
Under review as submission to TMLR

PrivShap: A Finer-granularity Network Linearization
Method for Private Inference

Anonymous authors
Paper under double-blind review

Abstract

Private inference applies cryptographic techniques like homomorphic encryption, garble cir-
cuit and secret sharing to keep both sides privacy in a client-server setting during inference.
It is often hindered by the high communication overheads, especially at non-linear activa-
tion layers such as ReLU. Hence ReLU pruning has been widely recognized as an efficient
way to accelerate private inference. Existing approaches to ReLU pruning typically rely on
coarse hypothesis, which assume an inverse correlation between the importance of ReLU
and linear layers or shallow activation layers have less importance for universal models, to
assign the budgets according to the layer while preserving the inference accuracy. How-
ever, these assumptions are based on limited empirical evidence and can fail to generalize
to diverse model architectures. In this work, we introduce a finer-granularity ReLU bud-
get assignment approach by assessing the layer-wise importance of ReLU with the Shapley
value. To address the computational burden of exact Shapley value calculation, we propose
a tree-trimming algorithm for fast estimation. We provide both theoretical guarantees and
empirical validation of our method. Our extensive experiments show that we achieve better
efficiency and accuracy than the state-of-the-art across diverse model architectures, activa-
tion functions, and datasets. Specifically, we only need ∼2.5× fewer ReLU operations to
achieve a similar inference accuracy and gains up to ∼8.13% increase on inference accuracy
with similar ReLU budgets.

1 Introduction

The growth of AI-driven client-server technologies Xing & Zhao (2024a;b;c); Wang et al. (2024); Zhu et al.
(2025); Xu et al. (2024a; 2025), has significantly advanced Machine Learning as a Service (MLaaS) Xu et al.
(2024c;b); Mishra et al. (2020); Rathee et al. (2020) in academia and industry. However, privacy concerns
have led to the emergence of cryptographic techniques for private inference (PI), where the server processes
encrypted client input while retaining the machine learning model, ensuring data privacy throughout the
inference process.

Existing private inference frameworks often involve cryptographic techniques such as Homomorphic Encryp-
tion (HE) Fan & Vercauteren (2012); Cheon et al. (2017), Garbled Circuits (GC) Bellare et al. (2012),
and Secret Sharing (SS) to maintain the privacy of both the client and the server. For example, Crypt-
Flow2 Rathee et al. (2020) uses HE for convolutional computations and SS for non-linearity computations,
while Gazelle Juvekar et al. (2018) employs GC for ReLU operations. Compared to linear computations, the
use of GC and SS in non-linear functions like ReLU requires significantly higher communication costs and
bandwidth. This increased overhead leads to longer communication latency during client-server interactions
in privacy-preserving inference, making efficiency a significant concern.

This challenge has prompted a range of efforts to develop more efficient privacy-preserving models by re-
ducing the number of ReLU operations, thereby decreasing communication and latency overhead in secure
client-server interactions. A series of network linearization works that utilizing various methods are sum-
maried in Table.1. Notably, CryptoNAS Ghodsi et al. (2020) and Sphynx Cho et al. (2022a) use the neural
architecture search (NAS) technique to find the optimum network architecture. However, such methods usu-

1

Under review as submission to TMLR

ally lead to significant accuracy drops. To rectify such shortcomings, gradient-based and manual methods,
such as SNL Cho et al. (2022b) and DeepReDuce Jha et al. (2021), are proposed to prune pixel-wise ReLU
operations by adding l1 regularizations during training. However, these methods assume a uniform impor-
tance distribution of ReLU operations across different layers, which leads to only a suboptimal balance point
between accuracy and communication efficiency. Moreover, it requires extra-long training epochs to reach
a low ReLU operation budget. To find a better trade-off between accuracy and efficiency, SENet Kundu
et al. (2023) proposes the hypothesis that the importance of ReLU layers is inversely correlated with the
corresponding linear layers based on the sensitivity measured by accuracy loss when pruned. Based on this
hypothesis, they propose customized layerwise allocation of ReLU budgets based on inferred ReLU impor-
tance, which is calculated by one minus the linear layer gradient. Arguably, this hypothesis is only based
on limited empirical evidence and not guaranteed to be generalizable to diverse model architectures and
settings.

Our contributions: We introduce PrivShap, a Shapley Value (SV)-based ReLU pruning method, which
provides fine-grained and accurate ReLU importance estimation and assigns ReLU budgets based on this
estimation. To the best of our knowledge, this is the first work to estimate the layer-wise importance of ReLU
operations using Shapley values Shapley (1953), challenging the ReLU importance hypothesis presented in
the SOTA Kundu et al. (2023). To alleviate the computational cost of exact Shapley value calculation with
O(2n) time complexity, we propose a double-trimming strategy for fast estimation. This method effectively
reduces the number of coalitions by trimming the less important subsets of ReLU layer combinations that
contribute marginally to the final SV results. Moreover, unlike related works that use l1 regularization
to implicitly reduce ReLU operations, PrivShap employs a projected gradient descent pruning strategy to
enforce the layer-wise ReLU operations within certain budgets. This approach enables more precise control
over the optimization goal during pruning and helps maintain accuracy. We conduct extensive experiments
on various models with various activation functions like SiLU/ReLU, including ResNet He et al. (2016) and
Wide Residual Networks Zagoruyko (2016), on CIFAR-10, CIFAR100, and Tiny-ImageNet. Experimental
results show that our SV-based ReLU budget can yield the best accuracy-efficiency trade-off. We only need
up to ∼2.5× fewer ReLUs to achieve similar accuracy and gain up to ∼8.13% accuracy improvement with a
similar ReLU budget compared to prior arts and can be applied to activation functions and models.

