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Abstract

Diffusion models have achieved remarkable
success in various generative tasks, particularly
in image and audio synthesis, which work by
iteratively refining random noise into realistic
data. Recent studies have highlighted the po-
tential of diffusion models for text generation,
but several challenges remain unresolved. One
significant issue is that the model begins to de-
grade a previous sample rather than improve it
after a certain timestep in the generation pro-
cess, resulting in broken text. In this paper, we
reveal that timestep embeddings are a princi-
pal cause of the collapse problem by analyz-
ing their interactions with word embeddings.
Further, we propose two key methods: (a) a
simple lightweight word embedding technique
that enhances model analyzability as well as
learning efficiency; (b) a novel regularization
on both word and timestep embeddings. Exper-
imental results demonstrate that our approach
effectively mitigates the collapse problem and
can lead to a considerable improvement in the
quality of generated text.

1 Introduction

Diffusion models are a class of generative models
that have achieved state-of-the-art performance in
continuous data generation, such as image and au-
dio synthesis (Ho et al., 2020; Song et al., 2020;
Kong et al., 2021). The generation process begins
by sampling random noise at timestep T , and then
progressively denoising it toward timestep 0, result-
ing in realistic data. Several studies have attempted
to adapt diffusion models for text generation via
word embeddings and have recently demonstrated
performance comparable to earlier autoregressive
models (Li et al., 2022; Gong et al., 2023; Yuan
et al., 2024; Gao et al., 2024), such as GPT-2 (Rad-
ford et al., 2019).

However, diffusion-based text generation still
faces challenges in ensuring high-quality output.
For text generation, the one-step denoising task

at timestep t is typically formulated as fully re-
moving noise and reintroducing a smaller noise
corresponding to timestep t− 1. One critical issue
is that the model starts failing to perform the full
denoising task after a certain timestep, leading to
incoherent or grammatically incorrect output (Gao
et al., 2024). We refer to it as the collapse prob-
lem. This phenomenon is counterintuitive, as the
denoising task should gradually become easier as
the generation process progresses.

To obtain a high-quality sample, a common ap-
proach is to generate multiple times and then select
the best one using a re-ranking algorithm like Min-
imum Bayes-Risk (MBR) decoding (Kumar and
Byrne, 2004). However, it compromises diversity,
which is a key strength of diffusion models. Gao
et al. (2024) reported that the collapse problem can
be mitigated by their regularization for word em-
beddings and heuristically modified training and
generation processes. This highlights that learning
continuous representations of the vocabulary is a
core problem, and motivates us to develop a solu-
tion that does not rely on heuristically tweaking the
diffusion framework.

Usually, a single denoiser model is shared across
all timesteps, and learned timestep embeddings are
incorporated as signals of timesteps. Although
it has long been common practice, the relation
between the timestep embeddings and the col-
lapse problem has not been adequately investi-
gated. Meanwhile, it is also widely adopted to
use low-dimensional word embeddings combined
with additional projection layers. This approach
enhances learning efficiency, but increases model
complexity; it introduces non-linearity into the way
timestep embeddings act on the model.

In this paper, in pursuit of a fundamental solu-
tion to preserve the expected behavior of diffusion
models—progressively refining data quality—we
investigate both word and timestep embeddings and
their relationship. Firstly, we introduce a plug-and-



play low-rank word embedding technique. It makes
the effect of timestep embeddings more transpar-
ent while keeping computational cost low. Sec-
ondly, we propose a new metric that reveals that
the timestep embedding disrupts word embeddings
in addition to the noise. Moreover, based on our
metric, we design a novel regularization method
to counteract the adverse effects of timestep em-
beddings within the standard diffusion architecture.
Experiments demonstrated the occurrence of the
collapse problem and its mitigation through the
combination of our two methods.

2 Related Work

2.1 Text Generation with Diffusion Models

Diffusion models are highly powerful generative
models. They first intentionally diffuse real data
step by step and learn to reverse this process. New
realistic data is then generated by sampling from
the stationary distribution and iteratively applying
the learned denoising operation.

