

000 AUGMENTING INDUSTRIAL MAINTENANCE WITH 001 LLMS: A BENCHMARK, ANALYSIS, AND GENERAL- 002 IZATION STUDY

003 **Anonymous authors**

004 Paper under double-blind review

010 ABSTRACT

013 Monitoring the life cycle of complex industrial systems often relies on expertly
014 curated temporal conditions derived from sensor data, a process that requires sig-
015 nificant time investment and deep domain expertise. We explore the potential of
016 utilizing Large Language Models (LLMs) to generate context-aware and accurate
017 recommendations for maintenance based on their ability to reason and generalize
018 on temporal sensor conditions. To this end, we formulate a novel pipeline that
019 systematically converts human-authored symbolic conditions into a multiple-choice
020 question answer (MCQA) dataset. We apply our pipeline by creating DiagnosticIQ,
021 a 6,000+ MCQA dataset covering 16 different types of physical assets that represent
022 real-world maintenance use cases. We assess 19 state-of-the-art Large Language
023 Models (LLMs) with this dataset and create a leaderboard for the maintenance ac-
024 tion recommendation task. Furthermore, we evaluate and demonstrate the practical
025 utility of DiagnosticIQ in two key aspects. First, as a knowledge base to enhance
026 maintenance action recommendations, and secondly, as a fine-tuning resource to
027 fine-tune a specialized LLM that generalizes across previously unseen assets to
028 facilitate the rule creation process.

029 1 INTRODUCTION

031 Industrial complex equipments such as wind turbines, air handling units, and chillers require sig-
032 nificant domain expertise for appropriate and effective operations, maintenance and tuning. These
033 equipments are frequently deployed in operationally critical environments, such as health care orga-
034 nizations and large data centers where enhancing operational reliability and efficiency are critical.
035 To achieve this, many Industrial facilities have integrated automated monitoring systems such as
036 Internet of Things (IoT) solutions which continuously capture sensor data reflecting the operational
037 state of the equipment and the interconnected elements of the equipments. While these systems can
038 detect anomalies by monitoring predefined conditions, they generally provide limited guidance on
039 appropriate corrective actions once issues are identified.

040 Consider Bob, a facility manager responsible
041 for maintaining HVAC systems in a data center.
042 Bob configures rule-based alarms by ana-
043 lyzing sensor data and asset metadata, defin-
044 ing asset-specific logical conditions such as
045 Temperature $> 80^{\circ}\text{F}$ or Enthalpy $< 15 \text{ BTU/lb}$

046 Condition 1

047 Condition 2

048 that indicate potential faults (Figure 1). When
049 these conditions are met, alerts are automatically
050 triggered and sent to Alice, an operator, enabling
051 timely and coordinated actions, such as inspect-
052 ing broken valves, slipping, or misaligned belts.

053 At the center of this workflow lies the configura-
054 tion of recommended actions or inspection steps
055 deciding what to look for or what maintenance
056 should be performed once an alert is triggered.
057 Despite timely notifications of abnormal condi-
058 tions, determining the specific maintenance, repair,

059 Figure 1: Faults to Fixes: Operation Workflow
060 from Monitoring IoT Stream to Alarm Generation
061 to Actionable Maintenance Recommendations

054 or verification steps often exceeds Bob’s expertise. This challenge is magnified in operational
 055 environments where there is a variety of assets from different manufacturers, with different operating
 056 modes, equipped with hundreds of sensors, resulting in a vast number of conditions to monitor
 057 simultaneously. For each abnormal condition, identifying what to inspect or repair requires specialized
 058 knowledge of asset-specific failure modes and mechanical systems expertise typically gained through
 059 years of hands-on experience. Can LLMs help bridge this gap?

060 Recognizing this challenge, intelligent recommendation systems that translate complex sensor data
 061 into actionable maintenance steps are critical for effective industrial asset management. Use of
 062 LLMs in discovering rules in an automated manner from labeled operational data is demonstrated
 063 recently (Zhang et al., 2025b), and motivated in recent survey articles (Raza et al., 2025; Su et al.,
 064 2024). Clearly, this stream of work will help in industrial applications such as predictive maintenance
 065 and signal monitoring (Cook et al., 2019; Kanawaday & Sane, 2017; Beghi et al., 2016; Shah &
 066 Tiwari, 2018). However, the key step of connecting these discovered rules to actionable guidance
 067 for technicians remains unaddressed. Recent advances in language models offer promise for this
 068 *action recommendations* task (Zhong et al., 2024), determining the correct maintenance or repair
 069 actions following alarms but their systematic evaluation is hindered by a lack of realistic, standardized
 070 benchmarks.

071 To address this gap, we present DiagnosticIQ, a novel benchmark suite for industrial maintenance
 072 action recommendation. Grounded in real-world scenarios, this suite features a primary multi-choice
 073 question-answering dataset along with several variants, each designed to systematically evaluate a
 074 specific capability vital for LLMs in this domain, such as reasoning, generalization, and robustness.
 075 We further analyze a set of frontier models under these axes to establish a strong baseline revealing
 076 the current strengths and limitations of LLMs under this domain.

077 Our contributions are as follows:

- 079 • We formalize and implement a novel deterministic dataset generation pipeline that converts
 080 expert-authored symbolic rules into MCQA dataset
- 081 • We release DiagnosticIQ and its specialized variants, a first-of-its-kind benchmark dataset
 082 with about 6,690 MCQA, expertly validated, based on 120 operational rule-action pairs.
- 083 • We benchmark 19 large language models (including Claude, Gemini, GPT variants) and es-
 084 tablish a Maintenance Action Recommendation Leaderboard to foster community evaluation
 085 and progress.
- 086 • We systematically evaluate LLMs underaxes of Reasoning, Generalization, Robustness and
 087 demonstrate the utility of DiagnosticIQ as an external knowledge base as well as a finetuning
 088 resource for the task of maintenance action recommendation.

090 2 RELATED WORK

092 Building QA datasets in specialized domains has been an emerging trend across the board such
 093 as telecommunications (Lee et al., 2024), climate (Schimanski et al., 2024), finance (Chen et al.,
 094 2024), healthcare (Ray et al., 2024; Sviridova et al., 2024), IT operations (Zhang et al., 2024a), power
 095 plants (Hong et al., 2024), and scientific disciplines (Bhattacharjee et al., 2024). We review the most
 096 relevant papers with a particular focus on multi-choice QA, statistical and fine-tuning methods, rule
 097 generation and the role of domain experts.

098 Multi-Choice Question Answering (MCQA) has become a popular construct in the LLM world
 099 due to its ease of evaluation and closed form. This is evident from dozens of recent works such
 100 as TruthfulQA (Lin et al., 2022), GPQA (Rein et al., 2023), MMLUPro (Wang et al., 2024), Fail-
 101 ureSensorIQ (Constantinides et al., 2025), Multi-Modal QAs (Yi et al., 2025), and Multi-Modal
 102 AD (Jiang et al., 2025). For industrial domains with maintenance tasks, we have witnessed parallel
 103 efforts such as aviation safety QA (Zhang et al., 2025a) and log classification using taxonomy (Zhang
 104 et al., 2025a; Stewart et al., 2023). PHM-Bench (Yang et al., 2025b) is another parallel effort,
 105 focusing on code-generation-based PHM tasks across 18 asset classes, whereas our work targets
 106 temporally grounded operational conditions and the maintenance actions technicians actually take.
 107 These datasets are designed to evaluate various aspects of LLM/LVMs (and in some cases embedding
 models), such as common-sense reasoning, domain understanding, and multimodal context. The key

Figure 2: Example expert-curated rules and associated conditions/metadata for dataset construction.

difference lies in how these questions are generated in the first place (using existing documents or completely written by experts) and then validated by a domain expert if needed. We observed that the community has paid less attention to cases where **part of the question is presented as a rule**. ComplexBench (Wen et al., 2024) is closest to our work in term of instruction, as it highlights the importance of evaluating LLMs on their ability to follow complex instructions such as And, Selection, and Chain. However, it does not explicitly cover rules. As discussed in (Zhang et al., 2025b), rules encode domain knowledge effectively and benefit LLMs, and interestingly, many industrial monitoring systems utilize human-crafted rules for monitoring tasks. Therefore, we focus on building an MCQA dataset where the question part contains a rule.

Given an answer as part of the choices in MCQA, an LLM model may make a random selection and still achieve a favorable result. This limitation has motivated the research community to develop innovative statistical solutions and tools, such as validation tests (Zheng et al., 2024; Zhang et al., 2024c; Robinson et al., 2023), PertEval (Li et al., 2024a; Ye et al., 2024), and other approaches (Zhu et al., 2024). The development of new, unseen MCQA datasets has further benefited the community. Furthermore, MMLUPro has adopted a method of increasing the number of options from four to ten and demonstrated that this adjustment has a non-trivial impact. However, constructing a robust solution for such complex questions remains an open challenge, necessitating innovations such as the adoption of a recommendation-based module, as discussed in this paper.

Statistical analysis of MCQA datasets still requires an additional level of human or domain expert validation, particularly for mission-critical applications. In most domain-specific QA datasets, experts are employed to participate in the quiz to quantify the difficulty of the prepared questions. Very limited analysis has been conducted on truly exercising the validation of the LLM's reasoning abilities, such as in the medical domain (Sviridova et al., 2024). Evaluating the generated rationales/reasoning not only ensures correct answers but also builds confidence in the model's outputs. Unlike most prior studies, we examine whether LLMs generate accurate rationales alongside correct answers, evaluating explanations against end-user needs rather than relying solely on accuracy.

Operational rules are common in industrial domains, as demonstrated by Oracle's Maintenance Cloud Service (Oracle, 2025), but they require significant expert involvement (Zhang et al., 2025b). For many enterprise customers, smaller language models will be key, as they provide a practical way to embed domain-specific knowledge directly into the model. Methods such as Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) (Shao et al., 2024) have become key methods of this process, making generalization tests essential. Industrial settings often demand transferring rules written for one physical asset to another, further complicating the task. Despite the importance of these challenges, systematic comparisons in Industry 4.0 contexts remain limited, motivating our cross-asset knowledge transfer evaluation.

162 3 SYMBOLIC CONDITIONS TO MCQA

164 This section details our methodology, beginning with the introduction of our pipeline that systematically
 165 converts symbolic, human-authored rules into a MCQA format. We then describe its application
 166 in the domain of industrial asset maintenance to create our benchmark dataset, DiagnosticIQ. The
 167 generation pipeline consists of three primary stages: (1) parsing rule documents into structured
 168 representations, (2) converting these representations into Disjunctive Normal Form (DNF), and (3) Se-
 169 lecting sets of actions. Finally, we discuss the development of several variants of DiagnosticIQ, each
 170 tailored to evaluate a specific capability of LLMs such as their temporal reasoning and generalization
 171 that is critical for the maintenance recommendation task.

173 3.1 INPUT: EXPERT-CURATED RULE DOCUMENTS

175 The rule documents originated from the Smarter Buildings initiative, where Reliability Engineers,
 176 System Administrators, and a Rules Logic committee collaboratively developed and iteratively refined
 177 fault-detection logic across multiple equipment types (e.g., Air Handlers, Chillers, Boilers) over
 178 several years to expand coverage and maintain diagnostic accuracy. A detailed description of the
 179 rule development process is provided in Appendix E which is motivated from guideline (ASHRAE,
 180 n.d.). The pipeline generation process begins by extracting these expert-defined rules from the active
 181 monitoring system (Figure 2), where domain experts author the conditions that trigger maintenance
 182 actions. Each rule \mathcal{R}^i typically comprises three key components: (1) a set of **conditions** that must
 183 be satisfied for a specified duration (t^i) to activate the rule. Let $\mathcal{C}^i = \langle c_1^i, c_2^i, \dots, c_n^i \rangle$ be the set of
 184 atomic boolean conditions associated with it, where each c_j^i is a predicate over sensor readings or
 185 asset states (e.g., Temperature $> 80^{\circ}\text{F}$, Enthalpy $< 15 \text{ BTU/lb}$); (2) a set of **maintenance actions**
 186 for a rule ($\mathcal{O}^i = \{o_1^i, o_2^i, \dots, o_{N_O^i}^i\}$ where N_O^i represents the total number of actions), hypothesized
 187 for verification once triggered; and (3) **metadata** including rule id (*rule_id*), rule name, asset type
 188 *asset_type* (e.g., Air Compressor, Boiler), rule description, and estimated cost savings (in dollars)
 achieved by applying rule (\mathcal{C}^i).

189 From the domain documentation, we extract and assemble these conditions (\mathcal{C}^i) into a structured
 190 logical formula, referred to as a *condition tree* \mathcal{TR}^i . This tree is a boolean expression constructed
 191 from \mathcal{C}^i using logical operators \wedge (AND), \vee (OR), and optionally \neg (NOT). Formally: i) Each leaf
 192 node in \mathcal{TR}^i corresponds to an atomic condition c_j^i , ii) Internal nodes represent logical operators
 193 from the set $\{\wedge, \vee, \neg\}$, iii) The root node evaluates to True if the entire condition tree is satisfied
 194 given the current sensor state. Given the above formulation, we define a rule \mathcal{R}^i as the tuple:

$$195 \mathcal{R}^i = (\text{rule_id}, \text{asset_type}, \mathcal{TR}^i, \mathcal{O}^i, \mathcal{C}^i, t^i)$$

197 We denote the collection of expert-written rules denoted as $\mathcal{DS}_{\mathcal{R}} = \{\mathcal{R}^i\}_{i=1}^{N_{\mathcal{R}}}$, where $N_{\mathcal{R}} = 120$.
 198 The rules span several asset types (10+) listed in Table 6. Table 6 summarizes, for each asset type,
 199 the number of rules (#Rules), the number of disjunction operators (# \vee), the total number of atomic
 200 conditions (# \mathcal{C}), and the number of observations. The count of disjunctions (# \vee) is particularly
 201 informative, as it reflects the branching complexity within the condition trees \mathcal{TR}^i , enabling us to
 202 sample a diverse range of conditions to which each rule \mathcal{R}^i applies.

