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Abstract

Advances in time-series forecasting are driv-
ing a shift from conventional machine learning
techniques to foundation models (FMs) that are
trained with generalized knowledge. However,
existing FMs still perform poorly in the energy
fields, such as building energy forecasting (BEF).
This paper studies the adaptation of FM to BEF
tasks. We demonstrate the shortcomings of fine-
tuning FM straightforwardly from both the per-
spectives of FM and the data. To overcome these
limitations, we propose a new contrastive curricu-
lum learning-based training method. Our method
optimizes the ordering of training data in the con-
text of TSFM adaptation. Experiments show that
our method can improve the zero/few-shot perfor-
mance by 14.6% compared to the existing FMs.

1. Introduction

Building energy forecasting (BEF), i.e., energy consump-
tion forecasting for a building, plays a crucial role in many
downstream applications, such as equipment control and
fault detection. Currently, the majority of BEF schemes are
based on machine learning techniques. To achieve accept-
able forecasting performance, the common practice is to
develop specific models for individual buildings, yet it is
hard to generalize at scale and requires significant effort. A
growing promising paradigm is Foundation models (Liang
et al., 2024): large Al model trained on broad data such
that it can be applied across a wide range of tasks, such as
LLM in the NLP domain. Foundation models are capable
of making inferences on a dataset with only a small fraction
of training data, or even none at all, which corresponds to
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Figure 1. The curriculum enhances TSFM adaptation in building
energy forecasting tasks.

few-shot and zero-shot settings, respectively.

There are also some time-series foundation model (denoted
as TSFM for simplicity) products available recently, such
as IBM Granite (Ekambaram et al., 2024) and Amazon
Chronos (Ansari et al., 2024), with a series of TSFMs!
which are trained on various data source, e.g., weather,
energy, medical, financial. From existing benchmarking
(Liang et al., 2024), these TSFMs perform well in tasks,
e.g., climate forecasting, where large-scale real datasets
are adopted for pre-training. However, there are limited
real-world data resources in building scenarios and many
BEF works rely on the simulated dataset. This is because
the building energy is related to occupant privacy or busi-
ness confidentiality and thus leads to the building managers
having a low willingness to share the energy data (Xu &
Wang, 2022). From the recent measurement study (Mulayim
et al., 2024), the existing TSFMs can not achieve acceptable
performance in BEF.

This paper is motivated by an essential question: Can we
adapt the existing TSFMs to support the building energy
forecasting tasks via the currently available data resources?
We perform a preliminary evaluation of day-ahead BEF on
a product-level TSFM (under zero-shot setting). Our anal-
ysis compares the forecasting accuracy of i) the original
pre-trained FM and ii) the FM fine-tuned using the BEF
dataset in a straightforward manner. This fine-tuning can be
conducted using either real-world data alone (R) or a combi-
nation of real-world and simulated data (R+S)?. And half of

'TSFMs parameter size of IBM Granite are from 1M to 5M;
for Amazon Chronos is range from 8.3M to 709M.

ZReal-world dataset: BDG (Miller et al., 2020) consists of
1,000+ buildings; Simulated dataset: Building-900K (Emami et al.,
2023) consists of 900,000 energy traces simulated by a business
software EnergyPlus (Crawley et al., 2001). All the buildings have
a energy consumption time-series with a length of two-year.
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Table 1. The performance of IBM TSFM. The metric is CV-RMSE
(lower the better) and 0.3 is acceptable for engineering purposes.

FTonR FTonR+S
0.384 0.378

zero-shot
0.409

Time-series FMs
IBM-Granite-TTM-5M

the real buildings was allocated for the test set. As shown in
Table 1, the improvement by fine-tuning is very limited, and
the performance can not reach engineering purposes. Specif-
ically, even after incorporating 900,000 simulated buildings
into the real dataset, the accuracy improved by only 0.6%.
These results provide two key insights: (1) There are no
universal energy patterns for buildings, as patterns can vary
significantly in complexity due to factors such as diverse
occupancy behaviors and meteorological conditions. (2)
Straightforward training or fine-tuning does not enhance
the FM, even with a sufficiently large training set. This is
because the knowledge embedded in the pre-trained FM is
not easily quantifiable.