Table 1: Comparison between existing approaches in yielding efficient models to perform PI. Only our
method has fine-grained relu budget allocation for higher model performance and efficiency. PA denotes
polynomial approximation on ReLU layer. NAS denotes as network architecture search.

Method used Granularity Fine-grained?
Sphynx Cho et al. (2022a) NAS layer ×
CryptoNAS Ghodsi et al. (2020) NAS layer ×
DELPHI Mishra et al. (2020) NAS +PA layer ×
SAFENet Lou et al. (2021) NAS +PA channel ×
DeepReDuce Jha et al. (2021) Manual layer ×
SNL Cho et al. (2022b) l1-normalization pixel, channel ×
SENet Kundu et al. (2023) layer-importance based channel, pixel ✓
Ours Shapley value based channel, pixel ✓

2 Preliminaries

2.1 Cryptographic primitives

We briefly describe the relevant cryptographic primitives in this section.

Homomorphic Encryption: HE is a public key encryption scheme that allows computations to be per-
formed on ciphertexts, enabling the results to be decrypted without needing to access the plaintexts. The
encryption function E produces a ciphertext t from a plaintext message m using a public key pk, ex-
pressed as t = E(m, pk). In PI, the results of linear operations can be obtained homomorphically through

2

Under review as submission to TMLR

m1◦m2 = D(t1 ⋆t2, sk), where ◦ represents a linear operation, ⋆ is its corresponding homomorphic operation,
and t1 and t2 are the ciphertexts of m1 and m2, respectively.

Garbled Circuits: GC facilitate secure two-party computation of a Boolean function f without revealing
private inputs. The function is represented as a Boolean circuit C.The process begins with the garbler,
who generates an encoded circuit C̃ and corresponding input labels using the Garble(C) to send C̃ and the
labels to the other party who acts as an evaluator. The evaluator evaluates the garbled circuit with the
provided labels via Eval(C̃). Finally, the garbler decrypts the labels to get the plain results to share with
the evaluator.

Additive secret sharing. Given an original message m at party P ∈ {0, 1}, one of the two Additive
Secret Shares (ASS) is constructed by uniformly sampling randomness r and setting ⟨m⟩P = r, while the
other share is formed as ⟨m⟩1−P = m − r. To reconstruct the message, one can simply add two shares
m = ⟨m⟩P + ⟨m⟩1−P .

2.2 Private Inference

Similar to previous works Mishra et al. (2020); Cho et al. (2022b); Kundu et al. (2023), our method follows
the two-party semi-honest threat model. Specifically, the client C and the server S follow the protocol but
attempt to infer each other’s input, namely the client’s input data and the server’s model parameters, during
the inference process. To mitigate various threats, existing cryptographic-based inference frameworks often
employ an online-offline topology. In this architecture, the client’s data-independent components are pre-
computed during the offline phase. For linear computations, such as matrix multiplication, HE is commonly
utilized in the offline stage, as it allows operations like multiplication on ciphertexts without the need for
decryption. To ensure the correctness of decryption, ciphertexts must be refreshed after a limited number
of operations, which can be accomplished through techniques such as bootstrapping Chillotti et al. (2016)
or re-encryption Rathee et al. (2020). However, the computationally intensive nature of non-linear functions
in GC results in high costs for operations like ReLU, even in the online phase. For SS-based customized
privacy-preserved activation protocols, the frequent communication via Oblivious Transfer cryptographic
primitives imposes prolonged inference times. This highlights a critical challenge in balancing efficiency and
security in cryptographic computations.

2.3 Shapley Value

Shapley Value is a key concept in cooperative game theory, which assumes a set of players collaborate to
achieve a total gain, and measures each player’s contribution by averaging its marginal contribution across
all possible coalitions. Shapley value has been widely applied to model explanation Sundararajan & Najmi
(2020), data evaluation Ghorbani & Zou (2019), and model compression Ghorbani & Zou (2020) as it has
the following desirable properties:

• Zero/Negative Contribution: The player with zero (or negative) contribution to the model
accuracy can be measured if ∀S ⊆ N/{i} : U(S ∪ {i}) ≤ U(S), which means adding the element
to the subset of other layers does not change or reduce the model performance metric (N denote
the complete set, S denote a coalition of elements, and U denote the utility function). The proof is
shown in appendix B.1 in Ghorbani & Zou (2020).

• Efficiency: The sum of the Shapley values of all ReLU layers equals the value of the grand coalition,
so that all the gain is distributed among the ReLU layers:

∑
i∈N SV (i) = SV (N), where SV (N)

denotes as the value of grand coalition. The proof is shown in appendix B.1 and B.2 in Ghorbani &
Zou (2020).

However, the calculation of exact SV requires exponential computational costs to enumerate all possible
colliations, and existing works use Monte Carlo sampling (MCs) Ghorbani & Zou (2019) or Multi-Armed
Bandit (MAB) Ghorbani & Zou (2020) to approximate it. However, such works still need an extra long time
to converge via a large number of random samples.