203 To provide additional context on these industrial assets, we developed concise descriptions (Desc) for
 204 each asset type in collaboration with industry experts (Appendix Table 10). These descriptions are
 205 incorporated into the question-generation process to improve the relevance and clarity of the dataset.

207 3.2 QA GENERATION PIPELINE

209 We design two primary types of diagnostic questions to evaluate a language model’s reasoning
 210 capabilities under varying constraints. The first type requires the model to identify the **most relevant**
 211 option given the Question Conditions QC , testing its ability to prioritize the most probable root cause
 212 based on domain-specific knowledge. The second type requires selecting the **least relevant** option,
 213 challenging the model to distinguish between superficially similar answers and recognize when a
 214 condition-action mapping is unsupported by the available evidence. We refer to these question types
 215 as **selection** and **elimination**, respectively. Prior to question generation, we compute the following
 metadata to support dataset construction:

216 **i) Rule-Rule Similarity (RRSim):** For each rule \mathcal{R}^i , we construct a textual representation of its
 217 condition tree \mathcal{TR}^i based on expert-authored documentation. We then generate embeddings for these
 218 texts and calculate pairwise cosine similarity scores across all rules. This metric enables sampling of
 219 semantically similar or diverse rules when constructing questions.

220 **ii) Unique Observations (UO):** We manually curate and categorize observations/actions across the
 221 rule set $\mathcal{DS}_{\mathcal{R}}$ to identify a universal set of unique observations. These form a candidate pool for
 222 selecting answer options. At present, $|UO| = 193$ and average length of each observation is around
 223 20 (See Appendix 9 for distribution).

225 3.2.1 QUESTION-ANSWER STRUCTURE

227 Each question Q^i in the dataset is represented as a tuple (AD, QC, QP, OPT, A) , where AD denotes
 228 the asset name along with its description obtained from Desc, QC specifies the observed conditions
 229 exhibited by the asset in the context of the question, QP represents the question prompt; further
 230 details on its construction are provided below, OPT is the set of answer options around 4 or 10. and
 231 A indicates the ground-truth correct answer for the question (Single true in at present).

232 3.2.2 RULE REPRESENTATION TO DISJUNCTIVE NORMAL FORM (DNF)

234 The QA generation procedure is summarized in Algorithm 1 (Appendix N). For each rule \mathcal{R}^i , we
 235 first convert the condition tree \mathcal{TR}^i into its *Disjunctive Normal Form (DNF)* that is, a disjunction
 236 (OR) over conjunctions (ANDs) of atomic conditions:

$$237 \mathcal{TR}_{\text{DNF}}^i = \bigvee_{k=1}^K \left(\bigwedge_{j=1}^{m_k} c_{kj}^i \right)$$

241 Each conjunctive clause in this DNF represents a *complete and specific observation pattern* sufficient
 242 to activate the rule \mathcal{R}^i . This formulation allows us to consider K distinct conjunctions that satisfy
 243 $\mathcal{TR}_{\text{DNF}}^i = \text{True}$.

244 For example, consider a rule \mathcal{R}^0 with atomic conditions: $c_1 = (\text{Preheat Valve\%} \geq 5\%)$, $c_2 =$
 245 $(\text{Heating Valve\%} \geq 5\%)$ and $c_3 = (\text{Heating Drained Flag} = 1 \text{ if reporting})$ let the condition tree be
 246 $\mathcal{TR}^0 = (c_1 \vee c_2) \wedge c_3$ and the and its DNF form $(c_1 \wedge c_3) \vee (c_2 \wedge c_3)$. Each conjunction, $(c_1 \wedge c_3)$ and
 247 $(c_2 \wedge c_3)$, is treated as a distinct, fully instantiated observation scenario, which is used as a unique QC
 248 for generating a question. This systematic transformation ensures that each QA instance is grounded
 249 in logically valid asset state combinations, reflecting domain expert reasoning and enabling scalable,
 250 interpretable dataset construction.

252 3.2.3 SELECTING SETS OF ACTIONS

254 Next, we select observation combinations to construct the answer options for both *selection* and
 255 *elimination* question types. For *selection*-type questions (extracted_obs_sel in Algorithm 1), we
 256 identify candidate incorrect options by retrieving the $N_{\text{sel_topk}}$ least similar rules to \mathcal{R}^i using **RRSim**
 257 and collecting their observations, denoted as $INC^i = \{inc_j^i\}_{j=1}^{N_{\text{inc}}}$. We then generate answer tuples
 258 $\{(QP_j^i, OPT_j^i, A_j^i)\}_{j=1}^{N_{\text{sel}}}$ by:

- 259 (1) Selecting each $o_j^i \in \mathcal{O}^i$ as the correct option, (2) Random sample α incorrect options $\in INC^i \setminus \mathcal{O}^i$,
- 260 (3) Composing the prompt QP_j^i , which is drawn randomly from a pool of N_{QT} question templates.

262 For *elimination*-type questions (extracted_obs_el1 in Algorithm 1), the correct options correspond
 263 to observations that do not belong to \mathcal{R}^i . Specifically, we retrieve the $N_{\text{ele_topk}}$ least similar rules to
 264 \mathcal{R}^i using **RRSim** and collect their observations, denoted as $COR^i = \{cor_j^i\}_{j=1}^{N_{\text{cor}}}$. We then randomly
 265 sample $\min(N_{\text{cor}}, \beta)$ observations from COR^i as correct options. For each correct option, we
 266 construct a question by pairing it with incorrect options sampled from \mathcal{O}^i , ensuring the elimination
 267 task challenges the model to identify irrelevant actions in the context of the given conditions.

268 α and β are hyperparameters controlling the number of questions per rule. Larger values increase
 269 question count but reduce diversity, while smaller values enhance uniqueness but limit coverage.

270 4 DIAGNOSTICIQ
271

272 We apply the pipeline described in 3 on 120 ex-
273 pert curated rules to create DiagnosticIQ. we set the
274 hyperparameters $N_{sel_topk} = 25$, $N_{eli_topk} = 25$,
275 $N_{QT} = 10$, $\alpha = 10$ and $\beta = 10$ during the creation
276 process. The final dataset contains 6690 questions,
277 with asset composition detailed in Figure 3. Selection-
278 based questions make up 77.4% of the dataset, com-
279 pared to 22.6% elimination questions. As shown in
280 Figure 3 the majority of QA instances focus on AHU
281 related scenarios (58.2%), followed by Chiller and
282 Fan (5.9%)

283 The predominance of selection-type questions arises
284 from the limited sample space for generating incor-
285 rect options in elimination questions, which rely on
286 the set \mathcal{O}^i for a given \mathcal{R}^i . Although this imbalance
287 could be adjusted by setting $\alpha \ll \beta$, as previously
288 discussed, doing so risks generating many similar elimination questions, ultimately reducing the
289 diversity of the dataset.

290 The dataset intentionally reflects a real-world class imbalance, with a majority of rules pertaining to
291 Air Handling Units (AHUs), as shown in Figure 3. We preserve this skew rather than resampling
292 to accurately model operational priorities. Furthermore, while 'selection' questions have a fixed
293 size of 10 options, 'elimination' questions feature a variable number of choices. This is because the
294 incorrect options for elimination questions are drawn from the smaller, contextually relevant pool of
295 alternatives available within the original source rule.

```

296 1 {
297 2     "AD": "Closed-loop water-cooled chiller system with cooling tower.",
298 3     "QC": ["Chiller Running", "Evaporator Delta T < 7degF",
299 4         "Cooling Tower Supply Temp < Setpoint - 4degF", "OAT > 43degF"],
300 5     "QP": "Given the observed conditions, what is the most likely root cause?",
301 6     "OPT": ["(A) Cooling tower is overcooling condenser water",
302 7         "(B) Chiller evaporator is fouled",
303 8         "(C) Supply water pump is cavitating",
304 9         "(D) Building load is too low"],
305 10    "A": "(A)"
306 11 }
```


Figure 3: DiagnosticIQPro Composition by Asset/Number of Options/Question Type

306 Listing 1: DiagnosisIQ QA Instance for Chiller–Tower Case
307

308 4.1 VARIANTS
309

310 We tweak DiagnosticIQdataset to create several variants that test LLMs under different conditions.

311 **(1) DiagnosticIQPro** : We features a wider range of answer choices, with 10-option (increasing α
312 and β up to 10) questions constituting the majority (77.4%), thereby increasing dataset complexity
313 (Figure 3). This distribution aligns with both practical asset relevance and intentional design decisions
314 to balance diagnostic depth with question difficulty.

315 **(2) DiagnosticIQPert** : We Perturb MCQ in DiagnosticIQ utilizing PertEval benchmark (Li et al.,
316 2024a) (Appendix N.3). We use this dataset to evaluate robustness against formatting.

317 **(3) DiagnosticIQRationale** : We develop a dataset that has the rationale the LLM follow to arrive at
318 the answer for MCQA questions, this is used to conduct human evaluation of the expert knowledge
319 an LLM posses in the domain of maintenance recommendation. Further we utilize this for finetuning
320 for the generalizability study.

322 **(4) DiagnosticIQVerbose** : To identify the effect of presenting QC in natural language, we develop
323 a variant of DiagnosticIQ that converts the symbolic representation of QC to natural language. The
procedure for conversion can be found in (Appendix N.4)

324

325

Table 1: Leaderboard: DiagnosisIQ and Pro. (* indicates closed source models)

Rank	Model	Macro. IQ	Macro. +Pro	Diag IQ	+Pro
1	claude-3-7-sonnet*	70.61	56.63	72.66	53.80
2	deepseek-v3	67.02	41.38	67.89	35.80
3	o1*	65.41	24.79	70.22	26.11
4	mistral-large	63.15	41.13	65.52	36.50
5	qwen2-5-72b-ins.	61.22	35.91	63.09	32.93
6	llama-3-3-70b-ins.	61.67	36.56	60.33	32.27
7	mistral-small-3-1-24b	61.17	33.79	60.15	28.42
8	mistral-medium-2505	60.34	35.36	61.43	30.16
9	granite-3-3-8b-instruct	59.45	42.39	57.26	31.43
10	gemini-2.0-flash*	57.64	26.65	54.63	20.82
11	llama-3-1-405b-ins.	56.56	38.82	59.03	35.58
12	gemini-1.5-pro*	53.14	24.72	65.44	27.77
13	microsoft-phi-4	50.52	31.35	47.50	23.99
14	claude-3-5-haiku*	46.93	17.72	44.41	15.55
15	llama-3-1-8b-ins.	38.69	18.80	36.70	12.89
16	claude-4-sonnet*	62.52	33.44	68.15	32.99
17	gemini-2.5-pro*	57.59	37.51	63.44	38.85
18	gpt-5-2025-08-07*	65.89	40.69	67.79	40.39
19	qwen3-8b	46.21	19.70	43.41	14.65

344

5 EXPERIMENTAL RESULTS

We perform a direct zero-shot prompting of the generated questions to assess the reasoning capacity of the LLMs (representative examples are provided in Appendix Figure 8). Our evaluation identifies areas of underperformance under zero-shot conditions. For evaluation we consider the Accuracy and the Macro-Accuracy as the main evaluation metrics. We utilize the Macro accuracy as DiagnosticIQ has a Asset class imbalance and will be used. Accuracy as $\text{Acc} = \frac{1}{|D_Q|} \sum_{x \in D_Q} \mathbb{1}[M(q(x)) = y_x]$ and Macro accuracy as $\text{Acc}_{\text{macro}} = \frac{1}{|A|} \sum_{a \in A} \frac{1}{|D_a|} \sum_{x \in D_a} \mathbb{1}[M(q(x)) = y_x]$ where $q(x)$ is the generated prompt, $M(q(x))$ the model’s response, $\mathbb{1}[\cdot]$ the indicator function returning 1 for correct predictions and 0 otherwise, D_Q represents the whole dataset, A is the set of assets and D_a represents the questions belonging to asset class a .

357

358

5.1 LEARDERBOARD

359

The comparative results in Table 1 show Claude-3-7-Sonnet achieving the highest Macro accuracy on both tasks (70.61% on DiagnosisIQ and 56.63% on DiagnosisIQPro), with larger models like Mistral-Large also performing well, while smaller models such as LLaMA-3-1-8B lag behind, indicating a clear correlation between model size and performance. These findings establish a strong baseline, revealing that general-purpose LLMs struggle with reasoning about sensor conditions in industrial settings, and the sharp drop in accuracy on DiagnosisIQPro highlights the challenge of larger, realistic action spaces. Overall, the leaderboard demonstrates a pronounced performance gap favoring larger models and underscores the critical need for domain-specific knowledge integration to enable effective real-world industrial diagnostics.

368

Apart for Claude-3-7-Sonnet, the performance of all remaining 10 models on the DiagnosisIQPro dataset is below 45%, revealing a surprising gap on this complex task and underscoring the universal need for improvement in handling industrial diagnostic reasoning. A detailed analysis in Appendix Tables 15 and 16 shows that, across model families, incorrect predictions consistently exhibit larger set-size deviations than correct ones, indicating systematic differences in error severity.

