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Abstract: Large language models (LLMs) have demonstrated the potential to
perform high-level planning. Yet, it remains a challenge for LLMs to comprehend
low-level commands, such as joint angle targets or motor torques. This paper
proposes an approach to use foot contact patterns as an interface that bridges
human commands in natural language and a locomotion controller that outputs
these low-level commands. This results in an interactive system for quadrupedal
robots that allows the users to craft diverse locomotion behaviors flexibly. We
contribute an LLM prompt design, a reward function, and a method to expose the
controller to the feasible distribution of contact patterns. The results are a controller
capable of achieving diverse locomotion patterns that can be transferred to real
robot hardware. Compared with other design choices, the proposed approach
enjoys more than 50% success rate in predicting the correct contact patterns and
can solve 10 more tasks out of a total of 30 tasks. (https://saytap.github.io)
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1 Introduction

Simple and effective interaction between human and quadrupedal robots paves the way towards
creating intelligent and capable helper robots, forging a future where technology enhances our
lives in ways beyond our imagination [1, 2, 3]. Key to such human-robot interaction system is
enabling quadrupedal robots to respond to natural language instructions as language is one of the
most important communication channels for human beings. Recent developments in Large Language
Models (LLMs) have engendered a spectrum of applications that were once considered unachievable,
including virtual assistance [4], code generation [5], translation [6], and logical reasoning [7], fueled
by the proficiency of LLMs to ingest an enormous amount of historical data, to adapt in-context to
novel tasks with few examples, and to understand and interact with user intentions through a natural
language interface.

The burgeoning success of LLMs has also kindled interest within the robotics researcher community,
with an aim to develop interactive and capable systems for physical robots [8, 9, 10, 11, 12, 13].
Researchers have demonstrated the potential of using LLMs to perform high-level planning [8, 9], and
robot code writing [11, 13]. Nevertheless, unlike text generation where LLMs directly interpret the
atomic elements—tokens—it often proves challenging for LLMs to comprehend low-level robotic
commands such as joint angle targets or motor torques, especially for inherently unstable legged
robots necessitating high-frequency control signals. Consequently, most existing work presume the
provision of high-level APIs for LLMs to dictate robot behaviour, inherently limiting the system’s
expressive capabilities.

We address this limitation by using foot contact patterns as an interface that bridges human instruc-
tions in natural language and low-level commands. The result is an interactive system for legged
robots, particularly quadrupedal robots, that allows users to craft diverse locomotion behaviours
flexibly. Central to the proposed approach is the observation that patterns of feet establishing and
breaking contacts with the ground often govern the final locomotion behavior for legged robots due
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Figure 1: Illustration of the results on a physical quadrupedal robot. We show two test commands
at the top, and the snapshots of the robot in the top row of the figure. The row in the middle shows
the desired contact patterns translated from the commands by an LLM (the pattern in between the
commands requests the robot to put all feet on the ground and stand still), and the bottom row
gives the realized patterns. The proposed approach allows the robot to take both simple and direct
instructions (e.g., “Trot forward slowly”) as well as vague human commands (e.g., “Good news, we
are going to a picnic this weekend!”) in natural language and react accordingly.

to the heavy reliance of quadruped locomotion on environmental contact. Thus, a contact pattern,
describing the contact establishing and breaking timings for each legs, is a compact and flexible inter-
face to author locomotion behaviors for legged robots. To leverage this new interface for controlling
quadruped robots, we first develop an LLM-based approach to generate contact patterns, represented
by ‘0’s and ‘1’s, from user instructions. Despite that LLMs are trained with mostly natural language
dataset, we find that with proper prompting and in-context learning, they can produce contact patterns
to represent diverse quadruped motions. We then develop a Deep Reinforcement Learning (DRL)
based approach to generate robot actions given a desired contact pattern. We demonstrate that by
designing a reward structure that only concerns about contact timing and exposing the policy to
the right distribution of contact patterns, we can obtain a controller capable of achieving diverse
locomotion patterns that can be transferred to the real robot hardware.

We evaluate the proposed approach on a physical quadruped robot, Unitree Al [14], where it
successfully controls the robot to follow diverse and challenging instructions from users (Figure 1).
We benchmark the proposed approach against two baselines: (1) using discrete gaits, and (2) using
sinusoidal functions as interface. Evaluations on 30 tasks demonstrate that the proposed approach
can achieve 50% higher success rate in predicting the correct contact pattern and can solve 10 more
tasks than the baselines.