To address this challenging problem, we propose a new
contrastive curriculum learning (CCL) method to adapt the
existing TSFMs to BEF tasks. This curriculum strategy
organizes the training samples in order of difficulty, thereby
guiding the adaptation process of the TSFMs. Instead of
building an FM from scratch, which requires substantial
resources and effort and is not feasible at this stage, we
leverage the knowledge embedded in existing FMs. Our
contributions are as follows:

* We for the first time study the TSFM adaptation for a
specific domain, building energy. And we demonstrate
that straightforwardly fine-tuning brings limited gain.

* We present a new contrastive curriculum learning
method for adapting TSFMs to building energy fore-
casting tasks.

* We evaluate our method on three public building
datasets. Our evaluation indicates 9.9% and 10.4%
overall zero-shot and few-shot performance improve-
ment of our method as compared to direct fine-tuning.

2. Preliminaries

Building Energy Forecasting. BEF is a domain-specific
task of time-series forecasting: under the rolling forecasting
setting with a fixed size window with a length of L + 7', we
have the data sample u' = (z*, 3*) at time ¢, comprising past
data z* = {lf,...,1% } with a look-back window length L
and future data y* = {1, ...,l% -}, where [ can be multi-
dimension. Considering y in BEF task is single dimension
and currently published TSFMs mainly support univariate
forecasting (Mulayim et al., 2024), thus [ € R in this paper.

Curriculum Learning. Motivated by the feature of human
education, curriculum learning is a data-centric training
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Figure 2. Contrastive Learning model. Left: contrastive pairs con-
struction. Right: NN model design.

strategy in which an ML model is trained on samples of
increasing difficulty to smooth the training process and get
better performance (Wang et al., 2021). The two subtasks
are: a Difficulty Measurer to measure and rank the difficulty
of samples; and a Training Scheduler to decide the sequence
of samples throughout the training process.
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Contrastive Learning. Contrastive learning is to learn an
embedding space to represent data samples, in which similar
samples are grouped closer while dissimilar samples are
pushed apart. The core is to construct positive pair (u, u™)
and negative pair (u,u ™) for an anchor sample u, i.e., to
define the similarity, based on which to train the NN-based
encoder with a contrastive loss function.

3. Methodology

Problem statement: given a pre-trained TSFM M, the exist-
ing/available BEF datasets D = {Dyrqin, D}, qin > Where
Dirain = {u} is the real-world dataset, Dj,. ., = {u'} is
the simulated dataset, and % < 1. Our objective is to

adapt M to a new M’ using D, to minimize the loss of M’
under zero/few-shot settings.

We propose a new Contrastive-aware Curriculum Learning
(CCL) method to schedule the training process of M on D,
with samples ordered as easy-to-difficult which is a common
paradigm for ML model training, for example, (Wang et al.,
2023) schedules the images from blur to clear to train the
model. A unique challenge in our scenario is to measure
the difficulty of the simulated data. We leverage contrastive
representation to cope with this challenge, and the difficulty
measurer and training scheduler are presented as follows.

3.1. Contrastive-aware Difficulty Measurer

The design of the difficulty measurer is usually based on
model performance or data pattern analysis. Considering
that the curriculum is for adapting an existing TSFM M,
which has been pre-trained with various knowledge and
patterns, we can directly make inference with the TSFM
and use the performance as the difficulty score of samples
in the real-world dataset Dyyqin (Eq. 3.1). Here, L(,")
denotes the prediction error.

D./\/l(u) = E(M(I),y),

For the simulated dataset D}, ,,.,, the key challenge is that

the difficulty measurer for u is not suitable for v’ because
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L(M(z),y") introduces bias. We then leverage contrastive
learning to predict the TSFM comprehension on the repre-
sentation of u” and hence to determine the difficulty. We first
define TSFM comprehension and contrastive pairs, based
on which we introduce the contrastive model and how to
estimate the difficulty of u’.

