ ✓ ✓ ✓ ✗
Penalty method ✓ ✓ ✓ ✗ ✗ ✓
Sampling approach ✗ ✓ ✓ ✓ ✓ ✗
RAYEN ✗ ✗ (linear) ✗ (convex) ✓ ✓ ✓
Preventive learning ✓ ✗ (linear) ✗ (linear) ✓ ✗ ✓
Gauge mapping ✓ ✗ (linear) ✗ (linear) ✓ ✗ ✓
DC3 ✓ ✓ (CR) ✓ ✗ ✗ ✓
Homeomorphic Projection ✓ ✓ (CR) ✗ (BH) ✓ ✓ ✓
Bisection Projection ✓ ✓ (CR) ✓ ✓ ✓ ✓
1 CR indicates the Jacobian of equality functions is of a constant rank, which includes linear equality and a part of non-linear equality.
2 BH indicates the constraint set is homeomorphic to a unit ball, which includes all compact convex sets and a part of non-convex sets.

Homeomorphic Projection has been proposed to ensure the NN solution feasibility over ball-
homeomorphic constraint (LCL23; LCL24). It applies invertible NN to construct a homeomorphism
between the constraint set and a unit ball, such that the projection operation can be efficiently
conducted over the ball through simple bisection. Nevertheless, the ball-homeomorphism assumption
limits its application for optimization problems over general constraint sets.

In summary, existing works either incur high run-time complexity or have limited applicable con-
straints. In this work, we propose Bisection Projection as an efficient scheme to guarantee NN solution
feasibility over (fairly) general compact sets with bounded optimality loss under mild conditions.

3 SETTING AND OPEN ISSUE

We consider the following continuous optimization problem over a compact constraint set:

min
x∈Rn

f(x, θ) s.t. x ∈ Cθ, (1)

where x ∈ Cθ ⊂ Rn is the decision variable and θ ∈ Θ ⊂ Rd is the input contextual parameter.
Without loss of generality, we assume the input domain Θ and constraint set Cθ are compact. The
objective function f(x, θ) is continuous and can be non-convex. The optimal solution is denoted
as x∗θ ∈ argminx∈Cθ

{f(x, θ)}. The constraint set Cθ is specified by inequalities: Cθ = {x ∈ Rn |
g(x, θ) ≤ 0}, where g : Rn+d → Rnineq is continuous. While we do not explicitly consider equality
constraints in the formulation, we remark that certain equality constraints can be embedded as NN
layers and be satisfied (Aba69; PZC19; DRK20). We do carry out simulations for problems with
linear/nonlinear equality constraints in Sec. 6 and provide detailed discussion in Appendix A.1.

We further specify the constraint set as follows, beyond those discussed in related works in Sec. 2.
Assumption 1. ∀θ ∈ Θ, any interior point of the compact set Cθ has a neighborhood of positive
measure within Cθ.

We remark this assumption ensures that the constraint set has a non-empty interior, and it circumvents
unusual compact sets in continuous optimization (e.g., vertices of a hypercube or Cantor set) so that
our algorithm design and theoretical proof later go through rigorously. Nevertheless, the constraint
set under Assumption 1 is very general, covering linear, convex, and ball-homeomorphic sets in all
existing works (LCL23; THH23; LCL24). Such a set is also called a “fat” set in measure theory
(Lew88). We also discuss the applicability of our approach beyond this assumption in Appendix A.2.

Figure 1: NN predicting optimal
solution (on the boundary) incurs
infeasibility. NN predicting inte-
rior points accommodates errors.

Open issue. As discussed in Sec. 2, various NN-based methods
have been developed to solve CO problems with low run-time com-
plexity and minor optimality gap. Denote one such trained NN
predictor as F (θ) : Rd → Rn, which has a prediction error as
ϵpre = supθ∈Θ{∥F (θ)− x∗θ∥}. Due to the error ϵpre, ensuring NN
solution feasibility is non-trivial. As illustrated in Fig. 1, an optimal
solution often lies on the constraint boundary, such that any positive
error may push the NN solution outside the constraint set. Existing
approaches, as summarized in Table 1, are either computationally
intensive or fail to provide performance guarantees over general
input-dependent constraint sets beyond ball-homeomorphic ones.
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To date, ensuring NN solutions feasibility for CO in (1) under Assumption 1, while maintaining
bounded optimality loss and low computational complexity, remains an open and pressing challenge.

4 THE BISECTION PROJECTION FRAMEWORK

We propose Bisection Projection (BP) to “project” infeasible NN solutions onto the constraint set
with low run-time complexity and minor optimality loss. As detailed in Section 4.1, this framework
applies bisection to iteratively narrow the gap between infeasible points and interior points (IPs)
to identify feasible solutions. In Sec. 4.2, to reduce the optimality loss induced by bisection, we
introduce the concept of eccentricity for IPs and establish its connection to projection distance. In
Sec. 4.3, to reduce the inference time for finding IPs under varying inputs, we train another NN,
denoted as IPNN, to obtain IPs fast in run-time.

Figure 2: The Bisection Projection framework.

Algorithm 1 Bisection for feasibility.
Input: an IP x◦θ ∈ Cθ and a prediction x̃θ /∈ Cθ
Output: feasible solution x̂θ ∈
Cθ
1: set total iteration K, αl = 0, and αu = 1
2: for n = 1 : K do
3: bisection: αm = (αl + αu)/2
4: if x◦θ + αm · (x̃θ − x◦θ) ∈ Cθ then
5: increase lower bound: αl ← αm

6: else
7: decrease upper bound: αu ← αm

8: end if
9: end for

Return: x̂θ = αl · (x̃θ − x◦θ) + x◦θ ∈ Cθ

4.1 BISECTION WITH INTERIOR POINTS

Given an infeasible NN prediction x̃θ /∈ Cθ and an IP x◦θ ∈ Cθ, we “project” x̃θ to Cθ as:

x̂θ = BP(x̃θ, x
◦
θ) ≜ α∗ · (x̃θ − x◦θ) + x◦θ, (2)

where α∗ ∈ [0, 1] leads to x̂θ ∈ ∂Cθ and ∂Cθ is the boundary of Cθ. As depicted in Fig. 2, the
“projected” solution x̂θ is located on the straight line segment connecting the infeasible solution x̃θ
and an IP x◦θ . We note that there could be multiple α∗ and corresponding x̂θ, given a pair of x̃θ and
x◦θ . To determine one such α∗, we employ the bisection method, as elaborated in Alg. 1. We initiate
by drawing a straight line connecting x̃θ with an IP x◦θ . This segment is guaranteed to intersect the
boundary of the feasible region at least once. Subsequently, we apply the bisection algorithm to
iteratively pinpoint one feasible solution along this segment toward the constraint boundary.

We remark on the applicability and efficiency of the bisection method as follows: (i) The bisection
is applicable to general compact sets with non-empty interior as required in Assumption 1, beyond
existing studies on convex or ball-homeomorphic sets; (ii) The bisection achieves a linear convergence
rate, and each iteration is computationally light, primarily evaluating solution feasibility.

Further, the bisection method can be executed in batch for multiple interior points X◦
θ,m :=

{xθ,k}mk=1 ⊂ Cθ, and we select the projected point as the one with minimum deviation, defined as:

x̂θ = BP(x̃θ, X
◦
θ,m) ≜ argmin

x̂θ,k

{∥x̂θ,k − x̃θ∥}, (3)

where x̂θ,k = BP(x̃θ, x
◦
θ,k) is the returned feasible point by bisection w.r.t. the k-th IP x◦θ,k ∈ X◦

θ,m.

Despite the applicability and efficiency of the BP method, there are several critical challenges to
applying it to recover infeasible NN solutions: (i) The projection distance induced by the bisection
may be substantial if inappropriate interior points are chosen; (ii) Obtaining different IPs for input-
dependent constraint sets in the online inference stage may still be time-consuming.

To address these two challenges, we first introduce the eccentricity of interior points and establish its
connection to the bisection-induced projection distance in Sec. 4.2. We then employ another NN,
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called IPNN, to efficiently predict IPs in run-time in Sec. 4.3 and present the performance analysis
for it in Sec. 5.

4.2 MINIMUM-ECCENTRICITY IPS FOR BISECTION

We first define the eccentricity of IPs, crucial for bounding the bisection-induced projection distance.
Definition 4.1 (Eccentricity of IPs). For a compact set X satisfying Assumption 1 with non-empty
interior, the eccentricity of a set of IPs X◦

m := {x◦k}mk=1 ⊂ X with respect to a compact subset of
boundary Γ ⊆ ∂X is defined as:

E(X◦
m,Γ) ≜ max

y∈Γ
∥d(y,X◦

m)∥ −min
y∈Γ

∥d(y,X◦
m)∥, (4)

where d(y,X◦
m) = min1≤k≤m{∥y − x◦k∥} is the point-to-set distance.

We make the following remarks regarding the eccentricity:

• When m = 1 and Γ = ∂X , the eccentricity evaluates the gap between the largest and smallest
point-to-boundary distances and defines the “centrality” of the IP. This concept is closely related to
classic definitions of Chebyshev center and Incenter shown in Appendix B. However, it is uniquely
designed to bound the worst-case bisection-induced projection distance under our setting.

• When m > 1 and Γ = ∂X , the eccentricity is extended to multiple IPs. This can be viewed as the
multiple IPs dividing the boundary into their nearest pieces and then evaluating the maximum and
minimum point-to-boundary distances. Further, the minimum eccentricity, minX◦

m⊂X E(X◦
m,Γ),

decreases to zero as m increases, proven in Sec. 5.3.
• When Γ ⊂ ∂X is a subset of the boundary, it provides a local view of eccentricity in a region

of interest, e.g., Γ is a local region of boundary containing all possible projected infeasible NN
solutions with a bounded prediction error. As will become clear later, such a local view will shed
light on efficient training in Sec. 4.3 and tight theoretical bounds in Sec. 5.3.

Next, we establish the connection between eccentricity and the bisection-induced projection distance.
Proposition 4.1. Let x̃θ = F (θ) be an infeasible NN prediction with bounded prediction error
as ∥F (θ) − x∗θ∥ ≤ ϵpre; x̂θ = BP(x̃θ, X

◦
θ,m) be the projected solution with m interior points

X◦
θ,m ⊂ Cθ; Then, the worst-case projection distance is upper bounded as:

max
x̃θ∈B(x∗

θ ,ϵpre)
∥x̃θ − BP(x̃θ, X

◦
θ,m)∥ ≤ ϵpre + E(X◦

θ,m,Γθ), (5)

where B(x∗θ, ϵpre) represents the NN prediction region, enclosing all infeasible NN predictions with
prediction error ϵpre, and Γθ = {BP(x̃θ, X◦

θ,m), ∀x̃θ ∈ B(x∗θ, ϵpre) and x̃θ /∈ Cθ} defines a subset
of the constraint boundary containing all projected NN solutions from the NN infeasibility region. We
call E(X◦

θ,m,Γθ) the eccentricity of X◦
θ,m modulated by the NN infeasibility region.

Informed by Prop. 4.1, we find those IPs with minimized eccentricity (MEIPs) modulated by the NN
infeasibility region to directly bound the worst-case projection distance for infeasible NN prediction.

• When the initial prediction error is larger than the diameter of the constraint set, or we are only
informed of the information about the constraint set, we seek to find IPs with minimized eccentricity
with respect to the entire constraint boundary as Γθ = ∂Cθ. Such MEIPs are prediction-agnostic
and only depend on the geometry of Cθ.