374

375

376

377

Embedding-based Baselines. To establish non-generative baselines, we evaluate several widely used sentence-embedding models. Each MCQA item consists of a question stem (text concatenation of AD , QC , QP) and a set of candidate options. For every question, we compute embeddings for both the question and each answer choice using a given model, and select the predicted answer by maximizing cosine similarity between the question embedding and each option embedding. This

378 retrieval-based formulation provides a simple and assumption-free baseline that does not rely on
 379 task-specific training.
 380

381 Table 2 summarizes performance across four embedding models. The best-performing model,
 382 `all-mpnet-base-v2`, reaches a $\text{Acc}_{\text{macro}}$ of 52.73% and accuracy of 41.39%. Although lightweight
 383 models such as `all-MiniLM-L6-v2` and `all-distilroberta-v1` achieve similar results, the overall
 384 accuracy remains only modestly above chance for multi-option MCQA. These same embedding
 385 models were used in our dataset construction pipeline to select distractor options. Their limited
 386 performance therefore reinforces a key design insight: semantic similarity alone is not sufficient
 387 for reliably solving our MCQA tasks. This further highlights the difficulty of the benchmark and
 388 motivates the need for more advanced reasoning-capable LLMs and agentic approaches.
 389

390 Table 2: Embedding-based baseline performance on MCQA tasks.

391 ID	392 Model	393 Macro.	394 DiagIQ	395 Macro +Pro	396 DiagIQ	397 +Pro
398 1	399 <code>all-mpnet-base-v2</code>	400	401 52.73	402	403 38.89	404 41.39
405 2	406 <code>all-MiniLM-L6-v2</code>	407	408 52.65	409	410 37.76	411 41.32
413 3	414 <code>multi-qa-mpnet-base-dot-v1</code>	415	416 51.43	417	418 37.53	419 38.93
422 4	423 <code>all-distilroberta-v1</code>	424	425 51.29	426	427 36.98	428 38.53
431	432	433	434	435	436	437 23.47

405 Figure 4: The Accuracy variation across varies industrial assets for claude-3-7-sonnet
 406

407 **Asset-wise Analysis** We select Claude-3-7-sonnet from the leaderboard for asset-wise analysis.
 408 Figure 4 shows asset-wise accuracy comparisons, revealing consistently higher accuracy on assets
 409 like UPS (100.0%) and HXU (86.3%) in DiagnosisIQ, but analysing DiagnosisIQPro considerably
 410 drops overall, where HXU drops by -19.4% (to 66.9%). Further for CRAC (-11.2%), Cooling Tower
 411 (-27.0%), and Pump (-21.5%). These results highlight the model’s domain sensitivity, with some
 412 assets maintaining robust performance, and expose a reasoning complexity gap, where accuracy
 413 declines sharply in more challenging, multi-condition scenarios.

415 **Question type wise Analysis.** Figure 11 compares model accuracy on selection and elimination tasks
 416 across both datasets. Elimination consistently yields higher accuracy (e.g., Mistral-Large achieves
 417 71.0% on elimination-DiagnosisIQ vs. 63.9% on selection-DiagnosisIQ). However, the performance
 418 drop from DiagnosisIQ to DiagnosisIQPro is more pronounced for selection questions (Mistral-
 419 Large drops from 63.9% to 28.9%) than for elimination questions (71.0% to 62.6%), indicating that
 420 compositional reasoning in complex scenarios is particularly challenging when models must select
 421 the most relevant option. The same patterns seems to be consistently shown in multiple models.

422 **Robustness Against Perturbation.** MCQA
 423 datasets inherently contain bias due to planted correct
 424 answers. To assess this, we applied perturbation
 425 analysis on DiagnosisIQ using the PertEval
 426 benchmark (Li et al., 2024a) (Appendix N.3), gen-
 427 erating perturbed questions and measuring accuracy
 428 (Acc) on both original and perturbed sets. Consis-
 429 tency accuracy was computed as $\text{Acc}@\text{Consist} = \frac{1}{|\mathcal{D}_Q|} \sum_x C(x) \wedge C_{\text{perturb}}(x)$, where $C_{\text{perturb}}(x)$ indi-
 430 cates correct predictions on perturbed prompts. Ta-
 431 ble 3 reports Acc@Perturb, perturbation drop rate
 432 (PDR), and Acc@Consist, highlighting variation in model robustness to question perturbations.

433 Table 3: PertEval, Significant ** ($\alpha = 0.01$)

434 Model	435 Acc@Per.	436 PDR	437 Acc@Con.
llama-3-3-70b	66.77	0.11**	52.30
deepseek-v3	66.70	-0.02**	57.66
qwen2-5-72b	62.61	-0.01	52.28
llama-3-1-405b	60.66	0.03**	48.09
mistral-medium	60.00	-0.02**	49.45
mistral-large	57.39	-0.12**	49.92
micro.-phi-4	45.36	-0.04**	32.00
llama-3-1-8b	44.03	0.20**	23.01

Figure 5: The expert rating for reasoning under mistral-large

5.2 EVALUATING DOMAIN UNDERSTANDING AND REASONING

To assess the domain understanding and reasoning patterns of LLMs, we conducted a human evaluation of the rationales they generate for maintenance recommendations. We prompted Mistral-Large to provide its reasoning given a question and correct answer on a representative sample of 27 questions from DiagnosticIQ (example rationale Fig. 12 and 13), ensuring at least one question from each asset type. We explicitly provide the correct answer as we are specifically evaluating whether the reasoning patterns of an LLM can match a domain expert. We then had five domain experts rate each generated rationale on a scale of 0 (incorrect) to 10 (expert-level quality).

As shown in Figure 5, the analysis reveals that the model’s reasoning generally aligns with expert reasoning, supporting its potential to augment maintenance tasks. However, for certain assets (e.g., PDU, Pump, Boiler), we observe inter-rater disagreement, with expert feedback indicating differing expectations on the required granularity of the explanation. Furthermore, the model consistently scored lower among evaluators on the Plate & Frame HX asset, with experts expressing that the rationales lack the nuanced operational knowledge required, signifying a potential knowledge gap for that specific equipment type. These concerns must be addressed when deploying LLMs in this task.

5.3 GENERALIZABILITY STUDY

Transfer learning between different assets shows promising results in industrial automation (Maschler & Weyrich, 2021) for tasks such as fault prediction or anomaly detection. However, transfer learning of rules between different industrial assets is an interesting direction that has not been studied. We consider Qwen3-8B (Yang et al., 2025a), Llama-3.1-8B-Instruct (Dubey et al., 2024), and Granite-3.3-8B-Instruct (Granite Team, 2024). To avoid any data leakage, the split is stratified by asset. To account for the imbalance in the questions per asset (Figure 3), we consider two splits: AHU and the rest of the assets. For each model we finetune on each split and test on the other split. We use Supervised Fine-Tuning (SFT) and GRPO. Overall, the rule learning is transferable across assets, with Qwen3-8B being the best performing model both with and without SFT. More details on model specific prompt formatting in Appendix Section I. As shown in Table 4, both SFT and GRPO fine-tuning consistently improve micro and macro accuracy compared to base models across the AHU/Other splits. While SFT shows strong gains for Qwen3, GRPO tends to perform better on Llama3.1 and Granite3.3, indicating model- and data-specific benefits.

5.4 CONDITION FORMATTING STUDY

We investigate effect converting the temporal conditions into natural language as a pre-processing step as in (Zhang et al., 2025b). We utilize the Macro accuracies of the DiagnosticIQVerbose dataset (dataset creation details can be found in Appendix N.4) and the difference in Macro accuracy of DiagnosticIQ and DiagnosticIQVerbose (Δ Macro Accuracy) for this and compare the effectiveness of the formatting. We present our findings in 8. We identify that the Macro accuracies drop on almost all models which shows the symbolic understanding the LLMs possess atleast in the domain of physical asset maintenance.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 4: SFT/GRPO experiments on training/testing AHU/Other splits. Micro accuracy is reported in AHU/Other, along with the overall Macro accuracy.

Model (8B)	Setting	AHU	Other	Macro
Llama3.1	Base	50.88	44.52	48.61
	SFT	52.31	56.44	54.09
	GRPO	52.95	61.76	61.45
Qwen3	Base	56.47	66.85	61.63
	SFT	68.89	80.28	72.12
	GRPO	55.27	64.76	64.49
Granite3.3	Base	59.02	56.58	59.99
	SFT	58.79	59.61	59.40
	GRPO	54.94	63.76	63.56

Table 5: MAReE MAP@K with number of examples from DiagnosticIQ

5.5 MAINTENANCE ACTION REC. ENGINE

We present **Maintainance Action Recommendation Engine (MAReE)**, a deployed application leveraging DiagnosticIQ to recommend maintenance actions based on abnormal conditions defined by subject matter experts (SMEs). MAReE employs **LLM-Score**, which assigns relevance scores to candidate actions. We evaluate MAReE on 11 new SME-authored rules with ground truth actions, varying $k \in \{1, 3, 5, 10\}$ and measuring MAP@K (Mean Average Precision at k), indicating whether the ground truth action appears in the top- k recommendations. For each rule, 10 candidate actions are dynamically sampled using an embedding model to create realistic and challenging evaluation scenarios. Results in Figure 5 show that 3-shot prompting achieves the highest MAP@10 score (49.84%), outperforming zero-shot and other shot counts, while MAP@K scores for $K > 1$ fluctuate without a clear trend, suggesting that increasing example count does not consistently improve recall beyond the top prediction, though few-shots beat the zero-shot at any k . Detailed system prompt is available in Appendix 10.

6 CONCLUSION AND LIMITATIONS

This paper addresses the gap of systematic evaluation of LLMs on maintenance action recommendation in the industrial setting. We develop a generic pipeline that systematically converts symbolic, human-authored rules into an MCQA format. Utilizing our pipeline we introduce DiagnosticIQ and its variants designed to benchmark the ability of utilizing LLMs to recommend maintenance actions. We benchmark 15 leading LLMs, establishing the first standardized leaderboard for this task. Our analysis systematically evaluated model reasoning, generalization, and robustness, providing a clear baseline for the community.

Our work confirms the potential of LLMs as a powerful tool in this domain and provide resources for further developing reliable industrial AI. However, we acknowledge a few key limitations and future directions of research. The industrial domain includes over 800 asset types, but our current study covers only a limited subset again due to the extensive amount of time being spent (nearly 120 days using 3-4 SMEs) on writing each pair of condition-rule and action. We plan to expand assets coverage to improve robustness and mitigate potential biases due to LLM familiarity with specific assets. Furthermore, although our dataset generation pipeline is generic and applicable to other domains such as business process management and cloud resource monitoring our experiments so far focus on Industry 4.0. Extending this approach to additional domains remains an important future direction. We envision this work as foundational step towards more sophisticated assistive tools that augment rule creation as a whole and automated asset monitoring. The MAReE experiments underscore the need for more advanced methods or finetuned models to reliably address this task.

540 REFERENCES
541

542 Renat Aksitov, Sobhan Miryoosefi, Zonglin Li, Daliang Li, Sheila Babayan, Kavya Kopparapu,
543 Zachary Fisher, Ruiqi Guo, Sushant Prakash, Pranesh Srinivasan, Manzil Zaheer, Felix Yu, and
544 Sanjiv Kumar. Rest meets react: Self-improvement for multi-step reasoning llm agent, 2023. URL
545 <https://arxiv.org/abs/2312.10003>.

546 ASHRAE. Standards and guidelines. <https://www.ashrae.org/technical-resources/standards-and-guidelines>, n.d. Accessed: 2025-11-20.

547 A Beghi, R Brignoli, Luca Cecchinato, Gabriele Menegazzo, Mirco Rampazzo, and F Simmini.
548 Data-driven fault detection and diagnosis for hvac water chillers. *Control Engineering Practice*,
549 53:79–91, 2016.

550 Sathvik Bhaskarpandit. Wind power forecasting, 2020. URL <https://www.kaggle.com/datasets/theforcecoder/wind-power-forecasting/data>.

551 Bishwaranjan Bhattacharjee, Aashka Trivedi, Masayasu Muraoka, Muthukumaran Ramasubramanian,
552 Takuma Udagawa, Iksha Gurung, Nishan Pantha, Rong Zhang, Bharath Dandala, Rahul
553 Ramachandran, Manil Maskey, Kaylin Bugbee, Michael M. Little, Elizabeth Fancher, Irina
554 Gerasimov, Armin Mehrabian, Lauren Sanders, Sylvain V. Costes, Sergi Blanco-Cuaresma,
555 Kelly Lockhart, Thomas Allen, Felix Grezes, Megan Ansdell, Alberto Accomazzi, Yousef El-
556 Kurdi, Davis Wertheimer, Birgit Pfitzmann, Cesar Berrospi Ramis, Michele Dolfi, Rafael Teixeira
557 De Lima, Panagiotis Vagenas, S. Karthik Mukkavilli, Peter W. J. Staar, Sanaz Vahidinia,
558 Ryan McGranaghan, and Tsengdar J. Lee. INDUS: Effective and efficient language
559 models for scientific applications. In Franck Dernoncourt, Daniel Preoțiuc-Pietro, and Anastasia
560 Shimorina (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural
561 Language Processing: Industry Track*, pp. 98–112, Miami, Florida, US, November 2024.
562 Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-industry.9. URL
563 <https://aclanthology.org/2024.emnlp-industry.9/>.

564 Jian Chen, Peilin Zhou, Yining Hua, Loh Xin, Kehui Chen, Ziyuan Li, Bing Zhu, and Junwei
565 Liang. FinTextQA: A dataset for long-form financial question answering. In Lun-Wei Ku, Andre
566 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association
567 for Computational Linguistics (Volume 1: Long Papers)*, pp. 6025–6047, Bangkok, Thailand,
568 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.328.
569 URL <https://aclanthology.org/2024.acl-long.328/>.

