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ABSTRACT
Visual abduction reasoning aims to find the most plausible explana-
tion for incomplete observations, and suffers from inherent uncer-
tainties and ambiguities, which mainly stem from the latent causal
relations, incomplete observations, and the reasoning itself. To ad-
dress this, we propose a probabilistic model named Uncertainty-
Guided Probabilistic Distillation Transformer (UPD-Trans) to model
uncertainties for Visual Abductive Reasoning. In order to better
discover the correct cause-effect chain, we model all the potential
causal relations into a unified reasoning framework, thus both the
direct relations and latent relations are considered. In order to reduce
the effect of the stochasticity and uncertainty for reasoning: 1) we
extend the deterministic Transformer to a probabilistic Transformer
by considering those uncertain factors as Gaussian random variables
and explicitly modeling their distribution; 2) we introduce a dis-
tillation mechanism between the posterior branch with complete
observations and the prior branch with incomplete observations to
transfer posterior knowledge. Evaluation results on the benchmark
datasets, consistently demonstrate the commendable performance of
our UPD-Trans, with significant improvements after latent relation
modeling and uncertainty modeling.

CCS CONCEPTS
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KEYWORDS
Visual Abductive Reasoning, Probabilistic Transformer, Uncertainty
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1 INTRODUCTION
In recent years, deep neural networks have achieved significant
success in various computer vision tasks [14, 17]. Although the
perception abilities of current artificial vision systems have been
approaching and even surpassing those of humans, they still lack the
advanced cognitive understanding required for effectively reasoning
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Explanation（Ht）→Observation（Ot+1） Explanation（Ot）→Observation（Ht+1）

Observation（Ot-1）   →           Explanation（Ht）     →        Observation（Ot+1）

Figure 1: Visual abduction reasoning aims to find the most plau-
sible explanation for incomplete observations.

about complex and dynamic real-world scenarios. This limitation
poses a major obstacle to gaining a deeper understanding of the real
world. Therefore, the CV community are paying growing attention
to the problem of visual abductive reasoning (VAR) [15, 30], which
aims to find the most plausible explanation for incomplete observa-
tions. Formally, the objective of AVR is to produce hypothesis (H)
that is expected to best explain what happens before, after, or during
the observation (O). As shown in Figure 1, if you observe Ot−1:
“A woman walks on a springboard and jumps in the air.” and Ot+1:
“She stands on the podium waving her hands to the audience.”, you
can imagine Ht : “She then flips and dives in the water with a small
splash.” even without observing Ot .

To a certain extent, VAR resembles dense video captioning task
[11, 27], but the main distinction arises from the necessity of rea-
soning and describing unobservable event conditioning on the past
and/or future event. Furthermore, although VAR task shares similari-
ties with video prediction task [8, 21], their main difference lies in
the requirement for prediction at a higher semantic level, as opposed
to mere low-level pixels, features, and states. Therefore, the VAR
task is more challenging than vanilla vision-language (VL) tasks
(e.g., captioning) and vanilla vision (CV) tasks (e.g., video predic-
tion). Specifically, there are two limitations: 1) VAR suffers from
the issue of incomplete observation and missing evidence chains. So
it requires to capture more potential causal relations to provide go
beyond visual evidences and unobservable latent evidences. 2) VAR
suffers from inherent uncertainties, which mainly stem from the
latent causal relations, incomplete observations, and the reasoning
itself. For the 3-th example in Figure 1, only observing the past event
cannot determine whether the athlete performed well or poorly. And
after observing the future event “she standing on the podium”, we
can reasoning what happens. For the 1-th example in Figure 1, it is
difficult to determine whether the ground is wet because of rain or
because a water truck has sprayed water. It shows that this reasoning
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Figure 2: The reasoning framework with different causal relation graphs: (a) Model with direct causal relations; (b)-(d) Model with
direct and latent relations; (e)-(g) Uncertainty model with direct and latent relations. Observable Ot−1/Ot+1 and unobservable Õt
are treated as premise and explanation events, respectively; Ẽt−1/Ẽt+1 and H̃t are the descriptive sentences for the premise and
explanation events, respectively.

process is fraught with uncertainties, and it is imperative to consider
all relevant relations to enhance the quality of reasoning.

To tackle the two limitations, we introduce a new probabilistic
paradigm of VAR, named Uncertainty-Guided Probabilistic Distil-
lation Trans-former (UPD-Trans) to model uncertainties and latent
relations. 1) In order to capture all the potential causal relations
and discover the correct cause-effect chain, we model all of the
observable event observations (i.e., Figure 2(a)), the unobservable
event observations (i.e., Figure 2(c)) and the unobservable event
descriptions (i.e., Figure 2(b)) into a unified reasoning framework
(i.e., Figure 2(d)), thus both the direct and the latent visual/linguistic
relations can be considered. 2) In order to reduce the effect of the
uncertainty for reasoning: firstly, we extend the deterministic Trans-
former to a probabilistic Transformer by considering those uncertain
factors as Gaussian random variables and explicitly modeling their
distribution as shown in Figure 2(e)-Figure 2(g); secondly, we incor-
porate a prior branch with incomplete observations and a posterior
branch with complete observations, combined with a distillation
module to transfer posterior knowledge for the prior branch.