• More typically, boosted by the universal approximation ability of the NN predictor, the initial
prediction error is small. Γθ is only a local subset of the boundary. In this case, we find IPs with
minimal eccentricity over such a local boundary modulated by the NN infeasibility region, avoiding
the global and computationally intensive eccentricity computation.

Further, we note that the applicability of this bound applies to general compact sets under Assumption
1 beyond those in existing works, such as ball-homeomorphism (LCL23; LCL24). Thus, the MEIP-
based bisection projection has wide applicability and achieves a non-trivial performance guarantee.

However, solving MEIPs is a challenging task due to the non-convexity, particularly when swift
responses are essential for real-time decision-making. To address this issue, we propose a learning-
based strategy in the subsequent section, which trains another NN (called IPNN) offline to predict the
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IPs with low eccentricity given input parameters, mitigating the run-time complexities involved in
finding IPs during online real-time applications.

4.3 INTERIOR POINTS NEURAL NETWORK (IPNN)

We train another feed-forward NN with ReLU activation, denoted as IPNN ψ(·) : Rd → Rm·n, to
predict the IPs with low eccentricity modulated by the NN infeasibility region. The loss function to
be minimized during training is designed as follows:

L(ψ(θ)) = P(ψ(θ)) + λ · Ê(ψ(θ),Γθ) · 1ψ(θ)⊂Cθ
. (6)

The first term is the penalty for constraint violation of IPNN outputs, i.e., a set of IPs for an input θ;
The second term computes the eccentricity of valid IPs only, and 1ψ(θ)⊂Cθ

is the indicator function
capturing whether the IPs outputted by IPNN is feasible or not. λ > 0 is a positive coefficient chosen
based on empirical experience.

For the penalty term, we apply adversarial training techniques to keep the IPs away from the boundary,
making them robust to IPNN prediction errors, as visualized in Fig. 1:

P(ψ(θ)) = Ez1,...,zm

[
m∑
k=1

∥ReLU(g(ψk(θ) + zk, θ))∥

]
, (7)

where z1, . . . , zm ∼ N (0, σ2I) are independent Gaussian noise with variance σ2, and the loss
evaluates the constraint violation for Gaussian-perturbed IP predictions by ψ(θ). Such an adversarial
loss has been widely used to enhance NN robustness (CRK19; LSF19). Under our setting, it helps to
keep the IP predictions away from the constraint boundary, thus safeguarding the IP predictions under
NN generalization errors after finite-sample training. We further present two sufficient conditions for
IPNN to predict feasible IPs over arbitrary input after training with finite samples in Sec. 5.1.

For the non-smooth eccentricity term defined in (4), to enable efficient gradient-based optimization
in training, we apply the following sample-based and smoothed eccentricity loss used in (6):

Ê(ψ(θ),Γθ) = LSEβ({LSE−β({dθ,j,k}mk=1)}bj=1)− LSE−β({LSE−β({dθ,j,k}mk=1)}bj=1), (8)

where dθ,j,k = ∥yj − ψk(θ)∥ is the point-to-boundary distance for boundary samples {yj}bj=1 ⊂
Γθ and predicted IPs {ψk(θ)}mk=1. The log-sum-exp operator is defined as LSEβ({xi}ni=1) :=
1
β log

∑n
i=1 exp(βxi), which is a smooth maximum/minimum operator when β is positive/negative.

The following proposition characterizes the approximation gap for the LSE-smoothed loss:
Proposition 4.2. The sample-based eccentricity, defined as E(ψ(θ),Γθ) := max

1≤j≤b
min

1≤k≤m
dθ,j,k −

min
1≤j≤b

min
1≤k≤m

dθ,j,k, with boundary samples {yj}bj=1 ⊂ Γθ, can be well approximated by the LSE-

smoothed eccentricity as β goes to infinity:

Ê(ψ(θ),Γθ)− log(mb2)/β ≤ E(ψ(θ),Γθ) ≤ Ê(ψ(θ),Γθ) + log(m)/β. (9)

For efficient IPNN training, we need (i) samples from the input domain to evaluate the adversarial
penalty term and minimize it to guide IPNN to find IPs; (ii) samples from the (local) constraint
boundary Γθ containing all possible projected infeasible NN predictions with error ϵpre to evaluate
the smoothed eccentricity. During training, the second eccentricity loss becomes active once IPNN
outputs IPs under the first penalty loss. We derive boundary samples through bisection projection in
Alg. 1 for infeasible solutions, constructed by adding noise to NN predictions. This objective-aware
training focuses on the local region around the optimal solution, providing a smaller eccentricity
and optimality gap. We also consider an objective-agnostic setting in Appendix D, optimizing the
IPNN with eccentricity over the entire constraint boundary ∂Cθ. This approach can train one IPNN
for multiple optimization problems with different objectives over the same constraints; however, it
incurs higher complexity due to sampling the entire constraint boundary.

Finally, to optimize the average performance across different input parameters, we uniformly sample
θ and minimize the total loss as L(ψ) = Eθ[L(ψ(θ))].
At the end of the training, we obtain an IPNN for predicting a set of IPs for an input θ. For the
performance analysis later, we define the validness of the obtained IPNN as follows.
Definition 4.2 (Valid IPNN). An IPNN is valid if it outputs feasible IPs for all the θ in the training
set; Furthermore, it is universally valid if it can output feasible IPs for all the θ in the input region.
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5 PERFORMANCE ANALYSIS

In this section, we present a comprehensive analysis of the BP framework: (i) the universally
valid conditions for IPNN under varying inputs in Sec. 5.1 and (ii) the optimality loss and run-
time complexity for the bisection operation in Sec. 5.2. We also discuss the training complexity
and impacts of hyperparameters in Sec. 5.3 and reveal the connection to existing approaches
(TZ22b; LCL23; THH23) in Appendix C.

5.1 UNIVERSALLY VALID CONDITION FOR IPNN

Theorem 1. Suppose the trained IPNN, is valid (over the training dataset D = {θi}Ni=1 ⊆ Θ), i.e.,
∀θi ∈ D, ψ(θi) ⊂ Cθi . Then the IPNN is universally valid, i.e., it will output feasible IPs for any
input θ in the compact input domain Θ, if one of the following conditions is met:

(i) Sample-based Condition. Let dataset D be an rc-covering set for Θ, i.e., ∀θ ∈ Θ, ∃θi ∈ D such
that ∥θ − θi∥ ≤ rc. Given the valid condition over training dataset D, if (C0 + C1)rc ≤ C2, then
∀θ ∈ Θ, ψ(θ) ⊂ Cθ. Here C0 = sup

θ1,θ2∈Θ,θ1 ̸=θ2
{dH(∂Cθ1

,∂Cθ2
)

∥θ1−θ2∥ }, C1 = maxk{Lip(ψk(·),Θ)} and

C2 = min
k,θ∈D

{ min
z∈∂Cθ

{∥z − ψk(θ)∥}}. Detailed explanation in Appendix E.4.

(ii) Verification-based Condition. Consider calculating the worst-case constraint violation for the
IPNN prediction ψ(·) over the input domain Θ, defined as { max

θ∈Θ,1≤k≤m
∥g(xk, θ)∥∞, s.t. xk =

ψk(θ)}. If an upper bound of the optimal objective value is non-positive, then ∀θ ∈ Θ, ψ(θ) ⊂ Cθ.

Theorem 1 establishes sufficient conditions for the trained IPNN to be universally valid, a premise for
the subsequent bisection applied to infeasible predictions under unseen input parameters. First, the
IPNN needs to be valid, i.e., predict feasible IPs over finite training samples. Empirical studies in
Sec. 6 show that this condition is easily achieved under the designed adversarial penalty loss in (6), as
the constraint violation is minimized for perturbed IP predictions. To generalize the valid condition
to any input parameter θ ∈ Θ, the following sufficient conditions are provided:

The Sample-based condition indicates that a smaller covering radius rc is needed for “thin” constraint
sets (small C2), highly variable constraint geometries (large C0), and IPNN with large Lipschitz
constants (large C1). Additionally, Assumption 1 also ensures C2 > 0 for a “fat” set. A small
covering radius implies a larger number of training samples (N ), scaling as O((diam(Θ)/rc)

d), to
cover the input space for a universally feasible IPNN. However, C0 may be unbounded for constraint
sets that change discontinuously, and obtaining closed-form expressions for these constants may be
computationally challenging.

The Verification-based condition aims to compute the worst-case constraint violation (or its upper
bound) to verify the IPNN’s feasibility (QOB+19). Exact verification can be NP-hard due to ReLU
activation or non-convex constraint functions. However, an upper bound of the constraint violation,
obtained by employing convex relaxation for the activation function (TXT17; RSL18) and the non-
convex constraint function (LNDT19; NS06), can be used as a sufficient condition for verification.
This reduces the verification problem to a convex programming task, which can be solved efficiently.
However, the relaxation techniques are problem-dependent and may not be universal for arbitrary
constraints. More details and examples are provided in Appendix E.5 and F.2.

5.2 OPTIMALITY AND RUN-TIME COMPLEXITY FOR BISECTION

Theorem 2. Given constraint set Cθ under Assumption 1, an infeasible NN prediction x̃θ with
bounded error to the optimal solution x∗θ as ∥x̃θ − x∗θ∥ ≤ ϵpre, and multiple IPs X◦

θ,m produced by a
universally-valid IPNN, after executing K steps of bisection shown in Alg. 1. We obtain a solution
x̂Kθ satisfying the following:

(i) it is guaranteed to be feasible, i.e., x̂Kθ ∈ Cθ;

(ii) it has a bounded optimality gap as ∥x̂Kθ −x∗θ∥ ≤ 2ϵpre+E(X◦
θ,m,Γθ)+2−K(ϵpre+diam(Cθ))+

ϵg , where ϵg = 0 if m = 1 or K ≥ log2(C3) (ϵg and C3 are constants detailed in Appendix E.6);

(iii) the run-time complexity is O(mKG), where G is the complexity of checking if a given solution
satisfies the constraints of the optimization problem.
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First, given multiple IPs, The bisection in Alg. 1 consistently returns a feasible solution. The
optimality loss of the returned feasible solution is mainly bounded by three factors: the initial NN
prediction error for the optimal solution, the eccentricity measure of predicted IPs, and the error due
to finite-step bisection. (i) The initial prediction error is typically small, thanks to the NN’s universal
approximation capabilities. (ii) The eccentricity measure represents the upper bound of the maximum
deviation caused by employing bisection with multiple IPs, which should be minimized during IPNN
training, as highlighted by the loss function in (6). (iii) The error from finite bisection decreases
exponentially with each additional iteration after a small threshold.

The algorithm’s run-time complexity, i.e., the number of arithmetic operations, is primarily affected
by the number of bisection steps (K) and the complexity of verifying inequality constraints at each
step (G). Notably, in practical applications, the run-time escalates linearly with the number of
bisection steps but not with the number of IPs by employing batch processing.

5.3 DISCUSSIONS

IPNN training complexity. As discussed in Sec. 4.3, IPNN training requires sampling over
(local) boundary Γθ to evaluate the eccentricity. Although accurately approximating the eccentricity
over general compact sets in the worst case requires a covering dataset (Zho02), we use stochastic
training by sampling a small batch of boundary points at each iteration and optimizing the smoothed
eccentricity loss. Our numerical studies show that this approach guides IPNN in finding IPs with low
eccentricity, leading to minor bisection-induced optimality loss.