3

Under review as submission to TMLR

2.4 ReLU linearization in Private Inference

Existing approaches to reduce ReLU operations in neural networks for private inference focus on either re-
designing models or optimizing architectures. SAFENet Lou et al. (2021) achieves finer control by applying
channel-wise substitutions and mixed-precision activations, measuring activation importance via l1 normal-
ization from preceding layers. CryptoNAS Ghodsi et al. (2020) redesigns networks using evolutionary NAS
to minimize ReLU operations, while Sphynx Cho et al. (2022a) enhances this with differentiable NAS for
more efficient privacy-preserving models. DeepReDuce Jha et al. (2021) takes a manual approach, pruning
redundant ReLU layers from standard models. Recent efforts Cho et al. (2022b) also apply l1 regularization
to reduce ReLU operations, optimizing the trade-off between accuracy and non-linearity. However, these
methods are sensitive to hyperparameters, often leading to suboptimal solutions and failing to meet specific
ReLU budget targets. Furthermore, those works overlook the potentially different importances of ReLU
operations across layers and only assign a global ReLU budget for the entire model.

SENet Kundu et al. (2023), on the other hand, designs a fine-grained, layerwise ReLU budget allocation
strategy. Their method is based on a hypothesis that the importance of each activation layer is inversely
correlated with the pruning sensitivity 1 of its corresponding layer with weight and bias parameters. They
then assign the ReLU budget by measuring the pruning sensitivity. However, this hypothesis is only based
on their empirical observation in a small experiment of training ResNet18 on CIFAR-100. It is not con-
vincing that this is a generalizable rule in other datasets and model variants without further verification.
Furthermore, they define the importance of ReLU layers as the accuracy of retaining only one ReLU layer
at a time and removing all others, which overlooks the natural interactions between different ReLU layers in
a model. Shapley value provides a compelling alternative to measure layerwise ReLU importance rigorously
and directly.

3 Method

In this section, we introduce our PrivShap method for fine-granularity network linearization method that
includes two parts. First, Sec. 3.1 introduces our method uses SV as indicators and tree-trimming method
to allocate a ReLU budget across layers. Second, Sec. 3.2 introduces gradient-projection pruning to remove
activations at a finer granularity. To better formulate the interactions and cooperation of different ReLU
layers, we treat them as cooperative players and assess their averaged marginal contribution to preserving
the inference accuracy. More formally, let N denote the set of all ReLU layers, S denote a coalition of
ReLU layers (i.e., a subset of ReLU layers), and U denote the performance assessment function, specifically
assessing the model accuracy of preserving only a coalition of ReLU layers and replacing all other ReLU
layers as identity function 2. The Shapley value of the i-th ReLU layer is then defined as:

SVi = 1
|N |

∑
S⊆N\{i}

U(S ∪ i)− U(S)(|N |−1
|S|

) (1)

The Shapley value takes into account the interactions between the ReLU layers. As a simple example,
suppose that two layers improve performance only if they are both present but harm performance if they
are present individually, estimating their importance by preserving each of them at a time (as Kundu et al.
(2023) did) might give misleading results. Shapley value, on the other hand, considers all possible coalitions.

3.1 Fine-grained ReLU importance Estimation

However, the exact SV measurement for the ReLU layers works for the model with a few layers. The
computational complexity grows quickly as the model goes deeper, becoming prohibitively expensive even
for ResNet-18. This is mainly due to an exponential number of coalitions S, and computing the marginal
contribution for all of them is extremely time-consuming. Existing works have employed methods such as
MCs and MAB algorithms to approximate the SV of data points or neurons once specific convergence criteria

1Pruning sensitivity denotes the accuracy reduction caused by pruning a certain ratio of parameters from it Ding et al.
(2019).

2All the layers with weight and biases are preserved

4

Under review as submission to TMLR

Figure 1: The process of calculating the estimated shapley value of 3rd ReLU layer in a given example 5-
ReLU layer model, the dashed branches are trimmed as the remaining accuracy below pre-defined threshold
(< 5%). Each iteration will generate one layer of child subsets with removing one element.

are met. Although MCs and MAB algorithms can provide approximate solutions, they do not eliminate the
inherent computational burden associated with effectively estimating SV.

Figure 2: The SV estimation process via Monte-Carlo sampling (left). The process involves unbounded
sampling trials and heavy training for each candidate model, while PrivShap (right) only requires inference
with limited trials with bounded error (see in Fig. 1 and Sec. 3.1).

To avoid an exponential subset search space, the MCs and MAB first sample subsets of ReLU layers based
on the given model architecture. After the candidate model architecture is determined, the model is trained
via hundreds of epochs to converge on the given datasets. Then the layer-wise SVs are updated with the
new model accuracy data point. Such a sampling process is repeated until the calculated SVs are converged
or within a given small threshold, as shown in Fig. 2 left. Therefore, the sampling trials and heavy training
process within each trials are inevitably leading to an unacceptably long training process.

To reduce heavy computational cost, we propose a tree-trimming method to estimate the SV of each ReLU
layer, as shown in Fig. 2 right. Our method is based on an observation that all the ReLU layers have positive
contributions to the total accuracy and there are few "free-riders" layers. An intuitive explanation for this is
that even if ReLU operations at some certain pixels might be harmful to the model accuracy Li et al. (2022),
an entire layer (i.e., a set of pixel-wise ReLU operations), can be less likely to have a negative contribution.