2 RELATED WORKS
Dense Video Captioning. Our work may be, to some degree, similar
to dense video captioning (DVC) [24], where the difference is DVC
aims at captioning for observable event and VAR aims at captioning
for unobservable event. DVC is to provide a detailed description with
multiple sentences for all the events in an untrimmed video. In [25],
a new MFT is proposed to generate paragraph descriptions that can
preserve the story flow while being coherent and concise by assem-
bling temporally localized descriptions. To alleviate the limitations
of RNNs, an end-to-end DVC model with a masked transformer is
proposed in [31], which utilizes a differentiable masking scheme to

guarantee the coherence among blocks. Memory-Augmented Re-
current Transformer (MART) [11] designed a memory module to
augment the transformer architecture, which generates a highly sum-
marized memory state to help better prediction of the next sentence.
In [23], the author proposes a simple and effective end-to-end DVC
framework (similar to DETR), which enhances the coherence and
readability of predicted captions by accurately segmenting the video
into multiple event segments based on the overall understanding
of video content, by overlapping event counters on the top of the
Transformer based decoder. A multi-modal single-stage dense event
captioning model called Vid2Seq [27] is proposed, whose architec-
ture enhances a language model by incorporating unique time tokens,
enabling it to effortlessly predict event boundaries and textual de-
scriptions within the same output sequence. A novel task of dense
video captioning focusing on the generation of textual commentaries
anchored with single timestamps is proposed in [19].

Visual Prediction. Our work is also moderately pertinent to
video/feature prediction [18], where the difference is visual predic-
tion aims at forecasting future frames, features or motion trajectories,
and VAR aims at capturing the between-state changes to infer the
explanations of missing parts. In [8], a Dynamic Multi-scale Voxel
Flow Network (DMVFN) is proposed with a differentiable rout-
ing module that can effectively perceive the motion scales of video
frames. A Prediction Conditional Generative Adversarial Network
(Prediction-CGAN) is proposed in [26] for predicting action, which
shares information between completely observed and partially ob-
served videos. A novel next-frame video prediction method called
PreCNet [21] is proposed for those images from an urban envi-
ronment recorded from a car-mounted camera. In [10], a powerful
framework for dense visual predictions based on the conditional
diffusion pipeline is proposed with a ”noise-to-map” generative
paradigm. ViP3D [5] is proposed as the first fully differentiable

2
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Figure 3: Illustration of the proposed Uncertainty-Guided Probabilistic Distillation Transformer (UPD-Trans), consisting of a prior
branch and a posterior branch with a distillation module and a uncertainty modeling module.

vision-based trajectory prediction approach, which uses sparse agent
queries to detect, track, and predict.

Visual Abductive Reasoning. Visual Abductive Reasoning [13]
is an emerging vision-language (VL) topic aims at teaching the ma-
chine with the ability of inferring or reasoning from incomplete
observations, and currently it mainly focus on image area. A dataset
of SHERLOCK [7] is proposed for testing machine capacity for
abductive reasoning beyond literal image contents. A new Regional
Prompt Tuning with a Dual-Contrastive Loss is proposed in [28]
for image abductive reasoning, where the relevant facts about in-
ferences are not directly visible in the input images. In [12], the
task of Causal-VidQA is proposed to facilitate deeper video under-
standing, which includes four types of questions ranging from scene
description (description) to evidence reasoning (explanation) and
commonsense reasoning (prediction and counterfactual). In [30], the
model aims at figuring out what is the most plausible sequence of
steps to achieve the goal, especially for those step-by-step instruc-
tional videos. Actually, the problem of visual abductive reasoning
for incomplete video is first defined in [15] and introduce the first
dataset for abductive reasoning in visual daily scenarios. In fact,
VAR falls under the broader category of visual reasoning tasks [3, 4],
and VAR task is more challenging. On the one hand, VAR seeks
to reason from incomplete or unobservable inputs, whereas VR in-
volves inferring from complete inputs that are not directly visible
and directly achieved. On the other hand, unlike the open-ended
VAR, although VR is also to infer the most plausible explanation for

visual observations, it is a hard hypothesis mining algorithm that is
treated as a classification problem, akin to a multi-choice VQA task.