Definition 3.1. TSFM comprehension on samples. Let
Cm(ur,uz) = [Dpm(ur) — Da(uz)] € R be the com-
prehension of a pre-trained TSFM M on two real sample
u; and ug. Less value denotes a similar comprehension of
M on u; and u», and vice versa.

Definition 3.2. Contrastive pairs. We define positive and
negative contrastive pairs for real u based on the value of
Cum(+, +). Given an anchor u, the pair (u, u™) is positive if
Cum(u,u™) < 6 since M shows similar comprehension on
the two samples; otherwise, the pair is negative, as (u,u ™).

Note that, contrastive pairs construction relies solely on real
{u} and we set ¢ to 0.01 based on our experimental analysis.
It is a typical phenomenon that two dissimilar samples,
which appear dissimilar in terms of time-series patterns
(e.g., as measured by DTW similarity), may correspond to
a similar TSFM comprehension, indicated by a low value
of Caq(+,+). This is related to the uncertain knowledge
encapsulated by the TSFM.

The right part of Figure 2 shows the design of our con-
trastive learning model f. Considering the huge amount
of negative pairs, we leverage the classical memory bank
structure and adopt temporal convolutional network (TCN)
as the encoder since it can be trained efficiently and shows
superior performance in capturing daily and weekly season-
ality, which are major temporal patterns in building energy
time-series. As shown in Eq. 3.1, we apply InfoNCE loss
(Oord et al., 2018) and introduce the value of Crq(u, ug) as
the weight wj, of negative pairs. Here, u;, u;, are positive
and negative samples of u, sim(-, ) calculates the cosine
similarity between each pair of data embeddings, and 7 is a
scaling parameter. After training f, we obtain the difficulty
of a simulated sample u’ through Eq. 3.1.

ST exp(sim(f(u), f(u;))/7)
S wr - exp(sim(f(u), f(ur))/7)

Dpm(u') = Dp(arg min (sim(f(u), f(u))))

UEDirain

L = —log

3.2. Training Scheduler

After measuring the difficulty of samples, we leverage a lin-
ear continuous scheduler to select training samples at each
epoch. Specifically, samples are first sorted by their diffi-
culty. Then, a function A\(t) = min(1, \g+(1—X0)-t/Tgrow)
decides the percentage of the easiest samples to be used at
the ¢-th epoch, where )y denotes the initial percentage of
the easiest samples for training and Ty is the epoch when

A(t) grows to 1. Then, let D = {v; }?;, the training set at

the t-th epoch is given by D, = {vi}?:i(t).

4. Evaluation
4.1. Methodology

TSFMs. We adopt two product-level TSFMs, which are
Tiny Time Mixer (TTM) (Ekambaram et al., 2024) from
IBM and Chronos (Ansari et al., 2024) from Amazon, for
adapting to BEF tasks®.

Datasets. Simulated and real-world public building en-
ergy datasets are used for experiments: (1) Buildings-900K
(Emami et al., 2023). This dataset contains hourly energy
consumption time-series from 900k simulated buildings
over two years. (2) Building Data Genome Project (BDG)
(Miller et al., 2020). This project aggregates 19 real-world
building energy datasets from different locations around the
world (totaling 1,636 buildings), where hourly energy meter
data over a two-year period are collected for each building.
(3) UCI Electricity (Trindade, 2015). This dataset collects
electricity consumption data from 370 houses for four years,
sampled at 15-minute interval.

Baselines & Metrics. We compare the TSFMs fine-tuned
with our method (denoted as TSFM+CCL-FT) against: (1)
the original pre-trained TSFMs (denoted as TSFM); and
(2) the TSFMs directly fine-tuned without our method (de-
noted as TSFM+FT). Besides, we adopt three state-of-the-
art time-series forecasting models adopted in BEF field
for comparisons: LSTM (Chitalia et al., 2020) (a classical
RNN architecture for handling sequential data), Autoformer
(Jiang et al., 2022) and Temporal Fusion Transformer (TFT)
(Giacomazzi et al., 2023) (two transformer-based models
tailored for time-series forecasting). We use CV-RMSE for
performance evaluation, a standard metric in BEF tasks.