5

Under review as submission to TMLR

This is also aligned with our empirical observation: the accuracy can plummet to a very low number even if
only removing few ReLU layers from a trained model. This also makes such low accuracy model irreversible
to high accuracy model by just adding one important activation layer. We start with a model trained in a
standard, non-ReLU pruning manner. After the model is trained, we calculate the (approximated) SV for its
i-th ReLU layer by building a tree, where each node denotes an inference. The root node represents all ReLU
layers excluding the i-th one (i.e., N \ {i}), and each node represents a coalition of ReLU layers containing
one fewer ReLU layer than its father node. At each node with the corresponding coalition S, we calculate
the marginal contribution of the i-th layer to inference accuracy, denoted as U(S∪{i})−U(S). Importantly,
we trim all the child nodes of S if U(S) is below a certain threshold, as the marginal contributions in these
coalitions (i.e., child nodes of S) are even lower, resulting in a negligible perturbation of the SV. Figure 1
illustrates this trimming process, where the dashed nodes denote those trimmed. Since each ReLU layer
makes similar contribution and those layers are minority in mainstream models, the valid nodes are bounded
within very few iterations. Thus, we gain time efficiency by eliminating the heavy training and unbounded
sampling trials, which makes our method suited for solving network linearization issue. The detailed runtime
comparison is shown in Sec. 4.3.

Preliminary Theoretical Analysis To demonstrate the accuracy of our approximation, we provide a
preliminary theoretical analysis. We aim to show that given a coalition of ReLU layers S where its utility
U(S) is below a certain pruning threshold α, pruning S and all its subsets will only have a negligible
perturbation to the overall SV. We start with a natural observation that ∀S′ ⊆ S and U(S) ≤ α, then the
marginal gain satisfies U(S′ ∪ i)− U(S′) ≤ β, where β ≪ α. The perturbation caused by pruning S and all
its subsets can be formulated as:

∆SVi = 1
|N |

∑
S′⊆S

U(S′ ∪ i)− U(S′)(|N |−1
|S′|

) ≤ β

|N |
∑

S′⊆S

1(|N |−1
|S′|

)
= β

|N |
∑

0≤k≤|S|

(|S|
|S′|

)(|N |−1
|S′|

) <
β

|N |
∑

0≤k≤|S|

1 = β
(|S|+ 1)
|N |

(2)

Even when pruning at the nodes close to higher level of the tree, this perturbation remains negligible, as β
is typically two orders of magnitude smaller than the pruning threshold α.

3.2 Gradient-Projection Pruning Strategy

After obtaining the approximated SV for each ReLU layer, we normalize these values and multiply them by
the total ReLU budget to get the layer-wise ReLU budget. To avoid conflicts, we ensure that the allocated
budget does not exceed the number of pixel-wise ReLU operations that each layer can provide. We fine-
tune the pre-trained standard model (i.e., all ReLU persevered) and prune ReLU layers during fine-tuning.
Practically, we consider xi ∈ Rd×m×n to denote the feature map before the i-th ReLU layer, where d, m, n
denote the number of channel, width and length, respectively. We attach a binary mask ci with the same
shape as xi to the i-th ReLU layer. The output feature map of the masked ReLU layer can be formulated as

x′
i = (1− ci) ∗ xi + ci ∗ ReLU(xi). (3)

The masks at every layer are initialized as all-ones as we start with a standard model with all ReLU operation
preserved.

Previous works, such as SNL, use the l1 norm to increase the sparsity of ci, given as L =
minW,C L(fW,C(X), y) + λ(

∑b
i=1 ||ci||1), where W denotes the weights and C = {c1, c2, .., cb}, b denotes

the total number of ReLU layers for a given model. However, it experience a significant drop in accuracy
when targeting a low ReLU budget since the optimization goal has been shifted from improving accuracy
to increasing sparsity. This causes model performance degradation. To address this, we propose a gradient-
projection strategy, which remove the l1 norm from the objective function and attach a pruning process after
every gradient descent step. To be more specific, we calculate the gradient for ci, which yields a ranking of
importance for the d×m× n pixel-wise ReLU operations on that layer, where a larger gradient magnitude

6

Under review as submission to TMLR

Algorithm 1 Layer-wise ReLU importance Estimation
Input: one-layer subsets N , the set of ReLU layers S, model M.
Output: ReLU importance (SV) for each relu layer sv.

1: sv = 0
2: queue← init with ∅
3: subsets← generating all subsets of N ▷ in elements descending order
4: queue← subsets
5: while queue is not ∅ do
6: mask ← pop the mask combination from queue
7: U_s← get accuracy of masked model
8: all_mask ← add the candidate layer
9: U_si← get accuracy of all_masked model

10: if U_si > threshold then
11: for child in find_subsets(mask) do ▷ one element less subsets
12: if child not in queue then
13: queue.push(child)
14: end if
15: end for
16: end if
17: sv = sv + (U_si− U_s)/

(N−1
|S|

)
18: end while
19: sv = sv/|S|

Figure 3: The overview of PrivShap, AR denotes the all-ReLU model and PR denotes the partial-ReLU
model. We calculate the approximated SV for each non-linear layer (ReLU) based on the tree search
algorithm. The normalized SV of each ReLU layer is used to allocated the layerwise ReLU budget, with
given ReLU budget. Then we train the PR model with AR model by keeping top-k ReLU mask gradient
magnitude and narrowing the similarity between PR and AR model. Such process applies the generated
fine-grained layerwise budget allocation.

indicates a higher importance of the ReLU operation at the corresponding location. Next, we retain the
top-k important ReLU operations, where k is the layer-wise ReLU budget determined by the approximated
Shapley value. The mask ci is updated accordingly, where pruned ReLU operations are set to 0 and others
to 1. This strategy ensures that the layerwise ReLU budget is always met during the entire fine-tuning

7

Under review as submission to TMLR

process. Moreover, the objective function is the sum of cross-entropy loss (to fit ground truth labels) and
Kullback–Leibler (KL) divergence loss (to approximate the original model), which ensures the optimization
is only focused on improving model performance. The overall pipeline is depicted in Fig. 3.