3 METHODOLOGY
3.1 Problem Definition
Given a video V = {O1, ...,Ot−1, Õt ,Ot+1, ...OT } with T tem-
porally ordered events, the task of visual abductive reasoning
is required to reason about the most likely explanation {H̃t}
for the explanation events, where the observable premise events
{O1, ...,Ot−1,Ot+1, ...OT } and the unobservable explanation event
{Õt} are logically related.

P(H̃t |V)=∏
l

P(wl |w<l , V)=∏
l

P(wl |w<l ,O<t ,O>t) (1)

where H̃t = {w1,w2, ...,wL} denotes sentence that describe the con-
tent of the t-th explanation events, and wl is the l-th word. It is
worth mentioning that the explanation event {Õt} is unobservable,
and the original representation of {Õt} is obtained by setting its
all values zero, so V= {O<t , Õt ,O>t} = {O<t ,O>t}. To model
P(H̃t |V) comprehensively, both the direct and the latent causal rela-
tions should be considered. The reasoning framework with different
causal relation graphs as shown in Figure.2.

1) The model with direct causal relations is to directly rea-
son H̃t from its past and future observable event observations,
P(H̃t |V) = P(H̃t |O<t ,O>t), as shown in Figure.2(a). The limitation

3
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is that those potential relations that are most relevant to the inferred
results have been overlooked.

2) The model with direct and latent causal relations is to rea-
son H̃t conditioning on all of the possible factors, including the
observable event observations {O<t ,O>t}, the unobserved event ob-
servations Õt , the past and future event explanations {Ẽ<t , Ẽ>t}, thus
P(H̃t |V) = P(H̃t |Ẽ<t , Ẽ>t , Õt ,O<t ,O>t), as shown in Figure.2(d).
The limitation is that although beneficial, those potential relations
are unobservable and need to be inferred itself, introducing a certain
degree of uncertainty and ambiguity.

3) The uncertainty model with direct and latent causal rela-
tions. Our UPD-Trans is formulated as Eq.2, for both latent relation
modelling and uncertainty modelling.

P(H̃t |V) = P(H̃t |O<t ,O>t)

= ∑
Ẽ<t

∑
Ẽ>t

P(H̃t , Ẽ<t , Ẽ>t |O<t ,O>t)

= ∑

Õt

∑
Ẽ<t

∑
Ẽ>t

P(H̃t , Ẽ<t , Ẽ>t , Õt |O<t ,O>t)

≈ ∑

Õt

∑
Ẽ<t

∑
Ẽ>t

P(H̃t |Ẽ<t , Ẽ>t , Õt ,O<t ,O>t)

×P(Õt |O<t ,O>t)×P(Ẽ<t , Ẽ>t |O<t ,O>t)

(2)

By explicitly modeling the distribution of those potential factors and
considering their all possible values, we extend the deterministic
Transformer to a probabilistic Transformer in order to reduce the
effect of uncertainty. As shown in Figure.2(g), it can be treated as a
general framework for cases of Figure.2(a)-Figure.2(f), where each
of them is an approximation or particular case of our UPD-Trans.

3.2 Model Architecture
The overall pipeline of the proposed Uncertainty-Guided Probabilis-
tic Distillation Transformer (UPD-Trans) is shown in Figure.3. We
propose the multi-modal mixture of encoder-decoder, which consists
of four sub-modules: 1) A prior reasoner consists of a observation-
predicting encoder and a cascaded-reasoning decoder, whose input
is the incomplete observations, and only this prior branch is used for
inference; 2) A posterior reasoner is implemented with the similar
architecture to the prior branch, whose input is the complete observa-
tions, and this prior branch is only used for training; 3) A distillation
module between the prior branch and posterior branch is introduced
to distill and transfer posterior knowledge for the prior branch. 4) A
uncertainty modeling module is proposed to model the uncertainties
involved in the unobservable event observations Õt and the inferred
past and future event descriptions {Ẽ<t , Ẽ>t}.

Prior Reasoner and Posterior Reasoner.
1) Observation-Predicting Encoder: its purpose is to make use of

contextual information from past and/or future observable events
to enhance their own representations and also predict a mean-
ingful representation for the most probable explanatory hypothe-
sis. The original representation for the prior branch is V0

prior =

{v0
1, ...,v0

t−1, ṽ0
t ,v0

t+1, ...v0
T },V0

prior ∈ RT×d , where the representation
of unobservable explanation event is masked, namely, ṽ0

t = 01×d ;
while the original representations for the posterior branch are all
observable V0

post = {v̄0
1, ..., v̄0

t−1, v̄0
t , v̄0

t+1, ...v̄0
T }.

V1 = so f t max(V0Wq(V0Wk)T )V0Wv (3)

where V0 ∈ {V0
prior,V0

post}. After obtaining the V1 ∈
{V1

prior,V1
post} via the above attention operation, we adopt a

hypothesis prediction based optimization criterion, to give clearer
guidance to the prior encoder and improve reasoning.