Setup. We select five datasets from BDG together with
the UCI dataset as the evaluation set since they cover most
building types and climate conditions. In zero-shot setting,
all data from the target building are used for testing. In
few-shot setting, 10% of data are used for training and the
remaining 90% of data are used for testing. The other 15
datasets from BDG and the simulated dataset Buildings-
900K are used for TSFMs fine-tuning. The number of fine-
tuning steps is set to 1000. The look-back window length
and forecast horizon is set by default values of TSFMs
during fine-tuning.* For evaluation, we set three forecast
horizons, i.e., 24, 96, 192, as TSFMs can adapt to different
horizons. The experiments are conducted on a Linux server
with two NVIDIA GeForce RTX 4090 24GB GPUs.

3TTM-5M and Chronos-710M.
4512-96 for TTM and 512-64 for Chronos.
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Table 2. Performance comparison (CV-RMSE, lower is better) under zero-shot and few-shot forecasting settings. Improvement ratio of
fine-tuned TSFMs as compared to original pre-trained TSFMs is shown at the last row.

Forecast Zero-shot setting Few-shot setting
Dataset horizon TSFM: TTM-5M TSFM: Chronos-710M TSFM: TTM-5M TSFM: Chronos-710M
Original +FT  +CCL-FT | Original +FT  +CCL-FT | Original +FT  +CCL-FT | Original +FT  +CCL-FT
24 0.2175  0.2234 0.1952 0.1852  0.1735 0.1636 0.2183  0.2101 0.1947 0.1717  0.1566 0.1588
BDG-Fox 9 0.2942 02551  0.2367 0.2201 02174  0.1918 02616 02536 0.2244 02131 02147  0.1841
192 0.3306  0.2725 0.2565 0.2570  0.2446 0.2291 0.2773  0.2673 0.2582 0.2554  0.2477 0.2224
24 0.3094  0.3023 0.2714 0.2095  0.2078 0.1936 0.3097  0.2942 0.2628 0.2018  0.2024 0.1843
BDG-Rat 96 0.4348  0.3687 0.3388 0.2468  0.2393 0.2033 0.3919  0.3624 0.3164 0.2294  0.2346 0.1996
192 0.4582  0.3949 0.3676 0.2772  0.2516 0.2486 0.4204  0.4007 0.3555 0.2549  0.2324 0.2283
24 02514 02446  0.2103 0.1635 0.1611  0.1525 02546 0.2382  0.2080 0.1572  0.1583  0.1445
BDG-Bear 96 0.3197  0.3009 0.2586 0.1919  0.1843 0.1860 0.3157  0.2996 0.2528 0.1739  0.1791 0.1718
192 0.3162  0.3291 0.2827 0.2010 0.2125 0.1847 0.3083  0.3198 0.2779 0.1918  0.1883 0.1709
24 0.2736  0.2705 0.2482 0.1781 0.1657 0.1554 0.2708  0.2683 0.2423 0.1586  0.1487 0.1420
BDG-Panther 96 0.3163  0.3068 0.2876 0.2154  0.1981 0.1612 0.3041  0.2852 0.2655 0.2039  0.1920 0.1464
192 03259 03175  0.2983 02227 02168  0.2037 03142 03146  0.2914 02056  0.1923  0.1848
24 0.3848  0.3322 0.2761 0.2262  0.2035 0.1713 0.2981 0.3173 0.2666 0.2215  0.1966 0.1683
ucI 96 03831 03415  0.2794 0.2564 0.2358  0.2106 03620 03376 0.2748 02425 02119 0.1937
192 0.4074  0.3684 0.2955 0.2759  0.2664 0.2488 0.3743  0.3506 0.2906 0.2587  0.2544 0.2402
Improvement ratio | - 78%1 183%1 | - 44%1  126%1 | - 34%1  149%1t | - 41% 1 127% 1t
0. w o4 e TTM —#— Chronos
Table 3. Performance comparison of TSFM+CCL-FT and SOTA Boso| =TT BB e 20 T i X e
o < 0.34-
forecasting models in BEF field. 30 - S o q&:"‘-
Dataset | LSTM _ Autoformer  TFT | TTM+CCL-FT _ Chronos+CCL-FT 80 = So2s .
BDG-Fox | 02797 03321  0.2259 0.2257 0.1884 oo = P P
BDG-Rat | 0.4132 03407  0.2176 03115 0.2040 N = Mot e
BDG-Bear | 04308 04116  0.2093 0.2462 0.1624 0 M ~Chronos 2% e mning o 100%
BDG-Panther | 0.2231 0.2506 0.3416 0.2664 0.1577 Fjgure 3. Comparison of CCL Figure 4. Comparison of differ-
uct 03592 0.1942 02125 0.2773 0.2007 .
method and the variant.