In recent years, research on diffusion-based text
generation has been advancing. Broadly, two pri-
mary approaches have been proposed: continuous
and discrete diffusion language models. Continu-
ous methods generate word embeddings and dis-
cretize them to obtain words. Following diffusion
image synthesis methods, such as DDPM (Ho et al.,
2020) and DDIM (Song et al., 2020), they are based
on Gaussian distributions (Li et al., 2022). Discrete
methods work directly in word space and define the
forward process as sampling from a categorical dis-
tribution, such as gradually replacing words with
other words or mask tokens (Austin et al., 2021).

At present, diffusion language models are gener-
ally known to have limitations in generating high-
quality text. In this paper, we focus on how continu-
ous models work, which are built upon the standard
diffusion architecture.

2.2 Word Embeddings

In continuous diffusion text generation, the key
distinction from image generation lies in the neces-
sity of constructing continuous representations of
words in parallel with learning the denoiser model.
Gong et al. (2023) reported a significant perfor-
mance degradation when using fixed pretrained
embeddings, implying that word embeddings need
to be optimized for diffusion language models.

It is simultaneously essential to consider the dis-
cretization. Typically, a rounding distribution is

defined and its likelihood is maximized, which fa-
cilitates the segregation of word embeddings. Re-
garding this, Gao et al. (2024) pointed out that the
traditional rounding loss is insufficient to procure
the desired distribution and proposed the Anchor
Loss. Their method enhances the distinguishability
of embeddings than the rounding loss, although the
collapse problem still occurs around the final steps
of generation.

2.3 Timestep Embeddings
Timestep embeddings play an important role by
conditioning the denoiser model on the noise level
of input. For continuous diffusion models, a
timestep embedding is typically constructed by
mapping a timestep to a vector using sinusoidal
encoding and transforming it with a multi-layer
perceptron (MLP). Particularly in text generation,
research on the impact of timestep embeddings re-
mains limited, whereas there are reports in discrete
models. For instance, He et al. (2023) tested sev-
eral embedding methods of timesteps and reported
that they significantly impact on the performance.
While this pertains to the discrete method, it em-
phasizes the importance and challenges of timestep
embeddings.

3 Preliminaries

3.1 Diffusion Models
Denoising diffusion probabilistic models (DDPMs)
(Ho et al., 2020) are the standard architecture of dif-
fusion models. A DDPM consists of two processes:
the forward process and the reverse process.

Given a training data sample z0 ∼ q(z0), the
forward process gradually adds noise to z0, trans-
forming it into random noise zT :

q(zt | zt−1) = N (zt;
√
αtzt−1, βtI)

where 0 < β1 < · · · < βT < 1, αt = 1 − βt
are hyperparameters called noise schedule. Since
Gaussian distribution is reproducible, the distribu-
tion of zt conditioned on z0 has closed form for any
timestep t:

q(zt | z0) = N
(
zt;

√
ᾱtz0, β̄tI

)
(1)

with ᾱt =
∏t

s=1 αs, β̄t = 1 − ᾱt. A denoiser
model pθ(zt−1 | zt) is trained using {zt}Tt=0.

The reverse process generates a new sample z0
by starting from random noise zT ∼ N (0, I) and
iteratively denoising via pθ(zt−1 | zt).



Figure 1: Architecture overview. In the conventional model, the diffusion model (i.e., noisy word embeddings)
and Transformer work on spaces of different dimensions and MLPs are unavoidably inserted to bridge them. The
proposed model eliminates this discrepancy by consolidating up-/down-projections within the OFE.

3.2 Text Generation with Diffusion Models
Diffusion text generation first generates a sequence
of word embeddings z0 = [z0i]Li=1 through denois-
ing and then discretize it into a sequence of words
y = [yi]

L
i=1 (Yuan et al., 2024).