4 Evaluation

4.1 Experiment Setup

To evaluate our method and align with SOTA evaluation setting for clear comparison, we apply PrivShap to
models such as ResNet18, ResNet34 with SiLU activation function, and WideResNet-22 in three benchmark
datasets: CIFAR-10, CIFAR-100 and Tiny-ImageNet. CIFAR-10 and CIFAR-100 both have images with a
resolution of 32×32. CIFAR-10 contains 10 classes with 5,000 training images and 1,000 test images per
class, whereas CIFAR-100 includes 100 classes, with 500 training images and 100 test images per class.
Tiny-ImageNet has a larger image resolution of 64×64 and consists of 200 classes, each with 500 training
and 50 validation images. The experiments are conduct on two servers with an AMD EPYC 7413 24-core
Processor 64GB RAM, under WAN (1 GBps, 1 ms latency) and LAN (300MBps, 5 ms latency).

We first train the all-ReLU (AR) models on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets using the
SGD optimizer with an initial learning rate of 0.1, momentum of 0.9, and weight decay of 0.0005. The
learning rate decays by a factor of 0.1 at 80 and 120 epochs for CIFAR-10/100, using a batch size of 256.
For Tiny-ImageNet, we train for 200 epochs with the same hyperparameters. After this, we apply gradient-
projection pruning for partial-ReLU (PR) models with a trimming threshold of 5% and an initial learning
rate of 0.001 using the Adam optimizer. Finally, the ReLU masks are frozen and the model parameters are
fine-tuned following the distillation process of Kundu et al. (2023).

Table 2: The performance of PrivShap and other methods on model architectures with CIFAR-100. ’r’
denotes the given ReLU budget, Comm. Saving denotes the ratio of communication costs associated with
an AR model to that of the corresponding PR model with reduced ReLUs.

min<r <max model baseline
Acc% #ReLU(k) Method Test

Acc%
Comm.
Saving

CIFAR-100

0<r<100k

VGG11 76.84 90.8
Ours

75.4 7.2×
ResNet18 78.3 75.2 74.9 9.4×
ResNet34(SiLU) 78.23 69.6 71.2 11.2×
VGG11 76.84 91.5 SNL 70.2 5.3×
ResNet18 78.3 86.3 DeepReDuce 68.5 10.3×

100k<r<400k

VGG16 78.7 110 Ours 78.2 3.4×
ResNet50 78.3 160 77.8 3.6×
ResNet34(SiLU) 76.92 280 Sphynx 71.4 2.8×
WRN22-8 81.2 265 SAFENet 78.5 4.1×
VGG11 76.84 150 CryptoNAS 70.3 2.7×
ResNet34 75.15 167 AutoFHE 72.3 4.2×
ResNet18 78.3 135 SENet 74.2 4.5×

We follow the latency measurement method of Cho et al. (2022b) and break down the sources of latency
into two categories: ciphertext linear operations and GC-based ReLU operations. As the SNL follows the
DELPHI framework, the ciphertext linear computation is moved to offline and use BFV scheme for HE with
default 4096-slots cryptographic parameter of SEAL library. We set 15 bit-length share for model and 31 bit
share for ReLU protocol. For ReLU latency, the wall-clock time for 1000 ReLU operations is measured as t
= 0.021 seconds per 1000 ReLUs. We compare our method with multiple baselines including SNL Cho et al.
(2022b), DeepReDuce Jha et al. (2021), Sphynx Cho et al. (2022a), SAFENet Lou et al. (2021), CryptoNAS
Ghodsi et al. (2020), SENet Kundu et al. (2023) and AutoFHE Ao & Boddeti (2024).

8

Under review as submission to TMLR

Table 3: The performance of PrivShap and other methods on model architectures with CIFAR-10. ’r’ denotes
the given ReLU budget, Comm. Saving denotes the ratio of communication costs associated with an AR
model to that of the corresponding PR model with reduced ReLUs.

min<r <max model baseline
Acc% #ReLU(k) Method Test

Acc%
Comm.
Saving

CIFAR-10

0<r<100k

VGG11 93.2 80.8
Ours

92.5 4.5×
ResNet34(SiLU) 95.8 55.2 90.4 10.4×
ResNet101 95.9 49.6 89.2 21.7×
VGG11 93.2 85.5 SNL 85.8 17.1×
ResNet18 95.8 75.3 DeepReDuce 83.2 9.3×

100k<r<400k

VGG16 94.1 110 Ours 93.2 3.1×
ResNet34(SiLU) 95.8 160 95.3 3.5×
ResNet18 95.9 180 Sphynx 91.2 5.6×
WRN22-8 94.6 165 SAFENet 90.4 2.8×
VGG11 93.2 150 CryptoNAS 87.5 2.3×
ResNet34 94.3 168 AutoFHE 91.7 3.8×
ResNet18 95.8 125 SENet 89.7 4.9×

Figure 4: The accuracy performance of PrivShap v.s existing ReLU pruning works on various ReLU-budgets
in ResNet-34. Our method achieves better Pareto frontier than existing works on different datasets.