IPNN sampling complexity. To obtain boundary samples, we apply the bisection projection in
Alg. 1 with runtime complexity O(KG), where K is the number of bisection steps and G is the
complexity of checking constraint satisfaction. This algorithm provides linear convergence to find
boundary samples and can be applied to a batch of infeasible predictions, enabling low-complexity
IPNN training, as demonstrated in Sec. 6.2. The detailed pseudocode for training and sampling is
provided in Appendix G.3.

IPNN convergence. Despite the empirical success of training the IPNN to be valid over the training
dataset, a premise on the generalization condition in Theorem 1, we remark that the theoretical
convergence guarantee on IPNN training is non-trivial, similar to regular NN training, which largely
depends on the optimizer, data coverage, and NN initialization, and requires future exploration.

Impact of number of IPs. As we used multiple IPs to reduce the bisection-induced projection
distance, we analyzed the trade-off between the projection distance and the number of used IPs.

Proposition 5.1. Given a compact set Cθ for input θ under Assumption 1, the minimum eccentricity
modulated by the NN infeasibility region form IPs is upper bounded as: minX◦

θ,m⊂Cθ
E(X◦

θ,m,Γθ) ≤
min{ϵpre,O

(
m−1/(n−1)

)
}, where we recall n is the number of decision variables.

We provide constructive proof for Prop. 5.1 in Appendix E.3. The developed upper bound is tight
for general compact sets, as the eccentricity of multiple IPs is connected to the covering complexity
(KZLD21), where the complexity order is consistent for compact sets under different inputs. Since
we focus on eccentricity modulated by the NN infeasibility region, it can be directly bounded by the
corresponding NN prediction error. The second term in the upper bound indicates that the minimum
eccentricity monotonically decreases as the number of IPs increases. This proposition justifies the
design of (i) employing multiple IPs in projection, compared to using only one IP as in previous
studies (discussed in Appendix C), and (ii) focusing on eccentricity modulated by the NN infeasibility
region instead of eccentricity over the entire constraint set. Although empirical experiments suggest
that 1-2 IPs lead to minor optimality loss, the exact lower bound on the number of IPs remains largely
open and warrants future exploration.

6 NUMERICAL EXPERIMENTS

We carry out simulations to (i) visualize and comprehend the proposed MEIPs and IPNN training in
the 2-dimensional non-convex constraint set, as detailed in Appendix F.1; (ii) validate the performance
of BP against existing state-of-the-art methods on various constrained optimization problems in Sec.
6.1; (iii) corroborate the efficacy of key components and parameters in the BP framework through
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sensitivity analysis in Sec. 6.2; (iv) demonstrate the verification condition for IPNN feasibility
over convex and non-convex sets, as elaborated in Appendix F.2. The problem formulation and
hyperparameter setting are provided in Appendix G.

6.1 ENSURING NN SOLUTION FEASIBILITY FOR CONSTRAINED OPTIMIZATION PROBLEMS

Table 2: Performance comparison for four constrained optimization problems.
Feasibility Optimality Speedup

feasible inequality equality solution error objective gap NN+post.
rate (%) vio. (1-norm) vio. (1-norm) ave. (%) cor. (%) ave. (%) cor. (%) ave. (×) cor. (×)

Convex QCQP: n = 400, d = 100, neq = 100, nineq = 100

NN 80.08 0.502 0 9.09 8.99 6.03 4.73 964243 −
NN+WS 100 0 0 7.3 0 5.09 0 5.2 1
NN+Proj 100 0 0 9.09 8.98 6.04 4.75 5.8 1.2
NN+D-Proj 84.28 0.079 0 9.08 8.97 6.04 4.74 37.6 7.5
NN+H-Proj 100 0 0 9.18 9.45 6.24 5.75 4128 824
NN+B-Proj 100 0 0 9.15 9.32 6.23 5.71 54236 11449

SOCP: n = 400, d = 100, neq = 100, nineq = 100

NN 83.79 0.69 0 17.41 17.26 6.46 5.38 698523 −
NN+WS 100 0 0 14.62 0 5.59 0 6.1 1
NN+Proj 100 0 0 17.41 17.25 6.48 5.5 7.5 1.2
NN+D-Proj 93.36 0.003 0 17.43 17.37 6.47 5.45 34 5.5
NN+H-Proj 100 0 0 17.43 17.38 6.61 6.28 4025 655
NN+B-Proj 100 0 0 17.44 17.39 6.60 6.23 168708 36058

JCC-IM: : n = 400, d = 100, neq = 0, nineq = 10100

NN 77.15 0.03 0 1.71 1.74 1.17 1.18 551239 −
NN+WS 100 0 0 1.32 0 0.9 0 7.7 1.8
NN+Proj 100 0 0 1.7 1.74 1.17 1.8 1 0.1
NN+D-Proj 78.52 0.01 0 1.71 1.74 1.17 1.18 73 1.7
NN+H-Proj 100 0 0 4.34 13.24 4.02 13.64 378 86
NN+B-Proj 100 0 0 1.84 2.3 1.33 1.87 857 196

AC-OPF: n = 476, d = 400, neq = 400, nineq = 1042

NN 82.81 0.001 0 0.32 0.27 0.05 0.05 631 −
NN+WS 100 0 0 0.28 0 0.04 0 18.5 1.3
NN+Proj 100 0 0 0.6 2.62 0.05 0.07 4.3 0.5
NN+D-Proj 84.28 0.001 0 0.32 0.27 0.05 0.05 11.4 2
NN+H-Proj 100 0 0 0.41 0.42 0.08 0.15 51 15
NN+B-Proj 100 0 0 0.34 0.38 0.06 0.11 258 52
1 d and n represent the dimensions for input parameter θ and output decision x, respectively. neq and nineq denote the number of equality

and inequality constraints, respectively.
2 All post-processing approaches are adopted for infeasible NN predictions only. Those metrics are separately evaluated for all predictions

(ave. metric) and corrected infeasible predictions (cor. metric).
3 For the joint chance constraint (JCC) without tractable reformulation, we employ the scenario-based approach to generate the approximated

ground truth for NN training. Consequently, the inequality grows linearly with sampled scenarios (PAS09). In the absence of an analytical
expression for the JCC, the feasibility metric is evaluated over i.i.d samples.

4 We remark on the complicated constraint geometry for two non-convex problems, as visualized in Fig. 9 and 10.

We apply the BP framework to two benchmark convex cases (convex QCQP, and SOCP) and two
non-convex real-world scenarios, including AC-OPF problems in grid operation and joint chance-
constrained problems in inventory management (JCCIM). We first train an NN predictor to learn
the mapping from input parameters to the optimal solutions in existing works (DRK20), where the
training and testing data are generated by randomly sampling the input parameter and solve the
corresponding optimal solutions through iterative solvers as ground truth (DRK20; LCL23). For
convex optimization, we use MOSEK to solve the optimal solution. For AC-OPF problems, we adopt
PYPOWER as the specialized solver (ZMSG97).

To ensure the feasibility of equality constraints, we utilize predict-then-reconstruct techniques
(PZCZ20; DRK20), as detailed in Appendix A.1. For infeasible NN predictions with respect to the
inequality constraints, we compare our BP framework with different post-processing approaches: (i)
solver-based approaches, such as orthogonal projection (Proj.) and warm-start methods (WS.), (ii)
gradient-descent methods (D-Proj.) (DRK20), and (iii) homeomorphic projection (H-Proj.) (LCL23).
Note that some baselines shown in Table 1 are not included due to their limited applicability, and the
details of those compared baselines are provided in Appendix G.1.

The performances over four constraint optimization problems are shown in Table 2. We have the
following observations for the experiment results. The BP framework achieves 100% feasibility
rate for infeasible NN predictions, with the best speedup and similar optimality loss. Solver-based
methods like warm-start or projection ensure feasibility and minimal optimality loss but suffer
from poor speeds compared to direct problem-solving. The gradient-based D-Proj method, while
versatile for different constraint sets, does not guarantee feasibility and is highly sensitive to step
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size choices. H-Proj also achieves 100% feasibility with similar optimality loss but is less efficient
than B-Proj, especially in such high-dimensional scenarios, due to the demanding invertible NN
calculations required at each bisection step. Overall, for those convex and non-convex constraint sets,
BP outperforms existing methods in feasibility or run-time complexity with similar optimality loss.

6.2 SENSITIVITY ANALYSIS FOR BISECTION PROJECTION FRAMEWORK

This section explores the impact of key components and parameters in the BP framework to validate
its design, conducting comparisons across convex and non-convex problems. We investigate (i) the
impact of eccentricity on the bisection-induced optimality gap, and (ii) the relationship between the
number of employed IPs and the optimality loss.

As illustrated in Table 3, in alignment with our observations in Sec. 6.1, the IPNN predicts valid
IPs across both constraint sets under unseen testing parameters, substantiating the design of the
adversarial penalty loss. By minimizing the eccentricity, the ME-IPNN identifies better IPs for
conducting bisection, resulting in a minor projection distance. It is noteworthy that ME-IPNN with a
single IP surpasses the performance of IPNN with 8 IP predictors, corroborating the efficiency of the
eccentricity loss design. Moreover, as the number of IPs increases, the bisection-induced projection
distance decreases, which aligns with Prop. 5.1.

Table 3: Sensitivity analysis for BP framework.
Feasibility Optimality Run-time Training

feas. rate (%) ineq. vio. (1-norm) sol. err. (%) obj. gap (%) total (s) per iteration (s)
Convex QCQP: : n = 400, d = 100, neq = 100, nineq = 100

NN Solution Predictor 0.00% 11.05 3.10% 3.03% 0.001 0.006
H-Proj 100% 0.00 6.02% 3.99% 1.13 0.01
IPNN 1 100% 0.00 8.55% 6.67% 0.13 0.007
IPNN 2 100% 0.00 6.23% 4.15% 0.27 0.006
IPNN 4 100% 0.00 5.62% 3.66% 0.65 0.008
IPNN 8 100% 0.00 5.32% 3.43% 0.82 0.01
ME-IPNN 1 100% 0.00 5.18% 3.63% 0.10 0.02
ME-IPNN 2 100% 0.00 5.01% 3.46% 0.34 0.02
ME-IPNN 4 100% 0.00 4.87% 3.30% 0.39 0.03
ME-IPNN 8 100% 0.00 4.80% 3.28% 0.65 0.03

Non-convex JCC-IM: : n = 400, d = 100, neq = 0, nineq = 10100

NN Solution Predictor 6.54% 0.18 2.68% 2.66% 0.001 0.06
H-Proj 100% 0.00 8.39% 10.99% 1.10 0.07
IPNN 1 100% 0.00 6.22% 5.78% 0.39 0.08
IPNN 2 100% 0.00 5.47% 4.94% 0.46 0.07
IPNN 4 100% 0.00 5.21% 4.65% 0.48 0.07
IPNN 8 100% 0.00 5.01% 4.43% 0.62 0.07
ME-IPNN 1 100% 0.00 4.74% 4.20% 0.42 0.77
ME-IPNN 2 100% 0.00 4.29% 3.74% 0.41 0.71
ME-IPNN 4 100% 0.00 3.91% 3.24% 0.50 0.69
ME-IPNN 8 100% 0.00 3.68% 2.97% 0.54 0.70

1 We train an NN predictor without penalty loss to obtain an approximate solution to the optimization problem (with substantial constraint
violation). We then feed those infeasible NN predictions to different IPNNs to recover a feasible solution.