Let wk be the embedding of the k-th word in
the vocabulary (k ∈ {1, 2, ..., V }). The forward
process begins by sampling each z0i as follows:

qϕ(z0i | yi) = N (z0i;wyi , β0I)

where β0 is a very small constant.
At timestep t, the one-step denoising is ex-

pressed as

pθ(zt−1 | zt) = q(zt−1 | z0 = zθ (zt, t)),
zθ (zt, t) = Transformerθ(uϕ(zt, t)),

uϕ(zt, t) = [zti + ut]
L
i=1 .

The full denoiser zθ is a Transformer model
(Vaswani et al., 2017). The function uϕ fuses
a cue of the timestep t into noisy word embed-
dings by adding the timestep embedding ut. The
timestep embedding ut is usually parameterized by
transforming sinusoidal encoding of the timestep
t through a MLP and we follow it. The denoising
loss Ldenoise is

Ldenoise = Ey,z0:T

[
T∑
t=2

∥z0 − zθ (zt, t) ∥2

+ ∥wyi − zθ (z1, 1) ∥2 + ∥
√
ᾱT z0∥2

]
.

In practice, we sample t ∈ {1, 2, ..., T} for each
minibatch.

Minimizing only Ldenoise would cause all word
embeddings to collapse into a single point because
Ldenoise is mainly composed of the mean squared
error between z0 and zθ (zt, t). Therefore, we need
to promote appropriate segregation among word
embeddings. Concretely, we define the distribution
for rounding an embedding w ∈ Rd to the k-th
word as

pϕ(k | w) =
expw⊤wk∑V
ℓ=1 expw⊤wℓ

(2)

and the rounding loss Lround as

Lround =
1

L

L∑
i=1

Ey,z0 [− log pϕ (yi | z0i)] .

Another approach is the anchor loss (Gao et al.,
2024) that uses full denoising prediction instead of
a training data sample:

Lanchor =
1

L

L∑
i=1

Ey,zt [− log pϕ (yi | zθ (zt, t)i)] .

In this work, we choose the rounding loss, which
is the standard way. The total loss Ltotal is

Ltotal = Ldenoise + Lround.

Computing Lround is expensive because it is per-
formed over the entire target sequence. On the
other hand, using low-dimensional word embed-
dings and a smaller Transformer hurts prediction
performance (see §5). Hence, in order to reduce



d′ d & Hidden dim. Feed-forward dim. Layers Attention heads
Base - 768 2048 6 12
Low-d - 132 2048 6 12
OFE 128 768 2048 6 12

Table 1: Hyperparameters in the exploratory experiments.

computational costs while keeping the capacity of
Transformer, it is common practice to use low-
dimensional word embeddings and append MLPs
for up- and down-projection before uϕ and after
the Transformer (see Figure 1).

In reverse process, the prediction of zt−1 given
the previous prediction of zt is sampled by

zt−1 =
√
ᾱtzθ (zt, t) +

√
β̄tε, (3)

ε ∼ N (0, I).

Then the last output zθ (z1, 1) are rounded to words.
The simplest way to perform sequence-to-

sequence task is to use an encoder-decoder Trans-
former. The source text and noisy target text zt are
input to the encoder and decoder respectively.

4 Lightweight Word Embeddings

The conventional MLP-based method for reducing
the dimensionality of word embeddings is effective
but complicates the interaction between word and
timestep embeddings; the MLP first non-linearly
transforms noisy word embeddings, and then the
timestep embedding is applied. Besides, it may
also extract information about timesteps according
to the noise level of input, making it difficult to
analyze the conditioning by timesteps.

This MLP is actually not required if the model
has no such dimensional mismatch. To eliminate
this entanglement, we propose the Orthogonally
Factorized Embedding (OFE) technique that em-
ploys low-dimensional embeddings while letting
both the diffusion model (i.e., noisy word embed-
dings) and Transformer work on high-dimensional
space (see Figure 1). The OFE consists of an low-
dimensional word embedding wk ∈ Rd′ along with
a learned column-orthogonal matrix Rϕ ∈ Rd×d′ .
Every word embedding wk is expressed as

wk = Rϕwk.