4.2 PrivShap achieves better inference accuracy-efficency trade-off

To demonstrate our method to model performance and inference acceleration on pruned model, we compare
our method with gradient-based ReLU pruning (SNL), ReLU budget allocation (SENet), and other SOTA,
as shown in Fig. 4. Our method achieves up to an 8.13% accuracy improvement over SENet on ResNet-34
in CIFAR-100 with a ReLU budget of 150k and 5.5% accuracy boost on 7k lower ReLU budget. On Tiny-
ImageNet, we observe an improvement in accuracy of 3.1% to 4% in various ReLU budgets. For CIFAR-10,
the accuracy gain is around 2%, likely due to the simpler 10-class classification task and high baseline
accuracy.

For low ReLU budgets (≤ 100k), our method reduces the number of ReLUs by 2.5× and results in a 11.2×
communication savings in online latency for ResNet-34 in CIFAR-100, as shown in Table 2, outperforming
existing methods in both accuracy and communication efficiency. Our method also demonstrates 1.3× ReLU
budgets compared to the SOTA and up to 21.7× communication savings for ResNet-101 in CIFAR-10, as
shown in Table 3. Our method also maintains higher accuracy at higher ReLU budgets (> 100k) compared
to other approaches, achieving around 3.2% more accuracy in ResNet-18 with CIFAR-100, shown in Table 2.

9

Under review as submission to TMLR

Table 4: The exact and estimated SVs and standard deviation per ReLU layer in ResNet-9 on CIFAR-100
with 5 trials. ρ denotes the Pearson correlation.

ReLU Layer Index 1 2 3 4 5 6 7 8 ρ

Exact SV 10.98 11.12 11.55 11.03 10.85 10.87 6.47 0.13 -
Estimated
SV(ours)

8.66
±.01

9.17
±.02

9.24
±.01

9.28
±.02

9.07
±.02

8.45
±.02

5.27
±.02

0.09
±.02

0.997
±.02

Estimated
SV(MC)

8.82
±.05

9.02
±.08

8.92
±.02

9.11
±.03

9.32
±.01

8.61
±.05

6.44
±.02

0.11
±.04

0.987
±.04

Estimated
SV(MAB)

9.41
±.07

10.43
±.12

9.96
±.08

10.17
±.05

9.35
±.02

9.15
±.06

7.33
±.04

0.24
±.02

0.981
±.06

Table 5: The wall-clock time and pruned model accuracy of different SV estimation methods

Model Methods Wall-clock time Pruned model accuracy
C-100 C-10 T-imagenet

ResNet-9
Ours ∼ 5 min 76.2% 93.8% 65.4%
MC > 45 min 71.4% 89.3% 57.7%

MAB > 52 min 71.9% 90.6% 59.6%

ResNet-18
Ours ∼ 35 min 78.5% 94.3% 65.1%
MC > 70 min 73.9% 91.5% 59.6%

MAB > 78 min 72.4% 93.1% 63.7%

ResNet-34
Ours ∼ 45 min 77.3% 93.5% 67.1%
MC > 210 min 72.1% 90.1% 58.7%

MAB > 196 min 73.6% 87.9% 63.2%

4.3 Tree-trimming algorithm outperforms other SV estimation methods

To evaluate the accuracy of our SV estimation using the tree-trimming algorithm, we compare the estimated
values with the exact SV. Given the high computational complexity of exact SV calculation, we performed
our experiments on a lightweight model, ResNet-9, which consists of eight ReLU layers, on the CIFAR-
100 dataset. We use inference accuracy as the utility function and a threshold of 5% in tree-trimming
estimation. Table 4 shows the estimated and exact SVs of all ReLU layers, which align with each other,
achieving a Pearson correlation of 0.997. We compare with other SV estimation methods, including MC
Ghorbani & Zou (2019) and MAB Ghorbani & Zou (2020). They show slightly lower correlations.

Notably, both the exact and estimated SVs show a fluctuating importance trend on ReLU importance, and
the last two ReLU layers appear to be the least important compared to the former ones. Previous works, such
as SENet, SNL, and DeepReDuce, often assume a consistent trend of layerwise importance. These results
are counterexamples, implying that these assumptions might be oversimplified and not able to generalize to
different model architectures and downstream tasks.

Moreover, we evaluate the computational efficiency and the accuracy of pruned models using different SV
estimation methods across various model architectures and datasets (Table 5). For fair comparison, the MCs
and MAB methods calculate the approximated SV for each ReLU pixel in a single run and keep the top-k
budget of ReLU pixels based on normalized SV importance. Results show that MC and MAB take 2× to
4.7× more wall-clock time (which denotes the sum of time of calculating the SV for each ReLU layer) than
our tree-trimming method. Our method achieves 2.8% to 4.6% higher model accuracy, while only costing
about half of the wall-clock time. All these results provide strong evidence that the tree-trimming algorithm
we proposed outperforms other SV estimation methods in both accuracy and efficiency.

10

Under review as submission to TMLR

Figure 5: The approximated SV of each ReLU
layer in ResNet-18 on CIFAR10.

Figure 6: The approximated SV of each ReLU
layer in ResNet-18 on CIFAR100.

Figure 7: The approximated SV of each ReLU
layer in ResNet-34 on CIFAR10.