Lpre = || fpro j(ṽ1
t )− fpro j(v̄1

t )||2 (4)

where ṽ1
t is the predicted representation for the unobservable expla-

nation event obtained from the prior branch with incomplete inputs,
v̄1

t is the enhanced representation for the unobservable explanation
event obtained from the posterior branch with complete inputs, and
fpro j is a project layer with several MLPs. Thus, P(Õt |O<t ,O>t)

is modeled via the observation-predicting encoder. Since ṽ1
t is the

representation of Õt , we do not differentiate between the two in this
paper. Specifically, the encoder is implemented as two Transformer
encoder blocks with 12 attention heads and a dimension of 768
hidden representation.

2) Cascaded-Reasoning Decoder: its purpose is to model
P(H̃t |Ẽ<t , Ẽ>t , Õt ,O<t ,O>t), and generate a series of descriptive
sentences for premise events {Ẽk

1 , ..., Ẽk
t−1, Ẽk

t+1, ..., Ẽk
T }K

k=0 and ex-
planation event {H̃k

t }K
k=0. The total number of cascaded decoders

is K and H̃K
t = H̃t = {w1,w2, ...,wL} is the final output. The advan-

tages of the cascaded reasoning have two folds: on the one hand,
the {Ẽk

1 , ..., Ẽk
t−1, H̃t , Ẽk

t+1, ..., Ẽk
T }K

k=0 is refined step-by-step, gradu-
ally enhancing the reasoning ability; on the other hand, it models
the P(Ẽ<t , Ẽ>t |O<t ,O>t) and provides a way to capture the latent
relations between the H̃k

t and Ẽk−1 = {Ẽk−1
>t , Ẽk−1

<t }.
Specifically, each decoder module is implemented as two multi-

modal masked Transformer decoder blocks with 12 attention head-
s and a dimension of 768 hidden representation. By integrating
visual and linguistic representations as input, D0 performs cross-
modal reasoning, thereby facilitating enhanced event representation
V1 → V2 and updating the visual-linguistic state for each event, i.e.,
H0

1:T = {H0
1,H0

2, ...,H0
T } and each H0

t ∈ RL×d .

[V2,H0
1:T ] = D0([V1,H1:T ]) (5)

where each Ht ∈ RL×d is a set of L words embedding for the ground-
truth description of each event and it is recurrently generated during
inference. Then the initial description of explanation event H̃0

t or
premise event Ẽ0

n (n , t) is generated via D0, where a captioning
head is adopted to map the visual-linguistic state H0

t into word
distribution.

P(H̃0
t |V) = P(H̃0

t |V1) = ∏
l

P(w0
l |w

0
<l ,H

0
t ) (6)

Similar for those premise events, that is P(Ẽ0
n |V) =

∏
l

P(w0
l |w

0
<l ,H

0
n),n , t.

The novel multi-step description refinement process involves the
inclusion of multiple Transformer decoder blocks over the initial
description D0. To be more precise, our entire refinement procedure
can be recursively defined as,

[Vk+2,Hk
1:T ] = Dk([Vk+1,H1:T ,hk−1

1:T ]) (7)

P(H̃k
t |V)=P(H̃k

t |Vk+1,hk−1
1:T )=∏

l
P(wk

l |w
k
<l ,H

k
t ) (8)

4
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where Dk denotes the k-th refinement module; hk−1
t ∈ Rd refer-

s to a condensed representation of Hk−1
t ∈ RL×d : hk−1

t =
max pool(Hk−1

t ), which implicitly contains the evidences of
(Ẽ<t , H̃t , Ẽ>t). By adopting this cascaded approach, each Dk can
make full use of previously generated descriptions of explanation
event H̃k−1

t for refinement and inter-sentential relations from past
and future premise events (Ẽ<t , Ẽ>t) for comprehensive relation
modeling.

Distillation between Prior and Posterior. Since the input
of the posterior branch is complete observations, its reasoning
is more confident with less uncertainty than the prior branch
with incomplete observations. Therefore, a distillation module be-
tween the prior branch and posterior branch is introduced to distil-
l and transfer posterior knowledge for the prior branch. By the
prior reasoner and posterior reasoner, we obtain the visual rep-
resentations {Vk

prior = vk
1:T ,Vk

post = v̄k
1:T } and word distribution

{Pk
prior(H̃

k
t |V),Pk

post(H̃
k
t |V)} for each refinement step. And feature

distillation and logits distillation are both adopted.
1) Feature Distillation:

Ldistill1 =
K

∑
k=1

T

∑
t=1

|| fpro j(vk
t )− fpro j(v̄k

t )||2 (9)

2) Logits Distillation:

Ldistill2 =
K

∑
k=1

KL(Pk
prior(H̃

k
t |V)||Pk

post(H̃
k
t |V)) (10)

Probabilistic Modeling for Uncertainty. In the conventional
Transformer, predicted observations Õ and inferred descriptions
Ẽ are computed deterministically by Eq.3 and Eq.8 respectively,
which is referred as deterministic output. However, these inferred
predictions that are used as inputs for the subsequent decoder are
likely to amplify the uncertainty and ambiguity contained in them,
resulting in cumulative errors. Therefore, we extend the Transformer
model to a probabilistic Transformer by considering those uncertain
factors as Gaussian random variables and explicitly modeling their
distribution via adding a probabilistic feed-forward layers. There are
mainly two uncertain factors, namely Õ and Ẽ, where we actually
conduct the uncertainty modeling for their representations ṽ1

t and
embedding state hk

t , respectively.
1) Uncertainty Modeling for Predicted Observations. Instead

of conducting a deterministic prediction with large uncertainty
for the representation of Õt , we model its uncertainty and as-
sume ṽ1

t follows a Gaussian distribution, thus we can achieve
P(Õt |O<t ,O>t). The mean and variance of this Gaussian distri-
bution is computed using ṽ1

t through a multi-layer perception, i.e.,
fµ , fσ = Linear(Act(Linear(.))). Although this distribution is un-
known, we can constraint its sampling values to approach to v̄1

t by
extending Eq.4 to Eq.12. To train these probabilistic layers through
the gradient descent, we adopt the reparameterization trick to perfor-
m the forward process of the probabilistic output.

ṽ1
t : zo ∼ N(µo,σ2

o I), µo = fµ (ṽ1
t ),σo = fσ (ṽ1

t ) (11)

Luo = || fpro j(zo)− fpro j(v̄1
t )||2 (12)

2) Uncertainty Modeling for Inferred Descriptions. Similarily, in-
stead of conducting a deterministic prediction with large uncertainty

Algorithm 1 Training Procedure for the UPD-Trans

1: Input: D = {Vn,Gn
t }N

n=1
2: Output: Θ
3: Initialize parameters of Θ.
4: for n ∈ [1,N] in {Vn,Gn

t } ∈ D do
5: Obtain the original features V0

prior,V0
post ∈ RT×d

6: Obtain {V1
prior,V1

post} via Encoder using Eq.3
7: Sample ṽ1

t using Eq.11
8: for k ∈ [0,K] of Cascaded-Reasoning Decoder do
9: Update {Vk

prior = vk
1:T ,Vk

post = v̄k
1:T } and {Hk

prior =

hk
1:T ,Hk

post = h̄k
1:T } using Eq.7 or Eq.5

10: Compute {Pk
prior(H̃

k
t |V),Pk

post(H̃
k
t |V)} using Eq.8

11: Sample hk
t using Eq.13

12: end for k
13: Optimize Θ by optimizing Eq.14+Eq.12+Eq.15+Eq.16 +E-

q.9+Eq.10
14: end for n
15: return Θ∗

for the embedding state of {Ẽ>t , Ẽ<t}, we model its uncertainty
and assume hk

t follows a Gaussian distribution, thus we can achieve
P(Ẽ<t , Ẽ>t |O<t ,O>t). The mean and variance of this Gaussian dis-
tribution is computed using hk

t through a MLP. Although this distri-
bution is unknown, we can constraint its sampling values to approach
to h̄k

t generated via the completed posterior branch by Eq.14.

hk
t : ze ∼ N(µe,σ2

e I), µe = fµ (hk
t ),σe = fσ (hk

t ) (13)

Lue = || fpro j(ze)− fpro j(h̄k
t )||2 (14)

By the uncertainty modeling, we extend P(H̃t |V) =
P(H̃t |Ẽ<t , Ẽ>t , Õt ,O<t ,O>t) to Eq.2. Since directly comput-
ing the integration of Õt and {Ẽ<t , Ẽ>t} is intractable, we sample
ṽ1

t and hk
t from Eq.11 and Eq.13 for M times to approximate this

probabilistic distribution. The validation results from subsequent
experiments will provide confirmation regarding of the sampling
number.

3.3 Optimization and Inference
For each training samples in D = {Vn,Gn

t }N
n=1, its ground-truth

is Gn
t = {ŵn

1, ŵn
2, ..., ŵn

L} and its observations Vn = {On
<t , Õ

n
t ,On

>t},
where Õn

t = 0 for prior branch and Õn
t = On

t for posterior branch.
For the main task of reasoning, we propose to use the negative
log-likelihood (NLL) loss to train the two branches.