The rounding distribution can be rewritten as

pϕ(k | w) =
exp(R⊤

ϕ w)⊤wk∑V
ℓ=1 exp(R

⊤
ϕ w)⊤wℓ

.

Notably, for every word embedding wm = Rϕwm,

pϕ(k | wm) =
exp(R⊤

ϕRϕwm)⊤wk∑V
ℓ=1 exp(R

⊤
ϕRϕwm)⊤wℓ

(4)

=
expw⊤

mwk∑V
ℓ=1 expw⊤

mwℓ

since R⊤
ϕRϕ = I . Consequently, pϕ(k | w) re-

duces to the rounding in the low-dimensional em-
bedding space.

Here, we provide the rationale behind the
column-orthogonal constraint. Since the rounding
loss promotes appropriate separation of word em-
beddings as noted in §3.2, reconstruction of a low-
dimensional embedding from a high-dimensional
representation, i.e., R⊤

ϕRϕwm ≈ wm as can be
seen in Eq. (4), seems to be naturally acquired due
to the rounding loss even when using an uncon-
strained matrix for Rϕ. However, we empirically
found that this is not the case; in the course of train-
ing, R⊤

ϕRϕ gets close to a scaled identity matrix λI
and λ gets larger and larger, and training becomes
unstable. We conjecture that the reason of this
phenomenon is that λ works similarity to the in-
verse temperature in a temperature softmax. There-
fore, we attempt to remedy this problem by elim-
inating a scaling ambiguity between Rϕ and low-
dimensional embeddings wk, i.e., the same high-
dimensional embedding is obtained with γRϕ and
γ−1wk for any γ ̸= 0: wk = (γRϕ)

(
γ−1wk

)
. For

that, we choose to impose column-orthogonality
on Rϕ, thereby constraining its Frobenius norm.
In addition, it enables the reconstruction by mul-
tiplying R⊤

ϕ from the left, which ensures that the
high-dimensional rounding pϕ(k | w) is equivalent
to the low-dimensional rounding. We expect that
this property further contributes to stability.

Because a matrix can be parameterized under the
column-orthogonal constraint,1 we can employ the
OFE by simply replacing the existing embedding
and rounding functions in a model with those of
the OFE.

1https://pytorch.org/docs/stable/generated/
torch.nn.utils.parametrizations.orthogonal.html

https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.orthogonal.html
https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.orthogonal.html


5 Exploratory Experiments

In this section, we demonstrate the collapse prob-
lem and confirm that it is not attributable to the
dimensionality reduction by comparing the three
cases of denoisers shown in Table 1. Base does
not use low-dimensional embeddings. In Low-d,
d = 132 was chosen as the best feasible alternative
to 128 (= d′ in OFE) conforming with 12 attention
heads. We conducted experiments on Quora Ques-
tion Pairs (DataCanary et al., 2017) and measured
the BERTScore (Zhang et al., 2020) of the para-
phrased questions generated by the models. Further
details are described in the main experiments (§7),
including the reason for setting d′ = 128 in OFE.

Figure 2 illustrates the evaluation of intermediate
samples during the reverse process, namely the full
denoising predictions zθ (zt, t) at each timestep t.
The collapse problem was observed in all models,
including Base. Thus, the collapse is not due to the
dimensionality reduction techniques.
Low-d expectedly exhibited worse performance

than Base. By contrast, OFE substantially outper-
formed Low-d and stood comparison with Base.
Furthermore, it is noteworthy that OFE surpassed
Base early in generation.

We found that models before convergence hardly
exhibit collapse as shown in Figure 3. These find-
ings suggest that continuing training only with the
traditional loss makes the vectors uϕ(zt, t), the in-
put to the Transformer, more difficult to handle.