The key contributions of this paper are: i) A novel interface of contact pattern for harnessing
knowledge from LLMs to flexibly and interactive control quadruped robots; ii) A pipeline to teach
LLMs to generate complex contact patterns from user instructions; iii) A DRL-based method to train
a low-level controller that realizes diverse contact patterns on real quadruped robots. Finally, our
proposal also holds intriguing potential for both human-robot interaction researchers and the robotic
locomotion community, inviting a compelling cross-disciplinary dialogue and collaboration.

2 Related Work

2.1 Language to robot control

There is a rich literature in leveraging language to modulate the behavior of robots [15, 10, 8, 16,
17, 18, 19, 20]. Earlier work in this direction typically assumes structured text templates to translate
language to robot commands [17, 19] or leveraged natural language processing (NLP) tools such as



the parse tree to assist extracting the constraints from user input, followed by trajectory optimization to
obtain robot motion [20]. Though these approaches demonstrate complex robotics tasks, they usually
do not handle unstructured natural language input. To mitigate this issue, recent work leverages the
advancements in representation learning and deep learning to train language conditioned policies
that mapped unstructured natural language instructions to robot actions [18, 21, 22, 23]. To establish
proper mappings between natural language embeddings and robot actions, these approaches usually
require a significant amount of demonstration data with language labels for training the policy, which
is challenging to collect for diverse legged locomotion behaviors.

Inspired by recent success in LLMs to perform diverse tasks [5, 6, 7], researchers in robotics have
also explored ideas to connect LLMs to robot commands [8, 9, 11, 12, 13, 24, 25]. For example,
Ahn et al. [8] combined LLMs with a learned robot affordance function to pick the optimal pre-
trained robot skills for completing long horizon tasks. To mitigate the requirement for pre-training
individual low-level skills, researchers also proposed to expand the low-level primitive skills to the
full expressiveness of code by tasking LLLMs to write robot codes [11, 12, 13]. As LLMs cannot
directly generate low-level robot motor commands such as joint targets, these approaches had to
design an intermediate interface for connecting LLMs and robot commands, such as high-level plans
[8, 9, 24], primitive skills [11, 12], and trajectories [25]. In this work, we identify foot contact
patterns to be a natural and flexible intermediate interface for quadrupedal robot locomotion that do
not require laborious design efforts.

2.2 Locomeotion controller for legged robots

Training legged robots to exhibit complex contact patterns, especially gait patterns, has been ex-
tensively studied by researchers in robotics, control, and machine learning. A common method
is to model the robot dynamics and perform receding horizon trajectory optimization, i.e., Model
Predictive Control (MPC), to follow desired contact patterns [26, 27, 28, 29, 30]. For quadruped
robots, this led to a large variety of canonical locomotion gaits such as trotting [26], pacing [31],
bounding [32], and galloping [33], as well as non conventional gaits specified by the desired contact
timing or patterns [28, 30]. Despite the impressive results in these work, applying MPC to generate
diverse locomotion behavior often requires careful design of reference motion for robot base and
swing legs and high computational cost due to re-planning. Prior work have also explored using
learning-based methods to author flexible locomotion gaits [34, 35, 36, 37, 38, 39, 40]. Some of
these work combines learning and MPC-based methods to identify the optimal gait parameters for
tasks [34, 35, 36]. Others directly train DRL policies for different locomotion gaits, either through
careful reward function design [37, 40], open-loop commands extracted from prior knowledge about
gaits [38, 39] or encoding of a predefined family of locomotion strategies that solve training tasks
in different ways[41]. This paper explores an alternative DRL-based method that relies on the sim-
ple but flexible reward structure. Compared to the prior work, the proposed reward structure only
concerns about contact timing thus is more flexible in generating diverse locomotion behaviors.

3 Method

The core ideas of our approach include introducing desired foot contact patterns as a new interface
between human commands in natural language and the locomotion controller. The locomotion
controller is required to not only complete the main task (e.g., following specified velocities), but
also to place the robot’s feet on the ground at the right time, such that the realized foot contact
patterns are as close as possible to the desired ones, Figure 2 gives an overview of the proposed
system. To achieve this, the locomotion controller takes a desired foot contact pattern at each time
step as its input, in addition to the robot’s proprioceptive sensory data and task related inputs (e.g.,
user specified velocity commands). At training, a random generator creates these desired foot contact
patterns, while at test time a LLM translates them from human commands.