Lprior
NLL = −∑

K
k=1 ∑

L
l=1 P(ŵl |wk

<l ,H
k
t ) (15)

Lpost
NLL = −∑

K
k=1 ∑

L
l=1 P(ŵl |wk

<l ,H̄
k
t ) (16)

Additionally, the loss of Eq.9 and Eq.10 is used for knowledge
distillation, and the loss of Eq.14 and Eq.12 is used for uncertainty
learning. The whole training process is summarized as Algorithm 1.

Inference Process: The posterior branch with complete observ-
able events is incorporated solely during the training phase to reg-
ulate the uncertainty distribution of the prior branch and to furnish
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Table 1: Comparisons with the state-of-the-art methods on VAR dataset.

Methods Encoder-Decoder BLEU@4 METEOR ROUGE CIDEr BERT-S
Human - 11.35 19.36 36.92 147.79 40.59
VTrans [31] Trans.-Trans. 0.71 6.92 19.12 7.11 22.13
MFT [25] RNN-RNN 1.81 7.16 19.16 17.67 25.90
Trans-XL [2] Trans.-Trans. 2.96 7.51 20.94 24.54 27.23
MART [11] Trans.-Trans. 2.86 7.47 20.87 24.05 27.77
PDVC [23] Trans.-Trans. 3.00 8.54 20.71 25.14 27.80
REASONER [15] Trans.-RNN 3.44 9.05 22.89 30.75 30.64
UPD-Trans Trans.-Trans. 5.40 11.16 25.62 41.66 30.80

the prior branch with more reliable information. Specifically, dur-
ing training all events within the video are observable by assigning
Õt = Ot within the set V= {O1, ...,Ot−1, Õt ,Ot+1, ...OT }. Con-
versely, during inference, only the prior branch with incomplete
observable events is used, where the explanation event is treated as
unobservable by initializing the original representation of Õt with
zeros.

4 EXPERIMENTS
4.1 Dataset and Implementation Details
Dataset. In this paper, we evaluate our proposed UPD-trans on VAR
[15], and it is the first dataset for abductive reasoning in visual daily
scenarios. The VAR dataset comprises a total of 8606 data examples,
which were gathered from 3718 distinct videos. Each video includes
4.17 events with an average duration of 37.8 seconds on average.
Consequently, the dataset includes a total of 15K descriptive sen-
tences, with an average length of 13.5 words. The dataset is split
into training, validation, and testing partitions, containing 7053, 460,
and 1093 videos, respectively.

Implementation Details. Our model is implemented using Py-
Torch and trained on a server equipped with two P40 GPUs. Two
Transformer encoder blocks are implemented as the encoder of UPD-
Trans and two Transformer masked decoder blocks are implemented
as each decoder module. The hidden size of the representation is set
to n = 768, with 12 attention heads employed. For cascaded reason-
ing, a total of K = 2 decoders are stacked via cross-validation. We
sample 50 frames for each event in a uniform manner and combine
their features to form the original event representation, which is
extracted by ResNet200 [6]/BN-Inception [9] with a dimension of
3072. Descriptive sentences for each event are padded or truncated
into 20 words. During training, we use the Adam optimizer with an
initial learning rate of 1e-4 and a small decaying rate. Furthermore,
dropout regularization is applied to prevent overfitting.

4.2 Compare to the State-of-the-Art Methods
We conduct comparisons to the state-of-the-art methods on the test
set of VAR dataset and show the automatic evaluation results of
visual abductive reasoning in Table 1. The comparative methods
include some methods (i.e.,REASONER [15]) specifically designed
for visual abductive reasoning task and others for dense video cap-
tioning (i.e.,VTrans [31], MFT [25], Trans-XL [2], MART [11],
PDVC [23]), as visual abductive reasoning is still a relatively new

task and there aren’t many dedicated methods proposed for it cur-
rently. Additionally, the human performance is provided as the upper
bound of VAR performance, which is achieved by ten volunteers.
For the evaluation metrics, five widely used metrics in image/video
captioning are adopted, including BERTScore [29], BLEU4 [20],
METEOR [1], ROUGE-L [16] and CIDEr [22]. We can draw the fol-
lowing observations: 1) The comparisons show that our UPD-Trans
achieves much better performance for visual abductive reasoning
than the SOTA models. Compared to the second-best method [15],
we achieve a gain of 1.96, 2.11, 2.73, 10.91 and 0.16, and dramat-
ically higher than other DVC methods. 2) It is evident that there
is a significant gap between captioning for observable event and
reasoning for unobservable event, where existing DVC models has
extremely poor performance on reasoning beyond observation. 3)
Our UPD-Trans outperforms many famous video-language models,
while still being far behind human performance, which indicates
there needs further research for this new reasoning task.