570 Christodoulos Constantinides, Dhaval Patel, Shuxin Lin, Claudio Guerrero, Sunil Dagajirao Patil,
571 and Jayant Kalagnanam. Failuresensoriq: A multi-choice qa dataset for understanding sensor
572 relationships and failure modes, 2025. URL <https://arxiv.org/abs/2506.03278>.

573 OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
574 <https://github.com/open-compass/opencompass>, 2023.

575 Andrew A Cook, Göksel Mısırlı, and Zhong Fan. Anomaly detection for iot time-series data: A
576 survey. *IEEE Internet of Things Journal*, 7(7):6481–6494, 2019.

577 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
578 of quantized llms, 2023. URL <https://arxiv.org/abs/2305.14314>.

579 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
580 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
581 *arXiv e-prints*, pp. arXiv–2407, 2024.

582 IBM Granite Team. Granite 3.0 language models, October 2024. URL <https://github.com/ibm-granite/granite-3.0-language-models/>.

583 Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas Pfister. Large language models can
584 automatically engineer features for few-shot tabular learning. In Ruslan Salakhutdinov, Zico
585 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
586 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
587 *Proceedings of Machine Learning Research*, pp. 17454–17479. PMLR, 21–27 Jul 2024. URL
588 <https://proceedings.mlr.press/v235/han24f.html>.

594 Seongtae Hong, Joong Min Shin, Jaehyung Seo, Taemin Lee, Jeongbae Park, Cho Man Young,
 595 Byeongho Choi, and Heuiseok Lim. Intelligent predictive maintenance RAG framework for
 596 power plants: Enhancing QA with StyleDFS and domain specific instruction tuning. In Franck
 597 Dernoncourt, Daniel Preōiuc-Pietro, and Anastasia Shimorina (eds.), *Proceedings of the 2024*
 598 *Conference on Empirical Methods in Natural Language Processing: Industry Track*, pp. 805–820,
 599 Miami, Florida, US, November 2024. Association for Computational Linguistics. doi: 10.18653/
 600 v1/2024.emnlp-industry.61. URL <https://aclanthology.org/2024.emnlp-industry.61/>.

601 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 602 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 603 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 604 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

605
 606 Xi Jiang, Jian Li, Hanqiu Deng, Yong Liu, Bin-Bin Gao, Yifeng Zhou, Jialin Li, Chengjie Wang, and
 607 Feng Zheng. MMAD: A comprehensive benchmark for multimodal large language models in indus-
 608 trial anomaly detection. In *The Thirteenth International Conference on Learning Representations*,
 609 2025. URL <https://openreview.net/forum?id=JDiER86r8v>.

610
 611 Ameeth Kanawady and Aditya Sane. Machine learning for predictive maintenance of industrial
 612 machines using iot sensor data. In *2017 8th IEEE international conference on software engineering*
 613 and service science (ICSESS), pp. 87–90. IEEE, 2017.

614
 615 Sunwoo Lee, Dharmik Arya, Seung-Mo Cho, Gyoung-eun Han, Seokyung Hong, Wonbeom
 616 Jang, Seojin Lee, Sohee Park, Sereimony Sek, Injee Song, Sungbin Yoon, and Eric Davis. Tel-
 617 Bench: A benchmark for evaluating telco-specific large language models. In Franck Dernoncourt,
 618 Daniel Preōiuc-Pietro, and Anastasia Shimorina (eds.), *Proceedings of the 2024 Conference*
 619 *on Empirical Methods in Natural Language Processing: Industry Track*, pp. 609–626, Miami,
 620 Florida, US, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 621 emnlp-industry.45. URL <https://aclanthology.org/2024.emnlp-industry.45/>.

622 Jiatong Li, Renjun Hu, Kunzhe Huang, Yan Zhuang, Qi Liu, Mengxiao Zhu, Xing Shi, and Wei
 623 Lin. Perteval: Unveiling real knowledge capacity of llms with knowledge-invariant perturbations,
 624 2024a. URL <https://arxiv.org/abs/2405.19740>.

625
 626 Ruosen Li, Zimu Wang, Son Quoc Tran, Lei Xia, and Xinya Du. MEQA: A benchmark for multi-
 627 hop event-centric question answering with explanations. In *The Thirty-eight Conference on*
 628 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2024b. URL <https://openreview.net/forum?id=snNuvAOQxB>.

629
 630 Yahan Li, Keith Harrigan, Ayah Zirikly, and Mark Dredze. Are clinical t5 models better for clinical
 631 text?, 2024c. URL <https://arxiv.org/abs/2412.05845>.

632
 633 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 634 falsehoods, 2022. URL <https://arxiv.org/abs/2109.07958>.

635
 636 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 637 Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*,
 638 2025.

639 Max Malyi, Jonathan Shek, Alasdair McDonald, and Andre Biscaya. A comparative benchmark of
 640 large language models for labelling wind turbine maintenance logs, 2025. URL <https://arxiv.org/abs/2509.06813>.

641
 642 Benjamin Maschler and Michael Weyrich. Deep transfer learning for industrial automation: A review
 643 and discussion of new techniques for data-driven machine learning. *IEEE Industrial Electronics*
 644 *Magazine*, 15(2):65–75, 2021.

645
 646 Alexander Nikitin and Samuel Kaski. Human-in-the-loop large-scale predictive maintenance of
 647 workstations. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and*
 648 *Data Mining*, pp. 3682–3690, 2022.

648 Ahmed Okudan. Predictive maintenance dataset - air compressor, 2023. URL <https://www.kaggle.com/datasets/afumetto/predictive-maintenance-dataset-air-compressor/data>.
649
650

651 OpenAI. o1-preview, 2024. URL <https://openai.com/>.
652
653 Oracle. Add failure diagnostics information to asset incidents and anomalies. <https://docs.oracle.com/en/cloud/saas/iot-asset-cloud/iotaa/add-failure-diagnostics-information-asset-incidents-and-anomalies.html>, 2025.
654 Oracle IoT Asset Monitoring Cloud Service.
655
656

657 Sreshta R Patchala, Rithik Kotha, Vanitha Guda, and Yellasiri Ramadevi. Transformer data analysis
658 for predictive maintenance. In *Proceedings of Second International Conference on Advances in*
659 *Computer Engineering and Communication Systems: ICACECS 2021*, pp. 217–230. Springer,
660 2022.
661
662 Sourjyadip Ray, Kushal Gupta, Soumi Kundu, Dr Payal Arvind Kasat, Somak Aditya, and Pawan
663 Goyal. ERVQA: A dataset to benchmark the readiness of large vision language models in hospital
664 environments. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of*
665 *the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 15594–15608,
666 Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.873. URL <https://aclanthology.org/2024.emnlp-main.873>.
667
668 M. Raza, Z. Jahangir, M. B. Riaz, et al. Industrial applications of large language models. *Scientific*
669 *Reports*, 15:13755, 2025. doi: 10.1038/s41598-025-98483-1. URL <https://doi.org/10.1038/s41598-025-98483-1>.
670
671 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
672 Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof qa benchmark,
673 2023. URL <https://arxiv.org/abs/2311.12022>.
674
675 Joshua Robinson, Christopher Michael Rytting, and David Wingate. Leveraging large language
676 models for multiple choice question answering, 2023. URL <https://arxiv.org/abs/2210.12353>.
677
678 Tobias Schimanski, Jingwei Ni, Roberto Spacey Martín, Nicola Ranger, and Markus Leippold. ClimRetrieve: A benchmarking dataset for information retrieval from corporate climate disclosures. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 17509–17524, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.969. URL <https://aclanthology.org/2024.emnlp-main.969>.
679
680 Gauri Shah and Aashis Tiwari. Anomaly detection in iiot: A case study using machine learning. In
681 *Proceedings of the ACM India joint international conference on data science and management of*
682 *data*, pp. 295–300, 2018.
683
684 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
685 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
686 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
687
688 Michael Stewart, Melinda Hodkiewicz, and Sirui Li. Large language models for failure mode
689 classification: An investigation, 2023. URL <https://arxiv.org/abs/2309.08181>.
690
691 Jing Su, Chufeng Jiang, Xin Jin, Yuxin Qiao, Tingsong Xiao, Hongda Ma, Rong Wei, Zhi Jing, Jiajun
692 Xu, and Junhong Lin. Large language models for forecasting and anomaly detection: A systematic
693 literature review, 2024. URL <https://arxiv.org/abs/2402.10350>.
694
695 Ekaterina Sviridova, Anar Yeginbergen, Ainara Estarrona, Elena Cabrio, Serena Villata, and Rodrigo
696 Agerri. CasiMedicos-arg: A medical question answering dataset annotated with explanatory argu-
697 mentative structures. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings*
698 *of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 18463–18475,
699 Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1026. URL <https://aclanthology.org/2024.emnlp-main.1026>.
700
701

702 Gemini Team, Rohan Anil, Sebastian Borgeaud, and etc. Gemini: A family of highly capable
 703 multimodal models, 2024. URL <https://arxiv.org/abs/2312.11805>.

704

705 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 706 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
 707 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
 708 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 709 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 710 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 711 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 712 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 713 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 714 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 715 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 716 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 2023. URL <https://arxiv.org/abs/2307.09288>.

717

718 Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
 719 Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
 720 models, 2023. URL <https://arxiv.org/abs/2305.04091>.

721

722 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 723 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
 724 Fan, Xiang Yue, and Wenhui Chen. MMLU-pro: A more robust and challenging multi-task language
 725 understanding benchmark. In *The Thirty-eight Conference on Neural Information Processing
 726 Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=y10DM6R2r3>.

727

728 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 729 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 730 models. In *Proceedings of the 36th International Conference on Neural Information Processing
 731 Systems, NIPS '22*, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

732

733 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
 734 John Schulman, and William Fedus. Measuring short-form factuality in large language models,
 2024. URL <https://arxiv.org/abs/2411.04368>.

735

736 Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou, Wenchuang Li, Binxin
 737 Hu, Wendy Gao, Jiaxing Xu, Yiming Liu, Jie Tang, Hongning Wang, and Minlie Huang. Bench-
 738 marking complex instruction-following with multiple constraints composition. In *The Thirty-eight
 739 Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024.
 URL <https://openreview.net/forum?id=U2aVNDrZGx>.

740

741 Ran Xu, Wenqi Shi, Yue Yu, Yuchen Zhuang, Yanqiao Zhu, May Dongmei Wang, Joyce C. Ho,
 742 Chao Zhang, and Carl Yang. BMRetriever: Tuning large language models as better biomedical
 743 text retrievers. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of
 744 the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 22234–22254,
 745 Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/
 746 v1/2024.emnlp-main.1241. URL <https://aclanthology.org/2024.emnlp-main.1241/>.

747

748 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 749 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 2025a.

750

751 Hong Yang, Aidan LaBella, and Travis Desell. Predictive maintenance for general aviation using
 752 convolutional transformers, 2022. URL <https://arxiv.org/abs/2110.03757>.

753

754 Puyu Yang, Laifa Tao, Zijian Huang, Haifei Liu, Wenyuan Cao, Hao Ji, Jianan Qiu, Qixuan Huang,
 755 Xuanyuan Su, Yuhang Xie, Jun Zhang, Shangyu Li, Chen Lu, and Zhixuan Lian. Phm-bench: A
 domain-specific benchmarking framework for systematic evaluation of large models in prognostics
 and health management, 2025b. URL <https://arxiv.org/abs/2508.02490>.

756 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 757 React: Synergizing reasoning and acting in language models. *ArXiv*, abs/2210.03629, 2022. URL
 758 <https://api.semanticscholar.org/CorpusID:252762395>.
 759

760 Fanghua Ye, Mingming Yang, Jianhui Pang, Longyue Wang, Derek Wong, Emine Yilmaz, Shuming
 761 Shi, and Zhaopeng Tu. Benchmarking llms via uncertainty quantification. *Advances in Neural*
 762 *Information Processing Systems*, 37:15356–15385, 2024.