2 IPNN indicates that it is trained solely with penalty terms for constraint violation. ME-IPNN signifies that it is jointly trained with penalty
terms and eccentricity measures.

3 Run time denotes the time required for executing the bisection algorithm to recover feasibility for infeasible cases out of 1,024 test instances.
4 Training time represents the average per-iteration training cost, encompassing boundary sampling time and forward-backward propagation.

7 CONCLUSION AND LIMITATION

We introduce the Bisection Projection framework, an efficient scheme to recover feasible solutions
from infeasible NN predictions over a general compact constraint set through simple bisection
operation and with minor optimality loss. Extensive experiments in this paper demonstrate the
general applicability and efficiency of the approach beyond existing methods.

Meanwhile, there are several limitations of the framework that can be viewed as important future
directions, as discussed in Sec. 5.3. (i) In addition to the covering-based upper bound in Prop.
5.1, the lower bound of the number of required IPs for specific sets is useful and subject to further
investigation. (ii) The convergence guarantee for training IPNN to learn feasible solutions over
the training dataset under the overparameterized NN framework will also be an interesting future
direction. (iii) The two sufficient conditions in Theorem 1 do not universally work for arbitrary
constraint sets; more general and computationally efficient conditions should be explored in the
future.
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A ASSUMPTIONS OF CONSTRAINT SETS

A.1 EQUALITY CONSTRAINT

Consider the following constraint set Cθ defined by both inequality and equality constraints:

Cθ = {x ∈ Rn | h(x, θ) = 0, g(x, θ) ≤ 0}, (10)

where the functions h(·, ·) : Rn+d → Rneq and g(·, ·) : Rn+d → Rnineq are continuous with respect
to x and θ. For simplicity, we use hθ(·) = h(·, θ).
Assuming the equality constraint maintains a constant rank:

rank(Jhθ
(x)) = r, ∀θ ∈ Θ and ∀x ∈ Cθ, (11)

this condition implies that Cθ has a Euclidean dimension1 of n− r, as per the Constant-Rank Level
Set Theorem (Lee13).

In simpler terms, we can utilize a subset of decision variables x1 ∈ Rn−r and reconstruct the complete
set of decision variables [x1, x2] ∈ Rn by solving x2 = ϕθ(x1), such that hθ([x1, ϕθ(x1)]) = 0.
Note that such a parametrization are not necessarily held globally for non-linear equality constraints.
This method of reconstruction, which ensures the feasibility of the equality constraint, is extensively
used in optimization literature (Aba69; PZC19; ZB20; DRK20; LCL23; THH23; LM23; DWDS23).

We then denote the reduced constraint set as

Csθ = {x ∈ Rn−r | g([x1, ϕθ(x1)], θ) ≤ 0} (12)

1If an open set X is Euclidean of dimension, then every point x ∈ X has a neighborhood that is homeomor-
phic to an open subset of Rn (Lee13).
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This set Csθ is not only equivalent to the original constraint set Cθ but also homeomorphic to it,
implying a one-to-one, continuous, and bicontinuous correspondence between the two sets. The
forward and inverse mappings of this homeomorphism are described by the following transformations:

[x1, x2] ∈ Cθ → x1 ∈ Csθ , (13)
x1 ∈ Csθ → [x1, ϕθ(x1)] ∈ Cθ. (14)

Let’s consider two examples to illustrate this equality completion/reconstruction process:

Linear equality constraint

Let’s consider an equality constraint defined as {x ∈ Rn | Ax = θ,A ∈ Rr×n, θ ∈ Rr}, where x is
the decision variable and θ is the input parameter. We can assume, without loss of generality, that the
rank of matrix A is rank(A) = r.

To facilitate the reconstruction process, we partition the decision variable x into two groups: x1 ∈
Rn−r and x2 ∈ Rr. Accordingly, we also partition matrix A into A = [A1, A2], where A1 ∈
Rr×(n−r) and A2 ∈ Rr×r. Hence, the equality constraint can be represented as A1x1 +A2x2 = θ.
The reconstruction process indicates that we can determine x2 using only the subset of variables x1,
with the explicit relationship given by:

x2 = ϕθ(x1) = A−1
2 (θ −A1x1). (15)

Here, we choose the partition of x1 and x2 such that A2 has the full rank of r.

The relevant Jacobian matrix for back-propagation in this context is:

Jϕθ
(x1) = −A−1

2 A1. (16)

Non-linear equality constraint

For a non-linear equality constraint defined as {x ∈ Rn | h(x, θ) = 0, θ ∈ Rd, h : Rn+d → Rr},
we partition the decision variable into x1 ∈ Rn−r and x2 ∈ Rr in a similar fashion to the linear
case. Under the assumption that the Jacobian matrix of h with respect to x2 has a constant rank, the
completion function ϕθ is well-defined and satisfies:

h([x1, ϕθ(x1)], θ) = 0. (17)

To solve for ϕθ(x1) when h is non-linear, we can employ an iterative technique such as Newton’s
method. The necessary Jacobian matrix for back-propagation can be computed using the Implicit
Function Theorem, which provides the derivative of the implicitly defined function ϕθ. The Jacobian
matrix is given by:

Jϕθ
(x1) = − J−1

hθ
(x2) Jhθ

(x1). (18)

Note that ϕθ for such a non-linear constraint may not be single-valued globally and depends on the
initial value for the iterative algorithm, which may bring potential convergence issues.

In conclusion, reconstruction techniques utilizing equality constraints allow for a reduction in the
dimensionality of the decision variable space. By modeling only a subset of the decision variables,
we can focus on the inequality constraints and use the equality constraints to implicitly define the
remaining variables. This process is differentiable, making it suitable for integration into the training
of machine learning models, hence providing a powerful tool for incorporating equality constraints
into such models (Aba69; PZC19; PCZL22; DRK20; DWDS23).

A.2 INEQUALITY CONSTRAINT

After exploiting and eliminating the equality constraints without compromising optimality, we
introduce Assumption 1 pertaining to the constraint set. It is important to note that this assumption is
made to circumvent extreme cases in compact set spaces, such as discrete constraint sets and certain
continuous ones, which may limit the applicability of our framework.

As illustrated in Figure 3, the constraint set Cθ, represented by the green curve, resides in a two-
dimensional space. However, it possesses a one-dimensional Euclidean structure and is measure-zero
(zero volume) in R2. When applying the bisection projection over this compact constraint set, the
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Figure 3: An extreme case for continuous constraint set (green curve).

feasibility of the projected solution is guaranteed. Nevertheless, nearly all projected solutions will
converge to the given feasible point. Even when conducting bisections with multiple points, all
infeasible points will be projected back to their nearest predefined feasible points. Under such
circumstances, the number of required IPs reaches the upper bound established in Prop. 5.1. In other
words, we require the exact covering dataset of IPs to achieve the worst-case performance guarantee.
In this context, our methods reduce to the sampling-based techniques presented in (KZLD21), which,
although theoretically feasible, are less practical.

To circumvent such measure-zero constraint sets, which typically arise from equality constraints,
we first employ the technique described in A.1 to remove them and embed the high-dimensional
measure-zero constraint set into a non-measure-zero subspace. Furthermore, to avoid certain extreme
cases under inequality constraints, we introduce Assumption 1 to further refine the constraint set of
interest.

B COMPARISON OF DIFFERENT CENTERS

Defining the centers of a set is a classic problem in mathematics, which involves various definitions
tailored to serve specific purposes. Each definition captures a unique aspect of “centrality” depending
on the application or theoretical requirements. Here, as shown in Table 4, we discuss several classic
definitions including the proposed minimum-eccentricity interior point (MEIP) in our work.

Table 4: Comparison of different definitions of center for a set

Name Definition Description

MEIP x◦ = argmin
x∈X

(
max
y∈∂X

∥x− y∥ − min
y∈∂X

∥x− y∥
)

Minimizes the discrepancy between the maximum and
minimum distances from the point to the boundary of
the set.

Chebyshev Center x◦ = argmin
x∈X

max
y∈∂X

∥x− y∥ Minimizes the maximum distance from the point to the
boundary of the set.

Incenter x◦ = argmax
x∈X

min
y∈∂X

∥x− y∥ Maximizes the minimum distance from the point to the
boundary of the set.

Analytical Center x◦ = argmax
x∈X

(∑nineq

i=1 log(−gi(x))
)

Maximizes the logarithmic barrier of the inequality resid-
uals (gi(x) ≤ 0), ensuring the point is centrally located
within the feasible region.

Centroid x◦ = 1
n

∑n
i=1 xi Calculates the average position of all points in the set,

often used for geometric shapes and spatial data.

Barycenter x◦ =
∑n

i=1 wixi∑n
i=1 wi

Calculates the weighted average position of all points in
the set, where each point has an associated weight wi.

• The MEIP, Chebyshev Center, and Incenter focus on geometric properties of sets, specifically
distances to the boundary. The MEIP minimizes the disparity between the maximum and minimum
distances to the boundary. The Chebyshev Center minimizes the maximum distance to the boundary,
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while the Incenter maximizes the minimum distance. We propose the MEIP for bisection operation,
justified by the performance guarantee in Proposition 4.1.

• The Analytical Center uses optimization techniques, particularly barrier methods, to maintain
a central position within a feasible region defined by constraints. This approach is crucial for
solving linear and nonlinear programming problems. However, maximizing the log-residual of the
inequality function does not directly reflect the point-to-boundary distance for general constraint
sets, which may result in a large deviation for the bisection operation.

• The Centroid and Barycenter represent statistical approaches to defining centrality by calculating
averages of point sets. The Centroid computes a simple arithmetic mean, suitable for applications
in statistics and machine learning. The Barycenter incorporates weights, allowing for differentiated
influence among points. Despite their simplicity, these centers are not necessarily interior points
for general non-convex sets X , making them unsuitable for our bisection operation.

C CONNECTION TO EXISTING WORKS

As discussed in Sec. 2, the proposed framework is conceptually related to the homeomorphic
projection (LCL23; LCL24) and gauge function based methods (TZ22b; THH23).

We first introduce the basic definitions for gauge function and homeomorphic projection.

Definition C.1 (Gauge/Minkowski function (BM08)). The Gauge/Minkowski function for a compact
convex set C is defined as φC(x, x

◦) = inf{λ ≥ 0 | x ∈ λ(C − x◦)}, where x◦ ∈ C is an interior
point of the compact convex set C.

The Gauge/Minkowski function is a generalized definition of the norm function. For example, if
the compact convex set is a p-norm ball, the gauge function is the p-norm as: φB(x, 0) = ∥x∥p. It
satisfies the properties of the norm function, such as non-negative, positively homogeneous, and
sub-additive. Thus, the Gauge function is also convex for x.

In a simple manner, the gauge function is the ratio between the norm of x and the IP-to-boundary
distance along direction x− x◦, i.e.,

φC(x, x
◦)

{
= 0, x = 0
= 1, x ∈ ∂(C − x◦)
> 1, x /∈ C − x◦

(19)

Based on the gauge function, we can construct the following bijection between two compact convex
sets:

Definition C.2 (Gauge mapping (TZ22b)). The gauge mapping between two convex sets Z and C is
defined as Φ(z) = φZ(z−z◦,z◦)

φC(z−z◦,x◦) (z− z◦)+x◦ for z ∈ Z or equivalentlx Φ−1(x) = φC(x−x◦,x◦)
φZ(x−x◦,z◦) (x−

x◦) + z◦ for x ∈ C.