Figure 8: The approximated SV of each ReLU
layer in ResNet-34 on CIFAR100.

Figure 9: The accuracy performance of PrivShap with different accuracy thresholds in various datasets.

4.4 Trimming threshold sensitivity

As detailed in Sec. 3, our tree-trimming algorithm has a hyperparameter, the threshold for tree-trimming. We
now discuss the sensitivity of this threshold. We estimate the SV per ReLu layer with trimming thresholds
of 5%, 10%, and 15%, different thresholds on various models and datasets (See Figure 5 - 8). In general, the
estimated SVs show consistent trends across different thresholds.

11

Under review as submission to TMLR

Furthermore, we evaluated how this threshold affects the ultimate inference accuracy. With a 150k ReLU
budget, we plot inference accuracy as a function of trimming threshold across different models and datasets
in Fig. 9. Not surprisingly, the inference accuracy drops with threshold increases, as a higher threshold leads
to inaccurate SV estimation (see details in Sec. 3.1). However, the gradient is reasonably small between 5%
and 20%, which implies that the model’s performance remains stable if the trimming threshold is chosen
from this range.

5 Discussion and Conclusion

In this paper, we propose PrivShap, a method for finer-grained network linearization to improve private
inference. We show that previous works use over-simplefied layerwise ReLU importance assumptions, such
as inverse correlation between ReLU and weight layers, which can not generalize to different models and tasks.
We propose to use Shapley Values for fine-grained and accurate ReLU importance estimation and allocate
the budget accordingly. As exact Shapley value calculation is extremely computationally expensive, we
propose a tree-trimming algorithm for fast Shapley Value approximation, allowing for generalization to larger
models with many layers. Additionally, we propose a gradient-projection pruning strategy to enforce the
number of ReLU operations per layer below allocated budgets. Our experiments show that PrivShap reduces
ReLUs by up to ∼2.5× with similar accuracy, and improves accuracy by up to ∼8.13% with comparable
ReLU budgets, when compared with the prior arts. Furthermore, when compared with other Shapley value
estimation approaches, the proposed tree-trimming method outperforms in both approximation accuracy
and efficiency.

Naturally, our method has some limitations. 1) Our work aims to provide a new perception on measuring
the importance of activation layers that can guide the pixel-wise activation pruning for fast private inference.
While lack of further experiments on larger model and more complex dataset, our method can be generalized
to such scenarios as those models follow similar structure. 2) Our method can be sensitive to the threshold
choice to make the optimized trade-off between estimation accuracy and estimation efficiency for specific
models. The threshold choice and theoretical analysis remain to be explored in future study. 3) Our method
can be limited to apply to linear layers pruning, since linear parameters increase exponentially in each layer
and hard to mask out. We plan to explore such issue in future study.

References
Wei Ao and Vishnu Naresh Boddeti. AutoFHE: Automated adaption of CNNs for efficient evaluation over

FHE. In USENIX Security 24, pp. 2173–2190. USENIX Association, 2024. ISBN 978-1-939133-44-1.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Proc. CCS, pp.
784–796, 2012.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic of
approximate numbers. In Proc. ASIACRYPT, 2017.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully homomorphic encryp-
tion: Bootstrapping in less than 0.1 seconds. In ASIACRYPT, pp. 3–33, 2016.

Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Sphynx: A deep neural
network design for private inference. IEEE Security & Privacy, 20(5):22–34, 2022a. doi: 10.1109/MSEC.
2022.3165475.

Minsu Cho, Ameya Joshi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Selective network lin-
earization for efficient private inference. In International Conference on Machine Learning, pp. 3947–3961.
PMLR, 2022b.

Xiaohan Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han, Ji Liu, et al. Global sparse momentum sgd for
pruning very deep neural networks. Advances in Neural Information Processing Systems, 32, 2019.

12

Under review as submission to TMLR

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, 2012.

Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg. Cryptonas: Private inference
on a relu budget. Advances in Neural Information Processing Systems, 33:16961–16971, 2020.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning. In
International conference on machine learning, pp. 2242–2251. PMLR, 2019.

Amirata Ghorbani and James Y Zou. Neuron shapley: Discovering the responsible neurons. Advances in
neural information processing systems, 33:5922–5932, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proc. IEEE CVPR, 2016.

Nandan Kumar Jha and Brandon Reagen. Deepreshape: Redesigning neural networks for efficient private
inference. In Transactions on Machine Learning Research (TMLR), 2024.

Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu reduction for
fast private inference. In Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 4839–4849. PMLR, 18–24 Jul 2021.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low latency frame-
work for secure neural network inference. In 27th USENIX security symposium (USENIX security 18),
pp. 1651–1669, 2018.

Souvik Kundu, Shunlin Lu, Yuke Zhang, Jacqueline Tiffany Liu, and Peter Anthony Beerel. Learning to
Linearize Deep Neural Networks for Secure and Efficient Private Inference. In The Eleventh International
Conference on Learning Representations, 2023.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. In International Conference on Learning Representations, 2022.

Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. Safenet: A secure, accurate and fast neural network
inference. In International Conference on Learning Representations, 2021.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa. Delphi:
a cryptographic inference system for neural networks. In Proceedings of the 2020 Workshop on Privacy-
Preserving Machine Learning in Practice, pp. 27–30, 2020.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem Rastogi,
and Rahul Sharma. CrypTFlow2: Practical 2-Party Secure Inference. In Proc. ACM CCS, 2020. ISBN
9781450370899. doi: 10.1145/3372297.3417274.