763

764 Dongyi Yi, Guibo Zhu, Chenglin Ding, Zongshu Li, Dong Yi, and Jinqiao Wang. Mme-industry: A
 765 cross-industry multimodal evaluation benchmark, 2025. URL <https://arxiv.org/abs/2501.16688>.
 766

767 Jiahao Ying, Yixin Cao, Yushi Bai, Qianru Sun, Bo Wang, Wei Tang, Zhaojun Ding, Yizhe Yang,
 768 Xuanjing Huang, and Shuicheng YAN. Automating dataset updates towards reliable and timely
 769 evaluation of large language models. In *The Thirty-eighth Conference on Neural Information*
 770 *Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=EvEqY1Qv8T>.
 771

772

773 Feng Zhang, Chengjie Pang, Yuehan Zhang, and Chenyu Luo. Camb: A comprehensive industrial llm
 774 benchmark on civil aviation maintenance, 2025a. URL <https://arxiv.org/abs/2508.20420>.
 775

776 Tianyang Zhang, Zhuoxuan Jiang, Shengguang Bai, Tianrui Zhang, Lin Lin, Yang Liu, and Jiawei Ren.
 777 RAG4ITOps: A supervised fine-tunable and comprehensive RAG framework for IT operations
 778 and maintenance. In Franck Dernoncourt, Daniel Preoțiu-Pietro, and Anastasia Shimorina (eds.),
 779 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry*
 780 *Track*, pp. 738–754, Miami, Florida, US, November 2024a. Association for Computational
 781 Linguistics. doi: 10.18653/v1/2024.emnlp-industry.56. URL <https://aclanthology.org/2024.emnlp-industry.56/>.
 782

783

784 Wen Zhang, Long Jin, Yushan Zhu, Jiaoyan Chen, Zhiwei Huang, Junjie Wang, Yin Hua, Lei Liang,
 785 and Huajun Chen. Trustuqa: A trustful framework for unified structured data question answering,
 786 2024b. URL <https://arxiv.org/abs/2406.18916>.
 787

788 Yudi Zhang, Pei Xiao, Lu Wang, Chaoyun Zhang, Meng Fang, Yali Du, Yevgeniy Puzyrev,
 789 Randolph Yao, Si Qin, Qingwei Lin, Mykola Pechenizkiy, Dongmei Zhang, Saravan Raj-
 790 mohan, and Qi Zhang. RuAG: Learned-rule-augmented generation for large language mod-
 791 els. In *The Thirteenth International Conference on Learning Representations*, 2025b. URL
 792 <https://openreview.net/forum?id=BpIbnXWfhL>.
 793

Ziyin Zhang, Zhaokun Jiang, Lizhen Xu, Hongkun Hao, and Rui Wang. Multiple-choice questions
 794 are efficient and robust llm evaluators, 2024c. URL <https://arxiv.org/abs/2405.11966>.
 795

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large language models are
 796 not robust multiple choice selectors, 2024. URL <https://arxiv.org/abs/2309.03882>.
 797

Keyi Zhong, Tom Jackson, Andrew West, and Georgina Cosma. Natural language processing ap-
 798 proaches in industrial maintenance: A systematic literature review. *Procedia Computer Science*,
 800 232:2082–2097, 2024. ISSN 1877-0509. doi: <https://doi.org/10.1016/j.procs.2024.02.029>. URL
 801 <https://www.sciencedirect.com/science/article/pii/S1877050924002060>. 5th Interna-
 802 tional Conference on Industry 4.0 and Smart Manufacturing (ISM 2023).
 803

Yizhang Zhu, Shiyin Du, Boyan Li, Yuyu Luo, and Nan Tang. Are large language
 804 models good statisticians? In Amir Globersons, Lester Mackey, Danielle Belgrave,
 805 Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances*
 806 *in Neural Information Processing Systems 38: Annual Conference on Neural Infor-*
 807 *mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December*
 808 *10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/729786203d330da046dd8091c2d92a66-Abstract-Datasets_and_Benchmarks_Track.html.
 809

810
 811 **A DECLARATION OF GENERATIVE AI AND AI-ASSISTED TECHNOLOGIES IN**
 812 **THE WRITING PROCESS**

813
 814 During the preparation of this work, the authors used Grammarly in order to improve the grammar,
 815 clarity, and flow of the manuscript. After using this tool/service, the author(s) reviewed and edited
 816 the content as needed and take full responsibility for the content of the publication.

817
 818 **B ETHICS STATEMENT**

819
 820 In this paper, we strictly obey the principles outlined in the ICLR Code of Ethics, including careful
 821 consideration of potential ethical concerns, including the impact on human subjects, data privacy, and
 822 fairness in dataset construction decisions. We promise that any data used in this study were released
 823 in compliance with legal and ethical standards, and proper security measures were implemented to
 824 safeguard personal and location information. The dataset hosting platform will be huggingface and/or
 825 kaggle benchmark.

826
 827 **C REPRODUCIBILITY STATEMENT**

828
 829 We provide the all the details of our method in the paper and appendix, including evaluation prompts,
 830 detailed experimental setup and implementation, hyperparameters for both LLM reasoning and
 831 MCQA questions. The code will be available upon the paper publication. These above ensure that
 832 others can reproduce our method.

833
 834 **D HYPERPARAMETER ANALYSIS**

835
 836 we analyse the effect of varying the α and β to see the dataset option selection diversity as setting
 837 them relatively high may result in a larger number of questions with the tradeoff of having similar
 838 question options among questions. To quantify the diversity of the options we calculate the question
 839 to question overlap of generated options for question from several rules (rules with ids 1, 4, 9, 16, 25)
 840 to calculate the overlap we use the Intersection over union measure (IOU) and calculate the mean
 841 IOU of the selected questions per dataset. The results are presented in the Fig. 6. which clearly
 842 shows that when we increase α and β the dataset size increases (proportional to the size of the bubble)
 843 although the mean IOU value increases as well thus balancing out both the diversity and question
 844 count we choose $\alpha = 10$ and $\beta = 10$ in DiagnosticIQ

$$845 \quad IOU_{mean} = \frac{1}{|D_Q|} \sum_{x_1, x_2 \in D_Q} \frac{OPT_{x_1} \cap OPT_{x_2}}{OPT_{x_1} \cup OPT_{x_2}}$$

846
 847 where D_Q here is a subset of the questions for the given rules for a dataset

Figure 6: The Variation of Dataset size and Mean IOU as α and β are Varied

864

E RULE GENERATION

865
 866 The rules originally came from Smarter Buildings, which was introduced in 2011 as part of the
 867 larger Smarter Planet initiative. There were originally 18 Fault Detection and Diagnostic (FDD) rules
 868 spread across 3 equipment types, with Air Handlers being the primary focus. There were two main
 869 objectives to the program: to achieve 5-15% energy savings for the monitored equipment, and to
 870 reduce maintenance hours by 30%. Air Handlers were originally, and continue to be, the primary
 871 focus of the rules, as they are the most prevalent piece of equipment at any location and thus provide
 872 the greatest savings. As the program continued and the rule set expanded, additional equipment (such
 873 as Chillers and Boilers) was added for increased monitoring and savings, leading to a total of 118
 874 active rules across 13 equipment types.

875 The rules were actively developed over the course of 7 years, with 11 major updates. Each update
 876 added additional rules and updated existing ones to account for updates to the logic. There were two
 877 key roles involved in developing the rules: the Reliability Engineer who developed the rules, and
 878 the System Administrator who coded them. There was also a Rules Logic committee that typically
 879 involved 2-8 participants that met every other week to brainstorm and develop the rough logic for the
 880 rules, with the Reliability Engineer and System Administrator working closely together to ensure the
 881 logic was coded correctly.

882 Writing a new rule does not take a long time to code – typically around 30 minutes to ensure it’s
 883 running correctly. However, with additional testing and verification, it can take significantly longer to
 884 finalize. This includes documentation of the new rule, as well as the correct verbiage on the rule, to
 885 better inform technicians about the potential causes and where to begin troubleshooting. Updating a
 886 rule takes less time but still requires additional testing and updating of the documentation, so it is still
 887 not an insignificant task.

888
 889

F LLMs IN INDUSTRY 4.0

890 Large language models (LLMs) have seen rapid development and broad application across domains,
 891 from general-purpose models like OpenAI’s GPT series (OpenAI, 2024) and Meta’s Llama 2 (Touvron
 892 et al., 2023) to specialized, multimodal models such as Gemini (Team et al., 2024) and Mistral 7B
 893 (Jiang et al., 2023). These foundational models demonstrate impressive capabilities in natural
 894 language understanding, generation, and reasoning (Wei et al., 2022; Wang et al., 2023; Yao et al.,
 895 2022), and are increasingly benchmarked on complex question answering and reasoning datasets
 896 (Rein et al., 2023; Li et al., 2024b; Wang et al., 2024).

897 In the context of domain-specific applications, several efforts highlight the benefits of fine-tuning or
 898 training LLMs on domain-relevant corpora. For example, INDUS (Bhattacharjee et al., 2024) and
 899 TelBench (Lee et al., 2024) demonstrate improved performance on scientific and telecommunications
 900 tasks, respectively, underscoring the value of specialized data and benchmarks. Similarly, clinical
 901 text models (Li et al., 2024c) and biomedical retrievers (Xu et al., 2024) leverage domain-specific
 902 adaptations to better meet task requirements.

903 Industrial and predictive maintenance applications have attracted increasing attention with approaches
 904 combining LLMs and machine learning for failure mode classification and condition monitoring
 905 (Stewart et al., 2023; Nikitin & Kaski, 2022; Putchala et al., 2022; Yang et al., 2022). These studies
 906 highlight the potential of language models to extract actionable insights from maintenance logs,
 907 sensor data, and domain knowledge, aiding decision-making in complex industrial environments.
 908 Public datasets such as predictive maintenance for air compressors (Okudan, 2023) and wind power
 909 forecasting (Bhaskarpandit, 2020) facilitate research in this area.

910 Recent work also explores the robustness and reliability of LLMs in handling structured data, multi-
 911 hop reasoning, and multiple-choice question answering (MCQA). Studies have pointed out challenges
 912 in LLMs’ MCQA performance (Robinson et al., 2023; Zhang et al., 2024c; Zheng et al., 2024) and
 913 proposed methods like chain-of-thought prompting (Wei et al., 2022) and plan-and-solve prompting
 914 (Wang et al., 2023) to elicit better reasoning. Self-improving multi-step reasoning agents (Aksitov
 915 et al., 2023) and trustful frameworks for unified question answering (Zhang et al., 2024b) further
 916 advance LLM capabilities.

918
919 Table 6: Statistics of expert-curated rules collected (Asset type definitions can be found in Table 10).
920

Asset Type	#Rules	# \vee	# \mathcal{C}	#Observations
Fan	1	0	4	4
UPS	1	1	2	1
Lighting	1	1	2	2
Plate & Frame	1	1	4	4
PIU	2	1	5	5
Meter	3	4	4	4
Air Compressor	3	1	6	8
PDU	3	0	7	3
HXU	4	0	12	9
Cooling Tower	4	1	11	12
Pump	5	1	20	22
Boiler	6	5	17	19
VAV	8	3	30	18
CRAC	10	0	21	28
Chiller	11	0	26	27
AHU	55	54	312	172

941
942 Benchmarking platforms such as OpenCompass (Contributors, 2023) and uncertainty quantification
943 in benchmarks (Ye et al., 2024) enable more reliable evaluation of LLMs across tasks and domains.
944 Studies on knowledge capacity and factuality assessment (Li et al., 2024a; Wei et al., 2024) inform
945 improvements in LLM trustworthiness.

946 In the tabular and scientific domain, LLMs have shown promise for automatic feature engineering
947 (Han et al., 2024) and scientific knowledge extraction (Bhattacharjee et al., 2024). Efforts to automate
948 dataset updates and maintain evaluation relevance (Ying et al., 2024) address practical challenges in
949 large-scale LLM deployment.

950 951 G RULE DOCUMENT COLLECTED FROM INDUSTRY EXPERTS. 952

953 954 G.1 MAINTENANCE RELATED DATASET AND BENCHMARKS 955

956
957
958
959
960 In this appendix, we provide a structured comparison of two closely related datasets: CAMB(Zhang
961 et al., 2025a) and the Wind-Turbine Log benchmark (Malyi et al., 2025) together with our own
962 contribution. While maintenance is a fundamental task in managing industrial physical assets, the
963 challenges addressed by each dataset differ substantially. CAMB focuses on common-sense procedu-
964 ral maintenance knowledge derived from manuals and aviation reference sources. The Wind-Turbine
965 Log dataset targets taxonomy-driven classification of incomplete maintenance records. In contrast,
966 our benchmark centers on automated monitoring and actionable maintenance recommendation, which
967 requires aligning operational conditions with expert-defined rules, integrating sensor data, and sup-
968 porting temporally grounded reasoning. The comparison given in Table 7 clarifies the unique scope
969 of our work relative to prior datasets.
970

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

Table 7: Comparison of CAMB, Wind-Turbine Log, and our benchmark.

Dimension	CAMB	Wind-Turbine Log	Ours
ArXiv Date	28 Aug 2025	8 Sep 2025	19 Sep 2025 (submitted)
Dataset Size / As- sets	12	1	16
Task Type	Common-sense main- tenance QA	Log classification	Temporal rule & action mapping
Data Sources	Books, manuals, ex- pert docs	Real turbine service logs	Expert rules + real ac- tions from production systems
Domain Scope	Aviation	Wind energy (single sub- system)	Industrial data-center
Modality	Chinese and English	English	English
Construction Process	Internet + books; dis- tractor method not specified	LLM-generated; method details limited	Deterministic, LLM-free pipeline; rule-based, log- driven; difficulty knobs
Expert Validation	No	No	Yes
Results Summary	Small LLM gaps	-	Significant temporal rea- soning difficulty; strong variation across LLMs

H CONDITIONS AS NATURAL LANGUAGE EXPERIMENTS

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 8: Conditions as Natural Language

Model	Macro Accuracy	Δ Macro Accuracy
claude-3-7-sonnet	68.22	-2.58
o1	64.53	-4.33
deepseek-v3	62.02	-6.45
mistral-large	60.45	-3.70
qwen2-5-72b-instr.	56.73	-3.53
llama-3-3-70b-instr.	55.16	-9.62
mistral-medium	55.89	-5.09
gemini-1.5-pro	55.78	-4.10
mistral-small-3-1.	53.78	-6.01
llama-3-1-405b-instr.	53.81	-4.37
granite-3-3-8b-instr.	53.69	-1.75
gemini-2.0-flash	49.78	-6.37
microsoft-phi-4	45.64	-2.73
claude-3-5-haiku	42.30	-6.22
llama-3-1-8b-instr.	39.79	+1.69

Prior work reports that embedding-based models can achieve approximately 66% accuracy on CAMB tasks, particularly in datasets with 7K+ questions covering 12 aircraft types. However, these studies focus primarily on direct QA performance and do not conduct deeper analyses. Specifically, they do not include perturbation analysis (e.g., robustness to noise, paraphrasing, or distractor shifts), do not perform statistical significance testing, and do not evaluate recommendation-oriented models that translate operational conditions into actionable maintenance decisions. As a result, these benchmarks provide valuable baselines but lack the methodological depth necessary to evaluate reasoning robustness, operational reliability, or the transition from question answering to decision-support and recommendation tasks.