The gauge mapping is also a homeomorphic mapping between two convex sets such that C = Φ(Z)
and Z = Φ−1(C) (TZ22b).

Definition C.3 (Homeomorphic projection (LCL23)). For ball-homeomorphic set K, consider a
homeomorphic mapping between K and B such that K = Φ(B). For an infeasible point x̃ /∈ K, it
can be projected back to the constraint set as:

x̂ = Φ(ProjB(Φ
−1(x̃))) (20)

Definition C.4 (RAYEN method (THH23)). For convex set C with interior point x◦, given an
infeasible prediction x̃, it can be projected to the constraint boundary as x̂ = γ · (x̃−x◦)+x◦, where
γ = 1

φC(x̃−x◦,x◦) .

The following observation reveals the connection between the bisection projection framework and
some existing schemes.

Proposition C.1. The homeomorphic projection (LCL23) and the RAYEN (THH23) approach are
special cases of our bisection projection with only one IP, over convex constraint set.
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Thus, the bisection projection framework provides a unified view for some existing projection-
analogous approaches over convex sets. Meanwhile, we highlight the theoretical analysis and
application scenario for BP works on general compact sets under Assumption 1 beyond those in
the existing studies, further exploring the projection-based design and achieving substantially better
performance in feasibility, optimality loss, and speedup as shown in Sec. 6.

Proof. Let’s consider applying the gauge mapping to the homeomorphic projection for a compact
convex set. Then we can simplify the homeomorphic projection operator as:

x̂ = Φ(ProjB(Φ
−1(x̃))) = Φ(ProjB(

φC(x̃− x◦, x◦)

∥x̃− x◦∥
(x̃− x◦))) (21)

= Φ(

φC(x̃−x◦,x◦)
∥x̃−x◦∥ (x̃− x◦)

∥φC(x̃−x◦,x◦)
∥x̃−x◦∥ (x̃− x◦)∥

) = Φ(
x̃− x◦

∥x̃− x◦∥
) (22)

=
∥ x̃−x◦

∥x̃−x◦∥∥
φC(

x̃−x◦

∥x̃−x◦∥ , x
◦)
(
x̃− x◦

∥x̃− x◦∥
) + x◦ (23)

=
x̃− x◦

φC(x̃− x◦, x◦)
+ x◦ (24)

When considering x̃ as an infeasible point, we need scale down x̃ of 1
φC(x̃−x◦,x◦) such that the

1
φC(x̃−x◦,x◦) (x̃− x◦) + x◦ will be located in the boundary. Therefore, we take α∗ = 1

φC(x̃−x◦,x◦) ,
the homeomorphic projection operator is indeed the bisection projection operator in (2). It is also
equivalent to the RAYEN methods by its definition in C.4.

D UNSUPERVISED TRAINING FOR IPNN

To train the IPNN, we minimize the loss function defined in (6), which incorporates an adversarial
penalty term and a smoothed eccentricity term, as delineated in Alg. 2. The IPNN is initialized
randomly with m IP predictors. During the training process, Gaussian noise is introduced to perturb
the IP predictions, and the penalty term is computed to ensure the identification of valid IPs. For
IPs deemed valid, the smoothed eccentricity is calculated using boundary points sampled from a
specified region of interest. We consider the following training scenarios with different boundary
sampling approaches.

D.1 OBJECTIVE-AWARE TRAINING

In this scenario, we are provided with a trained NN predictor F (·) or a dataset containing optimal
solutions x∗θ under various inputs. Our objective is to identify IPs with minimized eccentricity in a
local region of the boundary. As illustrated in Alg. 3, we initially sample an infeasible solution by
introducing noise to the NN prediction or the optimal solution; subsequently, we apply the bisection
projection described in Alg. 1 to determine the projected feasible solution in the local boundary.

This training scheme emphasizes the local region surrounding the optimal solution, taking into
account the objective function. Consequently, it has the potential to yield a smaller eccentricity and
overall optimality gap.

D.2 OBJECTIVE-AGNOSTIC TRAINING

In this scenario, we do not have access to any prior information about the optimal solution or a trained
NN predictor. Our objective is to minimize the eccentricity with respect to the entire constraint
boundary, denoted as E(ψ(θ), ∂Cθ). To achieve this, we propose a bisection-based boundary sampling
algorithm that significantly enhances the efficiency of the training process.

During the training phase, when IPNN outputs an interior point x◦θ , we can sample a set of boundary
points using the following steps: (i) sample a unit vector v ∈ Rn and (ii) identify a boundary point
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Algorithm 2 Unsupervised Training for IPNN
1: set m, the number of IPs to predict
2: initialize IPNN ψ : Rd → Rm·n

3: sampling input parameter data D = {θ}Ni=1 ⊂ Θ.
4: while in training epoch do
5: batch sampling: {θ}Bi=1 ⊂ D
6: Gaussian noise sampling: {zk}mk=1 ∼ N (0, σ2I)
7: IPs prediction: X◦

θi,m
= ψ(θi)

8: adversarial loss for constraint violation: P(ψ(θi)) =
∑m

k=1 ∥ReLU(g(ψk(θi) + zk, θi))∥
9: if ψ(θi) ⊂ Cθi then

10: constraint boundary sampling {yj}bj=1 via Algorithm 3
11: computing point-to-boundary distance: di,j,k = ∥yj − ψk(θi)∥
12: sample-based smoothed eccentricity:

Ê(ψ(θi)) = LSEβ({LSE−β({di,j,k}mk=1)}bj=1)− LSE−β({LSE−β({di,j,k}mk=1)}bj=1)

13: else
14: Ê(ψ(θi)) = 0
15: end if
16: average loss function: L(ψ) = 1

B

∑B
i=1 P(ψ(θi))) + λ(Ê(ψ(θi))

17: update IPNN parameter: ψ ← Adam(L(ψ))
18: end while
19: return ψ

Algorithm 3 Bisection-based Objective-Agnostic/Aware Boundary Sampling
Input: an interior point x◦θ ∈ Cθ .
Output: a feasible point near the boundary.
Objective-Agnostic Sampling
1: sample Gaussian noise v ∼ N (0, I)
2: normalize to unit vector: v ← v/∥v∥
3: initialize γl = 0, γu = 1, n = 0
4: while n ≤ K do
5: if x◦θ + γu · v ∈ Cθ then
6: increase lower bound: γl ← γu
7: increase upper bound: γu ← 2 · γu
8: else
9: decrease upper bound: γu ← (γl + γu)/2

10: end if
11: n← n+ 1
12: end while
13: boundary point: y = x◦θ + γl · v
Objective-Aware Sampling
1: set infeasible region radius ϵ
2: sample Gaussian noise v ∈ N (0, I)
3: normalize it as: v ← v/∥v∥ · ϵ
4: sample infeasible solution as x̃θ = x∗θ + v or x̃θ = F (θ) + v
5: boundary point by bisection projection: y = BP(x̃θ, x

◦
θ)

return y

ŷθ ∈ ∂Cθ along the direction of v starting from x◦θ as:

ŷθ = x◦θ + γ∗ · v, (25)

where γ∗ > 0 leading to ŷθ ∈ ∂Cθ. The parameter γ can be efficiently determined using a bisection
method, as described in Alg. 3. We remark that, analogous to the bisection projection described in
Alg. 1, this bisection-based boundary sampling algorithm boasts efficiency in per-step computations.
Additionally, the algorithm is amenable to batch processing for multiple sampled unit vectors {vi}Mi=1,
thus further streamlining the training procedure. We also note that analytical solutions for γ∗ are
available for common convex sets—including linear, convex quadratic, second-order cone (SOC),
and linear matrix inequality (LMI) constraints (THH23), which further boost the sampling efficiency
for the IPNN training under those constraints.
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Figure 4: A geometric illustration of eccentricity and the proof.

This training approach is applicable to a wide range of optimization problems with different objective
functions but with the same constraint formulation, albeit with higher complexity due to the entire
boundary sampling.

E PROOF FOR MAIN RESULTS

E.1 PROOF FOR PROPOSITION 4.1

Proof. We start from a single-IP setting as x◦θ ∈ Cθ.

For an infeasible solution x̃θ ∈ B(x∗θ, ϵpre), recall the definition of the projected solution x̂θ as:

x̂θ ≜ BP(x̃θ, x
◦
θ) = α∗ · (x̃θ − x◦θ) + x◦θ, (26)

where α∗ ∈ [0, 1] leads to x̂θ ∈ ∂Cθ.

The projection distance for an infeasible prediction x̃θ is bounded as:

∥x̃θ − x̂θ∥
(a)
= ∥x̃θ − x◦θ∥ − ∥x̂θ − x◦θ∥ (27)
(b)

≤ ∥x̃θ − x∗θ∥+ ∥x∗θ − x◦θ∥ − ∥x̂θ − x◦θ∥ (28)
(c)

≤ ϵpre + ∥x∗θ − x◦θ∥ − ∥x̂θ − x◦θ∥ (29)
(d)

≤ ϵpre +max
x∈Γθ

∥x− x◦θ∥ − min
x∈Γθ

∥x− x◦θ∥ (30)

(e)
= ϵpre + E(x◦θ,Γθ) (31)

Equality (a) is by three points, x̃θ, x◦θ , and x̂θ, exist in the same straight line. Inequality (b) is by
the triangle inequality with auxiliary point x∗θ . Inequality (c) is by x̃θ ∈ B(x∗θ, ϵpre). Inequality
(d) is by taking the maximum and minimum point over local boundary Γθ = {BP(x̃θ, x◦θ), ∀x̃θ ∈
B(x∗θ, ϵpre) and x̃θ /∈ Cθ}. Equality (e) is by the definition of eccentricity in Def. 4.1.

We then complete the proof for a single IP setting as: max
x̃θ∈B(x∗

θ ,ϵpre)
∥x̃θ − x̂θ∥ ≤ ϵpre + E(x◦θ,Γθ)

For the multiple IPs setting X◦
θ,m = {x◦θ,k}mk=1 ⊂ Cθ, we derive the upper bound as follows:

min
1≤k≤m

∥x̃θ − x̂θ,k∥
(a)

≤ min
1≤k≤m

{ϵpre + ∥x∗θ − x◦θ,k∥ − ∥x̂θ,k − x◦θ,k∥} (32)

(b)

≤ ϵpre + min
1≤k≤m

∥x∗θ − x◦θ,k∥ − min
1≤k≤m

∥x̂θ,k − x◦θ,k∥ (33)

(c)

≤ ϵpre +max
x∈Γθ

min
1≤k≤m

∥x− x◦θ,k∥ − min
x∈Γθ

min
1≤k≤m

∥x− x◦θ,k∥ (34)

(d)
= ϵpre + E(X◦

θ,m,Γθ) (35)
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Inequality (a) is by the bound for the single-IP setting above. Inequality (b) is by the minimization
of the joint term, which is smaller than the minimization separately. Inequality (c) is by taking
the maximum and minimum point over the local boundary Γθ = ∂Cθ ∩ {BP(x̃θ, X◦

θ,m), ∀x̃θ ∈
B(x∗θ, ϵpre) and x̃θ /∈ Cθ}
Thus, we complete the proof as follows:

max
x̃θ∈B(x∗

θ ,ϵpre)
min

1≤k≤m
∥x̃θ − x̂θ,k∥ ≤ ϵpre + E(X◦

θ,m,Γθ) (36)

E.2 PROOF FOR PROPOSITION 4.2

Recall the definition of the log-sum-exp (LSE) operator as:

LSEβ({xj}bj=1) =
1

β
log

b∑
j=1

expβxj (37)

where β is the temperature parameter such that LSE∞({xj}bj=1) = max({xj}bj=1) and
LSE−∞({xj}bj=1) = min({xj}bj=1). Further, we have the following basic inequalities for the
LSE operator:

max({xj}bj=1) ≤ LSEβ({xj}bj=1) ≤ max({xj}bj=1) +
log(b)

β
(38)

min({xj}bj=1)−
log(b)

β
≤ LSE−β(x1, · · · , xb) ≤ min({xj}bj=1) (39)

Recall the definition of sample-based eccentric distance:

E(X◦
θ,m,Γθ) := max

1≤j≤b
min

1≤k≤m
dθ,j,k − min

1≤j≤b
min

1≤k≤m
dθ,j,k.

where the point-to-boundary distance as dθ,j,k = ∥yj − ψk(θ)∥ is the point-to-boundary distance for
boundary samples {yj}bj=1 ⊂ Γθ and predicted IPs X◦

θ,m = ψ(θ).