6 Study of Timestep Embeddings

The model has been simplified by the OFE, which
allows word embeddings to naturally work on the
same dimension as timestep embeddings (Figure
1). Thus, we are now able to analyze the relation-
ship between these two embeddings directly. In
this section, we first introduce a new metric that
measures how timestep embeddings are implicated
in the phenomenon that the vectors uϕ(zt, t) tend
to form an undesired structure. We then transform
this score to a regularization method to mitigate the
collapse problem.

6.1 Analysis of Ambiguity

A denoiser model learns the mapping from a hidden
variable z0i to a word yi via the rounding loss. In
addition, each vector in uϕ(zt, t), the input of the
denoiser, must be properly distinguished from one
another, particularly at early diffusion steps.

Figure 2: The evaluation of full denoising predictions
zθ (zt, t) at each timestep t in the exploratory experi-
ments.

Figure 3: The progression of the collapse problem in
OFE in the course of training.

The forward process is performed by shrink-
ing word embeddings toward the origin and then
adding Gaussian noise (Eq. (3); Figure 4). Since
the model learns the inverse operation of the for-
ward process, the variance of the full denoising pre-
diction z0i = zθ (zt, t)i for the input zti is expected
to decrease as the generation progresses, and hence
the sample is gradually determined. However, due
to the timestep embedding, the actual input vector
zti + ut may be confused with unrelated words at
different timesteps (Figure 5).

This hypothesis motivates us to measure which
words are now mistaken for which words due
to timestep embeddings. Inspired by Kullback-
Leibler divergence, we define the Temporal Ambi-
guity Score (TAS) between t and t′ as follows:2

Ambig
(
t, t′

)
:=

1

V

V∑
k=1

V∑
ℓ=1

Ewtk,wt′k

[
pϕ

(
ℓ | uϕ

(
wt′k, t

′)) log pϕ (ℓ | uϕ(wt′k, t
′))

pϕ (ℓ | uϕ(wtk, t))

]
2The rounding pϕ always denotes the softmax distribution

over unmodified word embeddings, as shown in Eq. (2).



Figure 4: Noise addition at timesteps 0.2T and 0.8T .
The circles represent the regions from which zt is mostly
sampled. The regions move closer to the origin and
expand their radii as the forward process progresses.

Figure 5: How the timestep embeddings disrupt noisy
word embeddings. The noisy “write” at timestep t
will be confused with the noisy “watch” and “look” at
timestep t′.

where wtk is a noisy embedding of the k-th word at
timestep t. This metric represents how the round-
ing results of noisy word embeddings are altered
by timestep embeddings. It is based on a fact that is
peculiar to text generation: unlike in image synthe-
sis, the effect of noise addition lies in whether the
rounding yields different words before and after it.

Since exact calculation of Ambig (t, t′) is chal-
lenging, we estimate it by sampling (wtk,wt′k)
once for each k.

6.2 Regularization for Disambiguation
We consider using the ambiguity score as an objec-
tive function. In imitation of the rounding loss, we
introduce the Temporal Disambiguation Loss using
a training data sample instead of entire vocabulary:

Ldisambig :=
1

L

L∑
i=1

L∑
j=1

Ey,zt,zt′∼q

[

pϕ(yj | uϕ

(
zt′i, t′

)
) log

pϕ(yj | uϕ(zt′i, t′))
pϕ(yj | uϕ(zti, t))

]
.

Since directly minimizing it is difficult, we further
simplify the loss. First, we fix t′ at 0, because it
is not meaningful to disambiguate embeddings at
late diffusion steps, which are distributed almost
randomly. Thus, we get

L′
disambig =

1

L

L∑
i=1

L∑
j=1

Ey,zt∼q

[

pϕ(yj | wyi) log
pϕ(yj | wyi)

pϕ(yj | uϕ(zti, t))

]
.