Lloyd S Shapley. A value for n-person games. Contribution to the Theory of Games, 2, 1953.

Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In International
conference on machine learning, pp. 9269–9278. PMLR, 2020.

Zhenzhen Wang, Cesar A. Santa-Maria, Aleksander S. Popel, and Jeremias Sulam. Bi-level graph learn-
ing unveils prognosis-relevant tumor microenvironment patterns in breast multiplexed digital pathology.
bioRxiv, 2024. doi: 10.1101/2024.04.22.590118.

Zheng Xing and Weibing Zhao. Unsupervised action segmentation via fast learning of semantically consistent
actoms. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 6270–6278, 2024a.

Zheng Xing and Weibing Zhao. Block-diagonal guided DBSCAN clustering. IEEE Trans. Knowl. Data Eng.,
36(11):5709–5722, 2024b.

Zheng Xing and Weibing Zhao. Segmentation and completion of human motion sequence via temporal
learning of subspace variety model. IEEE Trans. Image Process., 1(1):1–1, 2024c.

13

Under review as submission to TMLR

Jiuyun Xu, Yingzhi Zhao, Xiaowen Li, Liang Zhou, Kongshang Zhu, Xiangrui Xu, Qiang Duan, and Ruru
Zhang. Teg-di: Dynamic incentive model for federated learning based on tripartite evolutionary game.
Neurocomputing, pp. 129259, 2024a.

Jiuyun Xu, Liang Zhou, Yingzhi Zhao, Xiaowen Li, Kongshang Zhu, Xiangrui Xu, Qiang Duan, and RuRu
Zhang. A two-stage federated learning method for personalization via selective collaboration. Computer
Communications, pp. 108053, 2025.

Xiangrui Xu, Qiao Zhang, Rui Ning, Chunsheng Xin, and Hongyi Wu. Comet: A Communication-efficient
and Performant Approximation for Private Transformer Inference. arXiv preprint arXiv:2405.17485,
2024b.

Xiangrui Xu, Qiao Zhang, Rui Ning, Chunsheng Xin, and Hongyi Wu. SPOT: Structure Patching and
Overlap Tweaking for Effective Pipelining in Privacy-Preserving MLaaS with Tiny Clients. In 2024 IEEE
44th International Conference on Distributed Computing Systems (ICDCS), pp. 1318–1329, 2024c.

Sergey Zagoruyko. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

Kongshang Zhu, Jiuyun Xu, Liang Zhou, Xiaowen Li, Yingzhi Zhao, Xiangrui Xu, and Shibao Li. Dmaf:
data-model anti-forgetting for federated incremental learning. Cluster Computing, 28(1):30, 2025.

6 Appendix

6.1 More comparisons

We evaluate our method against DeepReShape Jha & Reagen (2024) by comparing the pruned model accu-
racy on the ResNet34 architecture under a fixed ReLU budget. This comparison is conducted on both the
CIFAR-100 and Tiny ImageNet datasets. Fig.10 and Fig.11 show that our method has around 4.3% more
accuracy of pruned(reshaped) model accuracy on same given ReLU budget.

Figure 10: The accuracy of ResNet34 on CIFAR-
100, HybReNet for DeepReShape for different
given ReLU budgets.

Figure 11: The accuracy of ResNet34 on Tiny-
Imagenet, HybReNet for DeepReShape for dif-
ferent given ReLU budgets.

6.2 Evidence of Marginal Gain

To provide some evidence for U(S′∪ i)−U(S′) ≤ β, where β ≪ α in Section. 3.1, we sample 100 descendant
subset’s the marginal utility gain U(S′ ∪ i) − U(S′) under an ancestor node that satisfies U(S) < 5% for
ResNet-9, 18, 34 models in CIFAR 100. The Fig. 13, 15 and 17 show that the marginal utility can be smaller
in two order of magnitude of U(S).

14

Under review as submission to TMLR

Figure 14: The 100 random samples of U(S′ ∪
i) − U(S′) value distribution of each i-th ReLU
layers in ResNet-18 model (CIFAR-100).

Figure 15: The zoom-out comparison with each
ReLU layer marginal gain and threshold α in
ResNet-18 (CIFAR-100).

Figure 12: The 100 random samples of U(S′ ∪
i) − U(S′) value distribution of each i-th ReLU
layers in ResNet-9 model (CIFAR-100).

Figure 13: The zoom-out comparison with each
ReLU layer marginal gain and threshold α in
ResNet-9 (CIFAR-100).

Figure 16: The 100 random samples of U(S′ ∪
i) − U(S′) value distribution of each i-th ReLU
layers in ResNet-34 model (CIFAR-100).

Figure 17: The zoom-out comparison with each
ReLU layer marginal gain and threshold α in
ResNet-34 (CIFAR-100).

15

	Introduction
	Preliminaries
	Cryptographic primitives
	Private Inference
	Shapley Value
	ReLU linearization in Private Inference

	Method
	Fine-grained ReLU importance Estimation
	Gradient-Projection Pruning Strategy

	Evaluation
	Experiment Setup
	PrivShap achieves better inference accuracy-efficency trade-off
	Tree-trimming algorithm outperforms other SV estimation methods
	Trimming threshold sensitivity

	Discussion and Conclusion
	Appendix
	More comparisons
	Evidence of Marginal Gain