The sample approximated eccentric distance can be bounded as:

E(X◦
θ,m,Γθ) = max

1≤j≤b
{ min
1≤k≤m

{dθ,j,k}mk=1}bj=1 − min
1≤j≤b

{ min
1≤k≤m

{dθ,j,k}mk=1}bj=1 (40)

≤ max
1≤j≤b

{LSE−β({dθ,j,k}mk=1) +
log(m)

β
}bj=1 − min

1≤j≤b
{LSE−β({dθ,j,k}mk=1)}bj=1 (41)

≤ LSEβ({LSE−β({dθ,j,k}mk=1)}bj=1)− LSE−β({LSE−β({dθ,j,k}mk=1)}bj=1) +
log(m)

β
(42)

= Ê(X◦
θ,m,Γθ) +

log(m)

β
(43)

where the smoothed sample-based eccentric distance is as: Ê(X◦
θ,m,Γθ) =

LSEβ({LSE−β({dθ,j,k}mk=1)}bj=1)− LSE−β({LSE−β({dθ,j,k}mk=1)}bj=1).

Similarly, the lower bound can be derived as:

E(X◦
θ,m,Γθ) = max

1≤j≤b
{ min
1≤k≤m

{dθ,j,k}mk=1}bj=1 − min
1≤j≤b

{ min
1≤k≤m

{dθ,j,k}mk=1}bj=1 (44)

≥ max
1≤j≤b

{LSE−β({dθ,j,k}mk=1)}bj=1 − min
1≤j≤b

{LSE−β({dθ,j,k}mk=1) +
log(m)

β
}bj=1 (45)

≥ LSEβ({LSE−β({dθ,j,k}mk=1)}bj=1)−
log(b)

β
− (LSE−β({LSE−β({dθ,j,k}mk=1)}bj=1) +

log(bm)

β
)

(46)

= Ê(X◦
θ,m,Γθ)−

log(mb2)

β
(47)
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Therefore, the sample-based eccentric distance can be smoothly approximated by the LSE operator
when β → ∞.

Ê(X◦
θ,m,Γθ)−

log(mb2)

β
≤ E(X◦

θ,m,Γθ) ≤ Ê(X◦
θ,m,Γθ) +

log(m)

β
(48)

E.3 PROOF FOR PROPOSITION 5.1

Proof. Given a compact constraint set Cθ ⊂ Rn under Assumption 1, which has a non-empty interior
or is Euclidean of dimension n. Its boundary ∂Cθ is also compact and Euclidean of dimension n− 1.

Thus, there exists a δ-covering set, denoted as D, for ∂Cθ as {yk}mk=1 ⊂ ∂Cθ, such that for any
z ∈ ∂Cθ, there exists y ∈ D such that ∥y − z∥ ≤ δ.

Next, for every boundary covering points y ∈ D, we construct its corresponding IP as x◦ = y + v
where ∥v∥ > 0 is strictly positive but it can be arbitrarily small such that x◦ ∈ Cθ. Subsequently, the
eccentricity measure under those constructed IPs X◦

θ,m = {x◦θ = yk+vk ∈ Cθ | yk ∈ D, ∥vk∥ > 0}
is bounded as follows:

E(X◦
θ,m, ∂Cθ) = max

z∈∂Cθ

min
x◦∈X◦

θ,m

∥z − x◦∥ − min
z∈∂Cθ

min
x◦∈X◦

θ,m

∥z − x◦∥ (49)

(a)
= max

z∈∂Cθ

min
x◦∈X◦

θ,m

∥x◦ − z∥ (50)

(b)
= max

z∈∂Cθ

min
y∈D

∥y + v − z∥ (51)

(c)
= max

z∈∂Cθ

∥y(z) + v − z∥ (52)

(d)

≤ max
z∈∂Cθ

∥y(z)− z∥+ ∥v∥ (53)

(e)

≤ δ + ∥v∥ (54)
Inequality (a) is by dropping the negative term. Equality (b) is by the definition of constructed IP
given y ∈ D. Equality (c) is by defining the optimal solution for the second minimization term
as y(z) = argminy′∈D{∥y′ + v − z∥}. Inequality (d) is by the triangle inequality. Inequality (e)
is by the property of covering the dataset such that for any z ∈ ∂Cθ there exists y ∈ D leading to
∥z − y∥ ≤ δ.

Since the constructed ∥v∥ for each boundary point y ∈ D can be arbitrarily small, to achieve the δ
eccentricity measure, we can adopt the δ-covering data set D for ∂Cθ and the constructed IPs with
same size of D, where the covering number is with an order of O(δ−(n−1)). In other words, to
reach the δ eccentricity measure, we may use a δ-covering dataset to construct the set of IPs, and
the minimum number of IPs is upper bounded by this construction. Equivalently, the minimum
eccentricity measure under m IPs is also upper bounded by O(m−1/(n−1))

Further, if we also incorporate the constant-rank equality constraint, where the Jacobian of the
equality function is of a constant rank r. Then, as per the Constant-Rank Level Set Theorem (Lee13),
the ambient dimension of Cθ can be reduced to n− r such that the covering number for its boundary
can be reduced to O(δ−(n−r−1)). A similar setting of low-dimensional constraint set embedding is
also considered in (KZLD21).

On the other hand, when we focus on the eccentricity E(X◦
θ,m,Γθ) modulated by the NN infeasibility

region, we constructed those IPs in the same point as x◦ = x∗ + v, where ∥v∥ > 0 is strictly
positive but it can be arbitrarily small such that x◦ ∈ Cθ. Subsequently, the local boundary is as
Γθ = {BP(x̃θ, X◦

θ,m), ∀x̃θ ∈ B(x∗θ, ϵpre) and x̃θ /∈ Cθ}
E(x◦,Γθ) = max

z∈Γθ

∥z − x◦∥ − min
z∈Γθ

∥z − x◦∥ (55)

(a)

≤ max
z∈Γθ

∥x◦ − z∥ (56)
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(b)

≤ ϵpre + ∥v∥ (57)

inequality (a) is by dropping the negative term. Inequality (b) is by taking the point as along the line
z − x◦ until reaching the infeasibility boundary of B(x∗θ, ϵpre). Since the constructed ∥v∥ can be
arbitrarily small, we have the local eccentricity modulated by the NN infeasibility region, which can
be directly bounded by the prediction error.

Combining the two cases with constructed interior points, we have minimum eccentricity is bounded
as:

min
X◦

θ,m⊂Cθ

E(X◦
θ,m,Γθ) ≤ min{ϵpre,O

(
m−1/(n−1)

)
} (58)

E.4 PROOF FOR SAMPLE-BASED CONDITION IN THEOREM 1

Proof. The sample-based condition is derived from Theorem 2 in (LCL23). This condition uses a
dataset D = {θi, i = 1, . . . , N} ⊆ Θ as an rc-covering training set. This implies that for any θ ∈ Θ,
there exists a θi ∈ D such that ∥θ − θi∥ ≤ rc.

Without loss of generality, we focus on an IPNN with one IP predictor ψk(·). The feasibility of the
predictor under new input parameters is maintained if the following condition holds:

rcC0 + rcC
k
1 ≤ Ck2 , (59)

where

• C0 = sup
θ1,θ2∈Θ,θ1 ̸=θ2

{dH(∂Cθ1
,∂Cθ2

)

∥θ1−θ2∥ } represents the largest rate of variation for the constraint

boundary under different inputs. This allows us to capture the change in the constraint
boundary within an rc neighborhood of any θ ∈ D.

• Ck1 = Lip(ψk(·),Θ) denotes the Lipschitz constant of the k-th IP predictor over the input
domain Θ, and rcCk1 calculates the variation of the predicted IP within the rc neighborhood
for any θ ∈ D.

• Ck2 = min
θ∈D

{ min
z∈∂Cθ

{∥z − ψk(θ)∥}} is the minimum distance from the IP to the boundary of

the constraint set for all θ ∈ D. This term essentially provides a “buffer” to account for the
variation of both the IP and the constraint boundary.

When the specified condition is satisfied, it ensures that the predicted IP under any new input
parameter remains feasible despite the variations in the constraint boundary and the IP itself.

Therefore, for the valid condition of whole set IP predictions, we define the constants and conditions
as:

rcC0 + rcC1 ≤ C2, (60)

where C1 = max1≤k≤m{Ck1 } and C2 = min1≤k≤m{Ck2 }.

E.5 PROOF FOR VERIFICATION-BASED CONDITION IN THEOREM 1

Proof. Without loss of generality, we focus on an IPNN with one IP predictor ψk(·) and one
constraint function gi(x, θ). The verification of other IP predictors or constraint functions can be
solved independently. The feasibility verification problem is formulated as:

P0 : max gi(x, θ) (61)
s.t. x = ψk(θ) (62)

var. θ ∈ Θ (63)
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The optimal objective t∗ represents the worst-case constraint violation for the NN output given
arbitrary input θ ∈ Θ. This problem is generally non-convex and NP-hard due to the NN structure or
non-convex constraint function. To derive an upper bound of the worst-case constraint violation as a
sufficient condition for verifying NN feasibility, we apply convex relaxation techniques to reformulate
the NP-hard problem into a convex one:

• We apply relaxation techniques (e.g., linear or SDP relaxation) for the ReLU-based NN
(RSL18; FMP20; WZX+21). For example, the linear relaxation of the ReLU unit is defined
as:

CR(ReLU(x))


= x if L ≥ 0
= 0 if U ≤ 0
∈ {y | y ≥ 0, y ≥ x, y ≤ U

U−L (x− L)} otherwise
(64)

where input variable x ∈ [L,U ] is bounded, and the lower/upper bound for the per-layer
output can be computed separately by solving a similar but smaller verification problem
(TXT17; ZPCL23). This pre-computing operation significantly tightens the relaxation for
the ReLU-type neural network, making the upper bound close to the optimal value. End-to-
end verification packages such as α, β-CROWN (WZX+21; SJK+24) can also be directly
applied to NN feasibility verifications without manual design.