Besides, the model easily learns so that pϕ(yj |
wyi) ≈ 1 if i = j, and 0 otherwise. Ignoring noise
for training stability, we arrive at the Simplified
Temporal Disambiguation Loss (STDL):

Lsimple
disambig :=

1

L

L∑
i=1

Ey,t∼q

[
− log pϕ

(
yi | uϕ

(√
ᾱtwyi , t

)) ]
.

Note that, from Eq. (1),
√
ᾱtwyi is the expectation

of q(zti | z0i = wyi). If we set ᾱ0 = 1 and ignore
the timestep embedding (i.e., u0 = 0), Lsimple

disambig

equals to Lround when t = 0. Hence, this is a gen-
eralization of the conventional loss associated with
rounding. Intuitively, it aims to obtain consistency
across all timesteps in the space of uϕ(·, t) with
respect to the noiseless word embedding space.

7 Main Experiments

7.1 Setup
We set the number of diffusion steps to T = 2000
and use the sqrt noise schedule (Li et al., 2022),
which are widely used. We choose d′ = 128 to
align with baselines that utilize the MLP-based di-
mensionality reduction method. The output length
is adjusted by generating padding tokens. The em-
bedding for the padding token is learned as well as
other word embeddings.

The OFE model is identical to that used in §5.
OFE+STDL refers to the model that uses both OFE
and STDL.

Datasets We conduct experiments on two popu-
lar sequence-to-sequence tasks: Paraphrasing on
Quora Question Pairs (DataCanary et al., 2017)
and Text Simplification on Wiki-Auto (Jiang et al.,
2020). The data split follows that used for DiffuSeq
(Gong et al., 2023).

Metrics The quality of generated text is evalu-
ated using BLEU (Papineni et al., 2002), ROUGE-
L (Lin, 2004), and BERTScore (Zhang et al., 2020).
The diversity among outputs generated from the
same input is an unique strength of diffusion mod-
els. To measure this, we employ Self-BLEU (Zhu
et al., 2018).

Baselines DiffuSeq (Gong et al., 2023) is a ba-
sic diffusion language model. SeqDiffuSeq (Yuan
et al., 2024) is an advanced encoder-decoder model



MBR BLEU ROUGE-L BERTScore Self-BLEU
DiffuSeq - 18.29† 52.99† 79.30† 27.32
DiffuSeq 10 24.13 58.80 83.65 -
SeqDiffuSeq - 23.28 - 82.91 -
SeqDiffuSeq 10 24.34 - 84.00 -
Difformer - 28.52 60.15 83.80 -
Difformer 10 30.43 61.25 85.02 -
Difformer 20 30.52 61.08 85.02 -
OFE - 19.21 (−7.68) 50.29 (−9.34) 74.86 (−7.64) 30.67 (+ 0.34)
OFE 10 25.85 57.73 80.64 -
OFE+STDL - 27.24 (−0.12) 60.29 (−0.11) 83.60 (−0.14) 78.76 (+25.08)
OFE+STDL 10 27.90 60.90 84.20 -
OFE+STDL 20 28.05 61.02 84.30 -

(a) Quora Question Pairs

MBR BLEU ROUGE-L BERTScore Self-BLEU
DiffuSeq - 29.29† 53.13† 77.81† 46.42
DiffuSeq 10 36.22 58.49 81.26 -
SeqDiffuSeq - 37.09 - 82.11 -
SeqDiffuSeq 10 37.12 - 82.14 -
Difformer - 40.37 59.56 81.96 -
Difformer 10 40.77 59.86 82.21 -
Difformer 20 40.84 59.88 82.29 -
OFE - 30.20 (−12.71) 49.78 (−10.03) 72.70 (−9.38) 48.51 (− 0.00)
OFE 10 39.82 58.15 80.25 -
OFE+STDL - 41.45 (− 0.12) 59.02 (− 0.07) 81.75 (−0.09) 96.16 (+20.01)
OFE+STDL 10 41.49 59.12 81.84 -
OFE+STDL 20 41.49 62.35 81.84 -

(b) Wiki-Auto

Table 2: Generation qualities and diversities in the main experiments. Difference between the best sample through
generation process and the final output are shown in parentheses. † indicates that we evaluated the samples released
by the authors. Other baseline results are cited from their paper.