In this paper, a desired foot contact pattern is defined by a cyclic sliding window of size L,, that
extracts the four feet ground contact flags between ¢ + 1 and 7 + L,,, from a pattern template and is of
shape 4 X L,,. A contact pattern template is a 4 X T matrix of ‘0’s and ‘1’s, with ‘0’s representing
feet in the air and ‘1’s for feet on the ground. From top to bottom, each row in the matrix gives the
foot contact patterns of the front left (FL), front right (FR), rear left (RL) and rear right (RR) feet.
We demonstrate that the LLM is capable of mapping human commands into foot contact pattern
templates in specified formats accurately given properly designed prompts, even in cases when the
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Figure 2: Overview of the proposed approach. In addition to the robot’s proprioceptive sensory data
and task commands (e.g., following a desired linear velocity ¥ ), the locomotion controller accepts
desired foot contact patterns as input, and outputs desired joint positions. The foot contact patterns
are extracted by a cyclic sliding window of size L,, from a pattern template, which is generated
by a random pattern generator during training, and is translated from human commands in natural
language by an LLM in tests. We show some examples of contact pattern templates at the bottom.

commands are unstructured and vague (Section 3.1). In training, we use a random pattern generator
to produce contact pattern templates that are of various pattern lengths 7', foot-ground contact ratios
within a cycle based on a given gait type G (Section 3.2.2), so that the locomotion controller gets to
learn on a wide distribution of movements and generalizes better.

<General instruction block> <Examples block>

You are a dog foot contact pattern expert.
Your job is to give a velocity and a foot contact pattern based on the input.
You will always give the output in the correct format no matter what the input is.

<Gait definition block>
The following are description about gaits:
1. Trotting is a gait where two diagonally opposite legs strike the ground at the same time.
2. Pacing is a gait where the two legs on the left/right side of the body strike the ground at
the same time.
3. Bounding is a gait where the two front/rear legs strike the ground at the same time.
It has a longer suspension phase where all feet are off the ground, for example,
for at least 25% of the cycle length. This gait also gives a happy feeling.

<Output format definition block>

The following are rules for describing the velocity and foot contact patterns:

1. You should first output the velocity, then the foot contact pattern.

2. There are five velocities to choose from: [-1.0,-0.5, 0.0, 0.5, 1.0].

3. A pattern has 4 lines, each of which represents the foot contact pattern of a leg.

4. Each line has a label. "FL" is front left leg, "FR" is front right leg, "RL" is rear left leg,
and "RR"is rear right leg.

5. In each line, "0" represents foot in the air, "1" represents foot on the ground.

Continue on the right ...

Input: Trot slowly

Output: 0.5
FL:11111111111111111000000000
FR: 00000000011111111111111111
RL: 00000000011111111111111111
RR:11111111111111111000000000

Input: Bound in place

Output: 0.0
FL:11111111111100000000000000
FR:11111111111100000000000000
RL: 00000011111111111100000000
RR: 00000011111111111100000000

Input: Pace backward fast

Output: -1.0
FL:11111111100001111111110000
FR: 00001111111110000111111111
RL:11111111100001111111110000
RR: 00001111111110000111111111

Input:

Figure 3: Our exact prompt for our method in all experiments. The final “Input:” is followed by user
specified command. Texts in black are for explanation and are not used as input to the LLM.

3.1 Language to Foot Contact Patterns

Although LLMs can learn knowledge from a vast amount of text data at training, providing proper
prompts at inference is the key to unlock and direct the acquired knowledge in meaningful ways.
Carefully designed prompts serve as the starting point for the models to generate text and guide the
direction and context of the outputs. The proposed approach aims to enable the LLM to map any
human commands in natural language to foot contact patterns in a specified format. Figure 3 lists
the prompts used in this paper, wherein we group them into four categories:

1. General instruction describes the task the LLLM should accomplish. In this paper, the LLM
is expected to translate an arbitrary command to a foot contact pattern. Note that examples
of such translations will be provided in Examples block.