• Second, the constraint function gi(x, θ) can be non-linear; we discuss the following cases:
(i)If gi(x, θ) is linear or concave, the maximization problem becomes a convex optimization
after NN relaxation. (ii) For other constraint functions, we treat gi(x, θ) as an equality
constraint t = gi(x, θ) and apply convex relaxation to obtain t ∈ CR(gi(x, θ)) (QOB+19).
This convex relaxation is problem-dependent (see examples in Appendix F.2).

The relaxed verification problem can be formulated as the following convex programming task,
enabling polynomial-time algorithms (e.g., interior point methods) to find optimal solutions:

P1 : max t (65)
s.t. t ∈ CR(gi(x, θ)) (66)

x ∈ CR(ψk(θ)) (67)
var. θ ∈ Θ (68)

The optimal solution t̂∗ is an upper bound of the worst-case constraint violation. The tightness of
the relaxation depends on both NN reformulation and convex relaxation, which may be problem-
dependent in empirical experiments.

E.6 PROOF FOR THEOREM 2

Proof. First, the feasibility of the solution returned through bisection is guaranteed due to the
bisection trajectory connecting an infeasible point and an interior point, which must intersect the
constraint boundary. Thus, the bisection algorithm can always find a feasible solution by scaling
down the infeasible solution along the line segment. We remark that for general non-convex sets, the
line segment between an infeasible point and an interior point may intersect the constraint boundary
multiple times, causing our bisection algorithm to converge to one of the multiple feasible solutions.

Without loss of generality, let’s x̂θ,k ∈ ∂Cθ be the converged boundary feasible solution given infinite
bisection with an interior point x◦θ,k, which also satisfies the definition of projected solution in Eq.
(2). And x̂θ = argminx̂θ,k

{∥x̂θ,k − x̃θ∥} is the best projected solution.

We divide the optimality gap by the following three terms:

∥x̂Kθ − x∗θ∥ ≤ ∥x∗θ − x̃θ∥︸ ︷︷ ︸
prediction error

+ ∥x̃θ − x̂θ∥︸ ︷︷ ︸
projection error

+ ∥x̂θ − x̂Kθ ∥︸ ︷︷ ︸
bisection error

(69)

The prediction error is determined by the provided NN predictor, and we denoted it as ϵpre =
sup
θ∈Θ

{∥F (θ)− x∗θ∥}, where F (·) is the NN predictor to predict the optimal solution.
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The projection error from bisection-projection, as proved in Prop. 4.1, can be bonded by the
eccentricity measure related term as:

∥x̃θ − x̂θ∥ = min
1≤k≤m

∥x̃θ − x̂θ,k∥ (70)

≤ max
y∈B(x∗

θ ,ϵpre)
min

1≤k≤m
∥x̃θ − x̂θ,k∥ (71)

≤ ϵpre + E(X◦
θ,m,Γθ) (72)

Since x̂θ,k is the converged boundary feasible solution under the bisection algorithm, the bisection
error induced by finite step iteration can be derived as:

∥x̂θ,k − x̂Kθ,k∥ ≤ ∥α∗
k · (x̃θ − x◦θ) + x◦θ,k − (αKk · (x̃θ − x◦θ) + x◦θ,k)∥ (73)

= (α∗
k − αKk )∥x̃θ − x◦θ,k∥ (74)

≤ 2−K∥x̃θ − x∗θ + x∗θ − x◦θ,k∥ (75)

≤ 2−K(∥x̃θ − x∗θ∥+ ∥x∗θ − x◦θ,k∥) (76)

≤ 2−K(ϵpre +D) (77)

where D = diam(Cθ) denote the diameter of a compact set. This bound holds for every interior point
1 ≤ k ≤ m.

However, we remark that the defined x̂θ = argminx̂θ,k
{∥x̂θ,k−x̃θ∥} may not share the same optimal

index k with x̂Kθ = argminx̂K
θ,k

{∥x̂Kθ,k − x̃θ∥}, due to finite-step bisection execution error. Further,
the optimal index for the interior point may not be unique for both cases. This makes the distance
between ∥x̂θ − x̂Kθ ∥ may not monotonically decrease with bisection steps K.

Let’s denote s1 ∈ argmin1≤k≤m{∥x̂θ,k − x̃θ∥} and s2 ∈ argmin1≤k≤m{∥x̂Kθ,k − x̃Kθ ∥}, δg be the
gap between the minimum and strictly second minimum of the projection distance ∥x̃θ − x̂θ,k∥, and
we make the following classification and discussion.

• when m = 1, there is only one interior point such that s1 = s2. It is straightforward to
conclude ∥x̂θ − x̂Kθ ∥ ≤ 2−K(ϵpre + diam(Cθ)).

• when m > 1, there are multiple interior points. If δg = 0, which means all projection
distances ∥x̂θ,k− x̃θ∥ are equal, we then select s1 = s2 such that ∥x̂θ− x̂Kθ ∥ ≤ 2−K(ϵpre+
D).

• when m > 1, there are multiple interior points. If δg > 0, to align s1 with s2, we consider
the condition as 2−K(ϵpre + D) ≤ δg such that the finite bisection execution error will
not affect the choice of minimum solution and make s2 ∈ argmin1≤k≤m{∥x̂θ,k − x̃θ∥}.
Therefore, we can select s1 = s2 such that ∥x̂θ − x̂Kθ ∥ ≤ 2−K(ϵpre +D).

• when m > 1 and 2−K(ϵpre + D) > δg, the index s1 and s2 may not be the same. The
distance can be bounded as ∥x̂θ,s1 − x̂Kθ,s2∥ ≤ ∥x̂θ,s1 − x̂θ,s2∥ + ∥x̂θ,s2 − x̂Kθ,s2∥ ≤
ϵg + 2−K(ϵpre + D), where we denote ϵg = ∥x̂θ,s1 − x̂θ,s2∥ as the distance between
different converged solutions.

Combining the three terms together, we have:

∥x̂Kθ − x∗θ∥ ≤ 2ϵpre + E(X◦
θ,m,Γθ) + 2−K(ϵpre +D) + ϵg (78)

When m = 1 or K ≥ log2(C3) with C3 =
ϵpre+D
δg

, we have ϵg = 0.

The complexity of executing the bisection algorithm involves the iteration steps, the number of IPs,
and the complexity of verifying the inequality constraints at each iteration as G. For example, if
the inequality constraint gi(x, θ) is a linear function for all i = 1, · · · , nineq, then G = n · nineq. In
contrast, iterative algorithms such as interior point methods have a complexity of O((n+ nineq)

3) at
each iteration due to the matrix inversion operation.
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F SUPPLEMENTARY EXPERIMENT RESULTS

F.1 VISUALIZATION OF BP FOR 2-DIM NON-CONVEX CONSTRAINT SET

(a) Unsupervised IPNN training over case 1. (b) Unsupervised IPNN training over case 2.

Figure 5: IPNN training and convergence of eccentricity.

(a) IPNN with 1 IP predictors and average eccentricity of 0.49. (b) IPNN with 1 IP predictors and average eccentricity of 1.12

(c) IPNN with 2 IP predictors and average eccentricity of 0.25. (d) IPNN with 2 IP predictors and average eccentricity of 0.75.

(e) IPNN with 4 IP predictors and average eccentricity of 0.18. (f) IPNN with 4 IP predictors and average eccentricity of 0.16.

(g) IPNN with 8 IP predictors and average eccentricity of 0.12. (h) IPNN with 8 IP predictors and average eccentricity of 0.13.

Figure 6: Training IPNN for approximating MEIPs and testing Bisection Projection with trained IPNN over
case 1 (Left column) and case 2 (Right column).

We investigate the training of IPNN ψ to learn the MEIPs for two non-convex examples, including a
ball-homeomorphic set and a more complex one, defined as:

Case 1: Kω = {x | x⊤Qx+ q⊤x+ b ≤ 0}, Case 2: Cθ = ∪4
i=1B(xi, ri), (79)

where the input parameter is defined as ω = {Q, q, b} and θ = {xi, ri}4i=1. We remark that both sets
are non-convex, and their geometry can be highly irregular, such as disconnectivity, making them
suitable for testing the BP framework. We then train IPNN to approximate the MEIPs and test them
on unseen parameters to validate the effectiveness of BP.

We provide the visualizations of BP for different constraint sets with different parameter settings,
including:

• In Fig. 5, we train IPNN for ball-homeomorphic and non-ball-homeomorphic sets with
1,2,4,8 IP predictors, and compare their eccentricity convergence with iterations.
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• In Fig. 6, we test BP with trained IPNN over those sets to compare the projection distance
for different infeasible points.

• In Fig. 7, we compare Homeomorphic Projection (LCL23; LCL24) over those sets to
compare it with our BP methods.

• In Fig. 8, we train IPNN without minimizing eccentricity and test BP with them to justify
the necessity of eccentricity design.

we have the following observations: (i) the unsupervised training approach derives valid IPNN
over unseen input parameters; (ii) the bisection projection recovers the feasibility of all sampled
infeasible predictions with minor projection distance; (iii) increasing the number of IPs helps to
reduce eccentricity and further mitigate the optimality loss over complex constraint sets regardless of
the ball-homeomorphism property; (iv) homeomorphic projection performs similarly to bisection
over case 1 but fails over case 2. In particular, it is not difficult to observe that bisection projection
outperforms homeomorphic projection with significantly smaller optimality losses over these non-
ball-homeomorphic sets.

(a) Homeomorphic projection over case 1. (b) Homeomorphic projection over case 2.

Figure 7: Bisection vs Homeomorphic projection over case 1 and case 2.

(a) IPNN with 1 IP predictors without minimizing eccentricity (b) IPNN with 2 IP predictors without minimizing eccentricity.

(c) IPNN with 4 IP predictors without minimizing eccentricity. (d) IPNN with 8 IP predictors without minimizing eccentricity.

Figure 8: Training IPNN without minimizing eccentricity and test Bisection Projection with it over non-ball-
homeomorphic sets.

F.2 FEASIBILITY VERIFICATION OF IPNN OVER CONVEX/NON-CONVEX PROBLEM

In Theorem 1, we present a verification-based condition to validate the validity of IPNN over the
entire input domain after it is trained to be feasible over finite input samples. To demonstrate the
effectiveness of this condition, we consider solving the constraint violation upper bound for the
following problem with different constraint structures. The results are shown in Table 5, which
demonstrates the feasibility guarantee for IPNN trained by minimizing eccentricity.
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Table 5: Verification for IPNN over different constraint sets.

IPNN Constraint violation upper bound

QP: : n = 100, d = 50, neq = 50, nineq = 50
Input constraint: θ ∈ [θl, θu], output constraint: Ax = θ, Gx ≤ h

NN relaxation: linear, constraint reformulation: N/A

Untrained 315.285
Trained -0.622

Convex QCQP: : n = 100, d = 50, neq = 50, nineq = 50
Input constraint: θ ∈ [θl, θu], output constraint: Ax = θ, xTHix+ gix ≤ hi

NN relaxation: linear, constraint reformulation: SDP (QOB+19)

Untrained 1267.653
Trained -2.67

Non-Convex JCCIM: : n = 400, d = 100, neq = 100, nineq = 10100

Input constraint: θ ∈ [θl, θu], output constraint: 1
100

100∑
k=1

I(Ax ≥ θ + ωk) ≥ 1− ϵ, Gx ≤ h

NN relaxation: linear, constraint reformulation: robust (PAS09)

Untrained 95.905
Trained -0.053

1 We apply a 3-layer IPNN with ReLU activation, hidden dimension of n, and residual connection in hidden layers.
2 We apply CVXPY to formulate all relaxed verification problems and use GUROBI to solve them optimally.