Quora Question Pairs

Figure 6: The evaluation of full denoising predictions zθ (zt, t) at each timestep t in the main experiments.



with adjusting noise schedule during training. Dif-
former (Gao et al., 2024) is a model designed to mit-
igate the collapse problem by improving its training
objective and generation process.

7.2 Generation Quality and Diversity
Table 2 shows the evaluation of the final outputs.
OFE exhibited roughly comparable performance to
DiffuSeq as expected, since DiffuSeq is largely
equivalent to the conventional model in Figure 1.
However, OFE’s BERTScore is lower than DiffuSeq
across all datasets. It suggests that the OFE may
cause more severe collapse than the MLP-based
method. OFE+STDL showed essentially comparable
performance to Difformer, although it occasionally
underperformed Difformer when combined with
MBR.
OFE+STDL without MBR was substantially better

than OFE with MBR. It is remarkable that STDL
achieves better performance without prolonged
generation times, the drawback of MBR.

Figure 6 presents the assessment of intermedi-
ate outputs in the reverse process. As we saw in
§5, the collapse problem occurred in OFE, where
BLEU and BERTScore progressively deteriorated.
In contrast, OFE+STDL consistently maintained gen-
eration quality throughout reverse process. More-
over, on Quora Question Pairs, the STDL not only
suppressed the collapse but also entirely improved
sample quality.

The diversity unfortunately fell with STDL.
However, as shown in Figure 6, the improvement
in Self-BLEU of OFE’s output progresses in tan-
dem with a decline in BLEU and BERTScore. This
suggests that the diversity previously reported in
diffusion language models may actually be an il-
lusion arising from corrupted samples. Even if
the collapse is partially tolerated, since Self-BLEU
should ideally be comparable to BLEU, further
improvements are required for text generation to
achieve genuine diversity.

As a side note, employing MBR is also likely to
reduce diversity. Comparing MBR = 10 and 20 of
Difformer on Quora Question Pairs and OFE+STDL
on Wiki-Auto, although the sequence-level simi-
larity to the reference data measured by BLEU or
ROUGE-L increased, the semantic similarity indi-
cated by BERTScore remains unchanged.

7.3 Ambiguity across Timesteps
As observed in §5, the collapse problem in OFE
becomes more severe as training progresses. To

(a) OFE (50 K) (b) OFE (200 K)

(c) OFE+STDL (50 K) (d) OFE+STDL (500 K)
Quora Question Pairs

Figure 7: Temporal Ambiguity Score of the checkpoints
at the training steps indicated in parentheses.

analyze this phenomenon, we compare the TAS
between checkpoints that do and do not exhibit
collapse. Figure 7 depicts the TAS for these check-
points of OFE and OFE+STDL. In the early stage of
training, the ambiguity is low for small timesteps
and high for large timesteps as expected. How-
ever, as training of OFE advances, the ambiguity
increases for small timesteps while decreasing for
large timesteps. This suggests that the conventional
loss function excessively focuses on constructing
timestep embeddings for high noise levels while
neglecting those for small noise levels. By contrast,
in OFE+STDL, the TAS remains relatively stable
throughout training, preserving the distinguisha-
bility of the non-collapsing embeddings space.

8 Conclusion

In this work, we investigated the collapse problem
through careful observation of the emergence of the
phenomenon and the lens of how timestep embed-
dings influence word embeddings. To address this
challenge, we proposed a principled dimensionality
reduction technique and a regularization method
that acts on both embeddings. Our methods are
simple and easy to employ, yet dramatically miti-
gate the collapse problem. In addition, we revisited
generation diversity of diffusion language models,
and suggested its intrinsic difficulty.
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