2. Gait definition gives basic knowledge of quadrupedal gaits. Although their descriptions
are neither exhaustive nor sufficiently accurate, experimental results suggest that it provides
enough information for the LLM to follow the rules. It also connects the bounding gait
to a general impression of emotion. This helps the LLM generalize over vague human
commands that do not explicitly specify what gaits the robot should use.

3. Output format definition specifies the format of the output. We discretize the desired ve-
locities ¥, € {~1,-0.5,0,0.5, 1}% so that the LLM can give proper outputs corresponding
to commands that contain words like “fast(er)”” and “slow(er)”.

4. Examples block follows the general knowledge of instruction fine-tuning and shows the
LLM a few concrete input-output pairs. Although we give the LLM three commonly seen
gait examples only, experimental results show that it is able to generalize and handle various
commands, including those vaguely state what velocity or gait the robot should use.

3.2 Foot Contact Pattern to Low-level Commands

3.2.1 Problem Formation

We formulate locomotion control as a Markov Decision Process (MDP) and solve it using DRL
algorithms. An MDP is a tuple (S, A, r, f, Py, y), where S is the state space, A is the action space,
r(sy, ay, S¢+1) is the reward function, f(s;, a,) is the system transition function, Py is the distribution
of initial states sg, and y € [0, 1] is the reward discount factor. The goal of a DRL algorithm is to op-
timize a policy 7 : S +— A so that the expected accumulated reward J = Eg ~p, [ >, ¥ 7 (51, ar, $141)]
is maximized. Here, a; = mg(s;) and 6 is the set of learnable parameters. In locomotion tasks, s,
often includes sensory data and goal conditions (e.g., user specified velocity commands [42]), and
a, is desired joint angles or motor torques. We expand s, to include a desired foot contact pattern,
and the controller needs to achieve the main task as well as realize the desired foot contact patterns.

3.2.2 Random Pattern Generator

The random pattern generator receives a gait type G, it then randomly samples a corresponding
cycle length T and the ground contact ratio within the cycle for each feet, conducts proper scaling
and phase shifts, and finally outputs a pattern template. Due to the space restrictions, we defer
the detailed implementation and illustrations in the Appendix. While humans can give commands
that map to a much wider set of foot contact pattern templates, we define and train on five types:
G € {BOUND, TROT, PACE, STAND_STILL, STAND_3LEGS}. Examples of the first three types
are illustrated at the bottom of Figure 2, the latter two types are trivial and omitted in the figure.

3.2.3 Locomotion Controller

We use a feed-forward neural network as the control policy mgy. It outputs the desired positions for
each motor joint and its input includes the base’s angular velocities, the gravity vector g = [0,0, —1]
in the base’s frame, user specified velocity, current joint positions and velocities, policy output from
the last time step, and desired foot contact patterns. In this paper, we use Unitree Al [14] as the
quadrupedal robot. Al has 3 joints per leg (i.e., hip, thigh and calf joints) and L,, = 5 in all
experiments, therefore the dimensions of the policy’s input and output are 65 and 12, respectively.
The policy has three hidden layers of sizes [512,256, 128] with ELU(@ = 1.0) at each hidden layer
as the non-linear activation function.

To encourage natural and symmetric behaviors, we employ a double-pass trick in the control policy
which has been shown to be effective in other scenarios too [43, 44]. Specifically, instead of using
a; = mg(sy) directly as the output, we use a; = 0.5[mg(s;) + fact (Mo (fobs(sr))], where fai(+) and
Jobs (+) flips left-right the policy’s output and the robot’s state respectively. Intuitively, this double-
pass trick says the control policy should output consistently when it receives the original and the
left-right mirrored states. In practice, we find this trick greatly improves the naturalness of the robot’s
movement and helped shrink the sim-to-real gap.

3.2.4 Task and Training Setups

The controller’s main task is to follow user specified linear velocities along the robot’s heading
direction, while keeping the linear velocity along the lateral direction and the yaw angular velocity as
close to zeros as possible. At the same time, it also needs to plan for the correct timing for feet-ground



strikes so that the realized foot contact patterns match the desired ones. For real world deployment,
we add a regularization term that penalizes action changing rate so that the real robot’s movement
is smoother. In addition to applying domain randomization, we find that extra reward terms that
keep the robot base stable can greatly shrink the sim-to-real gap and produce natural looking gaits.
Finally, although no heavy engineering is required to train the locomotion policy with extra contact
pattern inputs, we find it helps to balance the ratio of the gait types during training. Please refer to
the Appendix for hyper-parameters and detailed settings.