4.2. Performance Result

Overall performance. We evaluate our method and base-
lines in zero-shot and few-shot settings under three fore-
cast horizons in Table 2. Overall, TSEFM+CCL-FT con-
sistently outperforms TSFM and TSFM+FT in zero-shot
setting, with average improvements in CV-RMSE at 18.3%),
11.3% for TTM and 12.6%, 8.5% for Chronos. Similar
results are observed in few-shot setting where our method
surpasses baselines by 14.9%, 11.9% for TTM and 12.7%,
8.9% for Chronos. Besides, as CV-RMSE <0.3 is an indus-
trial requirement defined by ASHRAE (ASHRAE, 2002)
for deployable forecasting models, we observe that on each
dataset, there are cases where our method successfully re-
duces the error of pre-trained TSFMs to less than 0.3.

Next, we compare TSFM+CCL-FT with three state-of-the-
art baseline forecasting models. Here, TSFM+CCL-FT is
evaluated under few-shot setting while the baselines are first
trained using the first 50% of data from each test building
and then tested on the remaining 50% of data. As shown
in Table 3, we observe that Chronos fine-tuned with the
CCL strategy outperforms the best of baselines on almost
all datasets, with an improvement of 14.6% on average.
For TTM, although its performance is improved with our
method, it still lags behind the best baseline, particularly on
the BDG-Rat and UCI datasets.

Ablation Study. To take a closer look at the contribu-
tion of the designed contrastive-aware difficulty measurer
in our method, we implement a variant of our method

ent sizes of fine-tuning set.

named TSFM+CL-FT, which simply uses the performance
of TSFMs as difficulty for both real and simulated samples.
The zero-shot performance of our method and this variant
is compared in Figure 3. We observe that TSFM+CCL-FT
outperforms TSFM+CL-FT by 7.4% and 7.7% for TTM
and Chronos, respectively. With further analysis, we find
that TSFM+CL-FT is still better than TSFM-FT under the
same experiment setting, which validates the effectiveness
of curriculum learning in enhancing TSFMs adaptation.

Next, we study the effect of the size of fine-tuning set on
the performance of TSFMs. In Figure 4, we evaluate the
corresponding versions of fine-tuned TSFMs under vary-
ing proportion of fine-tuning set. The performance of the
original pre-trained TSFMs is included for reference. The
results indicate the superior performance of our method on
each setting. Specifically, we observe that the improvement
over baseline increases along with the size of fine-tuning
set from 2.9% to 13.2%. This implies the capability of our
method in handling a larger and more complicated dataset.

5. Conclusion

This work identifies a discrepancy between existing TSFMs
and the in-use performance of TSFMs in a specific domain:
building energy forecasting. To bridge this gap, we have in-
troduced a new curriculum learning-based training method
in this context, to identify the difficulty of both real-world
and simulated building data, and based on this to manage
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the order of train set during the process of TSFM adapta-
tion. The experiments show that the proposed curriculum
design can greatly improve the zero/few-shot performance
of company-level TSFM products.
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