4.3 Ablation Studies
Effectiveness of Each Component: To evaluate the effectiveness
of each individual component, we evaluate several variants of our
method on VAR dataset as demonstrated in Figure 2(a)-Figure 2(g).
The results are shown in Table 2, and all components in UPD-Trans
contribute to the performance of visual abduction reasoning in gen-
eral. The detail analysis for each component is given as following:
1) By simultaneously modeling direct and latent causal relations, we
achieve a gain of 0.81, 0.79, 4.7, 1.94 and 3.36, which demonstrates
the effective of incorporating Latent(Õ) and Latent(Ẽ) for reasoning.
2) By conducting probabilistic modeling for the latent relations, it
promotes all the five scores and dramatically promotes the CIDEr
score from 35.58 to 40.19, which demonstrates the effective of the
probabilistic Transformer for uncertainty modeling. 3) By incorpo-
rating a distillation module between the two branches, it boosts the
CIDEr score by 3.1, which demonstrates the posterior branch with
complete observable data indeed benefits for reducing uncertainty in
the prior branch without complete observable data.

Effectiveness of the Prior Branch and Posterior Branch: We
conducted several evaluations to demonstrate the effectiveness of
both the prior branch and the posterior branch, as presented in Table
3. In UPD-Trans, the functions of the posterior branch are as follows:
1) For uncertainty modeling, the posterior branch is utilized to regu-
late the uncertainty distribution of predicted observations (Õ) and
inferred descriptions (Ẽ) in the prior branch. 2) For the distillation
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Table 2: The effectiveness of each individual component of UPD-Trans evaluated on VAR dataset.

Latent(Õ) Latent(Ẽ) Uncertainty(Õ) Uncertainty(Ẽ) Feature Distill Logits Distill
VAR

M B@4 C R BERT

# # # # # # 9.65 4.13 30.88 21.96 26.94
! # # # # # 10.18 4.57 33.09 22.86 29.04
# ! # # # # 10.53 4.75 32.84 23.49 28.84
! ! # # # # 10.46 4.92 35.58 23.90 30.30
! ! ! # # # 10.72 5.23 39.42 24.65 30.54
! ! # ! # # 10.78 4.80 39.18 24.78 30.87
! ! # # ! # 10.88 5.25 38.17 25.08 30.87
! ! # # # ! 10.95 5.05 37.88 25.02 30.30
! ! # # ! ! 10.74 5.22 38.68 25.46 30.52
! ! ! ! # # 10.73 5.12 40.19 24.54 30.76
! ! ! ! ! ! 11.16 5.40 41.66 25.62 30.80

Table 3: The effectiveness of the prior and posterior branch.

Methods M B4 C R Bert
Prior 9.65 4.13 30.88 21.96 26.94
Prior+Ẽ 10.53 4.75 32.84 23.49 28.84
Prior+ U(Ẽ) 10.25 4.95 34.71 23.77 30.30
Prior+ U(Ẽ,Õ) 10.69 4.92 36.89 24.72 30.67
Prior+Posterior+ U(Ẽ,Õ) 10.73 5.12 40.19 24.54 30.76
Prior+Posterior+Distill 10.74 5.22 38.68 25.46 30.52
UPD-Trans 11.16 5.40 41.66 25.62 30.80
Posterior (all observed) 11.36 5.25 41.64 25.50 30.94
UPD-Trans (all observed) 11.56 5.70 44.39 25.74 30.97

process, the posterior branch offers more reliable information to the
prior branch, since all events in the posterior branch are observed.
The evaluations in Table 3 confirm the effectiveness of these two
functions, wherein the ‘Prior+Posterior+ U(Ẽ,Õ)’ outperforms ‘Pri-
or+ U(Ẽ,Õ),’ and ‘Prior+Posterior+Distill’ achieves better results
than ‘Prior+Ẽ.’ The final two lines can be considered an upper bound
of this model, where all events are observed during testing and train-
ing, ensuring the accurate transfer of information from the posterior
branch to the prior branch. Furthermore, even when all events are
observed, uncertainties still exist, as seen in the comparison between
‘Posterior (all observed)’ and ‘UPD-Trans (all observed).’

Effectiveness of Cascaded Reasoning: Table 4 presents the
performance of visual abductive reasoning with different number
of cascaded decoder on VAR dataset, denoted as K = 0,1,2,3,4,5.
When K = 0, we only employ the initial decoder D0 , yielding
a CIDEr score of 35.34. By incorporating additional refinement
decoder, the score significantly improves to 41.66. The improvement
continues until K > 2, where the increasing trend eventually reaches
a saturation point. Consequently, we adopt K = 2 as the default
setting to strike a balance between performance and computational
efficiency.

Effectiveness of Sampling Numbers: Table 5 presents the per-
formance of visual abductive reasoning with different sampling
numbers during inference on VAR dataset. When using µ , we only

Table 4: Performance of visual abductive reasoning with differ-
ent number of cascaded decoder on VAR dataset.