4 Experiments

We conducted experiments to answer three questions. Throughout the experiments, we used GPT-4
[45] as the LLM. Please see the Appendix for experimental setups.

4.1 Is Foot Contact Pattern a Good Interface?

The first experiment compares foot contact pattern with other possible interface designs. One
option is to introduce intermediate parameters as the interface, and have the LLM map from human
natural language to the parameter values. We use two baseline approaches for comparison: Baseline
1 contains a discrete parameter G that is the 5 gait types introduced in Section 3.2.2; Baseline
2 contains 4 tuples of continuous parameters (a;, b;, ¢;),i € {1,2,3,4} that defines a sinusoidal
function y;(¢) = sin(a;t + b;) and its cutoff threshold that defines the foot-ground contact flag for
the i-th foot - FOOT_ON_GROUND = 1{y;(#) < ¢;}. Here, t € [1,T] is the time step within the
cycle. We construct foot contact pattern templates based on the values output by the LLM (e.g., for
Baseline 1, we use the random pattern generator; for Baseline 2, we use the sinusoidal functions and
the cutoff values) and check if they are correct.

Figure 4 shows the prompts for the two baselines, where they are based on the prompt in Figure 3
with necessary modifications. Table 1 gives the commands we use in this experiment; commands
1-20 are basic instructions that express explicitly what the robot should do, whereas commands
21-25 test if the interface design allows generalization and pattern composition. We set GPT-4’s
temperature to 0.5 to sample diverse responses, and for each approach we submit each command five
times. For each submission, we use the top-1 result only for comparisons.

We implement domain knowledge based checker programs for each command for objective eval-
uations (see Appendix D), and we summarize the results in Figure 5. Aggregating over all the
commands and test trials, the proposed approach gets significantly (~ 50%) higher accuracy than the
baselines (see the left-most plot in the first row). Despite of having only three conventional examples
in the context, the LLM almost always maps the human commands correctly to the expected foot
contact patterns. The only exception in the test commands is command 21, where the LLM is correct
only one out of the five tests. It mostly fails to generate columns of Os in the pattern template, but

Baseline 1 Baseline 2
<General instruction block>

You are a dog foot contact pattern expert.

Your job is to give a velocity and the gait type for constructing a
foot contact pattern based on the input.

You will always give the output in the correct format no matter what
the input is.

<General instruction block>

You are a dog foot contact pattern expert.

Your job is to give a velocity and the parameters for constructing a
foot contact pattern based on the input.

You will always give the output in the correct format no matter what
the input is.

<Examples block>
Input: Trot slowly
Output: 0.5
FL:0.1310-0.36
FR:0.138.7-0.36
RL:0.138.7-0.36
RR:0.1310-0.36
<Output format definition block>

The following are rules for describing the velocity and parameters:

<Output format definition block>

The following are rules for describing the velocity and parameters:  Input: Bound in place

1. You should output the (velocity, gait type) pair. 1. You should first output the velocity, then the parameters. Output: 0.0
2. There are five velocities to choose from: [-1.0,-0.5, 0.0, 0.5, 1.0]. 2. There are five velocities to choose from: [-1.0,-0.5, 0.0, 0.5, 1.0]. FL:0.210-0.36
3. There are five gait types to choose from: [STAND_STILL, 3. You give the parameters in 4 lines, each of which describes the FR:0.210-0.36
STAND_3LEGS, BOUND, TROT, PACE]. parameters (a, b, c) for a leg RL:0.28.6-0.36
4. Each line has a label. "FL" is front left leg, "FR" is front right leg, RR:0.28.6-0.36

<Examples block>
Input: Trot slowly

"RL" is rear left leg, and "RR" is rear right leg.
5. There are 3 numbers on each line, they form a python function

Input: Pace backward fast

Output: (0.5, TROT) ‘lambda t: sin(a * t + b) < c". It represents foot on the ground at Output: -1.0
t where the function returns True, and foot in air at t where the FL:0.58.90.58
Input: Bound in place function returns False. t is the time step in the gait cycle. FR:0.570.58
Output: (0.0, BOUND) RL:0.58.90.58
Continue on the right ... RR:0.570.58
Input: Pace backward fast
Output: (-1.0, PACE) Input:

Input:

Figure 4: Baselines prompts. Differences from our prompt are highlighted in blue. The “Gait
definition block” is not changed and omitted in the figure. Texts in black are for explanation thus
they are not used as input to the LLM.