1026 I GENERALIZABILITY EXPERIMENTS SETUP

1028 **SFT:** For hardware we use 4xNvidia A100 GPUs with 80GB memory. We fine-tune the base model
 1029 using QLoRA (Dettmers et al., 2023) with FlashAttention-2 (max sequence length 2048, packed
 1030 sequences), 4-bit quantization, and LoRA adapters ($r = 16$, $\alpha = 16$), training for 3 epochs with a
 1031 per-device batch size of 8, a learning rate of 2×10^{-4} and a 0.1 warmup ratio.

1032 **GRPO:** For hardware we use 4xNvidia A100 GPUs with 80GB memory. We train for 250 steps,
 1033 with 16 generations per step and effective batch size of 4 per device. We use Learning Rate (LR)
 1034 of 5×10^{-7} , Beta of 0.001, cosine LR scheduler and 0.03 warmup ratio. We use the Hugging Face
 1035 implementation that excludes prompt length and reward std normalization due to bias Liu et al.
 1036 (2025).

1037 **Formatting:** For Qwen3-8B we align on a json format with reasoning and answer fields
 1038 as recommended in the documentation for MCQA questions. For granite-3.3-8B we use
 1039 `<think></think>` and `<response></response>` tags as described in the model card and in
 1040 llama-3.1-8b we used `<think></think>` and `<answer></answer>` tags. Think tags/fields are
 1041 ommited for SFT. During evaluation, if a model doesn't provide an answer we consider it as wrong.

1044 J BACKGROUND: INDUSTRIAL ASSET DIAGNOSTICS SYSTEM

1045 Large corporations and institutions usually own their industrial facilities. Industrial facilities rely on
 1046 a diverse set of physical assets, including but not limited to chillers, boilers, pumps, compressors,
 1047 air compressors, and air handling units (AHUs), to maintain safe, efficient, and resilient operations
 1048 and ensure a smooth working environment. These assets are foundational in sectors like data centers,
 1049 hospitals, manufacturing plants, and commercial buildings, where equipment failures can lead to
 1050 operational downtime, safety risks, or financial losses.

1051 Today, to manage these industrial assets proactively, organizations deploy sensor networks that
 1052 continuously track real-time measurements such as temperature, pressure, flow rate, humidity,
 1053 and power consumption. Domain experts use this data to define *diagnostic rules*, which map
 1054 specific combinations of sensor conditions to likely early signals of particular failure modes and
 1055 ideally recommended follow-up actions, such as inspection, warning bookkeeping, and proactive
 1056 maintenance. These rules power the early warning systems and suggest the predictive maintenance
 1057 workflows, allowing operations teams to detect and address potential faults before they escalate to
 1058 interrupt the operation.

1059 Creating these diagnostic rules is a labor-intensive, highly specialized task. Domain experts must
 1060 understand the behavior of each asset under various operating conditions, interpret complex sensor
 1061 relationships, and encode domain knowledge into logical expressions that accurately represent the
 1062 behavior of each asset. A single facility may require hundreds of rules per asset type or model, each
 1063 reflecting detailed dependencies between multivariate sensor signals. Rules often involve temporal
 1064 thresholds, conditional logic, and asset-specific tolerances.

1065 Table 9 presents a set of representative rules derived from production environments, demonstrating
 1066 the range of conditions and asset behaviors encountered in industrial diagnostics.

1067 This rule-related management domain presents several challenges that complicate automation:

- 1068 • **High-dimensional, domain-specific sensor data**, often with implicit semantics not found
 1069 in general corpora.
- 1070 • **Complex logical dependencies** across multiple sensor conditions, often involving nested
 1071 boolean logic.
- 1072 • **Asset heterogeneity**, where similar asset classes behave differently depending on configura-
 1073 tion or environment.
- 1074 • **Tacit expert knowledge** that is rarely documented and typically acquired through experi-
 1075 ence.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

Table 9: Illustrative Examples of Diagnostic and Alert Rules across Industrial Asset Types

Asset Type	Rule Name	Rule Logic Summary
AHU	Simultaneous Heating and Cooling	AHU Running; Cooling Valve $\geq 5\%$; Heating Valve $\geq 5\%$; Drain Flags Active; Met for 2 Hours
AHU	Heating Valve Open When Warm Outside	AHU Running; OAT - Supply Temp $\text{more than } 5^\circ\text{F}$; Heating Valve $\text{more than } 10\%$; Met for 2 Hours
Air Compressor	Pressure Setpoint Attainment	ABS(Pressure - Setpoint) $\text{more than } 10 \text{ PSI}$ OR Pressure $\text{more than } 130 \text{ PSI}$ (if setpoint missing); Met for 2 Hours
Air Compressor	Flow Flag	Not Monday; Air Flow $\text{more than } 120\%$ of Previous Day's Average; Met for 2 Hours
Boiler	Excess O ₂ in Stack	Fuel Flow $\text{more than } 5$ and Flue Gas O ₂ exceeds threshold; Met for 2 Hours
Boiler	Flue Gas Temperature Setpoint Attainment	Flue Gas Temp below setpoint; Met for 2 Hours
Chiller	Temperature Setpoint Attainment	Chiller Running; Supply Temp - Setpoint $\text{more than } 5^\circ\text{F}$; Met for 2 Hours
Chiller	Low Supply Temperature	Chiller Running; Setpoint - Supply Temp $\text{more than } 3^\circ\text{F}$; Met for 2 Hours
Cooling Tower	Delta T Out of Range	Condenser Return - Supply Temp $< 5^\circ\text{F}$; Tower Running; Met for 2 Hours
Cooling Tower	Pressure Setpoint Attainment	ABS(Condenser Pressure Diff - Setpoint) $\text{more than } 5 \text{ PSI}$; OAT $< 95^\circ\text{F}$; Met for 2 Hours

While diagnostic rules are effective in practice, they do not scale easily. The growing complexity and data richness of industrial systems require tools that can assist in generating, validating, and refining such rules.

Large Language Models (LLMs) offer a promising avenue for this. However, general-purpose LLMs are not trained on sensor semantics or domain-specific diagnostics, and it is unclear whether they can reason over the kinds of multivariate conditions and logic used in real-world maintenance workflows.

Given the domain complexity and the limitations of manual rule engineering, we now present Asset DiagnosisIQ, a benchmark for testing whether LLMs can assist in scalable, high-quality industrial diagnostics.

K ASSET TYPE DESCRIPTIONS

The asset DiagnosisIQ dataset includes diagnostic rules derived from a wide range of industrial asset types commonly found in commercial buildings, data centers, manufacturing facilities, and other operational environments. Each asset class is associated with domain-specific behaviors, sensor signals, and potential fault conditions that inform the construction of diagnostic questions. This section provides concise descriptions of the primary asset types represented in the dataset, supporting an understanding of their operational roles and diagnostic relevance.

Table 10 provides brief descriptions of the major asset types represented in the Asset DiagnosisIQ dataset. These physical systems are typically monitored via real-time sensor data and are subject to diagnostic rules used for fault detection and predictive maintenance.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Table 10: Industrial Asset Types Addressed in the Diagnostic Rules

Asset Type	Description
AHU	Conditions and circulates air as part of an HVAC system. Regulates airflow, temperature, and humidity in commercial buildings.
Air Compressor	Converts electrical or mechanical power into pressurized air for pneumatic systems and equipment.
Boiler	Heats water or other fluids for use in heating systems, industrial processes, or power generation.
Chiller	Removes heat from water using vapor-compression or absorption cycles; supplies chilled water to cooling systems.
Cooling Tower	Rejects heat from water-cooled systems by dissipating it into the atmosphere. Common in HVAC and process cooling.
CRAC (Computer Room AC)	Cools air in data centers to maintain safe temperature and humidity for IT equipment. Specialized HVAC component.
Fan	Drives air movement for ventilation, circulation, or cooling. Includes exhaust, supply, and return fans.
Heat Exchanger	Transfers heat between two fluids without mixing. Used for efficient thermal regulation in building systems.
Plate & Frame HX	A compact type of heat exchanger using stacked plates to transfer heat between fluid streams.
Pump	Moves liquids through mechanical force. Used in chilled water, hot water, and process fluid systems.
Terminal Unit	Regulates temperature and air delivery in individual building zones. Includes fan coil units and unit ventilators.
VAV (Variable Air Volume Unit)	Controls airflow to a zone by varying damper position, often part of demand-driven ventilation.
Condenser	Rejects heat from refrigerant cycles in chillers or heat pumps. Includes air- or water-cooled variants.
ERV (Energy Recovery Ventilator)	Transfers heat and moisture between exhaust and incoming fresh air streams to improve HVAC efficiency.
Water Heater	Provides domestic or process hot water, separate from large-scale boiler systems. May be gas or electric.
UPS (Uninterruptible Power Supply)	Supplies provides temporary backup power during grid interruptions to protect critical equipment.
Electrical Panel	Distributes power to facility circuits and equipment; may be monitored for load balancing or safety.

L CASE STUDY: CLOSED-LOOP WATER-COOLING CHILLER WITH COOLING TOWER

This case study illustrates a realistic multi-component diagnostic scenario for a **closed-loop water-cooled chiller system** paired with a **cooling tower**. It demonstrates how expert-authored rules, time-persistent sensor conditions, and actionable maintenance logic can be represented in the DiagnosticIQ framework. The case highlights cross-asset, multi-sensor reasoning a primary challenge captured by the DiagnosisIQPro dataset.

Figure 7 illustrates the schematic layout of a closed-loop water-cooled chiller system. The diagram captures the three key subsystems:

- **Refrigerant Loop:** Evaporator, compressor, condenser, and expansion valve arranged in a standard vapor-compression cycle.
- **Chilled Water Loop:** Chilled water pump circulates through the building's cooling coils and returns to the evaporator.

1188
 1189
 1190

- **Condenser Water Loop:** Removes heat from the condenser and rejects it to the atmosphere via a cooling tower.

1191 The Building Automation System (BAS) coordinates the entire process by issuing control signals to
 1192 the compressor, pumps, and other critical components.

1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

Figure 7: Schematic of a closed-loop water-cooled chiller system

L.1 SYSTEM CONTEXT AND MOTIVATION

Water-cooled chillers are used in high-performance HVAC systems where condenser heat is rejected via cooling towers. These systems rely on evaporators, compressors, condenser loops, and building automation systems (BAS) to coordinate thermal transfer. Rule-based diagnostics are essential for early detection of inefficiencies or faults, particularly in critical environments like data centers and hospitals. As shown in Table 11, each component is associated with a distinct set of sensors and diagnostic KPIs.

L.2 COMPONENT-LEVEL DIAGNOSTIC RULES

We present a curated set of expert-authored diagnostic rules, each associated with a chiller subsystem and defined by time-persistent Boolean logic. Table 12 summarizes selected rules aligned with the DiagnosticIQ schema.

L.3 INTEGRATED DIAGNOSTIC SCENARIO

This case demonstrates cross-asset rule activation. The observed conditions span the chiller and cooling tower, requiring compositional reasoning. In the following, The meaning of OAT is Outside Air Temperature.

Observed Conditions (QC):

- Chiller Running
- Supply Temp - Setpoint Temp > 5°F
- Evaporator $\Delta T < 7°F$
- Condenser Water Return - Supply Temp < 5°F
- Cooling Tower Supply Temp < Setpoint - 4°F
- OAT > 43°F

Activated Rules (T_{R_i}):

1242
 1243 Table 11: Components, Sensors, and KPIs in a Closed-Loop Water-Cooled Chiller System with
 1244 Cooling Tower

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 Component	1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 Common Sensors / Meters	1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 Associated KPIs	1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 Purpose / Insight
Evaporator	Inlet Temp, Outlet Temp, Water Flow	$\Delta T_{\text{Evap}} = T_{\text{in}} - T_{\text{out}}$ Cooling Load = $\dot{m} \cdot c_p \cdot \Delta T$	Measures heat absorbed from chilled water; identifies under-performance or fouling.
Compressor	Power (kW), Amps, Suction/Discharge Pressure, Vibration	Compressor Efficiency = Cooling Load / Power Compression Ratio = $P_{\text{dis}}/P_{\text{suc}}$	Assesses mechanical load, efficiency, early signs of failure or degradation.
Condenser	Inlet Temp, Outlet Temp, Water Flow	$\Delta T_{\text{Cond}} = T_{\text{in}} - T_{\text{out}}$ Approach Temp = $T_{\text{refrigerant}} - T_{\text{cond-out}}$	Evaluates heat rejection quality; detects fouling, flow loss, scaling.
Expansion Valve	Pre/Post Temp, Pressure	Superheat / Subcooling Temperatures	Indicates refrigerant charge level, valve responsiveness, control precision.
Pump	Flow Rate, ΔP (Suction-Discharge), Power, Status	Pump Efficiency = Flow / Power ΔP Stability	Verifies circulation; detects pump wear, airlocks, or blockage.
Cooling Tower	Return Temp (from condenser), Supply Temp (to condenser), Fan Speed, OAT, Water Level	$\Delta T_{\text{Tower}} = T_{\text{return}} - T_{\text{supply}}$ Approach Temp = $T_{\text{supply}} - T_{\text{ambient}}$	Validates heat rejection; detects overcooling, bypass issues, fan control faults.
Control System	Setpoints, Run Status, Fault Logs, Mode Indicators	Setpoint Attainment = $ T_{\text{supply}} - T_{\text{setpoint}} $ Cycle Count, Runtime Logs	Supports alarm generation, diagnostics of control tuning, overshoot, inefficiency.