DK METEOR BLEU@4 CIDEr ROUGE BERT-S
K=0 10.49 4.45 35.34 23.70 27.87
K=1 10.72 5.40 39.81 24.05 30.21
K=2 11.16 5.40 41.66 25.62 30.80
K=3 10.51 5.10 38.47 24.21 30.09
K=4 10.55 4.85 36.39 24.19 30.32
K=5 10.60 5.19 37.07 24.56 30.38

Table 5: Performance of visual abductive reasoning with differ-
ent sampling numbers on VAR dataset.

M METEOR BLEU@4 CIDEr ROUGE BERT-S
µ 11.14 5.33 41.58 25.34 30.64
1 11.16 5.40 41.66 25.62 30.80
3 11.14 5.34 41.38 25.47 30.81
5 11.21 5.43 42.24 25.53 30.76
8 11.18 5.35 41.76 25.52 30.84
10 11.10 5.34 41.91 25.41 30.81

employ the mean value as the approximation of ṽ1
t and hk

t , yielding
a CIDEr score of 41.58. Due to multiple sampling iterations during
the training process, the model’s sensitivity to the sampling number
during testing is not significant, and there is no noticeable difference
in performance. Therefore, we default to sampling only once during
testing, taking computational efficiency into account.

4.4 Qualitative Results
We showcase several visual abductive reasoning examples in Figure
4, which provide further evidence of our model’s superior perfor-
mance. Where the premise event is in blue and the explanation event
is in red. It is obviously that our UPD-Trans is able to discover and
correctly describe the cause-effect chain, to a certain extent, and
hence generate a plausible hypothesis, i.e., “The person then lights a

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACMMM, 28 October - 1 November, 2024, Melbourne, Australia Anon. Submission Id: 1929

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Baseline: [She then holds up a bottle of lotion and begins speaking to the camera while holding up the camera . ] 
UPD-Trans: [He then shows off the hair and begins to blow dry the hair and then takes a brush . ] 
Groundtruth: [Premise：A man is seen speaking to the camera while holding a bottle of lotion and then spread it 
throughout a woman's hair] [Explanation：He then brushes the hair and blow dries it while styling it into a certain look ] 
[Premise：He finishes the cut and dry and the woman sees herself in the mirror.]

Baseline: [A man is standing in a pile of wood next to a pile of wood . ] 
UPD-Trans: [The person then lights a fire and lights a piece of wood.] 
Groundtruth: [Premise：A guy is trying to lite a pale of sticks in a round barrole.] [Explanation：He finally gets the pale of 
sticks lite and as the fire grows the pale of sticks fall. ] [Premise：The guy add sticks to keep the fire going.]

Baseline: [She pours some ice into a glass and shakes it up. ] 
UPD-Trans: [She begins by mixing the ingredients into a glass and filling it.] 
Groundtruth: [Premise：A woman pours ice into a glass.] [Explanation：She adds shots of alcohol to the glass. ] [Premise：
She then pours it into another glass and shakes it.]

Baseline: [The man throws a frisbee to the dog. ] 
UPD-Trans: [The man then begins to throw the frisbee and the dog catches it.] 
Groundtruth: [Premise：Person is holgding blue frisbees and is plying with a dog in a closed field, the doing tricks while 
is trying to catch the frisbee.] [Explanation：The dog holds a frisbee on his mouth and starts running around the girl doing 
tricks. ] [Premise：The dog stands on her feet and waits for her to throw the frisbees.]

Figure 4: Visualization of some VAR examples, including the examples generated by the baseline, our UPD-Trans and human anno-
tation.

fire and lights a piece of wood”, that well explains the observable
events, “The guy add sticks to keep the fire going”. It is achieved by
effectively incorporating potential latent relations and uncertainty
modeling. In contrast, the performance of the baseline (REASONER
[15] ) is unsatisfactory, which always repeat describe the observable
premise events.

5 CONCLUSION
Different from the task of video captioning, visual abduction reason-
ing is more challenging as it requires to conduct reasoning beyond
observation. In this paper, we propose a novel reasoning method
called Uncertainty-Guided Probabilistic Distillation Transformer. In
order to improve reasoning capability, UPD-Trans better discovers
correct cause-effect chain by incorporating both direct and laten-
t causal relations. To address the issue of uncertainty, we extend
the deterministic Transformer to a probabilistic Transformer, which
allows for modeling uncertainty in variables by the form of proba-
bilistic distribution. Additionally, we utilize a posterior reasoner to
distill and transfer more confirmed knowledge to the prior reasoner.
As a result, our UPD-Trans can capture more latent relations and
reduce uncertainty, leading to enhanced reasoning capability. We
evaluate UPD-Trans on the new VAR dataset and demonstrate its
remarkable performance.
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