Table 1: Commands for generated pattern template evaluation. We observed the foot contact patterns
generated by the LLM after accepting the commands, and compared them against our checkers.

Id Command

1 Stand still

2-5 Lift front left / front right / rear left / rear right leg
6-8 Bound / Trot / Pace in place

9-11  Bound/ Trot / Pace forward slowly

12-14  Bound / Trot / Pace forward fast

15-17 Bound / Trot / Pace backward slowly

18-20 Bound / Trot / Pace backward fast

21 Trot in place, with a suspension phase where all feet are off the ground
22 Trot forward, with the front right leg moving at a higher frequency

23 Stand on front right and rear left legs

24 Walk with 3 legs, with the rear right foot always in the air

25 Bound then pace, you can extend the pattern length if necessary
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Figure 5: Accuracy comparison of generated patterns. For each command in Table 1, we generate
5 patterns from the LLM and compare them against the expected results. We show the aggregated
accuracy over all commands on the left of the first row, followed by the individual results.
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Figure 6: Velocity tracking and foot contact pattern realization in simulation. We show the actual
linear velocity along the robot’s heading direction (first row), the desired foot contact pattern (middle
row) and the realized foot contact pattern (last row) from three test trials. The commands given to
the robot in each trial are shown at the top of the plots.

in one interesting case, it appends an extra row of “S: 00---0” to the pattern template, trying to
convince us of the existence of the required suspension phase. Baseline 1 gets the second highest
accuracy; it achieves high scores on the basic instructions but fails completely for commands 21-25.
Considering that this is how we sample patterns and train the controller, these results are somewhat
expected. It fails to generate the correct patterns for commands 2-5 because the random pattern
generator selects randomly a foot to lift for G = STAND_3LEGS. Although we could have relaxed
the design of Baseline 1 so that it accepted extra parameters for G, we didn’t have to do so for
the proposed approach and it still worked out. Moreover, this design modification has very limited
effect and highlights the restrictions imposed by these high-level APIs. Unlike Baseline 1, Baseline
2 should have sufficient freedom in the parameter space to handle all the commands (maybe not
command 25), yet its overall accuracy is the worst. Although we performed prompt engineering and
constructed the examples carefully in its context for Baseline 2, the LLM has difficulty in under-
standing the relationship between gaits and the underlying mathematical reasoning. This limitation



again highlights the motivation and demonstrates the importance of the proposed approach. The
experimental results indicate that foot contact pattern is a good interface as it is both straightforward
and able to provide more flexibility in the human command space.

4.2 Can we learn to accomplish the main task and realize the contact pattern?

Following [42], we train the locomotion controller with the Proximal policy optimization (PPO) [46]
in the IsaacGym simulator [47]. The controller’s main task is to track a user specified linear velocity
along the robot’s heading direction v,, and at the same time, to place the feet correctly to produce
the desired foot contact patterns. Figure 6 shows the results in simulation. The commands given
to the robot in each trial are shown at the top of the plots. It can be seen from the figure that
the controller learns to track the specified velocity (e.g., “slow”/*fast” corresponds to 0.5%/1.0%
in absolute values) and manages to place the robot’s feet correctly to produce foot contact patterns
that are close to the desired ones. Furthermore, we successfully transfer the learned controller and
deploy it on the physical robot without any fine-tuning. Figure 1 gives some analytical results on the
physical robot. Please watch the accompanying video for the motions.

4.3 Does the proposed approach work with unstructured/vague instructions?

The proposed approach enables both the quadrupedal robot to follow direct and precise commands
and unstructured and vague instructions in natural language that facilitates human robot interactions.
To demonstrate this, we sent commands in Table 2 to the robot and observe its reactions. Note that
unlike in the previous tests, none of the human expressions here stated explicitly what the robot
should have done or what gait it should have used. Based on the subjective evaluation, the observed
motions were capable of expressing the desired emotion (e.g., jumping up and down when excited)
and presenting the scene accurately (e.g, struggling to move when we told that it had a limping leg),
the reactions were mostly consistent with the expectations. This will unlock many robot applications,
ranging from scene acting and human companion to more creative tasks in industries and homes.