- Chiller - Setpoint Not Met
- Chiller - Cooling ΔT Low
- Cooling Tower - Water Too Cold

Observation (O_i): Cooling tower is overcooling condenser water, reducing head pressure and impairing chiller performance.

Action (A_i): Tune tower fan control logic or enable bypass to raise condenser water temperature.

This case study demonstrates the type of multivariate, cross-component diagnostic reasoning supported by the DiagnosisIQPro dataset. By grounding rule activation in realistic sensor logic and translating conditions into actionable maintenance decisions, the example highlights the practical value of structured condition-action QA benchmarks for industrial asset management.

M DIAGNOSTIC RULE LOGIC CATEGORIZATION WITH EXAMPLES

This section presents a structured classification of diagnostic rules based on their underlying Boolean logic. Diagnostic rules are widely used in automated fault detection and energy analytics systems to evaluate sensor data from building systems such as air handling units (AHUs), chillers, boilers, and compressors. Understanding the logical structure of these rules enhances interpretability, facilitates rule development, and supports systematic debugging. Tables of 13 and 14 outline common logic categories and provide real-world examples to illustrate each structure.

1296

1297

Table 12: Sample Diagnostic Rules for Closed-Loop Water-Cooled Chiller System

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

Component	Rule Name	Associated Sensors / KPIs	Condition Logic Summary
Control System	Cooling Temp Setpoint Not Met	Supply Temp, Setpoint Temp (KPI: $\Delta T_{Setpoint}$)	Chiller Running \wedge (Supply Temp - Setpoint Temp $> 5^{\circ}\text{F}$) for 2 hrs
Control System	Low Supply Temperature	Supply Temp, Setpoint Temp (KPI: $\Delta T_{Setpoint}$)	Chiller Running \wedge (Setpoint - Supply Temp $> 3^{\circ}\text{F}$) for 2 hrs
Evaporator	Cooling ΔT Low	Return Temp, Supply Temp, OAT (KPI: ΔT_{Evap})	Chiller Running \wedge P&F Off \wedge $\Delta T < 7^{\circ}\text{F} \wedge OAT > 37^{\circ}\text{F}$ for 4 hrs
Compressor	Efficiency Exceeds Threshold	Power Input, Cooling Load (KPI: Chiller Efficiency)	Chiller Running \wedge Efficiency $>$ design parameter for 2 hrs
Condenser	Flow Detected While Off	Condenser Water Flow, Run Status	Chiller Off \wedge Flow > 50 GPM for 2 hrs
Compressor	Load Low	Load %, Amps, Full Load Amps	Chiller Running \wedge (Load % $< 30\%$ \vee Amps / FLA $< 30\%$) for 2 hrs
Evaporator	Evaporator Approach High	Supply Temp, Refrigerant Temp (KPI: Evap Approach)	Chiller Running \wedge (Supply - Refrigerant Temp $> 4^{\circ}\text{F}$) for 3 hrs
Condenser	Condenser Approach High	Liquid Temp, Return Temp (KPI: Cond Approach)	Chiller Running \wedge (Condensate - Return Temp $> 4^{\circ}\text{F}$) for 3 hrs
Pump / Control	ΔP Not at Setpoint	$\Delta P, \Delta P_{Setpoint}$	$ABS(\Delta P - \Delta P_{Setpoint}) > 4$ PSI for 3 hrs
Control System	Excessive Power While Off	Power, Run Status	Chiller Off \wedge Power > 5 kW for 3 hrs
Control System	Chiller Cycling	Run Status Log	Status changed ≥ 4 times in 8 hrs

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

Table 13: Boolean Logic Categories Used in Diagnostic Rules

Logic Category	Explanation
Conjunctive (AND)	All listed conditions must be simultaneously satisfied. Example pattern: $c_1 \wedge c_2 \wedge \dots \wedge c_n$
Disjunctive (OR)	Any one condition is sufficient to trigger the rule. Example pattern: $c_1 \vee c_2 \vee \dots \vee c_n$
Mixed (AND-OR)	Structured combinations of conjunctive and disjunctive logic, typically in disjunctive normal form (DNF). Example pattern: $(c_1 \wedge c_2) \vee (c_3 \wedge c_4)$
Negation-based	Includes explicitly negated conditions. Example pattern: $c_1 \wedge \neg c_2$ or $\neg(c_1 \vee c_2)$

1340

1341

1342

1343

1344

1345

1346

1347

Categorizing diagnostic rules by their logic structure enables clearer reasoning about their behavior, performance, and possible interactions. It also aids in identifying redundant or conflicting rules in complex control systems. As building analytics platforms scale, such structured representations provide a foundation for more advanced techniques like rule validation, automated rule generation, and explainable diagnostics.

N DATASET GENERATION METHODOLOGY

1348

1349

Algorithm Description: The QA Generation Pipeline (See Algorithm 1) takes as input a set of expert-defined rules $\{\mathcal{R}^i\}$, asset descriptions (Desc), and a parameter `max_n_choices` controlling the maximum number of answer options per question. For each rule, the pipeline extracts atomic

1350

1351

Table 14: Examples of Diagnostic Rules Categorized by Logical Structure.

Asset Name/Rule	Logic Category	Logical Expression Summary
Air Compressor - Pressure Setpoint Attainment	Disjunctive (OR)	(ABS[Pressure – Setpoint] > 10 PSI OR Pressure > 130 PSI)
AHU - Simultaneous Heating and Cooling	Mixed (AND-OR)	AHU Running AND (Cooling Valve $\geq 5\%$ OR Preheat Valve $\geq 5\%$) AND (Drain Flags = 0)
AHU - Heating Valve Open when Warm Outside	Mixed (AND-OR)	AHU Running AND (OAT – SAT $> 5^{\circ}\text{F}$ OR SAT Not Reporting) AND (Heating Valve $> 10\%$ OR Preheat Valve $> 10\%$)
Boiler - Excess O ₂ in Stack	Disjunctive (OR)	(Gas Flow > 5 AND Flue O ₂ % $>$ threshold OR Flue O ₂ % $>$ threshold IF Fuel Flow Not Reporting)
CRAC - Limited Cooling Warning	Conjunctive (AND)	CRAC Running AND (Return Temp \leq Supply Temp + 3°F)
Chiller - Cooling Substance Temperature Setpoint Attainment	Conjunctive (AND)	Chiller Running AND (Supply Temp – Setpoint $> 5^{\circ}\text{F}$)

1368

1369

1370 conditions from the condition tree \mathcal{TR}^i , retrieves the corresponding asset description, and generates
 1371 question-answer pairs by selecting and eliminating candidate observations using similarity metrics
 1372 and heuristics. It then combines each extracted condition with all relevant question-option-answer
 1373 tuples to build the final dataset DS_Q , facilitating systematic benchmarking of maintenance action
 1374 recommendations.

1375

1376

Algorithm 1 QA Generation Pipeline

1377

Input: $\{\mathcal{R}^1, \dots, \mathcal{R}^{N_{\mathcal{R}}}\}$, Desc, max_n_choices

1378

Output: DS_Q

1379

```

1: Initialize  $DS_Q \leftarrow []$ 
2: for each  $\mathcal{R}^i \in \{\mathcal{R}^1, \dots, \mathcal{R}^{N_{\mathcal{R}}}\}$  do
3:    $\{QC_j^i\}_{j=1}^{N_{cond}} \leftarrow extracted\_conditions(\mathcal{TR}^i)$ 
4:    $AD^i \leftarrow get\_asset\_desc(\mathcal{R}^i, Desc)$ 
5:    $\{(QP_j^i, OPT_j^i, A_j^i)\}_{j=1}^{N_{sel}} \leftarrow extracted\_obs\_sel(\mathcal{R}^i, \alpha, RRSim, UO)$ 
6:    $\{(QP_j^i, OPT_j^i, A_j^i)\}_{j=1}^{N_{eli}} \leftarrow extracted\_obs\_eli(\mathcal{R}^i, \beta, RRSim, UO)$ 
7:    $all\_opts \leftarrow \{(QP_j^i, OPT_j^i, A_j^i)\}_{j=1}^{N_{sel}} \cup \{(QP_j^i, OPT_j^i, A_j^i)\}_{j=1}^{N_{eli}}$ 
8:   for each  $QC_j^i \in \{QC_j^i\}_{j=1}^{N_{cond}}$  do
9:     for each  $(QP_{j2}^i, OPT_{j2}^i, A_{j2}^i) \in all\_opts$  do
10:       $Q^i \leftarrow (AD^i, QC_{j1}^i, QP_{j2}^i, OPT_{j2}^i, A_{j2}^i)$ 
11:      Append  $Q^i$  to  $DS_Q$ 
12:    end for
13:  end for
14: end for
15: return  $DS_Q$ 

```

1396

1397

1398

1399

N.1 RULE TO RULE SIMILARITY MAP

1400

1401

1402

1403

We utilize Rule to Rule Similarity **RRSim** mapping during the creation of dataset. The similarity is calculated by initially embedding the text components (*asset_type*, *conditions*) of each rule using a all-mpnet-base-v2 embedding model. Then the embedding to embedding similarity is calculated according to cosine similarity.

1404 N.2 DIAGNOSISIQPRO
1405

1406 The **DiagnosisIQPro** dataset extends *DiagnosisIQ* to evaluate model performance under more
 1407 challenging conditions with larger option sets. To enable direct comparison, for each question Q^i in
 1408 *DiagnosisIQ*, we retain the asset description AD^i , observed conditions QC^i , question prompt QP^i ,
 1409 and ground-truth answer A^i , while expanding the set of answer options OPT^i by adding additional
 1410 plausible but incorrect choices.

1411 For *selection*-type questions, we increase the number of incorrect options by resampling from
 1412 observations of rules that are semantically similar yet distinct, ensuring that distractors remain
 1413 relevant but incorrect. For *elimination*-type questions, we similarly augment the sets of correct and
 1414 incorrect options to increase task complexity, leveraging domain-informed similarity measures (e.g.,
 1415 **RRSim**) to maintain logical coherence.

1416 This augmentation more closely mimics real-world industrial scenarios, where practitioners must con-
 1417 sider numerous potential failure causes, thereby testing the robustness and discriminative capabilities
 1418 of language models in high-option environments.
1419

1420
1421 N.3 DIAGNOSTICIQPERT
1422

1423 We create a perturbation dataset DiagnosisIQPert to analyze the sensitivity of model responses to
 1424 minor variations in the questions. This dataset is derived by manipulating DiagnosisIQ questions
 1425 through several transformations: randomly shuffling the order of conditions and options, adding
 1426 parentheses around option labels (e.g., $A \rightarrow (A)$), changing option labels (e.g., $A, B, C \rightarrow P, Q, R$),
 1427 and substituting one question prompt QP^i with another. These perturbations help assess the ro-
 1428 bustness and consistency of language models when faced with slight changes in input formatting or
 1429 phrasing.
1430

1431
1432 Figure 8: Example Question

1433 Please select the correct option(s) from the following options given the question:
 1434 Question:
 1435 ## Asset Description:
 1436 AHU: Air Handling Unit: A device used to condition and
 1437 circulate air as part of a heating, ventilating, and air-conditioning (HVAC) system.
 1438 ## Conditions:
 1439 - AHU Running
 1440 - Outside Air Damper % < 15% AND Outside Air Damper Minimum % Not Reporting
 1441 - Economizer Mode AND Supply Relative Humidity % Not Reporting
 1442 - OAT < Setpoint Temperature
 1443 - Outside Air Damper %
 1444 - OAT > 37 °F
 1445 - Outside Air Damper % Does NOT = Daily Average
 1446 - SubType NOT OAU, RAS, RAU
 1447 ## How long the conditions were met:
 1448 Met for 2 Hours
 1449
 1450 Looking at the current state of the asset, what is the MOST likely cause among the
 1451 options?
 1452 Options:
 1453 (P) Control system sent the wrong command
 1454 (Q) Belts are loose or broken
 1455 (S) Broken Belt
 1456 (R) Vanes at wrong angle
 1457 Your output must strictly follow this format:
 1458 {"answer": <the list of selected options, e.g., ["(P)", "(R)"]>}

1458 N.4 DIAGNOSTICIQVERBOSE
1459

1460 To assess the symbolic understanding in the context of maintainance action recommendation we
 1461 create a variant of DiagnosisIQ questions named DiagnosticIQVerbose. To create this we initially
 1462 embedded the conditions of each question using a all-mpnet-base-v2 embedding model. Then the
 1463 embedding are cluster according to cosine similarity to get 10 representative questions representing
 1464 the cluster groups. We manually convert the conditions into natural language of these questions and
 1465 then use these as in-context examples and prompt a mistral-large to generate the natural language
 1466 representation for the rest of the questions.

```

1467 1 Your task is to read the asset description (## Asset Description:) and conditions (##  

1468 2 Conditions:) applied on the asset and  

1469 3 write the conditions (## Conditions:) in natural language several examples are provided,  

1470 4 complete the last sample.  

1471 5  

1472 6 ## Conditions:  

1473 7 AHU Running  

1474 8 OAT < 80F  

1475 9 Cooling Valve % > 97%  

1476 10 ABS(Supply Air Temperature Setpoint - Supply Air Temperature) > 3IF Setpoint Reporting  

1477 11 ## Conditions in Natural Language:  

1478 12 The asset is running while the outside temperatue is less than 80Fahrenheit and the  

1479 13 units cooling valve is nearly fully open ( Cooling Valve is open more than 97% )  

1480 14 and further tha absolute value of the difference between set threshold of air  

1481 15 temperature and supply air temperature is greater than 3  

1482 16 Fahrenheit  

1483 17 ...  

1484 18 ## Asset Description:  

1485 19 AHU: Air Handling Unit: A device used to condition and circulate air as part of a  

1486 20 heating, ventilating, and air-conditioning (HVAC) system.  

1487 21 ## Conditions:  

1488 22 AHU Running  

1489 23 OAT > 35F  

1490 24 Preheat Valve % > 97%  

1491 25  

1492 26 ## Conditions in Natural Language:
```

1493 Listing 2: Prompt used to convert symbolic representation natural language
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

Figure 9: The word count distribution of unique actions in the expert curated dataset

O MAINTENANCE ACTION RECOMMENDATION ENGINE

The Maintenance Action Recommendation Engine takes a semi-defined rule as input in the form $(asset_type, \mathcal{TR}^i, t^i)$, and returns a set of recommended maintenance actions \mathcal{O}^i corresponding to a given rule \mathcal{R}^i .