G DETAILED EXPERIMENT SETTING

All neural network-based methods were conducted on an Ubuntu server equipped with an NVIDIA
A800 GPU. Iterative algorithms were executed in parallel on a CPU featuring 255 processors. To
solve two convex optimization problems, we utilized the MOSEK optimizer under an academic
license. Alternating Current Optimal Power Flow (ACOPF) problems were addressed using the open-
source PyPower tool (ZMS11). Detailed specifications for additional experimental configurations are
provided in the respective sections and footnotes below the Table.

G.1 DESCRIPTIONS OF COMPARED APPROACHES IN EXPERIMENTS

• Optimizer: for convex optimization, we use MOSEK to solve the optimal solution. For
AC-OPF problems, we adopt PYPOWER as the specialized solver (ZMS11);

• NN: it directly maps input parameter to the solution;

• Proj: the infeasible predicted solution by NN is processed by orthogonal projection and
solved with the iterative solver;

• WS: The infeasible prediction of NN is regarded as the warm-start initialization for the
iterative solver;

• D-Proj: this is proposed in DC3 (DRK20), which applies gradient descent with implicit
function theorem to conduct projection in a differentiable manner;

• H-Proj: the homeomorphic projection are applied to the infeasible predictions (LCL23);

• B-Proj: we apply bisection in Alg. 1 with predicted IPs to recover the feasibility.

The criteria include (i) Feasibility: the feasibility rate of 1,024 testing instances and average constraint
violation; (ii) Optimality: the solution error and objective gap evaluate the optimality of predicted
solutions; (iii) Speedup: the total inference time (NN inference time + post-processing time) of all
testing instances and calculate the speedup compared with the solvers under parallel execution.

G.2 FORMULATION FOR CONSTRAINED OPTIMIZATION PROBLEMS

We test the Bisection Projection framework for four constrained optimization problems, including
two convex optimization problems and two real-world non-convex problems.
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G.2.1 CONVEX PROBLEM FORMULATION

The Convex QCQP extends the QP by including quadratic constraints. The Convex QCQP problem
is given by:

Convex QCQP : minimize
x∈Rn

1

2
xTQx+ pTx (80)

subject to xTHix+ gT
i x ≤ hi, i = 1, . . . , nineq, (81)

Ax = θ, (82)

whereQ ∈ Sn++ is a positive definite matrix, ensuring the convexity of the objective function, p ∈ Rn
is a vector of linear coefficients,A ∈ Rneq×n is a matrix defining equality constraints, eachHi ∈ Sn++
is a positive definite matrix corresponding to the i-th quadratic constraint, gi ∈ Rn is a vector of
linear coefficients for the quadratic constraints, and hi ∈ R represents the upper bound for the i-th
quadratic constraint.

The SOCP is a convex optimization problem that generalizes linear and quadratic programs by
allowing conic constraints. A SOCP problem is formulated as follows:

SOCP : minimize
x∈Rn

1

2
xTQx+ pTx (83)

subject to ∥Gix+ hi∥2 ≤ cTi x+ di, i = 1, . . . , nineq, (84)
Ax = θ, (85)

where Gi ∈ Rm×n and hi ∈ Rm define the second-order cone, ci ∈ Rn and di ∈ R are the
coefficients and scalar terms of the conic constraints, respectively.

G.2.2 JOINT CHANCE CONSTRAINED INVENTORY MANAGEMENT (JCC-IM)

We consider the Joint Chance-Constrained Inventory Management (JCC-IM) problem, which seeks
to optimize inventory levels across multiple warehouses under conditions of demand uncertainty,
ensuring a high probability of meeting that demand. The JCC-IM problem is formally defined as:

JCC-IM : minimize
x∈Rn

cTx (86)

subject to Prob(Ax ≥ θ + ω) ≥ 1− δ (87)

Gx ≤ h, xmin ≤ x ≤ xmax, (88)

where n denotes the number of warehouses located in distinct regions, the decision variable x
represents the inventory order quantity to be determined in advance for n warehouse, in order to
satisfy future demand. The vector θ encapsulates the historical average demand, and the term ω ∼ p(·)
models the stochastic deviations from this average, capturing the inherent uncertainty of demand.
The matrix A characterizes the interdependencies among different warehouses, which may arise from
shared types of inventory or geographical proximity. The parameter δ specifies the acceptable risk
level, thus ensuring that the probability of meeting demand across all warehouses is at least 1− δ.
The additional constraints, Gx ≤ h and xmin ≤ x ≤ xmax, represent warehouse-specific capacity
limitations and inventory bounds, respectively.

Given the absence of an analytical representation for the JCC, we employ a Sample-Average (SA)
approach to conservely approximate the chance-constrained problem. This technique involves
generating a finite set of scenarios {ω̃j}Nj=1 from the underlying distribution of θ. The SA variant of
the JCC-IM is formulated as:

SA-JCC-IM : minimize
x∈Rn

cTx (89)

subject to PN =
1

N

N∑
j=1

I(Ax ≥ θ + ω̃j) ≥ 1− δ (90)

Gx ≤ h, xmin ≤ x ≤ xmax (91)

where I(·) is the indicator function. A solution is deemed to have a probabilistic JCC feasibility
guarantee if PN ≥ 1− δ. This empirical evaluation provides a practical measure of the reliability of
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the SA-based solution in adhering to the demand satisfaction requirements stipulated by the JCC-IM
problem.

Figure 9: This figure demonstrates a two-dimensional sample-based chance constraint defined as

Prob(ω1x1 + ω2x2 ≤ ω3) ≥ 90%,

where ω1, ω2, ω3 are independent Gaussian variables. The probability of satisfying this constraint is
estimated usingN samples and the indicator function I(·) as: 1

N

∑N
i=1 I(ω

i
1x1+ω

i
2x2 ≤ ωi3) ≥ 90%.

The visuals underscore the non-smooth geometry and optimization difficulty (PAS09). We remark
that BP was tested in a high-dimensional scenario with 400 decision variables in our experiments.

G.2.3 ALTERNATING CURRENT OPTIMAL POWER FLOW (AC-OPF)

The Alternating Current Optimal Power Flow (AC-OPF) problem is pivotal in ensuring the efficient
and safe operation of power grids. It requires real-time decision-making and adherence to operational
constraints to maintain system integrity. The AC-OPF is inherently a non-convex Quadratically Con-
strained Quadratic Program (QCQP) and is recognized as NP-hard, posing significant computational
challenges. The formal mathematical formulation of the AC-OPF problem is as follows:

AC-OPF : min
pg,qg,v

pTgQpg + bTpg (92)

subject to |vi(v̄i − v̄j)w̄ij | ≤ Smax
ij , ∀(i, j) ∈ E , (93)

(pg − pd) + (qg − qd) i = diag(v)W̄ v̄, ∀i ∈ N , (94)

pmin
g ≤ pg ≤ pmax

g , qmin
g ≤ qg ≤ qmax

g , vmin ≤ |v| ≤ vmax. (95)

where the power network comprises n nodes, indexed by the set N . The vectors pd, qd ∈ Rn represent
the real and reactive power demand at each node, respectively. The vectors pg, qg ∈ Rn denote the
real and reactive power generation, which are the decision variables of the optimization problem. The
vector v ∈ Cn signifies the nodal voltage phasors. The admittance matrix W ∈ Cn×n characterizes
the physical properties and topology of the power network, with W̄ denoting its complex conjugate
transpose. The generation cost is represented by a quadratic function with matrix Q ∈ Rn×n and
vector b ∈ Rn. The constraints include generation limits (pmin

g , pmax
g , qmin

g , qmax
g ), voltage magnitude

bounds (vmin, vmax), thermal line limits (Smax
ij ), and power flow balance equations. The set E

denotes the set of edges (transmission lines) connecting the nodes in the power network. Constraint
(5) represents the complex power flow balance at each node, ensuring that the generation and demand
are matched while accounting for power losses.
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Figure 10: The left figure displays a simple 3-node power network, while the right figure illustrates
a part of its constraint set (MH+19). These visuals highlight the complex geometry and inherent
challenges of the ACOPF problem. It is noteworthy that in our experiments, BP was tested on a
200-node power network involving over 400 decision variables and 1000 constraints.

G.3 NEURAL NETWORK STRUCTURE AND HYPER-PARAMETERS FOR TRAINING

Figure 11: The Left one is the NN predictor for learning the input-to-solution mapping, where we use feed-
forward NN structure with ReLU activation. The Right one is the IPNN used to predict input-dependent
IPs, where all IP predictors share the same base network to embed the input parameters as e = NN(θ), then
embedding e is then passed by different linear layers to predictions as x◦θ,k = WT

k e for k = 1, · · · ,m. In
practice, two NNs can share the same based network for the parameter-efficient implementation.

G.3.1 NN PREDICTOR FOR INPUT-TO-SOLUTION MAPPING

We adopt the fully connected NN with residual connection and equality reconstruction, denoted as
F , to predict the optimal solution for constrained optimization problems given the input parameters.
We follow a supervised learning scheme to train the NN predictor. Firstly, to prepare the training
and testing data, we collect the optimal solutions under various input parameters using an iterative
solver (DRK20; LCL23). For convex optimization, we use MOSEK to solve the optimal solution.
For AC-OPF problems, we adopt PYPOWER as the specialized solver (ZMSG97). For JCCIM
problems, we solve its scenario approximated version with sampled uncertainty. Then, we apply
the reconstruction technique to complete the decision variables and ensure equality satisfaction for
the predicted solution with partial variables. We aim to minimize the mean square error (MSE)
between the solution predicted by the NN predictor and the optimal solutions, as well as the constraint
violation for predicted solutions and the objective function. This can be represented as:

min
F

Eθ[MSE(F (θ), x∗θ) + λ1∥ReLU(g(F (θ), θ))∥1 + λ2f(x, θ)] (96)

The second term stands for the penalty for inequality constraint violation by the NN-predictable
solutions. For the equality constraint present in the optimization problem, we utilize the variable
selection and completion techniques elaborated in Appendix A.1 to ensure its feasibility. By adjusting
the penalty coefficient λ, we can train the NN predictor to achieve different qualities in terms of
solution feasibility and optimality. The detailed parameters are in Table 6.
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Table 6: Structure of NN predictor in experiments

Parameter Value
NN structure

dimension of input layer d
dimension of output layer n
dimension of hidden layer ⌊(d+ n)/2⌋
activation function ReLU(·)
number of layer 3
last-layer activation Sigmoid(·) or None

NN training parameters

number of training samples 10,000
number of testing samples 1,024
number of iteration 10,000
optimizer Adam
learning rate 0.0001
batch size 64
the coefficient for objective function 0.001
the coefficient for inequality penalty 0.1

G.3.2 IPNN FOR INPUT-TO-IPS MAPPING

For the IPNN design and training, we apply a similar structure to the NN predictor. It has a shared
base network for different IP predictor heads and applies different linear layers to map the embedding
to the IPs. For each IP, we apply the reconstruction techniques to solve the full variables. The detailed
parameters are in Table 7.

Table 7: Structure of IPNN predictor in experiments

Parameter Value

IPNN training parameters

number of training samples 10,000
number of iteration 10,000
number of interior points {1,2,4,8}
number of boundary samples 10
bisection steps for boundary sampling 10
LSE parameter β iter/5
optimizer Adam
learning rate 0.0001
batch size 64
the coefficient for eccentricity loss 0.1
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