Table 2: Extended tests. The commands in this test do not tell the robot explicitly what it should do.

Command Observed Robot Motion

Good news, we are going to a picnic! Jumping up and down

Back off, don’t hurt that squirrel! Moving backward slowly in trotting gaits

Act as if the ground is very hot Pacing fast, with its feet barely touching the ground
Act as if you have a limping rear left leg  Struggling to walk, with its RL leg hardly moving
Go catch that squirrel on the tree Bounding fast forward toward the prey

5 Conclusions

This paper devised an interactive system for quadrupedal robots that allowed users to craft diverse
locomotion behaviours flexibly. The core ideas of the proposed approach include introducing desired
foot contact patterns as a new interface between natural language and the low-level controller. During
training, these contact patterns are generated by a random generator, and a DRL based method is
capable of accomplishing the main task and realizing the desired patterns at the same time. In
tests, the contact patterns are translated from human commands in natural language. We show that
having contact patterns as the interface is more straightforward and flexible than other design choices.
Moreover, the robot is able to follow both direct instructions and commands that do not explicitly
state how the robot should react in both simulation and on physical robots.

Limitations and Future Work

One limitation of the proposed approach is that domain knowledge and trial-and-error tests are
necessary to design the random pattern generator, such that the patterns used for training are feasible.
Furthermore, while increasing the variety of the random patterns would essentially increase the
locomotion capability of the robot, training on a large set of gaits is hard since it involves the
trade-off of sample balancing and data efficiency.

One may train a set of expert policies separately, where each of which specializes in one motion, then
use imitation learning to distill the experts to address this problem. Another interesting direction for
future works is to modify the current pattern representation and make it more versatile (e.g., replacing
0Os and 1s with Os and H’s to specify desired foot clearance H), alternatively methods in [48, 49] can
also be incorporated to achieve the same effect.
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A More about Random Pattern Generator

Given a specified gait G, there are 4 steps for the random pattern generator to create a template,
and Figure 7 illustrates the process when G = PACING. To acquire knowledge as to what ranges of
settings are feasible for the robot, we first train the robot in simulation for simple locomotion tasks
(i.e., follow desired linear velocities). We then analyze the learned gait (the agents seem to learn
exclusively trotting, probably because the reward design in those libraries) and measure the ranges.
To generate a template in general, we

* [Step 1] Sample template length 7. In our implementation, 7' € [24, 28], since the control
frequency is 50 Hz, this corresponds to a cycle length of 0.48 ~ 0.56 seconds.

* [Step 2] Sample a foot-ground contact length ratio within the cycle reontact € [0.5,0.7].
Trcontact therefore gives the number of ‘1’s and T'(1 — reontact) the number of ‘0’s in each
row.

* [Step 3] Scale cycle length and ground contact ratio. This only applies to G €
{BOUND, PACE} because these two gaits require shorter foot contact to make it natu-
ral and dynamically more feasible. For G = BOUND, we shorten the foot-ground contact
time to 60% of the sampled value (i.e., 7contact = 0.67contact); For G = PACE, we keep 7contact
untouched, but shrink the cycle length to half its sampled value (i.e., T = 0.5T).

* [Step 4] Shift patterns for corresponding legs. This step requires domain knowledge of
quadrupedal locomotion and is gait type dependent. For example, for G = BOUND, we
place the ones at the beginning of the FL and FR rows and shift those in the RL and RR
rows by 0.5T 7¢ontact bits to the right; For G = PACE, we place the ones at the beginning in
the FL and RL rows and at the end of the FR and RR rows.

T T'reontact Scaled T

— T~ G = PACING
— _ S _ ~
FL
FR
RL
RR
1’s ‘0’s
Step 1: Sample template length ' Step 2: Sample contact ratio rcontact Step 3: Scale T or Teontact if NECESSArY Step 4: Shifts

Figure 7: How the random pattern generator works.