We begin by selecting all possible actions applicable to a specific asset, resulting in a large action space AS . These actions are sourced from the collection of unique operations defined in our Expert-Curated Rule Documents (see Sec. 3.1).

To manage the scale of this action space, we adopt a divide-and-conquer strategy by chunking the actions into manageable segments, as described in Algorithm 2.

we utilize the DiagnosticIQ as a database of QA to inject examples giving the question and the answer rather

An example of a prompt generated by the `get_llm_prompt` function is shown in Fig. 10.

P EXAMPLES OF LLM RATIONALE

This section provides an examples of rationales that were generated for the purposes of evaluating LLM domain understanding and reasoning.

P.1 LLM AND ANNOTATOR DISAGREEMENTS.

We notice that experts do not always agree with certain rationale which can be seen as outliers in the Fig 5. We present such an example and the reasoning given by the expert to give a low rating. The rationale that was generated and the cosponsoring expert comment is denoted in Fig 12

1566

1567

Figure 10: MAReE Prompt with 1 example question.

```

1568 ## Asset Description:
1569 Cooling Tower
1570 ## Conditions:
1571 - Cooling Tower Running
1572 - 55 degF < Outside Air Temp < 80 degF
1573 - Supply Temp Setpoint = Previous Hour Supply Air Temp Setpoint
1574 - Supply Temp Setpoint = Previous Daily Average Supply Air Temp Setpoint
1575 ## How long the conditions were met:
1576 Met for 3 Hours Checking Previous 3 Days Daily Average
1577 Analyse the given conditions of the presented asset and rank
1578 the options that MOST likely gives the reason
1579 for the conditions?
1580 A. Outside air temperature sensor failure
1581 B. Fans are off
1582 C. Check fans and condenser water pumps
1583 D. VFD operation
1584 E. Too many condenser pumps running
1585 F. Logic issues for the cooling tower
1586 G. Cooling tower reset in manual
1587 H. Fan is overridden
1588 I. Too few cooling towers running
1589 J. Static pressure sensors need calibration, repair or replacement
1590 ## Use following Questions and answers as help for the ranking.
1591 ### Example 1
1592 ### Asset Description:
1593 Cooling Tower: A heat rejection device that cools water or other fluids
1594 by transferring heat to the atmosphere. It is commonly used in HVAC systems,
1595 power plants, and industrial processes.
1596 ### Conditions:
1597 - Cooling Tower { Condenser Water is too cold
1598 - Cooling Tower Running
1599 - OAT > 43 °F
1600 - Condenser Water Supply Temperature to Chiller < 55 °F
1601 IF Condenser Water Temperature Setpoint NOT Reporting
1602 ## How long the conditions were met:
1603 Met for 2 Hours
1604 Review the listed conditions and identify which option MOST accurately accounts for
1605 them.
1606 A. Fan blades at incorrect pitch
1607 B. Load is too low or fluctuates
1608 C. Fan is overridden
1609 D. If unit resets based on VAV damper position exempt from this rule.
1610 Answer: C. Fan is overridden
1611 Your output must strictly follow this format:
1612 {"option": <list of the option tag e.g. ['A', 'B', 'C', 'D', 'E']>,
1613 "score":<list of scoring value inline with rank ranging from 1,-1 eg: [1.0, 0.9, 0.8,
1614 0.7, 0.6]>,
1615 "rank":<list of the rank eg: [10, 9, 8, 7, 6]>}
1616
1617
1618
1619 Your output in a single line:

```

1610

1611

P.2 LLM AND ANNOTATOR AGREEMENTS.

1613

1614

On the flip side we provide an example where the annotators agree with the LLM generated rationale in 13

1615

1616

1617

1618

1619

Figure 11: Model vs Question type Accuracy

Algorithm 2 Maintenance Action Recommendation Engine

Input: DS_Q , $asset_type$, \mathcal{R}^i , N_{obs} , top_k
Output: \mathcal{O}

```

1: function SELECTACTIONS( $\mathcal{Q}_{list}$ ,  $\mathcal{R}$ ,  $obs$ ,  $k$ )
2:    $\mathcal{Q}_{sel} \leftarrow GET\_SIMILAR\_QUESTIONS(\mathcal{Q}_{list})$ 
3:    $prompt \leftarrow GET\_LLM\_PROMPT(\mathcal{R}, obs, \mathcal{Q}_{sel})$ 
4:    $order \leftarrow LLM\_ANSWER(prompt)$ 
5:   Re-order  $obs$  using  $order$ 
6:    $sel\_obs \leftarrow SELECT\_TOP\_OBSERVATIONS(obs, k)$ 
7:   return  $sel\_obs$ 
8: end function
9: function DYNAMICACTIONRANKING( $\mathcal{Q}_{list}$ ,  $Actions$ ,  $asset\_type$ ,  $\mathcal{R}^i$ ,  $N_{obs}$ ,  $top_k$ )
10:    $sel\_obs_{all} \leftarrow []$ 
11:   for  $i \leftarrow 0$  to  $|Actions| - 1$  step  $N_{obs}$  do
12:      $list\_obs \leftarrow Actions[i : i + N_{obs}]$ 
13:      $sel\_obs \leftarrow SELECTACTIONS(\mathcal{Q}_{list}, \mathcal{R}^i, list\_obs, top_k)$ 
14:     Append  $sel\_obs$  to  $sel\_obs_{all}$ 
15:   end for
16:   return DYNAMICACTIONRANKING( $\mathcal{Q}_{list}$ ,  $sel\_obs_{all}$ ,  $asset\_type$ ,  $\mathcal{R}^i$ ,  $N_{obs}$ ,  $top_k$ )
17: end function
18:  $AS \leftarrow GET\_ASSET\_ACTION\_SPACE(asset\_type)$ 
19:  $\mathcal{O} \leftarrow DYNAMICACTIONRANKING(DS_Q, AS, asset\_type, \mathcal{R}^i, N_{obs}, top_k)$ 
20: return  $\mathcal{O}$ 

```

Q VARIANCE ACROSS MODEL FAMILIES

Table 15 and Table 16 report the average set size of predictions for the DiagnosticIQ and Pro datasets, respectively. Across both datasets, models consistently exhibit higher average scores on incorrectly answered items compared to the overall item set, indicating systematic patterns in error severity. Results from both the two-sample t-test and the Mann–Whitney U test yield extremely small p-values for nearly all models, confirming that the score distributions for correct and incorrect items differ significantly. These findings suggest that models not only struggle more with difficult cases but also produce substantially larger deviations when they fail, reflecting a meaningful gap in model calibration under challenging conditions.

R SEMANTIC RANK ANALYSIS.

To analyze the nature of model errors in the MCQA task, we computed a *semantic rank* for each incorrectly predicted option. Each answer choice was first embedded into a semantic vector space using a pretrained embedding model. For every wrong prediction, we measured its distance to the correct option and ranked all options from closest to farthest. A semantic rank of 1 indicates that the model selected the wrong option that is most semantically similar to the correct answer (“perfect semantic confusion”), while higher ranks indicate progressively less semantically related choices. We then report the mean and standard deviation of these ranks for each model and dataset, providing

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Figure 12: Rationale Generated where annotator disagreed.

Asset Description:

Pump: A device used to move fluid or gas from one place to another. It can include various types of pumps, such as centrifugal pumps, positive displacement pumps, and diaphragm pumps.

Conditions:

- Pump Running
- SubType NOT HW
- Pump Motor VFD Output % > 35%
- Pump Motor VFD Output % = Daily Average Pump Motor VFD Output %
- OAT < 95 °F
- ABS(Pump Differential Pressure - Pump Differential Pressure Setpoint) > 4psi

IF Reporting

How long the conditions were met:

Met for 2 Hours

Analyse the given conditions of the presented asset and select the option that MOST likely gives the reason for the conditions?

- A. Lighting relay schedule over written
- B. Mis-sized equipment
- C. Unit bypassing or blowing off too much air
- D. Static pressure sensors need calibration, repair or replacement

Answer

Answer: D. Static pressure sensors need calibration, repair or replacement

Guidance Rationale: Given that the pump is running and the motor's variable frequency drive (VFD) output percentage is both above 35% and equal to the daily average, this indicates that the pump is operating under stable and expected load

conditions. However, there is a significant deviation in the pump differential pressure from its setpoint, exceeding 4 psi, which points to a potential issue in how pressure is being measured. Since the outside air temperature is below 95°F, it is unlikely that environmental conditions are responsible for the discrepancy.

Therefore, the most likely explanation is that the static pressure sensors require calibration, repair, or replacement, to ensure accurate readings and efficient pump operation.

Expert Rating

2

Expert Comment

This rule is looking for a VFD that should be changing speed but is not. The VFD or control system may be in manual mode or there is a control system failure. The reference positive displacement pumps and diaphragm pumps does not make sense in the context of this rule.

a quantitative measure of whether model mistakes are near-miss semantic errors or more distant, less meaningful deviations.

Table 17 shows representative semantic ranks for selected models in both simple and complex MCQA datasets.

1782

1783

Table 15: Models sorted by Avg_Set_All (ascending) for Diag IQ dataset.

model_id	avg_set_all	avg_set_wrong	t_p_value	mannwhitney_p_value
granite-3-3-8b-instruct	1.04339	1.10413	2.15744e-06	3.38142e-36
claude-3-7-sonnet	1.05112	1.18699	1.23794e-51	1.14479e-138
llama-4-maverick	1.05979	1.18059	6.02828e-82	1.90411e-171
gemini-1.5-pro	1.08655	1.25043	1.71241e-73	8.96014e-142
o1-new	1.08744	1.29893	2.3592e-107	8.6181e-271
o1	1.09013	1.30271	2.32491e-107	1.06305e-262
deepseek-v3-h200	1.11584	1.36080	1.52242e-140	2.88267e-304
gpt-5-2025-08-07	1.12377	1.38422	7.22468e-161	0
gemini-2.5-pro	1.18984	1.51922	2.59789e-217	0
llama-3-3-70b-instruct	1.19536	1.49302	1.10683e-283	0
mistral-large	1.21928	1.63589	2.83552e-224	0
qwen2-5-72b-instruct	1.22676	1.61442	0	0
mistral-small	1.23513	1.59002	3.66404e-298	0
llama-3-1-405b	1.23711	1.57883	0	0
llama-3-1-8b-instruct	1.28406	1.45728	1.69264e-235	2.61701e-178
mistral-medium-2505	1.28744	1.74535	0	0
microsoft-phi-4	1.29849	1.57488	0	0
gemini-2.0-flash	1.30179	1.66524	0	0
Qwen3-8B	1.43513	1.76889	0	0
claude-3-5-haiku	1.46637	1.83961	0	0

1803

1804

1805

Table 16: Models sorted by Avg_Set_All (ascending) for Diag IQ Pro dataset.

model_id	avg_set_all	avg_set_wrong	t_p_value	mannwhitney_p_value
granite-3-3-8b-instruct	1.22911	1.35481	1.71521e-115	3.46688e-110
claude-3-7-sonnet	1.24439	1.52896	1.10791e-197	3.35434e-288
gpt-5-2025-08-07	1.73214	2.22818	0	0
deepseek-v3-h200	1.78954	2.22980	0	0
llama-3-3-70b-instruct	1.80590	2.19058	0	0
llama-3-1-405b	1.82952	2.28790	0	0
gemini-2.5-pro	1.84101	2.37583	0	0
gemini-1.5-pro	1.84410	2.16867	0	0
microsoft-phi-4	1.92840	2.22481	0	0
qwen2-5-72b	1.98206	2.46423	0	0
claude-4-sonnet	2.04499	2.55945	0	0
llama-3-1-8b-instruct	2.21933	2.41447	0	2.01685e-306
mistral-large	2.16280	2.83141	0	0
mistral-small	2.35321	2.89037	0	0
Qwen3-8B	2.36383	2.59790	0	0
gemini-2.0-flash	2.44664	2.82707	0	0
mistral-medium-2505	2.49567	3.14170	0	0
claude-3-5-haiku	2.49671	2.77221	0	0
o1	2.56801	3.12219	0	0

1825

1826

1827

1828

Table 17: Representative semantic-rank scores of incorrect predictions for simple and complex MCQA datasets. Rank = 1 corresponds to perfect semantic confusion; higher values indicate farther semantic deviation.

Model	Dataset	Mean Rank	Std Dev
Claude-4 Sonnet	Simple	2.71	0.92
LLaMA-3-1-8B	Simple	2.81	0.76
Gemini-2.5 Pro	Simple	2.87	0.80
GPT-5 (Aug-2025)	Simple	2.84	0.77
Claude-4 Sonnet	Complex	4.80	2.70
LLaMA-3-3-70B	Complex	4.99	2.54
Mistral-Large	Complex	4.98	2.60
Gemini-2.0 Flash	Complex	5.28	2.62