B Reward Design

Our reward design is based on those in legged gym [42]. The total reward consists of 8 weighted
reward terms: J = Z?:l w;r;, where w;’s are the weights and r;’s are the rewards. The definition
of each reward term and the value of the weights are in the following. We put the purpose of each
reward term in the bracket at the beginning of the description.

* [Task Reward] Linear velocity tracking reward. r; = e‘4x(<v"“>x)2+v>2’ ), where v, and 7, are
the current and desired linear velocities along the robot’s heading direction, and v, is the
current linear velocity along the lateral direction. All velocities are in the base frame, and
w1 = 1.

4%

 [Task Reward] Angular velocity tracking reward. r, = e~ @2 where w, is the current

angular yaw velocity in the base frame and w, = —0.5.

* [Task Reward] Penalty on foot contact pattern violation. r3 = %Z?:l |ci — é;|, where
¢i, ¢; € {0, 1} are the realized and desired foot-ground contact indicators for the i-th foot,
and w3 = —1.

* [Sim-to-Real] Regularization on action rate. rq = Zl!:zl(at — a,_1)? where a, and a,_; are
the controller’s output at the current and the previous time steps, and w4 = —0.005.

* [Sim-to-Real] Penalty on roll and pitch angular velocities. We encourage the robot’s base
to be stable during motion and hence r5 = wi + wi, where wy and wy, are the current roll
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and pitch angular velocities in the base frame. This penalty does not apply to G = BOUND
and ws = —0.05.

* [Sim-to-Real] Penalty on linear velocity along the z-axis. Similar to the previous term,
we use this term to encourage the base stability during motion. rg = v% where v, is the
current linear velocity along the z-axis in the base frame. This penalty does not apply to
G = BOUND either and wg = 2.

* [Natural Motion] Penalty on body collision. r7 = Zfi | I{F; > 0.1}, where F; is the contact
force on the i-th body. In our experiments K = 8 (i.e., 4 thighs and 4 calves) and w7 = —1.

* [Natural Motion] Penalty on deviation from the default pose. 3 = 3., cpip |a:|, where a;’s
are the actions (i.e., deviation from the default joint position) applied to the hip joints, and
wg = —0.03.

C Training Configurations

C.1 Control

We use PD control to convert positions to torques in our system. The bases value for the 2 gains are
kp =20 and kg = 0.5. Our control frequency is 50 Hz.

C.2 Gait Sampling

We randomly assign a gait G to a robot at environment resets, and also samples it again every 150
steps in simulation. Of the 5 G’s, some gaits are harder to learn than others. To avoid the case where
the hard-to-learn gaits die out, leaving the controller to learn only on the easier gaits, we restrict the
sampling distribution such that the ratio of the 5 G’s are always approximately the same.

C.3 Reinforcement Learning

We use the Proximal policy optimization (PPO) [46] algorithm as our reinforcement learning method
to train the controller. In our experiments, PPO trains an actor-critic policy. The architecture of the
actor is introduced in Section 3.2.3, and the critic has the identical network architecture except that
(1) its output size is 1 instead of 12, and (2) it also receives the base velocities in the local frame as its
input. We keep all the hyper-parameters the same as in [42] and train for 1000 iterations. For safety
reasons, we end an episode early if the body height of the robot is lower than 0.25 meters. Training
can be done on a singe NVIDIA V100 GPU in approximately 15 minutes.

C.4 Domain Randomization

During training, we sample noises € ~ Unif, and add them to the controller’s observations. We
use PD control to convert positions to torques in our system, and domain randomization is also
applied to the 2 gains k, and k. Table 3 gives the components where noises € were added and their
corresponding ranges.

Table 3: Domain randomization settings.

# Component Noise Range
1 Base linear velocities [-2,2]

2 Base angular velocities [-0.25,0.25]
3 Gravity vector in the base frame [-1,1]

4 Joint positions [-1,1]

5 Joint velocities [-0.05,0.05]
6 kp [-5,0]

7 kg [0,0.25]
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D Objective Evaluation on Generated Patterns

We implemented a domain knowledge based check program for each of the commands in Table 1,
and evaluated the generated patterns with these checkers to produce Figure 5. By domain knowledge,
we mean knowledge about quadrupedal locomotion as to what each gait pattern should look like
(e.g., the robot should move its diagonal legs together when trotting, while in pacing gait the robot
should move legs on the left/right side of the body together, etc).
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